Datasets:

ArXiv:
License:
evi / README.md
albertvillanova's picture
Fix language and license tag names (#2)
2e5f8d3
|
raw
history blame
4.5 kB
---
annotations_creators:
- crowdsourced
- machine-generated
language_creators:
- crowdsourced
- expert-generated
language:
- en
- fr
- pl
license:
- cc-by-4.0
multilinguality:
- multilingual
paperswithcode_id: evi-multilingual-spoken-dialogue-tasks-and-1
language_bcp47:
- en
- en-GB
- fr
- fr-FR
- pl
---
# EVI
## Dataset Description
- **Paper:** [EVI: Multilingual Spoken Dialogue Tasks and Dataset for Knowledge-Based Enrolment, Verification, and Identification](https://arxiv.org/abs/2204.13496)
- **Repository:** [Github](https://github.com/PolyAI-LDN/evi-paper)
EVI is a challenging spoken multilingual dataset
with 5,506 dialogues in English, Polish, and French
that can be used for benchmarking and developing
knowledge-based enrolment, identification, and identification for spoken dialogue systems.
## Example
EVI can be downloaded and used as follows:
```py
from datasets import load_dataset
evi = load_dataset("PolyAI/evi", "en-GB") # for British English
# to download data from all locales use:
# evi = load_dataset("PolyAI/evi", "all")
# see structure
print(evi)
```
## Dataset Structure
We show detailed information of the example for the `en-GB` configuration of the dataset.
All other configurations have the same structure.
### Data Instances
An example of a data instance of the config `en-GB` looks as follows:
```
{
"language": 0,
"dialogue_id": "CA0007220161df7be23f4554704c8720f5",
"speaker_id": "e80e9bdd33eda593f16a1b6f2fb228ff",
"turn_id": 0,
"target_profile_id": "en.GB.608",
"asr_transcription": "w20 a b",
"asr_nbest'": ["w20 a b", "w20 a bee", "w20 a baby"],
"path": "audios/en/CA0007220161df7be23f4554704c8720f5/0.wav",
"audio": {
"path": "/home/georgios/.cache/huggingface/datasets/downloads/extracted/0335ebc25feace53243133b49ba17ba18e26f0f97cb083ffdf4e73dd7427b443/audios/en/CA0007220161df7be23f4554704c8720f5/0.wav",
"array": array([ 0.00024414, 0.00024414, 0.00024414, ..., 0.00024414,
-0.00024414, 0.00024414], dtype=float32),
"sampling_rate": 8000,
}
}
```
### Data Fields
The data fields are the same among all splits.
- **language** (int): ID of language
- **dialogue_id** (str): the ID of the dialogue
- **speaker_id** (str): the ID of the speaker
- **turn_id** (int)": the ID of the turn
- **target_profile_id** (str): the ID of the target profile
- **asr_transcription** (str): ASR transcription of the audio file
- **asr_nbest** (list): n-best ASR transcriptions of the audio file
- **path** (str): Path to the audio file
- **audio** (dict): Audio object including loaded audio array, sampling rate and path of audio
### Data Splits
Every config only has the `"test"` split containing *ca.* 1,800 dialogues.
## Dataset Creation
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
All datasets are licensed under the [Creative Commons license (CC-BY)](https://creativecommons.org/licenses/).
### Citation Information
```
@inproceedings{Spithourakis2022evi,
author = {Georgios P. Spithourakis and
Ivan Vuli\'{c} and
Micha\l{} Lis and
I\~{n}igo Casanueva
and Pawe\l{} Budzianowski},
title = {{EVI}: Multilingual Spoken Dialogue Tasks and Dataset for Knowledge-Based Enrolment, Verification, and Identification},
year = {2022},
note = {Data available at https://github.com/PolyAI-LDN/evi-paper},
url = {https://arxiv.org/abs/2204.13496},
booktitle = {Findings of NAACL (publication pending)}
}
```
### Contributions
Thanks to [@polinaeterna](https://github.com/polinaeterna) for helping with adding this dataset