PennyJX commited on
Commit
73fe779
1 Parent(s): 0427087

Upload 3 files

Browse files
Files changed (3) hide show
  1. modules/__init__.py +1 -0
  2. modules/sampler.py +101 -0
  3. modules/uni_pc.py +863 -0
modules/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .sampler import UniPCSampler # noqa: F401
modules/sampler.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+
5
+ from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC
6
+ from modules import shared, devices
7
+
8
+
9
+ class UniPCSampler(object):
10
+ def __init__(self, model, **kwargs):
11
+ super().__init__()
12
+ self.model = model
13
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
14
+ self.before_sample = None
15
+ self.after_sample = None
16
+ self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
17
+
18
+ def register_buffer(self, name, attr):
19
+ if type(attr) == torch.Tensor:
20
+ if attr.device != devices.device:
21
+ attr = attr.to(devices.device)
22
+ setattr(self, name, attr)
23
+
24
+ def set_hooks(self, before_sample, after_sample, after_update):
25
+ self.before_sample = before_sample
26
+ self.after_sample = after_sample
27
+ self.after_update = after_update
28
+
29
+ @torch.no_grad()
30
+ def sample(self,
31
+ S,
32
+ batch_size,
33
+ shape,
34
+ conditioning=None,
35
+ callback=None,
36
+ normals_sequence=None,
37
+ img_callback=None,
38
+ quantize_x0=False,
39
+ eta=0.,
40
+ mask=None,
41
+ x0=None,
42
+ temperature=1.,
43
+ noise_dropout=0.,
44
+ score_corrector=None,
45
+ corrector_kwargs=None,
46
+ verbose=True,
47
+ x_T=None,
48
+ log_every_t=100,
49
+ unconditional_guidance_scale=1.,
50
+ unconditional_conditioning=None,
51
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
52
+ **kwargs
53
+ ):
54
+ if conditioning is not None:
55
+ if isinstance(conditioning, dict):
56
+ ctmp = conditioning[list(conditioning.keys())[0]]
57
+ while isinstance(ctmp, list):
58
+ ctmp = ctmp[0]
59
+ cbs = ctmp.shape[0]
60
+ if cbs != batch_size:
61
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
62
+
63
+ elif isinstance(conditioning, list):
64
+ for ctmp in conditioning:
65
+ if ctmp.shape[0] != batch_size:
66
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
67
+
68
+ else:
69
+ if conditioning.shape[0] != batch_size:
70
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
71
+
72
+ # sampling
73
+ C, H, W = shape
74
+ size = (batch_size, C, H, W)
75
+ # print(f'Data shape for UniPC sampling is {size}')
76
+
77
+ device = self.model.betas.device
78
+ if x_T is None:
79
+ img = torch.randn(size, device=device)
80
+ else:
81
+ img = x_T
82
+
83
+ ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
84
+
85
+ # SD 1.X is "noise", SD 2.X is "v"
86
+ model_type = "v" if self.model.parameterization == "v" else "noise"
87
+
88
+ model_fn = model_wrapper(
89
+ lambda x, t, c: self.model.apply_model(x, t, c),
90
+ ns,
91
+ model_type=model_type,
92
+ guidance_type="classifier-free",
93
+ #condition=conditioning,
94
+ #unconditional_condition=unconditional_conditioning,
95
+ guidance_scale=unconditional_guidance_scale,
96
+ )
97
+
98
+ uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update)
99
+ x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final)
100
+
101
+ return x.to(device), None
modules/uni_pc.py ADDED
@@ -0,0 +1,863 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import math
3
+ import tqdm
4
+
5
+
6
+ class NoiseScheduleVP:
7
+ def __init__(
8
+ self,
9
+ schedule='discrete',
10
+ betas=None,
11
+ alphas_cumprod=None,
12
+ continuous_beta_0=0.1,
13
+ continuous_beta_1=20.,
14
+ ):
15
+ """Create a wrapper class for the forward SDE (VP type).
16
+
17
+ ***
18
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
19
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
20
+ ***
21
+
22
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
23
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
24
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
25
+
26
+ log_alpha_t = self.marginal_log_mean_coeff(t)
27
+ sigma_t = self.marginal_std(t)
28
+ lambda_t = self.marginal_lambda(t)
29
+
30
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
31
+
32
+ t = self.inverse_lambda(lambda_t)
33
+
34
+ ===============================================================
35
+
36
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
37
+
38
+ 1. For discrete-time DPMs:
39
+
40
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
41
+ t_i = (i + 1) / N
42
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
43
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
44
+
45
+ Args:
46
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
47
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
48
+
49
+ Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
50
+
51
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
52
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
53
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
54
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
55
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
56
+ and
57
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
58
+
59
+
60
+ 2. For continuous-time DPMs:
61
+
62
+ We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
63
+ schedule are the default settings in DDPM and improved-DDPM:
64
+
65
+ Args:
66
+ beta_min: A `float` number. The smallest beta for the linear schedule.
67
+ beta_max: A `float` number. The largest beta for the linear schedule.
68
+ cosine_s: A `float` number. The hyperparameter in the cosine schedule.
69
+ cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
70
+ T: A `float` number. The ending time of the forward process.
71
+
72
+ ===============================================================
73
+
74
+ Args:
75
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
76
+ 'linear' or 'cosine' for continuous-time DPMs.
77
+ Returns:
78
+ A wrapper object of the forward SDE (VP type).
79
+
80
+ ===============================================================
81
+
82
+ Example:
83
+
84
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
85
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
86
+
87
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
88
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
89
+
90
+ # For continuous-time DPMs (VPSDE), linear schedule:
91
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
92
+
93
+ """
94
+
95
+ if schedule not in ['discrete', 'linear', 'cosine']:
96
+ raise ValueError(f"Unsupported noise schedule {schedule}. The schedule needs to be 'discrete' or 'linear' or 'cosine'")
97
+
98
+ self.schedule = schedule
99
+ if schedule == 'discrete':
100
+ if betas is not None:
101
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
102
+ else:
103
+ assert alphas_cumprod is not None
104
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
105
+ self.total_N = len(log_alphas)
106
+ self.T = 1.
107
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
108
+ self.log_alpha_array = log_alphas.reshape((1, -1,))
109
+ else:
110
+ self.total_N = 1000
111
+ self.beta_0 = continuous_beta_0
112
+ self.beta_1 = continuous_beta_1
113
+ self.cosine_s = 0.008
114
+ self.cosine_beta_max = 999.
115
+ self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
116
+ self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
117
+ self.schedule = schedule
118
+ if schedule == 'cosine':
119
+ # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
120
+ # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
121
+ self.T = 0.9946
122
+ else:
123
+ self.T = 1.
124
+
125
+ def marginal_log_mean_coeff(self, t):
126
+ """
127
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
128
+ """
129
+ if self.schedule == 'discrete':
130
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
131
+ elif self.schedule == 'linear':
132
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
133
+ elif self.schedule == 'cosine':
134
+ log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
135
+ log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
136
+ return log_alpha_t
137
+
138
+ def marginal_alpha(self, t):
139
+ """
140
+ Compute alpha_t of a given continuous-time label t in [0, T].
141
+ """
142
+ return torch.exp(self.marginal_log_mean_coeff(t))
143
+
144
+ def marginal_std(self, t):
145
+ """
146
+ Compute sigma_t of a given continuous-time label t in [0, T].
147
+ """
148
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
149
+
150
+ def marginal_lambda(self, t):
151
+ """
152
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
153
+ """
154
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
155
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
156
+ return log_mean_coeff - log_std
157
+
158
+ def inverse_lambda(self, lamb):
159
+ """
160
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
161
+ """
162
+ if self.schedule == 'linear':
163
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
164
+ Delta = self.beta_0**2 + tmp
165
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
166
+ elif self.schedule == 'discrete':
167
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
168
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
169
+ return t.reshape((-1,))
170
+ else:
171
+ log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
172
+ t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
173
+ t = t_fn(log_alpha)
174
+ return t
175
+
176
+
177
+ def model_wrapper(
178
+ model,
179
+ noise_schedule,
180
+ model_type="noise",
181
+ model_kwargs=None,
182
+ guidance_type="uncond",
183
+ #condition=None,
184
+ #unconditional_condition=None,
185
+ guidance_scale=1.,
186
+ classifier_fn=None,
187
+ classifier_kwargs=None,
188
+ ):
189
+ """Create a wrapper function for the noise prediction model.
190
+
191
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
192
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
193
+
194
+ We support four types of the diffusion model by setting `model_type`:
195
+
196
+ 1. "noise": noise prediction model. (Trained by predicting noise).
197
+
198
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
199
+
200
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
201
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
202
+
203
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
204
+ arXiv preprint arXiv:2202.00512 (2022).
205
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
206
+ arXiv preprint arXiv:2210.02303 (2022).
207
+
208
+ 4. "score": marginal score function. (Trained by denoising score matching).
209
+ Note that the score function and the noise prediction model follows a simple relationship:
210
+ ```
211
+ noise(x_t, t) = -sigma_t * score(x_t, t)
212
+ ```
213
+
214
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
215
+ 1. "uncond": unconditional sampling by DPMs.
216
+ The input `model` has the following format:
217
+ ``
218
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
219
+ ``
220
+
221
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
222
+ The input `model` has the following format:
223
+ ``
224
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
225
+ ``
226
+
227
+ The input `classifier_fn` has the following format:
228
+ ``
229
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
230
+ ``
231
+
232
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
233
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
234
+
235
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
236
+ The input `model` has the following format:
237
+ ``
238
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
239
+ ``
240
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
241
+
242
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
243
+ arXiv preprint arXiv:2207.12598 (2022).
244
+
245
+
246
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
247
+ or continuous-time labels (i.e. epsilon to T).
248
+
249
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
250
+ ``
251
+ def model_fn(x, t_continuous) -> noise:
252
+ t_input = get_model_input_time(t_continuous)
253
+ return noise_pred(model, x, t_input, **model_kwargs)
254
+ ``
255
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
256
+
257
+ ===============================================================
258
+
259
+ Args:
260
+ model: A diffusion model with the corresponding format described above.
261
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
262
+ model_type: A `str`. The parameterization type of the diffusion model.
263
+ "noise" or "x_start" or "v" or "score".
264
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
265
+ guidance_type: A `str`. The type of the guidance for sampling.
266
+ "uncond" or "classifier" or "classifier-free".
267
+ condition: A pytorch tensor. The condition for the guided sampling.
268
+ Only used for "classifier" or "classifier-free" guidance type.
269
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
270
+ Only used for "classifier-free" guidance type.
271
+ guidance_scale: A `float`. The scale for the guided sampling.
272
+ classifier_fn: A classifier function. Only used for the classifier guidance.
273
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
274
+ Returns:
275
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
276
+ """
277
+
278
+ model_kwargs = model_kwargs or {}
279
+ classifier_kwargs = classifier_kwargs or {}
280
+
281
+ def get_model_input_time(t_continuous):
282
+ """
283
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
284
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
285
+ For continuous-time DPMs, we just use `t_continuous`.
286
+ """
287
+ if noise_schedule.schedule == 'discrete':
288
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
289
+ else:
290
+ return t_continuous
291
+
292
+ def noise_pred_fn(x, t_continuous, cond=None):
293
+ if t_continuous.reshape((-1,)).shape[0] == 1:
294
+ t_continuous = t_continuous.expand((x.shape[0]))
295
+ t_input = get_model_input_time(t_continuous)
296
+ if cond is None:
297
+ output = model(x, t_input, None, **model_kwargs)
298
+ else:
299
+ output = model(x, t_input, cond, **model_kwargs)
300
+ if model_type == "noise":
301
+ return output
302
+ elif model_type == "x_start":
303
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
304
+ dims = x.dim()
305
+ return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
306
+ elif model_type == "v":
307
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
308
+ dims = x.dim()
309
+ return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
310
+ elif model_type == "score":
311
+ sigma_t = noise_schedule.marginal_std(t_continuous)
312
+ dims = x.dim()
313
+ return -expand_dims(sigma_t, dims) * output
314
+
315
+ def cond_grad_fn(x, t_input, condition):
316
+ """
317
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
318
+ """
319
+ with torch.enable_grad():
320
+ x_in = x.detach().requires_grad_(True)
321
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
322
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
323
+
324
+ def model_fn(x, t_continuous, condition, unconditional_condition):
325
+ """
326
+ The noise predicition model function that is used for DPM-Solver.
327
+ """
328
+ if t_continuous.reshape((-1,)).shape[0] == 1:
329
+ t_continuous = t_continuous.expand((x.shape[0]))
330
+ if guidance_type == "uncond":
331
+ return noise_pred_fn(x, t_continuous)
332
+ elif guidance_type == "classifier":
333
+ assert classifier_fn is not None
334
+ t_input = get_model_input_time(t_continuous)
335
+ cond_grad = cond_grad_fn(x, t_input, condition)
336
+ sigma_t = noise_schedule.marginal_std(t_continuous)
337
+ noise = noise_pred_fn(x, t_continuous)
338
+ return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
339
+ elif guidance_type == "classifier-free":
340
+ if guidance_scale == 1. or unconditional_condition is None:
341
+ return noise_pred_fn(x, t_continuous, cond=condition)
342
+ else:
343
+ x_in = torch.cat([x] * 2)
344
+ t_in = torch.cat([t_continuous] * 2)
345
+ if isinstance(condition, dict):
346
+ assert isinstance(unconditional_condition, dict)
347
+ c_in = {}
348
+ for k in condition:
349
+ if isinstance(condition[k], list):
350
+ c_in[k] = [torch.cat([
351
+ unconditional_condition[k][i],
352
+ condition[k][i]]) for i in range(len(condition[k]))]
353
+ else:
354
+ c_in[k] = torch.cat([
355
+ unconditional_condition[k],
356
+ condition[k]])
357
+ elif isinstance(condition, list):
358
+ c_in = []
359
+ assert isinstance(unconditional_condition, list)
360
+ for i in range(len(condition)):
361
+ c_in.append(torch.cat([unconditional_condition[i], condition[i]]))
362
+ else:
363
+ c_in = torch.cat([unconditional_condition, condition])
364
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
365
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
366
+
367
+ assert model_type in ["noise", "x_start", "v"]
368
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
369
+ return model_fn
370
+
371
+
372
+ class UniPC:
373
+ def __init__(
374
+ self,
375
+ model_fn,
376
+ noise_schedule,
377
+ predict_x0=True,
378
+ thresholding=False,
379
+ max_val=1.,
380
+ variant='bh1',
381
+ condition=None,
382
+ unconditional_condition=None,
383
+ before_sample=None,
384
+ after_sample=None,
385
+ after_update=None
386
+ ):
387
+ """Construct a UniPC.
388
+
389
+ We support both data_prediction and noise_prediction.
390
+ """
391
+ self.model_fn_ = model_fn
392
+ self.noise_schedule = noise_schedule
393
+ self.variant = variant
394
+ self.predict_x0 = predict_x0
395
+ self.thresholding = thresholding
396
+ self.max_val = max_val
397
+ self.condition = condition
398
+ self.unconditional_condition = unconditional_condition
399
+ self.before_sample = before_sample
400
+ self.after_sample = after_sample
401
+ self.after_update = after_update
402
+
403
+ def dynamic_thresholding_fn(self, x0, t=None):
404
+ """
405
+ The dynamic thresholding method.
406
+ """
407
+ dims = x0.dim()
408
+ p = self.dynamic_thresholding_ratio
409
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
410
+ s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
411
+ x0 = torch.clamp(x0, -s, s) / s
412
+ return x0
413
+
414
+ def model(self, x, t):
415
+ cond = self.condition
416
+ uncond = self.unconditional_condition
417
+ if self.before_sample is not None:
418
+ x, t, cond, uncond = self.before_sample(x, t, cond, uncond)
419
+ res = self.model_fn_(x, t, cond, uncond)
420
+ if self.after_sample is not None:
421
+ x, t, cond, uncond, res = self.after_sample(x, t, cond, uncond, res)
422
+
423
+ if isinstance(res, tuple):
424
+ # (None, pred_x0)
425
+ res = res[1]
426
+
427
+ return res
428
+
429
+ def noise_prediction_fn(self, x, t):
430
+ """
431
+ Return the noise prediction model.
432
+ """
433
+ return self.model(x, t)
434
+
435
+ def data_prediction_fn(self, x, t):
436
+ """
437
+ Return the data prediction model (with thresholding).
438
+ """
439
+ noise = self.noise_prediction_fn(x, t)
440
+ dims = x.dim()
441
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
442
+ x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
443
+ if self.thresholding:
444
+ p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
445
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
446
+ s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
447
+ x0 = torch.clamp(x0, -s, s) / s
448
+ return x0
449
+
450
+ def model_fn(self, x, t):
451
+ """
452
+ Convert the model to the noise prediction model or the data prediction model.
453
+ """
454
+ if self.predict_x0:
455
+ return self.data_prediction_fn(x, t)
456
+ else:
457
+ return self.noise_prediction_fn(x, t)
458
+
459
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
460
+ """Compute the intermediate time steps for sampling.
461
+ """
462
+ if skip_type == 'logSNR':
463
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
464
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
465
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
466
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
467
+ elif skip_type == 'time_uniform':
468
+ return torch.linspace(t_T, t_0, N + 1).to(device)
469
+ elif skip_type == 'time_quadratic':
470
+ t_order = 2
471
+ t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
472
+ return t
473
+ else:
474
+ raise ValueError(f"Unsupported skip_type {skip_type}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'")
475
+
476
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
477
+ """
478
+ Get the order of each step for sampling by the singlestep DPM-Solver.
479
+ """
480
+ if order == 3:
481
+ K = steps // 3 + 1
482
+ if steps % 3 == 0:
483
+ orders = [3,] * (K - 2) + [2, 1]
484
+ elif steps % 3 == 1:
485
+ orders = [3,] * (K - 1) + [1]
486
+ else:
487
+ orders = [3,] * (K - 1) + [2]
488
+ elif order == 2:
489
+ if steps % 2 == 0:
490
+ K = steps // 2
491
+ orders = [2,] * K
492
+ else:
493
+ K = steps // 2 + 1
494
+ orders = [2,] * (K - 1) + [1]
495
+ elif order == 1:
496
+ K = steps
497
+ orders = [1,] * steps
498
+ else:
499
+ raise ValueError("'order' must be '1' or '2' or '3'.")
500
+ if skip_type == 'logSNR':
501
+ # To reproduce the results in DPM-Solver paper
502
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
503
+ else:
504
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
505
+ return timesteps_outer, orders
506
+
507
+ def denoise_to_zero_fn(self, x, s):
508
+ """
509
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
510
+ """
511
+ return self.data_prediction_fn(x, s)
512
+
513
+ def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
514
+ if len(t.shape) == 0:
515
+ t = t.view(-1)
516
+ if 'bh' in self.variant:
517
+ return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
518
+ else:
519
+ assert self.variant == 'vary_coeff'
520
+ return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
521
+
522
+ def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
523
+ #print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
524
+ ns = self.noise_schedule
525
+ assert order <= len(model_prev_list)
526
+
527
+ # first compute rks
528
+ t_prev_0 = t_prev_list[-1]
529
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
530
+ lambda_t = ns.marginal_lambda(t)
531
+ model_prev_0 = model_prev_list[-1]
532
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
533
+ log_alpha_t = ns.marginal_log_mean_coeff(t)
534
+ alpha_t = torch.exp(log_alpha_t)
535
+
536
+ h = lambda_t - lambda_prev_0
537
+
538
+ rks = []
539
+ D1s = []
540
+ for i in range(1, order):
541
+ t_prev_i = t_prev_list[-(i + 1)]
542
+ model_prev_i = model_prev_list[-(i + 1)]
543
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
544
+ rk = (lambda_prev_i - lambda_prev_0) / h
545
+ rks.append(rk)
546
+ D1s.append((model_prev_i - model_prev_0) / rk)
547
+
548
+ rks.append(1.)
549
+ rks = torch.tensor(rks, device=x.device)
550
+
551
+ K = len(rks)
552
+ # build C matrix
553
+ C = []
554
+
555
+ col = torch.ones_like(rks)
556
+ for k in range(1, K + 1):
557
+ C.append(col)
558
+ col = col * rks / (k + 1)
559
+ C = torch.stack(C, dim=1)
560
+
561
+ if len(D1s) > 0:
562
+ D1s = torch.stack(D1s, dim=1) # (B, K)
563
+ C_inv_p = torch.linalg.inv(C[:-1, :-1])
564
+ A_p = C_inv_p
565
+
566
+ if use_corrector:
567
+ #print('using corrector')
568
+ C_inv = torch.linalg.inv(C)
569
+ A_c = C_inv
570
+
571
+ hh = -h if self.predict_x0 else h
572
+ h_phi_1 = torch.expm1(hh)
573
+ h_phi_ks = []
574
+ factorial_k = 1
575
+ h_phi_k = h_phi_1
576
+ for k in range(1, K + 2):
577
+ h_phi_ks.append(h_phi_k)
578
+ h_phi_k = h_phi_k / hh - 1 / factorial_k
579
+ factorial_k *= (k + 1)
580
+
581
+ model_t = None
582
+ if self.predict_x0:
583
+ x_t_ = (
584
+ sigma_t / sigma_prev_0 * x
585
+ - alpha_t * h_phi_1 * model_prev_0
586
+ )
587
+ # now predictor
588
+ x_t = x_t_
589
+ if len(D1s) > 0:
590
+ # compute the residuals for predictor
591
+ for k in range(K - 1):
592
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
593
+ # now corrector
594
+ if use_corrector:
595
+ model_t = self.model_fn(x_t, t)
596
+ D1_t = (model_t - model_prev_0)
597
+ x_t = x_t_
598
+ k = 0
599
+ for k in range(K - 1):
600
+ x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
601
+ x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
602
+ else:
603
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
604
+ x_t_ = (
605
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
606
+ - (sigma_t * h_phi_1) * model_prev_0
607
+ )
608
+ # now predictor
609
+ x_t = x_t_
610
+ if len(D1s) > 0:
611
+ # compute the residuals for predictor
612
+ for k in range(K - 1):
613
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
614
+ # now corrector
615
+ if use_corrector:
616
+ model_t = self.model_fn(x_t, t)
617
+ D1_t = (model_t - model_prev_0)
618
+ x_t = x_t_
619
+ k = 0
620
+ for k in range(K - 1):
621
+ x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
622
+ x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
623
+ return x_t, model_t
624
+
625
+ def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
626
+ #print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
627
+ ns = self.noise_schedule
628
+ assert order <= len(model_prev_list)
629
+ dims = x.dim()
630
+
631
+ # first compute rks
632
+ t_prev_0 = t_prev_list[-1]
633
+ lambda_prev_0 = ns.marginal_lambda(t_prev_0)
634
+ lambda_t = ns.marginal_lambda(t)
635
+ model_prev_0 = model_prev_list[-1]
636
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
637
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
638
+ alpha_t = torch.exp(log_alpha_t)
639
+
640
+ h = lambda_t - lambda_prev_0
641
+
642
+ rks = []
643
+ D1s = []
644
+ for i in range(1, order):
645
+ t_prev_i = t_prev_list[-(i + 1)]
646
+ model_prev_i = model_prev_list[-(i + 1)]
647
+ lambda_prev_i = ns.marginal_lambda(t_prev_i)
648
+ rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
649
+ rks.append(rk)
650
+ D1s.append((model_prev_i - model_prev_0) / rk)
651
+
652
+ rks.append(1.)
653
+ rks = torch.tensor(rks, device=x.device)
654
+
655
+ R = []
656
+ b = []
657
+
658
+ hh = -h[0] if self.predict_x0 else h[0]
659
+ h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
660
+ h_phi_k = h_phi_1 / hh - 1
661
+
662
+ factorial_i = 1
663
+
664
+ if self.variant == 'bh1':
665
+ B_h = hh
666
+ elif self.variant == 'bh2':
667
+ B_h = torch.expm1(hh)
668
+ else:
669
+ raise NotImplementedError()
670
+
671
+ for i in range(1, order + 1):
672
+ R.append(torch.pow(rks, i - 1))
673
+ b.append(h_phi_k * factorial_i / B_h)
674
+ factorial_i *= (i + 1)
675
+ h_phi_k = h_phi_k / hh - 1 / factorial_i
676
+
677
+ R = torch.stack(R)
678
+ b = torch.tensor(b, device=x.device)
679
+
680
+ # now predictor
681
+ use_predictor = len(D1s) > 0 and x_t is None
682
+ if len(D1s) > 0:
683
+ D1s = torch.stack(D1s, dim=1) # (B, K)
684
+ if x_t is None:
685
+ # for order 2, we use a simplified version
686
+ if order == 2:
687
+ rhos_p = torch.tensor([0.5], device=b.device)
688
+ else:
689
+ rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
690
+ else:
691
+ D1s = None
692
+
693
+ if use_corrector:
694
+ #print('using corrector')
695
+ # for order 1, we use a simplified version
696
+ if order == 1:
697
+ rhos_c = torch.tensor([0.5], device=b.device)
698
+ else:
699
+ rhos_c = torch.linalg.solve(R, b)
700
+
701
+ model_t = None
702
+ if self.predict_x0:
703
+ x_t_ = (
704
+ expand_dims(sigma_t / sigma_prev_0, dims) * x
705
+ - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
706
+ )
707
+
708
+ if x_t is None:
709
+ if use_predictor:
710
+ pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
711
+ else:
712
+ pred_res = 0
713
+ x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
714
+
715
+ if use_corrector:
716
+ model_t = self.model_fn(x_t, t)
717
+ if D1s is not None:
718
+ corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
719
+ else:
720
+ corr_res = 0
721
+ D1_t = (model_t - model_prev_0)
722
+ x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
723
+ else:
724
+ x_t_ = (
725
+ expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
726
+ - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
727
+ )
728
+ if x_t is None:
729
+ if use_predictor:
730
+ pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
731
+ else:
732
+ pred_res = 0
733
+ x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
734
+
735
+ if use_corrector:
736
+ model_t = self.model_fn(x_t, t)
737
+ if D1s is not None:
738
+ corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
739
+ else:
740
+ corr_res = 0
741
+ D1_t = (model_t - model_prev_0)
742
+ x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
743
+ return x_t, model_t
744
+
745
+
746
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
747
+ method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
748
+ atol=0.0078, rtol=0.05, corrector=False,
749
+ ):
750
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
751
+ t_T = self.noise_schedule.T if t_start is None else t_start
752
+ device = x.device
753
+ if method == 'multistep':
754
+ assert steps >= order, "UniPC order must be < sampling steps"
755
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
756
+ #print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
757
+ assert timesteps.shape[0] - 1 == steps
758
+ with torch.no_grad():
759
+ vec_t = timesteps[0].expand((x.shape[0]))
760
+ model_prev_list = [self.model_fn(x, vec_t)]
761
+ t_prev_list = [vec_t]
762
+ with tqdm.tqdm(total=steps) as pbar:
763
+ # Init the first `order` values by lower order multistep DPM-Solver.
764
+ for init_order in range(1, order):
765
+ vec_t = timesteps[init_order].expand(x.shape[0])
766
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
767
+ if model_x is None:
768
+ model_x = self.model_fn(x, vec_t)
769
+ if self.after_update is not None:
770
+ self.after_update(x, model_x)
771
+ model_prev_list.append(model_x)
772
+ t_prev_list.append(vec_t)
773
+ pbar.update()
774
+
775
+ for step in range(order, steps + 1):
776
+ vec_t = timesteps[step].expand(x.shape[0])
777
+ if lower_order_final:
778
+ step_order = min(order, steps + 1 - step)
779
+ else:
780
+ step_order = order
781
+ #print('this step order:', step_order)
782
+ if step == steps:
783
+ #print('do not run corrector at the last step')
784
+ use_corrector = False
785
+ else:
786
+ use_corrector = True
787
+ x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
788
+ if self.after_update is not None:
789
+ self.after_update(x, model_x)
790
+ for i in range(order - 1):
791
+ t_prev_list[i] = t_prev_list[i + 1]
792
+ model_prev_list[i] = model_prev_list[i + 1]
793
+ t_prev_list[-1] = vec_t
794
+ # We do not need to evaluate the final model value.
795
+ if step < steps:
796
+ if model_x is None:
797
+ model_x = self.model_fn(x, vec_t)
798
+ model_prev_list[-1] = model_x
799
+ pbar.update()
800
+ else:
801
+ raise NotImplementedError()
802
+ if denoise_to_zero:
803
+ x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
804
+ return x
805
+
806
+
807
+ #############################################################
808
+ # other utility functions
809
+ #############################################################
810
+
811
+ def interpolate_fn(x, xp, yp):
812
+ """
813
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
814
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
815
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
816
+
817
+ Args:
818
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
819
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
820
+ yp: PyTorch tensor with shape [C, K].
821
+ Returns:
822
+ The function values f(x), with shape [N, C].
823
+ """
824
+ N, K = x.shape[0], xp.shape[1]
825
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
826
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
827
+ x_idx = torch.argmin(x_indices, dim=2)
828
+ cand_start_idx = x_idx - 1
829
+ start_idx = torch.where(
830
+ torch.eq(x_idx, 0),
831
+ torch.tensor(1, device=x.device),
832
+ torch.where(
833
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
834
+ ),
835
+ )
836
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
837
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
838
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
839
+ start_idx2 = torch.where(
840
+ torch.eq(x_idx, 0),
841
+ torch.tensor(0, device=x.device),
842
+ torch.where(
843
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
844
+ ),
845
+ )
846
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
847
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
848
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
849
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
850
+ return cand
851
+
852
+
853
+ def expand_dims(v, dims):
854
+ """
855
+ Expand the tensor `v` to the dim `dims`.
856
+
857
+ Args:
858
+ `v`: a PyTorch tensor with shape [N].
859
+ `dim`: a `int`.
860
+ Returns:
861
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
862
+ """
863
+ return v[(...,) + (None,)*(dims - 1)]