PennyJX's picture
Upload 35 files
a9658c4 verified
raw
history blame
5.47 kB
import re
import torch
from modules.processing import StableDiffusionProcessing, Processed
from scripts.animatediff_logger import logger_animatediff as logger
from scripts.animatediff_infotext import write_params_txt
class AnimateDiffPromptSchedule:
def __init__(self):
self.prompt_map = None
self.original_prompt = None
def save_infotext_img(self, p: StableDiffusionProcessing):
if self.prompt_map is not None:
p.prompts = [self.original_prompt for _ in range(p.batch_size)]
def save_infotext_txt(self, res: Processed):
if self.prompt_map is not None:
parts = res.info.split('\nNegative prompt: ', 1)
if len(parts) > 1:
res.info = f"{self.original_prompt}\nNegative prompt: {parts[1]}"
for i in range(len(res.infotexts)):
parts = res.infotexts[i].split('\nNegative prompt: ', 1)
if len(parts) > 1:
res.infotexts[i] = f"{self.original_prompt}\nNegative prompt: {parts[1]}"
write_params_txt(res.info)
def parse_prompt(self, p: StableDiffusionProcessing):
if type(p.prompt) is not str:
logger.warn("prompt is not str, cannot support prompt map")
return
lines = p.prompt.strip().split('\n')
data = {
'head_prompts': [],
'mapp_prompts': {},
'tail_prompts': []
}
mode = 'head'
for line in lines:
if mode == 'head':
if re.match(r'^\d+:', line):
mode = 'mapp'
else:
data['head_prompts'].append(line)
if mode == 'mapp':
match = re.match(r'^(\d+): (.+)$', line)
if match:
frame, prompt = match.groups()
data['mapp_prompts'][int(frame)] = prompt
else:
mode = 'tail'
if mode == 'tail':
data['tail_prompts'].append(line)
if data['mapp_prompts']:
logger.info("You are using prompt travel.")
self.prompt_map = {}
prompt_list = []
last_frame = 0
current_prompt = ''
for frame, prompt in data['mapp_prompts'].items():
prompt_list += [current_prompt for _ in range(last_frame, frame)]
last_frame = frame
current_prompt = f"{', '.join(data['head_prompts'])}, {prompt}, {', '.join(data['tail_prompts'])}"
self.prompt_map[frame] = current_prompt
prompt_list += [current_prompt for _ in range(last_frame, p.batch_size)]
assert len(prompt_list) == p.batch_size, f"prompt_list length {len(prompt_list)} != batch_size {p.batch_size}"
self.original_prompt = p.prompt
p.prompt = prompt_list * p.n_iter
def single_cond(self, center_frame, video_length: int, cond: torch.Tensor, closed_loop = False):
if closed_loop:
key_prev = list(self.prompt_map.keys())[-1]
key_next = list(self.prompt_map.keys())[0]
else:
key_prev = list(self.prompt_map.keys())[0]
key_next = list(self.prompt_map.keys())[-1]
for p in self.prompt_map.keys():
if p > center_frame:
key_next = p
break
key_prev = p
dist_prev = center_frame - key_prev
if dist_prev < 0:
dist_prev += video_length
dist_next = key_next - center_frame
if dist_next < 0:
dist_next += video_length
if key_prev == key_next or dist_prev + dist_next == 0:
return cond[key_prev] if isinstance(cond, torch.Tensor) else {k: v[key_prev] for k, v in cond.items()}
rate = dist_prev / (dist_prev + dist_next)
if isinstance(cond, torch.Tensor):
return AnimateDiffPromptSchedule.slerp(cond[key_prev], cond[key_next], rate)
else: # isinstance(cond, dict)
return {
k: AnimateDiffPromptSchedule.slerp(v[key_prev], v[key_next], rate)
for k, v in cond.items()
}
def multi_cond(self, cond: torch.Tensor, closed_loop = False):
if self.prompt_map is None:
return cond
cond_list = [] if isinstance(cond, torch.Tensor) else {k: [] for k in cond.keys()}
for i in range(cond.shape[0]):
single_cond = self.single_cond(i, cond.shape[0], cond, closed_loop)
if isinstance(cond, torch.Tensor):
cond_list.append(single_cond)
else:
for k, v in single_cond.items():
cond_list[k].append(v)
if isinstance(cond, torch.Tensor):
return torch.stack(cond_list).to(cond.dtype).to(cond.device)
else:
return {k: torch.stack(v).to(cond[k].dtype).to(cond[k].device) for k, v in cond_list.items()}
@staticmethod
def slerp(
v0: torch.Tensor, v1: torch.Tensor, t: float, DOT_THRESHOLD: float = 0.9995
) -> torch.Tensor:
u0 = v0 / v0.norm()
u1 = v1 / v1.norm()
dot = (u0 * u1).sum()
if dot.abs() > DOT_THRESHOLD:
return (1.0 - t) * v0 + t * v1
omega = dot.acos()
return (((1.0 - t) * omega).sin() * v0 + (t * omega).sin() * v1) / omega.sin()