repo_id
stringclasses
55 values
file_path
stringlengths
42
186
content
stringlengths
1
333k
__index_level_0__
int64
0
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/layoutlm/test_modeling_layoutlm.py
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import LayoutLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LayoutLMForMaskedLM, LayoutLMForQuestionAnswering, LayoutLMForSequenceClassification, LayoutLMForTokenClassification, LayoutLMModel, ) class LayoutLMModelTester: """You can also import this e.g from .test_modeling_layoutlm import LayoutLMModelTester""" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def create_and_check_model( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LayoutLMModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, bbox, token_type_ids=token_type_ids) result = model(input_ids, bbox) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LayoutLMForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = LayoutLMForSequenceClassification(config) model.to(torch_device) model.eval() result = model( input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = LayoutLMForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = LayoutLMForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class LayoutLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( LayoutLMModel, LayoutLMForMaskedLM, LayoutLMForSequenceClassification, LayoutLMForTokenClassification, LayoutLMForQuestionAnswering, ) if is_torch_available() else None ) pipeline_model_mapping = ( { "document-question-answering": LayoutLMForQuestionAnswering, "feature-extraction": LayoutLMModel, "fill-mask": LayoutLMForMaskedLM, "text-classification": LayoutLMForSequenceClassification, "token-classification": LayoutLMForTokenClassification, "zero-shot": LayoutLMForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True def setUp(self): self.model_tester = LayoutLMModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def prepare_layoutlm_batch_inputs(): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off input_ids = torch.tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]],device=torch_device) # noqa: E231 attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],],device=torch_device) # noqa: E231 bbox = torch.tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]],device=torch_device) # noqa: E231 token_type_ids = torch.tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],device=torch_device) # noqa: E231 # these are sequence labels (i.e. at the token level) labels = torch.tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]],device=torch_device) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_torch class LayoutLMModelIntegrationTest(unittest.TestCase): @slow def test_forward_pass_no_head(self): model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased").to(torch_device) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the sequence output on [0, :3, :3] expected_slice = torch.tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], device=torch_device, ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3)) # test the pooled output on [1, :3] expected_slice = torch.tensor([-0.6580, -0.0214, 0.8552], device=torch_device) self.assertTrue(torch.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3)) @slow def test_forward_pass_sequence_classification(self): # initialize model with randomly initialized sequence classification head model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2).to( torch_device ) input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=torch.tensor([1, 1], device=torch_device), ) # test whether we get a loss as a scalar loss = outputs.loss expected_shape = torch.Size([]) self.assertEqual(loss.shape, expected_shape) # test the shape of the logits logits = outputs.logits expected_shape = torch.Size((2, 2)) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_token_classification(self): # initialize model with randomly initialized token classification head model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13).to( torch_device ) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels ) # test the loss calculation to be around 2.65 # expected_loss = torch.tensor(2.65, device=torch_device) # The loss is currently somewhat random and can vary between 0.1-0.3 atol. # self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=0.1)) # test the shape of the logits logits = outputs.logits expected_shape = torch.Size((2, 25, 13)) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_question_answering(self): # initialize model with randomly initialized token classification head model = LayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased").to(torch_device) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the shape of the logits expected_shape = torch.Size((2, 25)) self.assertEqual(outputs.start_logits.shape, expected_shape) self.assertEqual(outputs.end_logits.shape, expected_shape)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/layoutlm/test_modeling_tf_layoutlm.py
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class TFLayoutLMModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # convert bbox to numpy since TF does not support item assignment bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t bbox = tf.convert_to_tensor(bbox) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMModel(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, bbox, token_type_ids=token_type_ids) result = model(input_ids, bbox) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMForMaskedLM(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLayoutLMForSequenceClassification(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFLayoutLMForTokenClassification(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFLayoutLMForQuestionAnswering(config=config) result = model(input_ids, bbox, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFLayoutLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = True onnx_min_opset = 10 def setUp(self): self.model_tester = TFLayoutLMModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "microsoft/layoutlm-base-uncased" model = TFLayoutLMModel.from_pretrained(model_name) self.assertIsNotNone(model) # TODO (Joao): fix me @unittest.skip("Onnx compliancy broke with TF 2.10") def test_onnx_compliancy(self): pass def prepare_layoutlm_batch_inputs(): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off input_ids = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]]) # noqa: E231 attention_mask = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],]) # noqa: E231 bbox = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]]) # noqa: E231 token_type_ids = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]) # noqa: E231 # these are sequence labels (i.e. at the token level) labels = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]]) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class TFLayoutLMModelIntegrationTest(unittest.TestCase): @slow def test_forward_pass_no_head(self): model = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased") input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the sequence output on [0, :3, :3] expected_slice = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3)) # test the pooled output on [1, :3] expected_slice = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552]) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], expected_slice, atol=1e-3)) @slow def test_forward_pass_sequence_classification(self): # initialize model with randomly initialized sequence classification head model = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=2) input_ids, attention_mask, bbox, token_type_ids, _ = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=tf.convert_to_tensor([1, 1]), ) # test whether we get a loss as a scalar loss = outputs.loss expected_shape = (2,) self.assertEqual(loss.shape, expected_shape) # test the shape of the logits logits = outputs.logits expected_shape = (2, 2) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_token_classification(self): # initialize model with randomly initialized token classification head model = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13) input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels ) # test the shape of the logits logits = outputs.logits expected_shape = tf.convert_to_tensor((2, 25, 13)) self.assertEqual(logits.shape, expected_shape) @slow def test_forward_pass_question_answering(self): # initialize model with randomly initialized token classification head model = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased") input_ids, attention_mask, bbox, token_type_ids, labels = prepare_layoutlm_batch_inputs() # forward pass outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids) # test the shape of the logits expected_shape = tf.convert_to_tensor((2, 25)) self.assertEqual(outputs.start_logits.shape, expected_shape) self.assertEqual(outputs.end_logits.shape, expected_shape)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/bartpho/test_tokenization_bartpho.py
# coding=utf-8 # Copyright 2021 HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class BartphoTokenizerTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "vinai/bartpho-syllable" tokenizer_class = BartphoTokenizer test_rust_tokenizer = False test_sentencepiece = True def setUp(self): super().setUp() vocab = ["▁This", "▁is", "▁a", "▁t", "est"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.special_tokens_map = {"unk_token": "<unk>"} self.monolingual_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") tokenizer = BartphoTokenizer(SAMPLE_VOCAB, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "This is a là test" output_text = "This is a<unk><unk> test" return input_text, output_text def test_full_tokenizer(self): tokenizer = BartphoTokenizer(SAMPLE_VOCAB, self.monolingual_vocab_file, **self.special_tokens_map) text = "This is a là test" bpe_tokens = "▁This ▁is ▁a ▁l à ▁t est".split() tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/reformer/test_modeling_reformer.py
# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ReformerConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, require_torch_multi_gpu, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerTokenizer, ) class ReformerModelTester: def __init__( self, parent, batch_size=13, seq_length=32, is_training=True, is_decoder=True, use_input_mask=True, use_labels=True, vocab_size=32, attention_head_size=16, hidden_size=32, num_attention_heads=2, local_attn_chunk_length=4, local_num_chunks_before=1, local_num_chunks_after=0, num_buckets=None, num_hashes=1, lsh_attn_chunk_length=None, lsh_num_chunks_before=None, lsh_num_chunks_after=None, chunk_size_lm_head=0, chunk_size_feed_forward=0, feed_forward_size=32, hidden_act="gelu", hidden_dropout_prob=0.1, local_attention_probs_dropout_prob=0.1, lsh_attention_probs_dropout_prob=None, max_position_embeddings=512, initializer_range=0.02, axial_norm_std=1.0, layer_norm_eps=1e-12, axial_pos_embds=True, axial_pos_shape=[4, 8], axial_pos_embds_dim=[16, 16], attn_layers=["local", "local", "local", "local"], pad_token_id=0, eos_token_id=2, scope=None, hash_seed=0, num_labels=2, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.is_decoder = is_decoder self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.attention_head_size = attention_head_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hidden_layers = len(attn_layers) if attn_layers is not None else 0 self.local_attn_chunk_length = local_attn_chunk_length self.local_num_chunks_after = local_num_chunks_after self.local_num_chunks_before = local_num_chunks_before self.num_hashes = num_hashes self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets self.lsh_attn_chunk_length = lsh_attn_chunk_length self.lsh_num_chunks_after = lsh_num_chunks_after self.lsh_num_chunks_before = lsh_num_chunks_before self.hidden_act = hidden_act self.feed_forward_size = feed_forward_size self.hidden_dropout_prob = hidden_dropout_prob self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.axial_pos_embds = axial_pos_embds self.axial_pos_shape = tuple(axial_pos_shape) self.axial_pos_embds_dim = tuple(axial_pos_embds_dim) self.axial_norm_std = axial_norm_std self.chunk_size_lm_head = chunk_size_lm_head self.chunk_size_feed_forward = chunk_size_feed_forward self.scope = scope self.attn_layers = attn_layers self.pad_token_id = pad_token_id self.hash_seed = hash_seed attn_chunk_length = local_attn_chunk_length if local_attn_chunk_length is not None else lsh_attn_chunk_length num_chunks_after = local_num_chunks_after if local_num_chunks_after is not None else lsh_num_chunks_after num_chunks_before = local_num_chunks_before if local_num_chunks_before is not None else lsh_num_chunks_before self.encoder_seq_length = seq_length // attn_chunk_length + (self.seq_length % attn_chunk_length != 0) self.key_length = (num_chunks_before + num_chunks_after + 1) * attn_chunk_length self.chunk_length = attn_chunk_length self.num_labels = num_labels def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) choice_labels = None if self.use_labels: choice_labels = ids_tensor([self.batch_size], 2) config = self.get_config() return ( config, input_ids, input_mask, choice_labels, ) def get_config(self): return ReformerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, feed_forward_size=self.feed_forward_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, local_attention_probs_dropout_prob=self.local_attention_probs_dropout_prob, lsh_attention_probs_dropout_prob=self.lsh_attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=self.is_decoder, axial_pos_embds=self.axial_pos_embds, axial_pos_shape=self.axial_pos_shape, axial_pos_embds_dim=self.axial_pos_embds_dim, local_attn_chunk_length=self.local_attn_chunk_length, local_num_chunks_after=self.local_num_chunks_after, local_num_chunks_before=self.local_num_chunks_before, num_hashes=self.num_hashes, num_buckets=self.num_buckets, lsh_attn_chunk_length=self.lsh_attn_chunk_length, lsh_num_chunks_after=self.lsh_num_chunks_after, lsh_num_chunks_before=self.lsh_num_chunks_before, attn_layers=self.attn_layers, pad_token_id=self.pad_token_id, hash_seed=self.hash_seed, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 100 config.max_position_embeddings = 100 config.axial_pos_shape = (4, 25) config.is_decoder = False return config def create_and_check_reformer_model(self, config, input_ids, input_mask, choice_labels): model = ReformerModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) # 2 * hidden_size because we use reversible resnet layers self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, 2 * self.hidden_size) ) def create_and_check_reformer_model_with_lm_backward(self, config, input_ids, input_mask, choice_labels): if not self.is_training: return config.is_decoder = False config.lsh_num_chunks_after = 1 model = ReformerForMaskedLM(config=config) model.to(torch_device) model.train() loss = model(input_ids, attention_mask=input_mask, labels=input_ids)["loss"] loss.backward() def create_and_check_reformer_with_lm(self, config, input_ids, input_mask, choice_labels): config.lsh_num_chunks_after = 0 config.is_decoder = True model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_reformer_with_mlm(self, config, input_ids, input_mask, choice_labels): config.is_decoder = False model = ReformerForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_reformer_model_with_attn_mask( self, config, input_ids, input_mask, choice_labels, is_decoder=False ): # no special position embeddings config.axial_pos_embds = False config.is_decoder = is_decoder if self.lsh_attn_chunk_length is not None: # need to set chunk length equal sequence length to be certain that chunking works config.lsh_attn_chunk_length = self.seq_length model = ReformerModel(config=config) model.to(torch_device) model.eval() # set all position encodings to zero so that postions don't matter with torch.no_grad(): embedding = model.embeddings.position_embeddings.embedding embedding.weight = nn.Parameter(torch.zeros(embedding.weight.shape).to(torch_device)) embedding.weight.requires_grad = False half_seq_len = self.seq_length // 2 roll = self.chunk_length half_input_ids = input_ids[:, :half_seq_len] # normal padded attn_mask = torch.cat( [torch.ones_like(half_input_ids), torch.zeros_like(half_input_ids)], dim=-1, ) input_ids_padded = torch.cat( [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)], dim=-1, ) # shifted padded input_ids_roll = torch.cat( [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)], dim=-1, ) input_ids_roll = torch.roll(input_ids_roll, roll, dims=-1) attn_mask_roll = torch.roll(attn_mask, roll, dims=-1) output_padded = model(input_ids_padded, attention_mask=attn_mask)[0][:, :half_seq_len] output_padded_rolled = model(input_ids_roll, attention_mask=attn_mask_roll)[0][:, roll : half_seq_len + roll] self.parent.assertTrue(torch.allclose(output_padded, output_padded_rolled, atol=1e-3)) def create_and_check_reformer_layer_dropout_seed( self, config, input_ids, input_mask, choice_labels, is_decoder=False ): config.is_decoder = is_decoder layer = ReformerLayer(config).to(torch_device) layer.train() shape = ( self.batch_size, self.seq_length, config.hidden_size, ) # Batch x SeqLen x hiddenSize # get random tensors hidden_states = floats_tensor(shape) prev_attn_output = floats_tensor(shape) # now the random seeds for attention and feed forward is initialized # forward tensors with dropout layer_outputs = layer(prev_attn_output, hidden_states, attention_mask=input_mask) next_attn_output = layer_outputs.attn_output next_hidden_states = layer_outputs.hidden_states torch.manual_seed(layer.attention_seed) attn_outputs = layer.attention(hidden_states, attention_mask=input_mask) self.parent.assertTrue( torch.allclose( prev_attn_output + attn_outputs.hidden_states, next_attn_output, atol=1e-3, ) ) torch.manual_seed(layer.feed_forward_seed) feed_forward_hidden_states = layer.feed_forward(next_attn_output) self.parent.assertTrue( torch.allclose( next_hidden_states, hidden_states + feed_forward_hidden_states, atol=1e-3, ) ) def create_and_check_reformer_feed_backward_chunking(self, config, input_ids, input_mask, choice_labels): if not self.is_training: return # disable dropout config.hidden_dropout_prob = 0 config.local_attention_probs_dropout_prob = 0 config.lsh_attention_probs_dropout_prob = 0 config.lsh_num_chunks_after = 1 config.is_decoder = False torch.manual_seed(0) model = ReformerForMaskedLM(config=config) model.to(torch_device) model.train() model.zero_grad() loss_no_chunk, output_no_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2] loss_no_chunk.backward() grad_slice_word_no_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] grad_slice_position_factor_1_no_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] grad_slice_position_factor_2_no_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] config.chunk_size_lm_head = 1 config.chunk_size_feed_forward = 1 torch.manual_seed(0) model = ReformerForMaskedLM(config=config) model.to(torch_device) model.train() model.zero_grad() loss_chunk, output_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2] loss_chunk.backward() grad_slice_word_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] grad_slice_position_factor_1_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] grad_slice_position_factor_2_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] self.parent.assertTrue(torch.allclose(loss_chunk, loss_no_chunk, atol=1e-3)) self.parent.assertTrue(torch.allclose(grad_slice_word_no_chunk, grad_slice_word_chunk, atol=1e-3)) self.parent.assertTrue( torch.allclose(grad_slice_position_factor_1_chunk, grad_slice_position_factor_1_no_chunk, atol=1e-3) ) self.parent.assertTrue( torch.allclose(grad_slice_position_factor_2_chunk, grad_slice_position_factor_2_no_chunk, atol=1e-3) ) def create_and_check_reformer_random_seed(self, config, input_ids, input_mask, choice_labels): layer = ReformerLayer(config).to(torch_device) layer.train() shape = ( self.batch_size, self.seq_length, config.hidden_size, ) # Batch x SeqLen x hiddenSize hidden_states = floats_tensor(shape) attn_output = floats_tensor(shape) seeds = [] for _ in range(100): layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask) attn_output = layer_outputs.attn_output hidden_states = layer_outputs.hidden_states torch.manual_seed(layer.attention_seed) seeds.append(layer.attention_seed) self.parent.assertGreater(len(set(seeds)), 70) seeds = [] for _ in range(100): layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask) attn_output = layer_outputs.attn_output hidden_states = layer_outputs.hidden_states torch.manual_seed(layer.feed_forward_seed) seeds.append(layer.feed_forward_seed) self.parent.assertGreater(len(set(seeds)), 70) def create_and_check_reformer_model_fp16_forward(self, config, input_ids, input_mask, choice_labels): model = ReformerModel(config=config) model.to(torch_device) model.half() model.eval() output = model(input_ids, attention_mask=input_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_reformer_model_generate(self, config, input_ids, input_mask, choice_labels): config.is_decoder = True config.lsh_num_chunks_after = 0 config.bos_token_id = 0 config.eos_token_id = None config.max_length = 20 model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.eval() output = model.generate() self.parent.assertIsNotNone(output) def create_and_check_reformer_model_fp16_generate(self, config, input_ids, input_mask, choice_labels): config.is_decoder = True config.lsh_num_chunks_after = 0 model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.half() model.eval() # only use last 10 inputs for generation output = model.generate(input_ids[:, -10:], attention_mask=input_mask, do_sample=False) self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_reformer_no_chunking(self, config, input_ids, input_mask, choice_labels): # force chunk length to be bigger than input_ids config.lsh_attn_chunk_length = 2 * input_ids.shape[-1] config.local_attn_chunk_length = 2 * input_ids.shape[-1] config.lsh_num_chunks_after = 1 config.is_decoder = False model = ReformerForMaskedLM(config=config) model.to(torch_device) model.eval() output_logits = model(input_ids, attention_mask=input_mask)["logits"] self.parent.assertTrue(output_logits.shape[1] == input_ids.shape[-1]) def create_and_check_reformer_for_question_answering(self, config, input_ids, input_mask, choice_labels): model = ReformerForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=choice_labels, end_positions=choice_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_past_buckets_states(self, config, input_ids, input_mask, choice_labels): config.is_decoder = True config.lsh_num_chunks_before = 1 config.lsh_num_chunks_after = 0 model = ReformerModelWithLMHead(config=config) model.to(torch_device) model.eval() input_ids_first = input_ids[:, :-1] input_ids_second = input_ids[:, -1:] # return saved cache past_buckets_states = model(input_ids_first, use_cache=True)["past_buckets_states"] # calculate last output with and without cache outputs_with_cache = model(input_ids_second, past_buckets_states=past_buckets_states, use_cache=True)["logits"] outputs_without_cache = model(input_ids)["logits"][:, -1] # select random slice idx random_slice_idx = torch.randint(outputs_without_cache.shape[-1], (1, 1), device=torch_device).item() # outputs should be similar within range self.parent.assertTrue( torch.allclose( outputs_with_cache[:, 0, random_slice_idx], outputs_without_cache[:, random_slice_idx], atol=1e-2 ) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict def create_and_check_reformer_for_sequence_classification( self, config, input_ids, input_mask, choice_labels, is_decoder ): config.is_decoder = is_decoder sequence_labels = ids_tensor([self.batch_size], config.num_labels) model = ReformerForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) class ReformerTesterMixin: """ Reformer Local and Reformer LSH run essentially the same tests """ def test_config(self): self.config_tester.run_common_tests() def test_reformer_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model(*config_and_inputs) def test_reformer_lm_model_backward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_with_lm_backward(*config_and_inputs) def test_reformer_model_attn_masking(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=True) self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=False) def test_reformer_with_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_with_lm(*config_and_inputs) def test_reformer_with_mlm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_with_mlm(*config_and_inputs) def test_reformer_layer_training_dropout(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=True) self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=False) def test_reformer_chunking_backward_equality(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_feed_backward_chunking(*config_and_inputs) def test_reformer_no_chunking(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_no_chunking(*config_and_inputs) def test_reformer_qa_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_for_question_answering(*config_and_inputs) def test_reformer_cached_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_past_buckets_states(*config_and_inputs) def test_reformer_cached_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_generate(*config_and_inputs) @slow def test_dropout_random_seed_is_changing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_random_seed(*config_and_inputs) @require_torch_fp16 def test_reformer_model_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_fp16_forward(*config_and_inputs) @require_torch_fp16 def test_reformer_model_fp16_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_model_fp16_generate(*config_and_inputs) @require_torch_multi_gpu @unittest.skip( reason=( "Reformer does not work with data parallel (DP) because of a bug in PyTorch:" " https://github.com/pytorch/pytorch/issues/36035" ) ) def test_multi_gpu_data_parallel_forward(self): pass def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_reformer_for_sequence_classification(*config_and_inputs, is_decoder=False) def test_retain_grad_hidden_states_attentions(self): # reformer cannot keep gradients in attentions or hidden states return def test_resize_embeddings_untied(self): # reformer cannot resize embeddings that easily return @require_torch class ReformerLocalAttnModelTest(ReformerTesterMixin, GenerationTesterMixin, ModelTesterMixin, unittest.TestCase): all_model_classes = ( (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else () test_pruning = False test_headmasking = False test_torchscript = False test_sequence_classification_problem_types = True def setUp(self): self.model_tester = ReformerModelTester(self) self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37) @slow def test_model_from_pretrained(self): model_name = "google/reformer-crime-and-punishment" model = ReformerModelWithLMHead.from_pretrained(model_name) self.assertIsNotNone(model) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, list) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): tgt_len = min_length + idx if not use_cache else 1 num_chunks = tgt_len // config.local_attn_chunk_length + (tgt_len % config.local_attn_chunk_length != 0) tgt_chunk_len = config.local_attn_chunk_length src_chunk_len = config.local_attn_chunk_length * ( 1 + config.local_num_chunks_after + config.local_num_chunks_before ) if use_cache: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, min_length // config.local_attn_chunk_length + 1 + idx, ) else: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, num_chunks, tgt_chunk_len, src_chunk_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, list) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length + idx seq_len = config.local_attn_chunk_length * ( seq_len // config.local_attn_chunk_length + (seq_len % config.local_attn_chunk_length != 0) ) if use_cache: seq_len = 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass def _get_input_ids_and_config(self, batch_size=2): # override because overwise we hit max possible seq length for model (4*8=32) # decreasing the seq_length in tester causes errors for "training_tests", those need exactly max seq length # NOTE: seq_length has to be multiple of 4, otherwise it fails for other tests config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict[self.input_name] input_ids = input_ids[:batch_size, :16] attention_mask = torch.ones_like(input_ids, dtype=torch.long)[:batch_size, :16] config.eos_token_id = None config.forced_eos_token_id = None return config, input_ids, attention_mask @require_torch class ReformerLSHAttnModelTest( ReformerTesterMixin, ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase ): all_model_classes = ( (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": ReformerModel, "fill-mask": ReformerForMaskedLM, "question-answering": ReformerForQuestionAnswering, "text-classification": ReformerForSequenceClassification, "text-generation": ReformerModelWithLMHead, "zero-shot": ReformerForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False test_torchscript = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = ReformerModelTester( self, batch_size=13, seq_length=13, use_input_mask=True, use_labels=True, is_training=False, is_decoder=True, vocab_size=32, attention_head_size=16, hidden_size=64, num_attention_heads=2, num_buckets=2, num_hashes=4, lsh_attn_chunk_length=4, lsh_num_chunks_before=1, lsh_num_chunks_after=0, chunk_size_lm_head=5, chunk_size_feed_forward=6, feed_forward_size=32, hidden_act="relu", hidden_dropout_prob=0.1, lsh_attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, axial_norm_std=1.0, layer_norm_eps=1e-12, axial_pos_embds=True, axial_pos_shape=[4, 8], axial_pos_embds_dim=[16, 48], # sanotheu # attn_layers=[lsh,lsh,lsh,lsh], attn_layers=["lsh"], pad_token_id=0, eos_token_id=2, scope=None, hash_seed=0, num_labels=2, ) self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, list) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): tgt_len = min_length + idx if not use_cache else 1 num_chunks = tgt_len // config.lsh_attn_chunk_length + (tgt_len % config.lsh_attn_chunk_length != 0) tgt_chunk_len = config.lsh_attn_chunk_length src_chunk_len = config.lsh_attn_chunk_length * ( 1 + config.lsh_num_chunks_after + config.lsh_num_chunks_before ) if use_cache: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, config.num_hashes, tgt_len, config.num_hashes * (1 + config.lsh_num_chunks_after + config.lsh_num_chunks_before), ) else: expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, num_chunks * config.num_hashes, tgt_chunk_len, src_chunk_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, list) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length + idx if not use_cache else 1 seq_len = config.lsh_attn_chunk_length * ( seq_len // config.lsh_attn_chunk_length + (seq_len % config.lsh_attn_chunk_length != 0) ) if use_cache: seq_len = 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) @unittest.skip("Fails because the sequence length is not a multiple of 4") def test_problem_types(self): pass @unittest.skip("Fails because the sequence length is not a multiple of 4") def test_past_key_values_format(self): pass @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass @require_torch @require_sentencepiece @require_tokenizers class ReformerIntegrationTests(unittest.TestCase): """ These integration tests test the current layer activations and gradients againts the output of the Hugging Face Reformer model at time of integration: 29/06/2020. During integration, the model was tested against the output of the official Trax ReformerLM model for various cases ("lsh" only, "lsh" only, masked / non-masked, different chunk length, ....). In order to recover the original trax integration tests, one should use patrickvonplaten's fork of trax and the code that lives on the branch `reformer_trax_tests`. """ def _get_basic_config_and_input(self): config = { "vocab_size": 320, "attention_head_size": 8, "hidden_size": 16, "num_attention_heads": 2, "num_buckets": 2, "num_hashes": 4, "lsh_attn_chunk_length": 4, "local_attn_chunk_length": 4, "lsh_num_chunks_before": 1, "lsh_num_chunks_after": 0, "local_num_chunks_before": 1, "local_num_chunks_after": 0, "chunk_size_lm_head": 0, "chunk_size_feed_forward": 0, "feed_forward_size": 32, "hidden_act": "gelu", "hidden_dropout_prob": 0.0, "lsh_attention_probs_dropout_prob": 0.0, "local_attention_probs_dropout_prob": 0.0, "max_position_embeddings": 32, "initializer_range": 0.02, "axial_norm_std": 1.0, "layer_norm_eps": 1e-12, "sinusoidal_pos_embds": False, "axial_pos_embds": True, "axial_pos_shape": [4, 8], "axial_pos_embds_dim": [8, 8], "hash_seed": 0, "is_decoder": True, } return config def _get_hidden_states(self): return torch.tensor( [ [ [ 1.90826353e00, -1.45999730e00, -6.20405462e-01, 1.52503433e00, -3.64464232e-01, -8.27359235e-01, 8.39670803e-01, 2.44492178e-01, 4.98332758e-01, 2.69175139e00, -7.08081422e-03, 1.04915401e00, -1.83476661e00, 7.67220476e-01, 2.98580543e-01, 2.84803992e-02, ], [ -2.66374286e-02, 4.33497576e-01, 3.10386309e-01, 5.46039944e-01, -2.47292666e-04, -7.52305019e-01, 2.39162103e-01, 7.25216186e-01, -7.58357372e-01, 4.20635998e-01, -4.04739919e-02, 1.59924145e-01, 2.05135748e00, -1.15997978e00, 5.37166397e-01, 2.62873606e-01, ], [ 1.85247482e-01, 7.07046037e-01, -6.77089715e-01, -2.24209655e00, -3.75307980e-02, -8.59380874e-01, -2.81027884e00, 1.01276376e00, -1.69438001e00, 4.17574660e-01, -1.49196962e00, -1.76483717e00, -1.94566312e-01, -1.71183858e00, 7.72903565e-01, -1.11557056e00, ], [ 9.46069193e-01, 1.53417623e-01, -9.58686996e-01, 1.18126669e-01, 1.75967724e00, 1.62194590e00, -5.74108159e-01, 6.79920443e-01, 5.44028163e-01, 2.05466114e-01, -3.63045868e-01, 2.41865062e-01, 3.20348382e-01, -9.05611176e-01, -1.92690727e-01, -1.19917547e00, ], ] ], dtype=torch.float32, device=torch_device, ) def _get_attn_mask(self): return torch.tensor([[0, 1, 0, 0]], dtype=torch.long, device=torch_device) def _get_input_ids_and_mask(self): mask = torch.tensor( [ [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0], ], dtype=torch.long, device=torch_device, ) input_ids = torch.tensor( [ [ 89, 279, 286, 84, 194, 316, 182, 28, 283, 37, 169, 7, 253, 267, 107, 250, 44, 7, 102, 62, 3, 243, 171, 265, 302, 48, 164, 264, 148, 229, 280, 150, ], [ 9, 192, 66, 112, 163, 83, 135, 70, 224, 96, 31, 80, 196, 80, 63, 22, 85, 100, 47, 283, 0, 163, 126, 143, 195, 82, 53, 82, 18, 27, 182, 52, ], ], dtype=torch.long, device=torch_device, ) return input_ids, mask def test_lsh_layer_forward(self): config = self._get_basic_config_and_input() config["lsh_num_chunks_before"] = 0 config["attn_layers"] = ["lsh"] config["is_decoder"] = False hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer(prev_attn_output=hidden_states.clone(), hidden_states=hidden_states) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.6879, -1.3083, -0.4708, 1.3555, -0.6292], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_lsh_layer_forward_complex(self): config = self._get_basic_config_and_input() config["lsh_num_chunks_before"] = 0 config["attn_layers"] = ["lsh"] config["num_buckets"] = [2, 4] attn_mask = self._get_attn_mask() hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer( prev_attn_output=hidden_states.clone(), hidden_states=hidden_states, attention_mask=attn_mask, ) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.6439, -1.2306, -0.5108, 1.3006, -0.6537], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_local_layer_forward(self): config = self._get_basic_config_and_input() config["local_num_chunks_before"] = 0 config["attn_layers"] = ["local"] config["is_decoder"] = False hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer(prev_attn_output=hidden_states, hidden_states=hidden_states) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.4212, -2.0576, -0.9688, 1.4599, -0.1344], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_local_layer_forward_complex(self): config = self._get_basic_config_and_input() config["local_num_chunks_before"] = 0 config["attn_layers"] = ["local"] attn_mask = self._get_attn_mask() hidden_states = self._get_hidden_states() torch.manual_seed(0) layer = ReformerLayer(ReformerConfig(**config)).to(torch_device) layer.eval() reformer_output = layer( prev_attn_output=hidden_states, hidden_states=hidden_states, attention_mask=attn_mask, ) output_slice = reformer_output.hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [1.4750, -2.0235, -0.9743, 1.4463, -0.1269], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_lsh_model_forward(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"] config["num_buckets"] = [2, 4] torch.manual_seed(0) model = ReformerModel(ReformerConfig(**config)).to(torch_device) model.eval() input_ids, attn_mask = self._get_input_ids_and_mask() hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0] output_slice = hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [-0.9896, -0.9396, -1.0831, -0.0597, 0.2456], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_local_model_forward(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["local", "local", "local", "local"] torch.manual_seed(0) model = ReformerModel(ReformerConfig(**config)).to(torch_device) model.eval() input_ids, attn_mask = self._get_input_ids_and_mask() hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0] output_slice = hidden_states[0, 0, :5] expected_output_slice = torch.tensor( [-1.6791, 0.7171, 0.1594, 0.4063, 1.2584], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_lm_model_forward(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["local", "lsh", "local", "lsh", "local", "lsh"] config["num_buckets"] = [2, 4] config["is_decoder"] = False torch.manual_seed(0) model = ReformerForMaskedLM(ReformerConfig(**config)).to(torch_device) model.eval() input_ids, attn_mask = self._get_input_ids_and_mask() hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0] output_slice = hidden_states[1, -1, :5] expected_output_slice = torch.tensor( [0.1018, -0.2026, 0.2116, 0.0270, -0.1233], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3)) def test_local_lm_model_grad(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["local", "local", "local", "local"] config["hidden_dropout_prob"] = 0.0 config["local_attention_probs_dropout_prob"] = 0.0 torch.manual_seed(0) model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device) model.train() model.zero_grad() input_ids, _ = self._get_input_ids_and_mask() loss = model(input_ids=input_ids, labels=input_ids)[0] self.assertTrue(torch.allclose(loss, torch.tensor(5.8019, dtype=torch.float, device=torch_device), atol=1e-3)) loss.backward() # check last grads to cover all proable errors grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] expected_grad_slice_word = torch.tensor( [-0.0005, -0.0001, -0.0002, -0.0006, -0.0006], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] expected_grad_slice_pos_fac_1 = torch.tensor( [-0.5235, 0.5704, 0.0922, -0.3140, 0.9928], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] expected_grad_slice_pos_fac_2 = torch.tensor( [1.7960, 1.7668, 0.5593, 0.0907, 1.8342], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3)) self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3)) self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3)) def test_lsh_lm_model_grad(self): config = self._get_basic_config_and_input() config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"] config["hidden_dropout_prob"] = 0.0 config["lsh_attention_probs_dropout_prob"] = 0.0 config["num_buckets"] = [2, 4] config["num_hashes"] = 6 torch.manual_seed(0) model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device) model.train() model.zero_grad() input_ids, _ = self._get_input_ids_and_mask() loss = model(input_ids=input_ids, labels=input_ids)[0] self.assertTrue(torch.allclose(loss, torch.tensor(5.7854, dtype=torch.float, device=torch_device), atol=1e-3)) loss.backward() # check last grads to cover all proable errors grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5] expected_grad_slice_word = torch.tensor( [0.0004, 0.0003, 0.0006, -0.0004, 0.0002], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:] expected_grad_slice_pos_fac_1 = torch.tensor( [-0.3792, 0.5593, -1.6993, 0.2033, 0.4131], dtype=torch.float, device=torch_device, ) grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5] expected_grad_slice_pos_fac_2 = torch.tensor( [-1.4212, -0.3201, -1.1944, 0.1258, 0.2856], dtype=torch.float, device=torch_device, ) self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3)) self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3)) self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3)) @slow def test_pretrained_generate_crime_and_punish(self): model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device) tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") model.eval() input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device) output_ids = model.generate( input_ids, max_length=50, num_beams=4, early_stopping=True, do_sample=False, num_hashes=8 ) output = tokenizer.decode(output_ids[0]) self.assertEqual( output, "A few months later state expression in his ideas, at the first entrance. He was positively for an inst", ) @slow def test_pretrained_generate_use_cache_equality(self): model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device) tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") model.eval() input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device) output_ids_with_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=False) output_ids_without_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=True) output_with_cache = tokenizer.decode(output_ids_with_cache[0]) output_without_cache = tokenizer.decode(output_ids_without_cache[0]) self.assertEqual(output_with_cache, output_without_cache)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/reformer/test_tokenization_reformer.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class ReformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "google/reformer-crime-and-punishment" tokenizer_class = ReformerTokenizer rust_tokenizer_class = ReformerTokenizerFast test_rust_tokenizer = True test_seq2seq = False test_sentencepiece = True def setUp(self): super().setUp() tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True) tokenizer.save_pretrained(self.tmpdirname) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<s>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") self.assertEqual(vocab_keys[-1], "j") self.assertEqual(len(vocab_keys), 1_000) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 1_000) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_padding(self, max_length=15): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Simple input s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, padding="max_length", ) # Pair input self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, padding="max_length", ) # tokenizer has no padding token def test_padding_different_model_input_name(self): pass def test_full_tokenizer(self): tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) @cached_property def big_tokenizer(self): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") @slow def test_tokenization_base_easy_symbols(self): symbols = "Hello World!" original_tokenizer_encodings = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @slow def test_tokenization_base_hard_symbols(self): symbols = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) original_tokenizer_encodings = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @require_torch @slow def test_torch_encode_plus_sent_to_model(self): import torch from transformers import ReformerConfig, ReformerModel # Build sequence first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt") batch_encoded_sequence = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt") config = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) config.axial_pos_shape = encoded_sequence["input_ids"].shape model = ReformerModel(config) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**encoded_sequence) model(**batch_encoded_sequence) @slow def test_tokenizer_integration(self): expected_encoding = {'input_ids': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # fmt: skip # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 sequences = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="google/reformer-crime-and-punishment", revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a", padding=False, sequences=sequences, )
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/qwen2_moe/test_modeling_qwen2_moe.py
# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Qwen2MoE model. """ import gc import tempfile import unittest import pytest from transformers import AutoTokenizer, Qwen2MoeConfig, is_torch_available, set_seed from transformers.testing_utils import ( backend_empty_cache, require_bitsandbytes, require_flash_attn, require_torch, require_torch_gpu, require_torch_sdpa, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Qwen2MoeForCausalLM, Qwen2MoeForSequenceClassification, Qwen2MoeModel, ) class Qwen2MoeModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, max_window_layers=3, use_sliding_window=True, sliding_window=2, num_attention_heads=4, num_key_value_heads=2, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, expert_interval=1, moe_intermediate_size=12, shared_expert_intermediate_size=36, shared_expert_gate=True, num_experts_per_tok=2, num_experts=8, norm_topk_prob=False, output_router_logits=False, router_aux_loss_coef=0.001, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, pad_token_id=0, bos_token_id=1, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.max_window_layers = max_window_layers self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.scope = scope self.expert_interval = expert_interval self.moe_intermediate_size = moe_intermediate_size self.shared_expert_intermediate_size = shared_expert_intermediate_size self.shared_expert_gate = shared_expert_gate self.num_experts_per_tok = num_experts_per_tok self.num_experts = num_experts self.norm_topk_prob = norm_topk_prob self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return Qwen2MoeConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, max_window_layers=self.max_window_layers, use_sliding_window=self.use_sliding_window, sliding_window=self.sliding_window, num_attention_heads=self.num_attention_heads, num_key_value_heads=self.num_key_value_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, expert_interval=self.expert_interval, moe_intermediate_size=self.moe_intermediate_size, shared_expert_intermediate_size=self.shared_expert_intermediate_size, shared_expert_gate=self.shared_expert_gate, num_experts_per_tok=self.num_experts_per_tok, num_experts=self.num_experts, norm_topk_prob=self.norm_topk_prob, output_router_logits=self.output_router_logits, router_aux_loss_coef=self.router_aux_loss_coef, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, bos_token_id=self.bos_token_id, ) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Qwen2Moe def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = Qwen2MoeModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Qwen2Moe def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = Qwen2MoeModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Qwen2Moe def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = Qwen2MoeForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Qwen2Moe def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = Qwen2MoeForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch # Copied from tests.models.mistral.test_modeling_mistral.MistralModelTest with Mistral->Qwen2Moe class Qwen2MoeModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (Qwen2MoeModel, Qwen2MoeForCausalLM, Qwen2MoeForSequenceClassification) if is_torch_available() else () ) all_generative_model_classes = (Qwen2MoeForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": Qwen2MoeModel, "text-classification": Qwen2MoeForSequenceClassification, "text-generation": Qwen2MoeForCausalLM, "zero-shot": Qwen2MoeForSequenceClassification, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False fx_compatible = True # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146 def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True # Ignore copy @require_torch_sdpa @slow def test_eager_matches_sdpa_generate(self): super().test_eager_matches_sdpa_generate() def setUp(self): self.model_tester = Qwen2MoeModelTester(self) self.config_tester = ConfigTester(self, config_class=Qwen2MoeConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_Qwen2Moe_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() print(config) config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = Qwen2MoeForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_Qwen2Moe_sequence_classification_model_for_single_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "single_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = Qwen2MoeForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def test_Qwen2Moe_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = Qwen2MoeForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("Qwen2Moe buffers include complex numbers, which breaks this test") def test_save_load_fast_init_from_base(self): pass @unittest.skip("Qwen2Moe uses GQA on all models so the KV cache is a non standard format") def test_past_key_values_format(self): pass @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_generate_padding_right(self): import torch for model_class in self.all_generative_model_classes: config, _ = self.model_tester.prepare_config_and_inputs_for_common() model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to( torch_device ) dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device) dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device) model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False) model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2", low_cpu_mem_usage=True, ).to(torch_device) with self.assertRaises(ValueError): _ = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False ) @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_generate_use_cache(self): import torch max_new_tokens = 30 for model_class in self.all_generative_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() dummy_input = inputs_dict[model_class.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) # NOTE: Qwen2Moe apparently does not support right padding + use_cache with FA2. dummy_attention_mask[:, -1] = 1 model = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2", low_cpu_mem_usage=True, ).to(torch_device) # Just test that a large cache works as expected _ = model.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False, use_cache=True, ) @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_inference_equivalence_right_padding(self): self.skipTest("Qwen2Moe flash attention does not support right padding") # Ignore copy def test_load_balancing_loss(self): r""" Let's make sure we can actually compute the loss and do a backward on it. """ config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.num_experts = 8 config.expert_interval = 2 config.output_router_logits = True input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = Qwen2MoeForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask) self.assertEqual(result.router_logits[0].shape, (91, config.num_experts)) torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2) # First, we make sure that adding padding tokens doesn't change the loss # loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding) pad_length = 1000 # Add padding tokens (assume that pad_token_id=1) to input_ids padding_block = torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(torch_device) padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left padded_attention_mask = padded_input_ids.ne(1).to(torch_device) padded_result = model(padded_input_ids, attention_mask=padded_attention_mask) torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4) # We make sure that the loss of includding padding tokens != the loss without padding tokens # if attention_mask=None --> we don't exclude padding tokens include_padding_result = model(padded_input_ids, attention_mask=None) # This is to mimic torch.testing.assert_not_close self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item()) @require_torch class Qwen2MoeIntegrationTest(unittest.TestCase): @slow def test_model_a2_7b_logits(self): input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] model = Qwen2MoeForCausalLM.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", device_map="auto") input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device) with torch.no_grad(): out = model(input_ids).logits.cpu() # Expected mean on dim = -1 EXPECTED_MEAN = torch.tensor([[-4.2125, -3.6416, -4.9136, -4.3005, -4.9938, -3.4393, -3.5195, -4.1621]]) torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2) # slicing logits[0, 0, 0:30] EXPECTED_SLICE = torch.tensor([2.3013, -0.6595, -0.1389, -1.4095, -1.7381, -1.7609, -2.0449, -2.4289, -3.0271, -2.1351, -0.6568, -4.6012, -1.9102, -0.7475, -3.1377, 4.6904, 7.1936, 7.0991, 6.4414, 6.1720, 6.2617, 5.8751, 5.6997, 5.6011, 5.5828, -3.9505, -0.5384, -0.3392, 1.2445, 2.0714]) # fmt: skip print(out[0, 0, :30]) torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-4, rtol=1e-4) del model backend_empty_cache(torch_device) gc.collect() @slow def test_model_a2_7b_generation(self): EXPECTED_TEXT_COMPLETION = """To be or not to be, that is the question. This is the question that has been asked by many people over the""" prompt = "To be or not to" tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", use_fast=False) model = Qwen2MoeForCausalLM.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", device_map="auto") input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device) # greedy generation outputs generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) del model backend_empty_cache(torch_device) gc.collect() @require_bitsandbytes @slow @require_flash_attn def test_model_a2_7b_long_prompt(self): EXPECTED_OUTPUT_TOKEN_IDS = [306, 338] # An input with 4097 tokens that is above the size of the sliding window input_ids = [1] + [306, 338] * 2048 model = Qwen2MoeForCausalLM.from_pretrained( "Qwen/Qwen1.5-MoE-A2.7B", device_map="auto", load_in_4bit=True, attn_implementation="flash_attention_2", ) input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device) generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist()) # Assisted generation assistant_model = model assistant_model.generation_config.num_assistant_tokens = 2 assistant_model.generation_config.num_assistant_tokens_schedule = "constant" generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist()) del assistant_model del model backend_empty_cache(torch_device) gc.collect() @slow @require_torch_sdpa def test_model_a2_7b_long_prompt_sdpa(self): EXPECTED_OUTPUT_TOKEN_IDS = [306, 338] # An input with 4097 tokens that is above the size of the sliding window input_ids = [1] + [306, 338] * 2048 model = Qwen2MoeForCausalLM.from_pretrained( "Qwen/Qwen1.5-MoE-A2.7B", device_map="auto", attn_implementation="sdpa", ) input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device) generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist()) # Assisted generation assistant_model = model assistant_model.generation_config.num_assistant_tokens = 2 assistant_model.generation_config.num_assistant_tokens_schedule = "constant" generated_ids = assistant_model.generate(input_ids, max_new_tokens=4, temperature=0) self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist()) del assistant_model backend_empty_cache(torch_device) gc.collect() EXPECTED_TEXT_COMPLETION = """To be or not to be, that is the question. This is the question that has been asked by many people over the""" prompt = "To be or not to" tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", use_fast=False) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device) # greedy generation outputs generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) @slow def test_speculative_generation(self): EXPECTED_TEXT_COMPLETION = ( "To be or not to be, that is the question.\nThe answer is to be, of course. But what does it" ) prompt = "To be or not to" tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B", use_fast=False) model = Qwen2MoeForCausalLM.from_pretrained( "Qwen/Qwen1.5-MoE-A2.7B", device_map="auto", torch_dtype=torch.float16 ) assistant_model = Qwen2MoeForCausalLM.from_pretrained( "Qwen/Qwen1.5-MoE-A2.7B", device_map="auto", torch_dtype=torch.float16 ) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device) # greedy generation outputs set_seed(0) generated_ids = model.generate( input_ids, max_new_tokens=20, do_sample=True, temperature=0.3, assistant_model=assistant_model ) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) del model backend_empty_cache(torch_device) gc.collect()
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/ctrl/test_modeling_tf_ctrl.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import CTRLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.modeling_tf_utils import keras from transformers.models.ctrl.modeling_tf_ctrl import ( TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, ) class TFCTRLModelTester(object): def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, dff=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFCTRLModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, None, input_mask] # None is the input for 'past' result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFCTRLLMHeadModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_ctrl_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): config.num_labels = self.num_labels sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) inputs = { "input_ids": input_ids, "token_type_ids": token_type_ids, "labels": sequence_labels, } model = TFCTRLForSequenceClassification(config) result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFCTRLModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel, TFCTRLForSequenceClassification) if is_tf_available() else () all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else () pipeline_model_mapping = ( { "feature-extraction": TFCTRLModel, "text-classification": TFCTRLForSequenceClassification, "text-generation": TFCTRLLMHeadModel, "zero-shot": TFCTRLForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def setUp(self): self.model_tester = TFCTRLModelTester(self) self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_ctrl_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*config_and_inputs) def test_ctrl_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs) def test_ctrl_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_for_sequence_classification(*config_and_inputs) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() list_lm_models = [TFCTRLLMHeadModel] list_other_models_with_output_ebd = [TFCTRLForSequenceClassification] for model_class in self.all_model_classes: model = model_class(config) model.build_in_name_scope() # may be needed for the get_bias() call below assert isinstance(model.get_input_embeddings(), keras.layers.Layer) if model_class in list_lm_models: x = model.get_output_embeddings() assert isinstance(x, keras.layers.Layer) name = model.get_bias() assert isinstance(name, dict) for k, v in name.items(): assert isinstance(v, tf.Variable) elif model_class in list_other_models_with_output_ebd: x = model.get_output_embeddings() assert isinstance(x, keras.layers.Layer) name = model.get_bias() assert name is None else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None @slow def test_model_from_pretrained(self): model_name = "Salesforce/ctrl" model = TFCTRLModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFCTRLModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_ctrl(self): model = TFCTRLLMHeadModel.from_pretrained("Salesforce/ctrl") input_ids = tf.convert_to_tensor([[11859, 0, 1611, 8]], dtype=tf.int32) # Legal the president is expected_output_ids = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/ctrl/test_modeling_ctrl.py
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import backend_empty_cache, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class CTRLModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def get_config(self): return CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, dff=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CTRLModel(config=config) model.to(torch_device) model.eval() model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CTRLLMHeadModel(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args): config.num_labels = self.num_labels model = CTRLForSequenceClassification(config) model.to(torch_device) model.eval() sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) @require_torch class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) test_pruning = True test_resize_embeddings = False test_head_masking = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def setUp(self): self.model_tester = CTRLModelTester(self) self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() backend_empty_cache(torch_device) def test_config(self): self.config_tester.run_common_tests() def test_ctrl_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*config_and_inputs) def test_ctrl_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "Salesforce/ctrl" model = CTRLModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class CTRLModelLanguageGenerationTest(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() backend_empty_cache(torch_device) @slow def test_lm_generate_ctrl(self): model = CTRLLMHeadModel.from_pretrained("Salesforce/ctrl") model.to(torch_device) input_ids = torch.tensor( [[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device ) # Legal the president is expected_output_ids = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/ctrl/test_tokenization_ctrl.py
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class CTRLTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "Salesforce/ctrl" tokenizer_class = CTRLTokenizer test_rust_tokenizer = False test_seq2seq = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "adapt react readapt apt" output_text = "adapt react readapt apt" return input_text, output_text def test_full_tokenizer(self): tokenizer = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "adapt react readapt apt" bpe_tokens = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/levit/test_image_processing_levit.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import LevitImageProcessor class LevitImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"shortest_edge": 18} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class LevitImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = LevitImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = LevitImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 18}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/levit/test_modeling_levit.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch LeViT model. """ import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.auto.modeling_auto import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, MODEL_MAPPING_NAMES, ) if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class LevitConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_attention_heads")) class LevitModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, kernel_size=3, stride=2, padding=1, patch_size=16, hidden_sizes=[16, 32, 48], num_attention_heads=[1, 2, 3], depths=[2, 3, 4], key_dim=[8, 8, 8], drop_path_rate=0, mlp_ratio=[2, 2, 2], attention_ratio=[2, 2, 2], initializer_range=0.02, is_training=True, use_labels=True, num_labels=2, # Check ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.hidden_sizes = hidden_sizes self.num_attention_heads = num_attention_heads self.depths = depths self.key_dim = key_dim self.drop_path_rate = drop_path_rate self.patch_size = patch_size self.attention_ratio = attention_ratio self.mlp_ratio = mlp_ratio self.initializer_range = initializer_range self.down_ops = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] self.is_training = is_training self.use_labels = use_labels self.num_labels = num_labels self.initializer_range = initializer_range def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def create_and_check_model(self, config, pixel_values, labels): model = LevitModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) image_size = (self.image_size, self.image_size) height, width = image_size[0], image_size[1] for _ in range(4): height = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) width = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = LevitForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class LevitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Levit does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = LevitModelTester(self) self.config_tester = ConfigTester(self, config_class=LevitConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="Levit does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Levit does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="Levit does not output attentions") def test_attention_outputs(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = len(self.model_tester.depths) + 1 self.assertEqual(len(hidden_states), expected_num_layers) image_size = (self.model_tester.image_size, self.model_tester.image_size) height, width = image_size[0], image_size[1] for _ in range(4): height = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) width = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]), [ height * width, self.model_tester.hidden_sizes[0], ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) # special case for LevitForImageClassificationWithTeacher model def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class.__name__ in MODEL_MAPPING_NAMES.values() or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return config.use_cache = False config.return_dict = True for model_class in self.all_model_classes: if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue model = model_class(config) model.gradient_checkpointing_enable() model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_problem_types(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() problem_types = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class.__name__ not in [ *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): config.problem_type = problem_type["title"] config.num_labels = problem_type["num_labels"] model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) if problem_type["num_labels"] > 1: inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=True) as warning_list: loss = model(**inputs).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def test_model_from_pretrained(self): model_name = "facebook/levit-128S" model = LevitModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class LevitModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return LevitImageProcessor.from_pretrained("facebook/levit-128S") @slow def test_inference_image_classification_head(self): model = LevitForImageClassificationWithTeacher.from_pretrained("facebook/levit-128S").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([1.0448, -0.3745, -1.8317]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/mgp_str/test_tokenization_mgp_str.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class MgpstrTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "alibaba-damo/mgp-str-base" tokenizer_class = MgpstrTokenizer test_rust_tokenizer = False from_pretrained_kwargs = {} test_seq2seq = False def setUp(self): super().setUp() vocab = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: skip vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") def get_tokenizer(self, **kwargs): return MgpstrTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "tester" output_text = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters.") def test_added_tokens_do_lower_case(self): pass def test_add_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): special_token = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode([special_token], add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_internal_consistency(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, output_text = self.get_input_output_texts(tokenizer) tokens = tokenizer.tokenize(input_text) ids = tokenizer.convert_tokens_to_ids(tokens) ids_2 = tokenizer.encode(input_text, add_special_tokens=False) self.assertListEqual(ids, ids_2) tokens_2 = tokenizer.convert_ids_to_tokens(ids) self.assertNotEqual(len(tokens_2), 0) text_2 = tokenizer.decode(ids) self.assertIsInstance(text_2, str) self.assertEqual(text_2.replace(" ", ""), output_text) @unittest.skip("MGP-STR tokenizer only handles one sequence.") def test_maximum_encoding_length_pair_input(self): pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer") def test_pretokenized_inputs(self): pass
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/mgp_str/test_processor_mgp_str.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the MgpstrProcessor. """ import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class MgpstrProcessorTest(unittest.TestCase): image_processing_class = ViTImageProcessor if is_vision_available() else None @property def image_processor_dict(self): return self.prepare_image_processor_dict() def setUp(self): self.image_size = (3, 32, 128) self.tmpdirname = tempfile.mkdtemp() vocab = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: skip vocab_tokens = dict(zip(vocab, range(len(vocab)))) self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") image_processor_map = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return MgpstrTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images.""" image_input = np.random.randint(255, size=(3, 30, 400), dtype=np.uint8) image_input = Image.fromarray(np.moveaxis(image_input, 0, -1)) return image_input def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() image_processor = self.get_image_processor() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) processor.save_pretrained(self.tmpdirname) processor = MgpstrProcessor.from_pretrained(self.tmpdirname, use_fast=False) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer, MgpstrTokenizer) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor.image_processor, ViTImageProcessor) def test_save_load_pretrained_additional_features(self): tokenizer = self.get_tokenizer() image_processor = self.get_image_processor() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = MgpstrProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer, MgpstrTokenizer) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, ViTImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_image_proc = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "test" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "test" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["pixel_values", "labels"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.char_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) decode_strs = [seq.replace(" ", "") for seq in decoded_tok] self.assertListEqual(decode_strs, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = None image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), processor.model_input_names) def test_processor_batch_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = MgpstrProcessor(tokenizer=tokenizer, image_processor=image_processor) char_input = torch.randn(1, 27, 38) bpe_input = torch.randn(1, 27, 50257) wp_input = torch.randn(1, 27, 30522) results = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()), ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"])
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/mgp_str/test_modeling_mgp_str.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MGP-STR model. """ import unittest import requests from transformers import MgpstrConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MgpstrForSceneTextRecognition, MgpstrModel if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor class MgpstrModelTester: def __init__( self, parent, is_training=False, batch_size=13, image_size=(32, 128), patch_size=4, num_channels=3, max_token_length=27, num_character_labels=38, num_bpe_labels=99, num_wordpiece_labels=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, mlp_ratio=4.0, patch_embeds_hidden_size=257, output_hidden_states=None, ): self.parent = parent self.is_training = is_training self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.max_token_length = max_token_length self.num_character_labels = num_character_labels self.num_bpe_labels = num_bpe_labels self.num_wordpiece_labels = num_wordpiece_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.mlp_ratio = mlp_ratio self.patch_embeds_hidden_size = patch_embeds_hidden_size self.output_hidden_states = output_hidden_states def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) config = self.get_config() return config, pixel_values def get_config(self): return MgpstrConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, max_token_length=self.max_token_length, num_character_labels=self.num_character_labels, num_bpe_labels=self.num_bpe_labels, num_wordpiece_labels=self.num_wordpiece_labels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, mlp_ratio=self.mlp_ratio, output_hidden_states=self.output_hidden_states, ) def create_and_check_model(self, config, pixel_values): model = MgpstrForSceneTextRecognition(config) model.to(torch_device) model.eval() with torch.no_grad(): generated_ids = model(pixel_values) self.parent.assertEqual( generated_ids[0][0].shape, (self.batch_size, self.max_token_length, self.num_character_labels) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class MgpstrModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MgpstrForSceneTextRecognition,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": MgpstrForSceneTextRecognition, "image-feature-extraction": MgpstrModel} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_attention_outputs = False def setUp(self): self.model_tester = MgpstrModelTester(self) self.config_tester = ConfigTester(self, config_class=MgpstrConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="MgpstrModel does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) @unittest.skip(reason="MgpstrModel does not support feedforward chunking") def test_feed_forward_chunking(self): pass def test_gradient_checkpointing_backward_compatibility(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: if not model_class.supports_gradient_checkpointing: continue config.gradient_checkpointing = True model = model_class(config) self.assertTrue(model.is_gradient_checkpointing) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.patch_embeds_hidden_size, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # override as the `logit_scale` parameter initilization is different for MgpstrModel def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if isinstance(param, (nn.Linear, nn.Conv2d, nn.LayerNorm)): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass # We will verify our results on an image from the IIIT-5k dataset def prepare_img(): url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png" im = Image.open(requests.get(url, stream=True).raw).convert("RGB") return im @require_vision @require_torch class MgpstrModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "alibaba-damo/mgp-str-base" model = MgpstrForSceneTextRecognition.from_pretrained(model_name).to(torch_device) processor = MgpstrProcessor.from_pretrained(model_name) image = prepare_img() inputs = processor(images=image, return_tensors="pt").pixel_values.to(torch_device) # forward pass with torch.no_grad(): outputs = model(inputs) # verify the logits self.assertEqual(outputs.logits[0].shape, torch.Size((1, 27, 38))) out_strs = processor.batch_decode(outputs.logits) expected_text = "ticket" self.assertEqual(out_strs["generated_text"][0], expected_text) expected_slice = torch.tensor( [[[-39.5397, -44.4024, -36.1844], [-61.4709, -63.8639, -58.3454], [-74.0225, -68.5494, -71.2164]]], device=torch_device, ) self.assertTrue(torch.allclose(outputs.logits[0][:, 1:4, 1:4], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/bert_japanese/test_tokenization_bert_japanese.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi_projection from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class BertJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "cl-tohoku/bert-base-japanese" tokenizer_class = BertJapaneseTokenizer test_rust_tokenizer = False space_between_special_tokens = True def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", "アップルストア", "外国", "##人", "参政", "##権", "此れ", "は", "猫", "です", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "こんにちは、世界。 \nこんばんは、世界。" output_text = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def get_clean_sequence(self, tokenizer): input_text, output_text = self.get_input_output_texts(tokenizer) ids = tokenizer.encode(output_text, add_special_tokens=False) text = tokenizer.decode(ids, clean_up_tokenization_spaces=False) return text, ids def test_pretokenized_inputs(self): pass # TODO add if relevant def test_maximum_encoding_length_pair_input(self): pass # TODO add if relevant def test_maximum_encoding_length_single_input(self): pass # TODO add if relevant def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。") self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14]) def test_pickle_mecab_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, word_tokenizer_type="mecab") self.assertIsNotNone(tokenizer) text = "こんにちは、世界。\nこんばんは、世界。" tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14]) filename = os.path.join(self.tmpdirname, "tokenizer.bin") with open(filename, "wb") as handle: pickle.dump(tokenizer, handle) with open(filename, "rb") as handle: tokenizer_new = pickle.load(handle) tokens_loaded = tokenizer_new.tokenize(text) self.assertListEqual(tokens, tokens_loaded) def test_mecab_full_tokenizer_with_mecab_kwargs(self): tokenizer = self.tokenizer_class( self.vocab_file, word_tokenizer_type="mecab", mecab_kwargs={"mecab_dic": "ipadic"} ) text = "アップルストア" tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ["アップルストア"]) def test_mecab_tokenizer_ipadic(self): tokenizer = MecabTokenizer(mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"], ) def test_mecab_tokenizer_unidic_lite(self): try: tokenizer = MecabTokenizer(mecab_dic="unidic_lite") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"], ) def test_mecab_tokenizer_unidic(self): try: import unidic self.assertTrue( os.path.isdir(unidic.DICDIR), "The content of unidic was not downloaded. Run `python -m unidic download` before running this test case. Note that this requires 2.1GB on disk.", ) tokenizer = MecabTokenizer(mecab_dic="unidic") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"], ) def test_mecab_tokenizer_lower(self): tokenizer = MecabTokenizer(do_lower_case=True, mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"], ) def test_mecab_tokenizer_with_option(self): try: tokenizer = MecabTokenizer( do_lower_case=True, normalize_text=False, mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"], ) def test_mecab_tokenizer_no_normalize(self): tokenizer = MecabTokenizer(normalize_text=False, mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"], ) @require_sudachi_projection def test_pickle_sudachi_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, word_tokenizer_type="sudachi") self.assertIsNotNone(tokenizer) text = "こんにちは、世界。\nこんばんは、世界。" tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14]) filename = os.path.join(self.tmpdirname, "tokenizer.bin") with open(filename, "wb") as handle: pickle.dump(tokenizer, handle) with open(filename, "rb") as handle: tokenizer_new = pickle.load(handle) tokens_loaded = tokenizer_new.tokenize(text) self.assertListEqual(tokens, tokens_loaded) @require_sudachi_projection def test_sudachi_tokenizer_core(self): tokenizer = SudachiTokenizer(sudachi_dict_type="core") # fmt: off self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "], ) # fmt: on @require_sudachi_projection def test_sudachi_tokenizer_split_mode_A(self): tokenizer = SudachiTokenizer(sudachi_dict_type="core", sudachi_split_mode="A") self.assertListEqual(tokenizer.tokenize("外国人参政権"), ["外国", "人", "参政", "権"]) @require_sudachi_projection def test_sudachi_tokenizer_split_mode_B(self): tokenizer = SudachiTokenizer(sudachi_dict_type="core", sudachi_split_mode="B") self.assertListEqual(tokenizer.tokenize("外国人参政権"), ["外国人", "参政権"]) @require_sudachi_projection def test_sudachi_tokenizer_split_mode_C(self): tokenizer = SudachiTokenizer(sudachi_dict_type="core", sudachi_split_mode="C") self.assertListEqual(tokenizer.tokenize("外国人参政権"), ["外国人参政権"]) @require_sudachi_projection def test_sudachi_full_tokenizer_with_sudachi_kwargs_split_mode_B(self): tokenizer = self.tokenizer_class( self.vocab_file, word_tokenizer_type="sudachi", sudachi_kwargs={"sudachi_split_mode": "B"} ) self.assertListEqual(tokenizer.tokenize("外国人参政権"), ["外国", "##人", "参政", "##権"]) @require_sudachi_projection def test_sudachi_tokenizer_projection(self): tokenizer = SudachiTokenizer( sudachi_dict_type="core", sudachi_split_mode="A", sudachi_projection="normalized_nouns" ) self.assertListEqual(tokenizer.tokenize("これはねこです。"), ["此れ", "は", "猫", "です", "。"]) @require_sudachi_projection def test_sudachi_full_tokenizer_with_sudachi_kwargs_sudachi_projection(self): tokenizer = self.tokenizer_class( self.vocab_file, word_tokenizer_type="sudachi", sudachi_kwargs={"sudachi_projection": "normalized_nouns"} ) self.assertListEqual(tokenizer.tokenize("これはねこです。"), ["此れ", "は", "猫", "です", "。"]) @require_sudachi_projection def test_sudachi_tokenizer_lower(self): tokenizer = SudachiTokenizer(do_lower_case=True, sudachi_dict_type="core") self.assertListEqual(tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),[" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "]) # fmt: skip @require_sudachi_projection def test_sudachi_tokenizer_no_normalize(self): tokenizer = SudachiTokenizer(normalize_text=False, sudachi_dict_type="core") self.assertListEqual(tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),[" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "]) # fmt: skip @require_sudachi_projection def test_sudachi_tokenizer_trim_whitespace(self): tokenizer = SudachiTokenizer(trim_whitespace=True, sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"], ) @require_jumanpp def test_pickle_jumanpp_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, word_tokenizer_type="jumanpp") self.assertIsNotNone(tokenizer) text = "こんにちは、世界。\nこんばんは、世界。" tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14]) filename = os.path.join(self.tmpdirname, "tokenizer.bin") with open(filename, "wb") as handle: pickle.dump(tokenizer, handle) with open(filename, "rb") as handle: tokenizer_new = pickle.load(handle) tokens_loaded = tokenizer_new.tokenize(text) self.assertListEqual(tokens, tokens_loaded) @require_jumanpp def test_jumanpp_tokenizer(self): tokenizer = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"]) # fmt: skip @require_jumanpp def test_jumanpp_tokenizer_lower(self): tokenizer = JumanppTokenizer(do_lower_case=True) self.assertListEqual(tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"],) # fmt: skip @require_jumanpp def test_jumanpp_tokenizer_no_normalize(self): tokenizer = JumanppTokenizer(normalize_text=False) self.assertListEqual(tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"],) # fmt: skip @require_jumanpp def test_jumanpp_tokenizer_trim_whitespace(self): tokenizer = JumanppTokenizer(trim_whitespace=True) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"], ) @require_jumanpp def test_jumanpp_full_tokenizer_with_jumanpp_kwargs_trim_whitespace(self): tokenizer = self.tokenizer_class( self.vocab_file, word_tokenizer_type="jumanpp", jumanpp_kwargs={"trim_whitespace": True} ) text = "こんにちは、世界。\nこんばんは、世界。" tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14]) @require_jumanpp def test_jumanpp_tokenizer_ext(self): tokenizer = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。"), ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"], ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] # fmt: skip vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こんにちは"]) self.assertListEqual(tokenizer.tokenize("こんばんは"), ["こん", "##ばんは"]) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは"), ["こん", "##ばんは", "[UNK]", "こんにちは"]) # fmt: skip def test_sentencepiece_tokenizer(self): tokenizer = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp") subword_tokenizer = tokenizer.subword_tokenizer tokens = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。") self.assertListEqual(tokens, ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"]) # fmt: skip tokens = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは") self.assertListEqual(tokens, ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"]) def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese") text = tokenizer.encode("ありがとう。", add_special_tokens=False) text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_2 + [3] @custom_tokenizers class BertJapaneseCharacterTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "cl-tohoku/bert-base-japanese" tokenizer_class = BertJapaneseTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_tokenizer(self, **kwargs): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type="character", **kwargs) def get_input_output_texts(self, tokenizer): input_text = "こんにちは、世界。 \nこんばんは、世界。" output_text = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def test_pretokenized_inputs(self): pass # TODO add if relevant def test_maximum_encoding_length_pair_input(self): pass # TODO add if relevant def test_maximum_encoding_length_single_input(self): pass # TODO add if relevant def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, subword_tokenizer_type="character") tokens = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。") self.assertListEqual(tokens, ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"]) # fmt: skip self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def test_character_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = CharacterTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こ", "ん", "に", "ち", "は"]) self.assertListEqual(tokenizer.tokenize("こんにちほ"), ["こ", "ん", "に", "ち", "[UNK]"]) def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char") text = tokenizer.encode("ありがとう。", add_special_tokens=False) text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_2 + [3] @custom_tokenizers class AutoTokenizerCustomTest(unittest.TestCase): def test_tokenizer_bert_japanese(self): EXAMPLE_BERT_JAPANESE_ID = "cl-tohoku/bert-base-japanese" tokenizer = AutoTokenizer.from_pretrained(EXAMPLE_BERT_JAPANESE_ID) self.assertIsInstance(tokenizer, BertJapaneseTokenizer) class BertTokenizerMismatchTest(unittest.TestCase): def test_tokenizer_mismatch_warning(self): EXAMPLE_BERT_JAPANESE_ID = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers", level="WARNING") as cm: BertTokenizer.from_pretrained(EXAMPLE_BERT_JAPANESE_ID) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) EXAMPLE_BERT_ID = "google-bert/bert-base-cased" with self.assertLogs("transformers", level="WARNING") as cm: BertJapaneseTokenizer.from_pretrained(EXAMPLE_BERT_ID) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/prophetnet/test_tokenization_prophetnet.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class ProphetNetTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "microsoft/prophetnet-large-uncased" tokenizer_class = ProphetNetTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11]) def test_chinese(self): tokenizer = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_no_lower(self): tokenizer = BasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) @require_torch def test_prepare_batch(self): tokenizer = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased") src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] batch = tokenizer(src_text, padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) result = list(batch.input_ids.numpy()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 9), batch.input_ids.shape) self.assertEqual((2, 9), batch.attention_mask.shape) def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_2 + [102]
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/prophetnet/test_modeling_prophetnet.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team, The Microsoft Research team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import tempfile import unittest from transformers import ProphetNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( ProphetNetDecoder, ProphetNetEncoder, ProphetNetForCausalLM, ProphetNetForConditionalGeneration, ProphetNetModel, ProphetNetTokenizer, ) from transformers.modeling_outputs import BaseModelOutput class ProphetNetModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, hidden_size=16, encoder_seq_length=7, decoder_seq_length=9, # For common tests is_training=True, use_attention_mask=True, use_labels=True, decoder_start_token_id=0, encoder_ffn_dim=32, num_encoder_layers=2, num_encoder_attention_heads=4, decoder_ffn_dim=32, num_decoder_layers=2, num_decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, ngram=2, num_buckets=32, relative_max_distance=128, disable_ngram_loss=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_decoder_layers self.num_encoder_layers = num_encoder_layers self.num_decoder_layers = num_decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_ffn_dim = encoder_ffn_dim self.num_attention_heads = num_decoder_attention_heads self.num_encoder_attention_heads = num_encoder_attention_heads self.num_decoder_attention_heads = num_decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.ngram = ngram self.num_buckets = num_buckets self.relative_max_distance = relative_max_distance self.disable_ngram_loss = disable_ngram_loss self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 7 self.num_hidden_states_types = 3 # encoder, decoder_main, decoder_ngram self.decoder_attention_idx = 2 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None decoder_attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = self.get_config() return ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def get_config(self): return ProphetNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_encoder_layers=self.num_encoder_layers, num_decoder_layers=self.num_decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_ffn_dim=self.encoder_ffn_dim, num_encoder_attention_heads=self.num_encoder_attention_heads, num_decoder_attention_heads=self.num_decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ngram=self.ngram, num_buckets=self.num_buckets, relative_max_distance=self.relative_max_distance, disable_ngram_loss=self.disable_ngram_loss, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.encoder_seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) return ( config, decoder_input_ids, decoder_attention_mask, encoder_hidden_states, encoder_attention_mask, lm_labels, ) def check_prepare_lm_labels_via_shift_left( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetModel(config=config) model.to(torch_device) model.eval() # make sure that lm_labels are correctly padded from the right lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id) # add casaul pad token mask triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not() lm_labels.masked_fill_(triangular_mask, self.pad_token_id) decoder_input_ids = model._shift_right(lm_labels) for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)): # first item self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id) if i < decoder_input_ids_slice.shape[-1]: if i < decoder_input_ids.shape[-1] - 1: # items before diagonal self.parent.assertListEqual( decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist() ) # pad items after diagonal if i < decoder_input_ids.shape[-1] - 2: self.parent.assertListEqual( decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist() ) else: # all items after square self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist()) def create_and_check_model( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetModel(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) decoder_output = result.last_hidden_state decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.num_decoder_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) # cross-attention + uni-directional self-attention def create_and_check_with_lm_head( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetForConditionalGeneration(config=config).to(torch_device).eval() outputs = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertEqual(len(outputs), 5) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_causal_lm_decoder( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetForCausalLM(config=config).to(torch_device).eval() outputs = model( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertEqual(len(outputs), 4) self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size)) self.parent.assertEqual(outputs["loss"].size(), ()) def create_and_check_generate_with_past_key_value_states( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetForConditionalGeneration(config=config).to(torch_device).eval() torch.manual_seed(0) output_without_past_cache = model.generate( input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False ) torch.manual_seed(0) output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True) self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache)) def create_and_check_decoder_generate_with_past_key_value_states( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetForCausalLM(config=config).to(torch_device).eval() torch.manual_seed(0) output_without_past_cache = model.generate( input_ids[:1], num_beams=2, max_length=10, do_sample=True, use_cache=False ) torch.manual_seed(0) output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=10, do_sample=True) self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache)) def create_and_check_model_fp16_forward( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): model = ProphetNetModel(config=config).to(torch_device).half().eval() output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)["last_hidden_state"] self.parent.assertFalse(torch.isnan(output).any().item()) def create_and_check_encoder_decoder_shared_weights( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ): for model_class in [ProphetNetModel, ProphetNetForConditionalGeneration]: torch.manual_seed(0) model = model_class(config=config).to(torch_device).eval() # load state dict copies weights but does not tie them if model_class == ProphetNetForConditionalGeneration: model.prophetnet.encoder.load_state_dict(model.prophetnet.decoder.state_dict(), strict=False) else: model.encoder.load_state_dict(model.decoder.state_dict(), strict=False) torch.manual_seed(0) tied_config = copy.deepcopy(config) tied_config.tie_encoder_decoder = True tied_model = model_class(config=tied_config).to(torch_device).eval() model_result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4 ) ) # check that outputs after saving and loading are equal with tempfile.TemporaryDirectory() as tmpdirname: tied_model.save_pretrained(tmpdirname) tied_model = model_class.from_pretrained(tmpdirname) tied_model.to(torch_device) tied_model.eval() # check that models has less parameters self.parent.assertLess( sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()) ) random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item() tied_model_result = tied_model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) # check that outputs are equal self.parent.assertTrue( torch.allclose( model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4, ) ) def check_fast_integration( self, config, *args, ): input_ids = torch.tensor([[7, 4, 78, 0, 24, 52, 43]], device=torch_device, dtype=torch.long) decoder_input_ids = torch.tensor([[12, 62, 25, 11, 47, 15, 14]], device=torch_device, dtype=torch.long) attention_mask = torch.tensor([[1, 1, 1, 0, 1, 0, 0]], device=torch_device, dtype=torch.long) decoder_attention_mask = torch.tensor([[1, 1, 1, 0, 0, 1, 0]], device=torch_device, dtype=torch.long) lm_labels = torch.tensor([[62, 25, 11, 47, 15, 14, 24]], device=torch_device, dtype=torch.long) torch.manual_seed(0) config.ngram = 4 model = ProphetNetForConditionalGeneration(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, labels=lm_labels, ) self.parent.assertTrue(torch.allclose(result.loss, torch.tensor(4.5892, device=torch_device), atol=1e-3)) expected_logit_slice = torch.tensor( [-0.0184, 0.0758, -0.0543, -0.0093, 0.0050, -0.0660, -0.1453], device=torch_device ) self.parent.assertTrue(torch.allclose(result.logits[0, :, 1], expected_logit_slice, atol=1e-3)) def check_model_with_attn_mask(self, config, input_ids, decoder_input_ids, *args): model = ProphetNetModel(config=config) model.to(torch_device) model.eval() outputs_no_mask = model(input_ids=input_ids[:, :5], decoder_input_ids=decoder_input_ids[:, :5]) attention_mask = torch.ones_like(input_ids) decoder_attention_mask = torch.ones_like(decoder_input_ids) attention_mask[:, 5:] = 0 outputs_with_mask = model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, ) # check encoder self.parent.assertTrue( torch.allclose( outputs_no_mask.encoder_last_hidden_state[0, :, 0], outputs_with_mask.encoder_last_hidden_state[0, :5, 0], atol=1e-3, ) ) # check decoder # main stream self.parent.assertTrue( torch.allclose( outputs_no_mask.last_hidden_state[0, :, 0], outputs_with_mask.last_hidden_state[0, :5, 0], atol=1e-3 ) ) # predict stream self.parent.assertTrue( torch.allclose( outputs_no_mask.last_hidden_state_ngram[0, :5, 0], outputs_with_mask.last_hidden_state_ngram[0, :5, 0], atol=1e-2, ) ) def check_causal_lm_from_pretrained( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, *args ): model = ProphetNetForConditionalGeneration(config).to(torch_device).eval() with tempfile.TemporaryDirectory() as tmp_dirname: model.save_pretrained(tmp_dirname) decoder = ProphetNetForCausalLM.from_pretrained(tmp_dirname).to(torch_device) encoder_hidden_states = model.prophetnet.encoder(input_ids).last_hidden_state model_outputs = model( encoder_outputs=BaseModelOutput(last_hidden_state=encoder_hidden_states), decoder_input_ids=decoder_input_ids, ) dec_outputs = decoder(encoder_hidden_states=encoder_hidden_states, input_ids=decoder_input_ids) self.parent.assertTrue( torch.allclose( model_outputs.logits[0, :5], dec_outputs.logits[0, :5], atol=1e-3, ) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "use_cache": False, } return config, inputs_dict class ProphetNetStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, hidden_size=16, encoder_seq_length=7, decoder_seq_length=7, # For common tests is_training=True, is_decoder=True, use_attention_mask=True, add_cross_attention=False, use_cache=False, use_labels=True, decoder_start_token_id=0, encoder_ffn_dim=32, num_encoder_layers=2, num_encoder_attention_heads=4, decoder_ffn_dim=32, num_decoder_layers=2, num_decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, ngram=2, num_buckets=32, relative_max_distance=128, disable_ngram_loss=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_decoder_layers self.num_encoder_layers = num_encoder_layers self.num_decoder_layers = num_decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_ffn_dim = encoder_ffn_dim self.num_attention_heads = num_decoder_attention_heads self.num_encoder_attention_heads = num_encoder_attention_heads self.num_decoder_attention_heads = num_decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.ngram = ngram self.num_buckets = num_buckets self.relative_max_distance = relative_max_distance self.use_cache = use_cache self.disable_ngram_loss = disable_ngram_loss self.max_position_embeddings = max_position_embeddings self.add_cross_attention = add_cross_attention self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.num_hidden_states_types = 2 # decoder_main, decoder_ngram self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) config = ProphetNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_encoder_layers=self.num_encoder_layers, num_decoder_layers=self.num_decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_ffn_dim=self.encoder_ffn_dim, num_encoder_attention_heads=self.num_encoder_attention_heads, num_decoder_attention_heads=self.num_decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ngram=self.ngram, num_buckets=self.num_buckets, relative_max_distance=self.relative_max_distance, disable_ngram_loss=self.disable_ngram_loss, max_position_embeddings=self.max_position_embeddings, add_cross_attention=self.add_cross_attention, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, attention_mask, lm_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.encoder_seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = ProphetNetDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = ProphetNetDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict class ProphetNetStandaloneEncoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, hidden_size=16, encoder_seq_length=7, decoder_seq_length=7, # For common tests is_training=True, is_decoder=False, use_attention_mask=True, add_cross_attention=False, use_cache=False, use_labels=True, decoder_start_token_id=0, encoder_ffn_dim=32, num_encoder_layers=2, num_encoder_attention_heads=4, decoder_ffn_dim=32, num_decoder_layers=2, num_decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, num_buckets=32, relative_max_distance=128, disable_ngram_loss=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_decoder_layers self.num_encoder_layers = num_encoder_layers self.num_decoder_layers = num_decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_ffn_dim = encoder_ffn_dim self.num_attention_heads = num_decoder_attention_heads self.num_encoder_attention_heads = num_encoder_attention_heads self.num_decoder_attention_heads = num_decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.num_buckets = num_buckets self.relative_max_distance = relative_max_distance self.use_cache = use_cache self.disable_ngram_loss = disable_ngram_loss self.max_position_embeddings = max_position_embeddings self.add_cross_attention = add_cross_attention self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 1 self.num_hidden_states_types = 1 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) config = ProphetNetConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_encoder_layers=self.num_encoder_layers, num_decoder_layers=self.num_decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_ffn_dim=self.encoder_ffn_dim, num_encoder_attention_heads=self.num_encoder_attention_heads, num_decoder_attention_heads=self.num_decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, num_buckets=self.num_buckets, relative_max_distance=self.relative_max_distance, disable_ngram_loss=self.disable_ngram_loss, max_position_embeddings=self.max_position_embeddings, add_cross_attention=self.add_cross_attention, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class ProphetNetModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (ProphetNetModel, ProphetNetForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (ProphetNetForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": ProphetNetForConditionalGeneration, "feature-extraction": ProphetNetModel, "summarization": ProphetNetForConditionalGeneration, "text-generation": ProphetNetForCausalLM, "text2text-generation": ProphetNetForConditionalGeneration, "translation": ProphetNetForConditionalGeneration, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False is_encoder_decoder = True # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `ProphetNetConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def setUp(self): self.model_tester = ProphetNetModelTester(self) self.config_tester = ConfigTester(self, config_class=ProphetNetConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_lm_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_with_lm_head(*config_and_inputs) def test_only_decoder_causal_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_decoder(*config_and_inputs) def test_fast_integration(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_fast_integration(*config_and_inputs) def test_shared_weights(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs) def test_shift_labels_via_shift_left(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs) @unittest.skip("Flaky test with no simple resolution. TODO Fix me @patrickvonplaten") def test_decoder_model_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_generate_with_past_key_value_states(*config_and_inputs) def test_encoder_decoder_model_generate(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_generate_with_past_key_value_states(*config_and_inputs) def test_attn_mask_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_model_with_attn_mask(*config_and_inputs) def test_config_save(self): config = self.model_tester.prepare_config_and_inputs()[0] config.add_cross_attention = False with tempfile.TemporaryDirectory() as tmp_dirname: config.save_pretrained(tmp_dirname) config = ProphetNetConfig.from_pretrained(tmp_dirname) self.assertFalse(config.add_cross_attention) def test_causal_lm_from_pretrained(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_causal_lm_from_pretrained(*config_and_inputs) @unittest.skipIf(torch_device == "cpu", "Cant do half precision") def test_fp16_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs) # methods overwrite method in `test_modeling_common.py` def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) correct_outlen = 7 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, (self.model_tester.ngram + 1) * decoder_seq_length, encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(self_attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_attentions = outputs.encoder_attentions[0] encoder_hidden_states.retain_grad() encoder_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) def test_generate_with_head_masking(self): """Generating with head_masking has not been implemented for ProphetNet models yet.""" pass @require_torch class ProphetNetStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (ProphetNetDecoder, ProphetNetForCausalLM) if is_torch_available() else () all_generative_model_classes = (ProphetNetForCausalLM,) if is_torch_available() else () test_pruning = False test_resize_embeddings = False is_encoder_decoder = False def setUp(self): self.model_tester = ProphetNetStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=ProphetNetConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return @require_torch class ProphetNetStandaloneEncoderModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (ProphetNetEncoder,) if is_torch_available() else () test_pruning = False test_resize_embeddings = False is_encoder_decoder = False def setUp(self): self.model_tester = ProphetNetStandaloneEncoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=ProphetNetConfig) def test_config(self): self.config_tester.run_common_tests() @require_torch class ProphetNetModelIntegrationTest(unittest.TestCase): @slow def test_pretrained_checkpoint_hidden_states(self): model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased") model.to(torch_device) # encoder-decoder outputs encoder_ids = torch.tensor( [ [ 2871, 102, 2048, 3176, 2780, 1997, 2871, 26727, 2169, 2097, 12673, 1996, 8457, 2006, 2049, 8240, 2859, 2799, 1012, 2023, 6512, 2038, 2174, 13977, 2195, 25962, 1012, 102, ] ] ).to(torch_device) decoder_prev_ids = torch.tensor([[102, 2129, 2116, 2372, 2024, 2006, 2169, 1997, 2122, 2048, 2780, 1029]]).to( torch_device ) output = model( input_ids=encoder_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=decoder_prev_ids, ) output_predited_logits = output[0] expected_shape = torch.Size((1, 12, 30522)) self.assertEqual(output_predited_logits.shape, expected_shape) expected_slice = torch.tensor( [[[-7.7729, -8.0343, -8.26001], [-7.74213, -7.8629, -8.6000], [-7.7328, -7.8269, -8.5264]]] ).to(torch_device) # self.assertTrue(torch.allclose(output_predited_logits[:, :3, :3], expected_slice, atol=1e-4)) assert torch.allclose(output_predited_logits[:, :3, :3], expected_slice, atol=1e-4) # encoder outputs encoder_outputs = model.prophetnet.encoder(encoder_ids)[0] expected_encoder_outputs_slice = torch.tensor( [[[-0.2526, -0.1951, -0.2185], [-0.8923, 0.2992, -0.4623], [-0.4585, 0.0165, -0.6652]]] ).to(torch_device) expected_shape_encoder = torch.Size((1, 28, 1024)) self.assertEqual(encoder_outputs.shape, expected_shape_encoder) # self.assertTrue(torch.allclose(encoder_outputs[:, :3, :3], expected_encoder_outputs_slice, atol=1e-4)) assert torch.allclose(encoder_outputs[:, :3, :3], expected_encoder_outputs_slice, atol=1e-4) # decoder outputs decoder_outputs = model.prophetnet.decoder(decoder_prev_ids, encoder_hidden_states=encoder_outputs) predicting_streams = decoder_outputs[1].view(1, model.config.ngram, 12, -1) predicting_streams_logits = model.lm_head(predicting_streams) next_first_stream_logits = predicting_streams_logits[:, 0] # self.assertTrue(torch.allclose(next_first_stream_logits[:, :3, :3], expected_slice, atol=1e-4)) assert torch.allclose(next_first_stream_logits[:, :3, :3], expected_slice, atol=1e-4) @slow def test_cnndm_inference(self): model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased-cnndm") model.config.max_length = 512 model.to(torch_device) tokenizer = ProphetNetTokenizer.from_pretrained("microsoft/prophetnet-large-uncased-cnndm") ARTICLE_TO_SUMMARIZE = ( "USTC was founded in Beijing by the Chinese Academy of Sciences (CAS) in September 1958. The Director of" " CAS, Mr. Guo Moruo was appointed the first president of USTC. USTC's founding mission was to develop a" " high-level science and technology workforce, as deemed critical for development of China's economy," ' defense, and science and technology education. The establishment was hailed as "A Major Event in the' ' History of Chinese Education and Science." CAS has supported USTC by combining most of its institutes' " with the departments of the university. USTC is listed in the top 16 national key universities, becoming" " the youngest national key university.".lower() ) input_ids = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=511, return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) summary_ids = model.generate( input_ids, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True ) EXPECTED_SUMMARIZE_512 = ( "us ##tc was founded by the chinese academy of sciences ( cas ) in 1958 . [X_SEP] us ##tc is listed in the" " top 16 national key universities ." ) generated_titles = [ " ".join(tokenizer.convert_ids_to_tokens(g, skip_special_tokens=True)) for g in summary_ids ] self.assertListEqual( [EXPECTED_SUMMARIZE_512], generated_titles, ) input_ids = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=99, return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) # actually 98 tokens are used. max_length=100 contains bos and eos. summary_ids = model.generate( input_ids, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=3, early_stopping=True ) EXPECTED_SUMMARIZE_100 = ( r"us ##tc was founded in beijing by the chinese academy of sciences ( cas ) in 1958 . [X_SEP] us ##tc " "'" " s founding mission was to develop a high - level science and technology workforce . [X_SEP]" ' establishment hailed as " a major event in the history of chinese education and science "' ) generated_titles = [ " ".join(tokenizer.convert_ids_to_tokens(g, skip_special_tokens=True)) for g in summary_ids ] self.assertListEqual( [EXPECTED_SUMMARIZE_100], generated_titles, ) @slow def test_question_gen_inference(self): model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased-squad-qg") model.to(torch_device) tokenizer = ProphetNetTokenizer.from_pretrained("microsoft/prophetnet-large-uncased-squad-qg") INPUTS = [ "Bill Gates [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.", "1975 [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.", "April 4, 1975 [SEP] Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975.", ] input_ids = tokenizer(INPUTS, truncation=True, padding=True, return_tensors="pt").input_ids input_ids = input_ids.to(torch_device) gen_output = model.generate(input_ids, num_beams=5, early_stopping=True) generated_questions = tokenizer.batch_decode(gen_output, skip_special_tokens=True) EXPECTED_QUESTIONS = [ "along with paul allen, who founded microsoft?", "what year was microsoft founded?", "when was microsoft founded?", ] self.assertListEqual( EXPECTED_QUESTIONS, generated_questions, )
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/bit/test_modeling_bit.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Bit model. """ import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel if is_vision_available(): from PIL import Image class BitModelTester: def __init__( self, parent, batch_size=3, image_size=32, num_channels=3, embeddings_size=10, hidden_sizes=[8, 16, 32, 64], depths=[1, 1, 2, 1], is_training=True, use_labels=True, hidden_act="relu", num_labels=3, scope=None, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], num_groups=1, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.embeddings_size = embeddings_size self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.num_labels = num_labels self.scope = scope self.num_stages = len(hidden_sizes) self.out_features = out_features self.out_indices = out_indices self.num_groups = num_groups def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return BitConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, out_features=self.out_features, out_indices=self.out_indices, num_groups=self.num_groups, ) def create_and_check_model(self, config, pixel_values, labels): model = BitModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = BitForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_backbone(self, config, pixel_values, labels): model = BitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) # verify backbone works with out_features=None config.out_features = None model = BitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class BitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Bit does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = BitModelTester(self) self.config_tester = ConfigTester(self, config_class=BitConfig, has_text_modality=False) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="Bit does not output attentions") def test_attention_outputs(self): pass @unittest.skip(reason="Bit does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Bit does not support input and output embeddings") def test_model_common_attributes(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config=config) for name, module in model.named_modules(): if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) self.assertTrue( torch.all(module.bias == 0), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() layers_type = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: config.layer_type = layer_type inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) @unittest.skip(reason="Bit does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "google/bit-50" model = BitModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class BitModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return BitImageProcessor.from_pretrained("google/bit-50") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = BitForImageClassification.from_pretrained("google/bit-50").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([[-0.6526, -0.5263, -1.4398]]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch class BitBackboneTest(BackboneTesterMixin, unittest.TestCase): all_model_classes = (BitBackbone,) if is_torch_available() else () config_class = BitConfig has_attentions = False def setUp(self): self.model_tester = BitModelTester(self)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/yoso/test_modeling_yoso.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch YOSO model. """ import unittest from transformers import YosoConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( YosoForMaskedLM, YosoForMultipleChoice, YosoForQuestionAnswering, YosoForSequenceClassification, YosoForTokenClassification, YosoModel, ) class YosoModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return YosoConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = YosoModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = YosoModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = YosoForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = YosoForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = YosoForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = YosoForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = YosoForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class YosoModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( YosoModel, YosoForMaskedLM, YosoForMultipleChoice, YosoForQuestionAnswering, YosoForSequenceClassification, YosoForTokenClassification, ) if is_torch_available() else () ) test_pruning = False test_headmasking = False test_torchscript = False all_generative_model_classes = () pipeline_model_mapping = ( { "feature-extraction": YosoModel, "fill-mask": YosoForMaskedLM, "question-answering": YosoForQuestionAnswering, "text-classification": YosoForSequenceClassification, "token-classification": YosoForTokenClassification, "zero-shot": YosoForSequenceClassification, } if is_torch_available() else {} ) def setUp(self): self.model_tester = YosoModelTester(self) self.config_tester = ConfigTester(self, config_class=YosoConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "uw-madison/yoso-4096" model = YosoModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_attention_outputs(self): return @require_torch class YosoModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = YosoModel.from_pretrained("uw-madison/yoso-4096") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 6, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.0611, 0.1242, 0.0840], [0.0280, -0.0048, 0.1125], [0.0106, 0.0226, 0.0751]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_masked_lm(self): model = YosoForMaskedLM.from_pretrained("uw-madison/yoso-4096") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): output = model(input_ids)[0] vocab_size = 50265 expected_shape = torch.Size((1, 6, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-2.1313, -3.7285, -2.2407], [-2.7047, -3.3314, -2.6408], [0.0629, -2.5166, -0.3356]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_masked_lm_long_input(self): model = YosoForMaskedLM.from_pretrained("uw-madison/yoso-4096") input_ids = torch.arange(4096).unsqueeze(0) with torch.no_grad(): output = model(input_ids)[0] vocab_size = 50265 expected_shape = torch.Size((1, 4096, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-2.3914, -4.3742, -5.0956], [-4.0988, -4.2384, -7.0406], [-3.1427, -3.7192, -6.6800]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/recurrent_gemma/test_modeling_recurrent_gemma.py
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch RecurrentGemma model. """ import unittest from parameterized import parameterized from transformers import AutoModelForCausalLM, AutoTokenizer, RecurrentGemmaConfig, is_torch_available, set_seed from transformers.testing_utils import ( require_bitsandbytes, require_read_token, require_torch, require_torch_gpu, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import RecurrentGemmaForCausalLM, RecurrentGemmaModel class RecurrentGemmaModelTester: def __init__( self, parent, batch_size=13, seq_length=12, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, num_hidden_layers=3, vocab_size=99, hidden_size=32, intermediate_size=3 * 32, num_attention_heads=2, lru_width=2 * 32, embeddings_scale_by_sqrt_dim=True, attention_window_size=16, conv1d_width=4, logits_soft_cap=30.0, rms_norm_eps=1e-6, use_cache=True, rope_theta=10000.0, type_vocab_size=16, type_sequence_label_size=2, num_labels=3, num_choices=4, pad_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.num_hidden_layers = num_hidden_layers self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_attention_heads = num_attention_heads self.lru_width = lru_width if lru_width is not None else hidden_size self.embeddings_scale_by_sqrt_dim = embeddings_scale_by_sqrt_dim self.attention_window_size = attention_window_size self.conv1d_width = conv1d_width self.logits_soft_cap = logits_soft_cap self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.num_labels = num_labels self.num_choices = num_choices self.pad_token_id = pad_token_id self.scope = scope # Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return RecurrentGemmaConfig( num_hidden_layers=self.num_hidden_layers, vocab_size=self.vocab_size, hidden_size=self.hidden_size, intermediate_size=self.intermediate_size, num_attention_heads=self.num_attention_heads, lru_width=self.lru_width, embeddings_scale_by_sqrt_dim=self.embeddings_scale_by_sqrt_dim, attention_window_size=self.attention_window_size, conv1d_width=self.conv1d_width, logits_soft_cap=self.logits_soft_cap, rms_norm_eps=self.rms_norm_eps, use_cache=self.use_cache, rope_theta=self.rope_theta, pad_token_id=self.pad_token_id, output_attentions=False, ) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->RecurrentGemma def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RecurrentGemmaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->RecurrentGemma def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RecurrentGemmaModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->RecurrentGemma def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RecurrentGemmaForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->RecurrentGemma def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = RecurrentGemmaForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->RecurrentGemma def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RecurrentGemmaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (RecurrentGemmaForCausalLM,) if is_torch_available() else () # all_generative_model_classes = (RecurrentGemmaForCausalLM,) if is_torch_available() else () #TODO @gante not fully supported pipeline_model_mapping = ( { "feature-extraction": RecurrentGemmaModel, "text-generation": RecurrentGemmaForCausalLM, } if is_torch_available() else {} ) fx_compatible = False # FIXME let's try to support this @ArthurZucker test_torchscript = False # FIXME let's try to support this @ArthurZucker test_missing_keys = False test_model_parallel = False test_pruning = False test_head_masking = False # RecurrentGemma does not have attention heads test_model_parallel = False # Need to remove 0.9 in `test_cpu_offload` # This is because we are hitting edge cases with the causal_mask buffer model_split_percents = [0.5, 0.6] # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146 def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def setUp(self): # We don't output attentions self.has_attentions = False self.model_tester = RecurrentGemmaModelTester(self) self.config_tester = ConfigTester(self, config_class=RecurrentGemmaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip("Recurrent gemma does not use legacy cache") @parameterized.expand([(1, False), (1, True), (4, False)]) def test_new_cache_format(self, num_beams, do_sample): pass def test_save_load_fast_init_from_base(self): pass @unittest.skip("RecurrentGemma does not return pkv") def test_past_key_values_format(self): pass @unittest.skip("RecurrentGemma only supports sdpa") def test_eager_matches_sdpa_generate(self): pass @unittest.skip("RecurrentGemma only supports sdpa") def test_eager_matches_sdpa_inference(self): pass @unittest.skip("RecurrentGemma does not return the cache") def test_contrastive_generate_low_memory(self): pass @unittest.skip("RecurrentGemma does not return the cache") def test_contrastive_generate_dict_outputs_use_cache(self): pass @unittest.skip("RecurrentGemma does not return the cache") def test_contrastive_generate(self): pass @unittest.skip("SQRBound is known to have issues with gc") def test_training_gradient_checkpointing_use_reentrant_false(self): pass def _check_attentions_for_generate(self, *args, **kwargs): return True # Model does not return attention @unittest.skip("Past key values are not returned") def test_prompt_lookup_decoding_matches_greedy_search(self): pass @unittest.skip("Past key values are not returned") def test_model_parallelism(self): pass @unittest.skip("Past key values are not returned") def test_model_parallel_beam_search(self): pass def _check_past_key_values_for_generate(self, *args, **kwargs): return True @unittest.skip("Rely on `past_key_values` to crop the assistant pkv. Not supported") def test_assisted_decoding_matches_greedy_search(self): pass @unittest.skip("RecurrentGemma's output different if you pad left or right. This is expected") def test_left_padding_compatibility(self): pass @unittest.skip("Relies on `past_key_values` returned by the model. Not supported with recurrent gemma") def test_assisted_decoding_sample(self): pass def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): seq_len = min_length + idx if not use_cache else 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) @unittest.skip("TODO @arthurzucker not super important and failing.") def test_initialization(self): pass @require_torch_gpu @slow class RecurrentGemmaIntegrationTest(unittest.TestCase): input_text = ["Hello I am doing", "Hi today"] model_id = "google/recurrentgemma-2b" @require_read_token def test_2b_generate(self): EXPECTED_TEXTS = ['Hello I am doing a project on the topic of "The impact of the internet on the society" and I am looking for some information on the topic. I am looking for some information on the impact of the internet on the society. I am looking for some information on the impact of the internet on the society. I am looking for some', 'Hi today is a very good day for you. You will be able to do all the work you want to do. You will be able to do all the work you want to do. You will be able to do all the work you want to do. You will be able to do all the work you want to do.'] # fmt: skip model = AutoModelForCausalLM.from_pretrained(self.model_id, low_cpu_mem_usage=True).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(self.model_id) tokenizer.padding_side = "right" inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=64, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) tokenizer.padding_side = "left" EXPECTED_TEXTS = ['Hello I am doing a project on the topic of "The impact of the internet on the society" and I am looking for some information on the topic. I am looking for some information on the impact of the internet on the society. I am looking for some information on the impact of the internet on the society. I am looking for some', 'Hi today I am going to share with you the best <strong><em>free online video editing software</em></strong>.\n\n<h2><strong>Best Free Online Video Editing Software</strong></h2>\n\n<strong>1.</strong> <strong>Wondershare Filmora</strong>\n\nWondershare Filmora is a free online video editing software that is used to edit videos.'] # fmt: skip inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=64, do_sample=False) del model output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) model = AutoModelForCausalLM.from_pretrained( self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16 ).to(torch_device) output = model.generate(**inputs, max_new_tokens=64, do_sample=False) del model output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_read_token def test_2b_sample(self): set_seed(0) EXPECTED_TEXT = ['Where is Paris ?\n\nAnswer this question "yes" or "no": Could a person pass out in subzero temperatures?\n\nFor the sentence below, underline the pronoun in parentheses that agrees with its antecedent.\n\nExample 1. Mary and Pam will have the opportunity to prove (herself, $\\underline{\\text{themselves}}$) at the concert.\n\nThe waiters and the manager at the restaurant will do <em>(his, their)</em> best to assist you.\n\nA vocabulary word appears in italics in the short passage below. Think about how the word is used. Then write a definition for the vocabulary word.\n\nAfter a one-hour $'] # fmt: skip model = AutoModelForCausalLM.from_pretrained(self.model_id).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(self.model_id) inputs = tokenizer("Where is Paris ?", return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=128, do_sample=True) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXT) @require_bitsandbytes @require_read_token def test_model_2b_8bit(self): EXPECTED_TEXTS = ['<bos>Hello I am doing a project on the topic of "The impact of the internet on the society" and I am looking', "<bos>Hi today<pad><pad> I'm going to show you how to make a simple and easy to use <strong><em><u>"] # fmt: skip model = AutoModelForCausalLM.from_pretrained( "gg-hf/recurrent-gemma-2b-hf", device_map={"": torch_device}, load_in_8bit=True, torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(self.model_id) inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device) output = model.generate(**inputs, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output, skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_TEXTS) @require_read_token def test_long_context(self): input_text = [ '<bos><s>Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a phone at the wreckage site. The two publications described the supposed video, but did not post it on their websites. The publications said that they watched the video, which was found by a source close to the investigation. "One can hear cries of \'My God\' in several languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt, editor-in-chief of Bild online. An official with France\'s accident investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col.' ] EXPECTED_GENERATION = [ ' Jean-Paul Delannoy told CNN that the BEA is "not aware of any video footage that could have been taken on board the plane." "We are not aware of any video footage that could have been taken on board the plane," Delannoy said. "We are not aware of any video footage that could' ] model = AutoModelForCausalLM.from_pretrained( self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16 ).to(torch_device) tokenizer = AutoTokenizer.from_pretrained(self.model_id) inputs = tokenizer(input_text, return_tensors="pt").to(torch_device) output = model.generate(**inputs, max_new_tokens=64, do_sample=False) output_text = tokenizer.batch_decode(output[:, inputs.input_ids.shape[1] :], skip_special_tokens=True) self.assertEqual(output_text, EXPECTED_GENERATION)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/layoutlmv3/test_tokenization_layoutlmv3.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import json import os import re import shutil import tempfile import unittest from typing import List from transformers import ( AddedToken, LayoutLMv3TokenizerFast, SpecialTokensMixin, is_tf_available, is_torch_available, logging, ) from transformers.models.layoutlmv3.tokenization_layoutlmv3 import VOCAB_FILES_NAMES, LayoutLMv3Tokenizer from transformers.testing_utils import ( is_pt_tf_cross_test, require_pandas, require_tf, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import SMALL_TRAINING_CORPUS, TokenizerTesterMixin, merge_model_tokenizer_mappings logger = logging.get_logger(__name__) @require_tokenizers @require_pandas class LayoutLMv3TokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "microsoft/layoutlmv3-base" tokenizer_class = LayoutLMv3Tokenizer rust_tokenizer_class = LayoutLMv3TokenizerFast test_rust_tokenizer = True # determined by the tokenization algortihm and the way it's decoded by the fast tokenizers space_between_special_tokens = False test_seq2seq = False from_pretrained_kwargs = {"cls_token": "<s>"} def get_words_and_boxes(self): words = ["lower", "newer"] boxes = [[423, 237, 440, 251], [427, 272, 441, 287]] return words, boxes def get_words_and_boxes_batch(self): words = [["lower", "newer"], ["new", "low"]] boxes = [ [[423, 237, 440, 251], [427, 272, 441, 287]], [[961, 885, 992, 912], [256, 38, 330, 58]], ] return words, boxes def get_question_words_and_boxes(self): question = "what's his name?" words = ["lower", "newer"] boxes = [[423, 237, 440, 251], [427, 272, 441, 287]] return question, words, boxes def get_question_words_and_boxes_batch(self): questions = ["what's his name?", "how is he called?"] words = [["lower", "newer"], ["newer", "lower"]] boxes = [ [[423, 237, 440, 251], [427, 272, 441, 287]], [[256, 38, 330, 58], [256, 38, 330, 58]], ] return questions, words, boxes def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return LayoutLMv3TokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text @unittest.skip("Chat template tests don't play well with table/layout models.") def test_chat_template_batched(self): pass def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "lower newer" bpe_tokens = ["Ġlow", "er", "Ġ", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) # , add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("microsoft/layoutlmv3-base") question, words, boxes = self.get_question_words_and_boxes() text = tokenizer.encode( question.split(), boxes=[tokenizer.pad_token_box for _ in range(len(question.split()))], add_special_tokens=False, ) text_2 = tokenizer.encode(words, boxes=boxes, add_special_tokens=False) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_pair == [0] + text + [2] + [2] + text_2 + [2] def test_add_special_tokens(self): tokenizers: List[LayoutLMv3Tokenizer] = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): special_token = "[SPECIAL_TOKEN]" special_token_box = [1000, 1000, 1000, 1000] tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode( [special_token], boxes=[special_token_box], add_special_tokens=False ) self.assertEqual(len(encoded_special_token), 1) decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_add_tokens_tokenizer(self): tokenizers: List[LayoutLMv3Tokenizer] = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) new_toks = ["aaaaa", "bbbbbb", "cccccccccdddddddd"] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) words = "aaaaa bbbbbb low cccccccccdddddddd l".split() boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))] tokens = tokenizer.encode(words, boxes=boxes, add_special_tokens=False) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) words = ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l".split() boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))] tokens = tokenizer.encode( words, boxes=boxes, add_special_tokens=False, ) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokens[-3]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-2], tokenizer.pad_token_id) @require_tokenizers def test_encode_decode_with_spaces(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes() new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)] tokenizer.add_tokens(new_toks) input = "[ABC][DEF][ABC][DEF]" if self.space_between_special_tokens: output = "[ABC] [DEF] [ABC] [DEF]" else: output = input encoded = tokenizer.encode(input.split(), boxes=boxes, add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(decoded, [output, output.lower()]) @unittest.skip("Not implemented") def test_right_and_left_truncation(self): pass @unittest.skip("Not implemented") def test_split_special_tokens(self): pass def test_encode_plus_with_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes() # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, words) padding_size = 10 padding_idx = tokenizer.pad_token_id encoded_sequence = tokenizer.encode_plus(words, boxes=boxes, return_special_tokens_mask=True) input_ids = encoded_sequence["input_ids"] special_tokens_mask = encoded_sequence["special_tokens_mask"] sequence_length = len(input_ids) # Test 'longest' and 'no_padding' don't do anything tokenizer.padding_side = "right" not_padded_sequence = tokenizer.encode_plus( words, boxes=boxes, padding=False, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) self.assertTrue(sequence_length == not_padded_sequence_length) self.assertTrue(input_ids == not_padded_input_ids) self.assertTrue(special_tokens_mask == not_padded_special_tokens_mask) not_padded_sequence = tokenizer.encode_plus( words, boxes=boxes, padding=False, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) self.assertTrue(sequence_length == not_padded_sequence_length) self.assertTrue(input_ids == not_padded_input_ids) self.assertTrue(special_tokens_mask == not_padded_special_tokens_mask) # Test right padding tokenizer.padding_side = "right" right_padded_sequence = tokenizer.encode_plus( words, boxes=boxes, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) right_padded_input_ids = right_padded_sequence["input_ids"] right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"] right_padded_sequence_length = len(right_padded_input_ids) self.assertTrue(sequence_length + padding_size == right_padded_sequence_length) self.assertTrue(input_ids + [padding_idx] * padding_size == right_padded_input_ids) self.assertTrue(special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask) # Test left padding tokenizer.padding_side = "left" left_padded_sequence = tokenizer.encode_plus( words, boxes=boxes, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) left_padded_input_ids = left_padded_sequence["input_ids"] left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"] left_padded_sequence_length = len(left_padded_input_ids) self.assertTrue(sequence_length + padding_size == left_padded_sequence_length) self.assertTrue([padding_idx] * padding_size + input_ids == left_padded_input_ids) self.assertTrue([1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask) if "token_type_ids" in tokenizer.model_input_names: token_type_ids = encoded_sequence["token_type_ids"] left_padded_token_type_ids = left_padded_sequence["token_type_ids"] right_padded_token_type_ids = right_padded_sequence["token_type_ids"] assert token_type_ids + [0] * padding_size == right_padded_token_type_ids assert [0] * padding_size + token_type_ids == left_padded_token_type_ids if "attention_mask" in tokenizer.model_input_names: attention_mask = encoded_sequence["attention_mask"] right_padded_attention_mask = right_padded_sequence["attention_mask"] left_padded_attention_mask = left_padded_sequence["attention_mask"] self.assertTrue(attention_mask + [0] * padding_size == right_padded_attention_mask) self.assertTrue([0] * padding_size + attention_mask == left_padded_attention_mask) def test_internal_consistency(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes() tokens = [] for word in words: tokens.extend(tokenizer.tokenize(word)) ids = tokenizer.convert_tokens_to_ids(tokens) ids_2 = tokenizer.encode(words, boxes=boxes, add_special_tokens=False) self.assertListEqual(ids, ids_2) tokens_2 = tokenizer.convert_ids_to_tokens(ids) self.assertNotEqual(len(tokens_2), 0) text_2 = tokenizer.decode(ids) self.assertIsInstance(text_2, str) output_text = " lower newer" self.assertEqual(text_2, output_text) def test_mask_output(self): tokenizers = self.get_tokenizers(fast=False, do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes() if ( tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer" and "token_type_ids" in tokenizer.model_input_names ): information = tokenizer.encode_plus(words, boxes=boxes, add_special_tokens=True) sequences, mask = information["input_ids"], information["token_type_ids"] self.assertEqual(len(sequences), len(mask)) def test_number_of_added_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # test 1: single sequence words, boxes = self.get_words_and_boxes() sequences = tokenizer.encode(words, boxes=boxes, add_special_tokens=False) attached_sequences = tokenizer.encode(words, boxes=boxes, add_special_tokens=True) # Method is implemented (e.g. not GPT-2) if len(attached_sequences) != 2: self.assertEqual( tokenizer.num_special_tokens_to_add(pair=False), len(attached_sequences) - len(sequences) ) # test 2: two sequences question, words, boxes = self.get_question_words_and_boxes() sequences = tokenizer.encode(question, words, boxes=boxes, add_special_tokens=False) attached_sequences = tokenizer.encode(question, words, boxes=boxes, add_special_tokens=True) # Method is implemented (e.g. not GPT-2) if len(attached_sequences) != 2: self.assertEqual( tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences) ) def test_padding_to_max_length(self): """We keep this test for backward compatibility but it should be removed when `pad_to_max_length` will be deprecated""" tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes() padding_size = 10 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, words) padding_idx = tokenizer.pad_token_id # Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(words, boxes=boxes) sequence_length = len(encoded_sequence) # FIXME: the next line should be padding(max_length) to avoid warning padded_sequence = tokenizer.encode( words, boxes=boxes, max_length=sequence_length + padding_size, pad_to_max_length=True ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert encoded_sequence + [padding_idx] * padding_size == padded_sequence # Check that nothing is done when a maximum length is not specified encoded_sequence = tokenizer.encode(words, boxes=boxes) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(words, boxes=boxes, pad_to_max_length=True) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right def test_padding(self, max_length=50): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id) pad_token_id = tokenizer_p.pad_token_id # Encode - Simple input words, boxes = self.get_words_and_boxes() input_r = tokenizer_r.encode(words, boxes=boxes, max_length=max_length, pad_to_max_length=True) input_p = tokenizer_p.encode(words, boxes=boxes, max_length=max_length, pad_to_max_length=True) self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode(words, boxes=boxes, max_length=max_length, padding="max_length") input_p = tokenizer_p.encode(words, boxes=boxes, max_length=max_length, padding="max_length") self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode(words, boxes=boxes, padding="longest") input_p = tokenizer_p.encode(words, boxes=boxes, padding=True) self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id) # Encode - Pair input question, words, boxes = self.get_question_words_and_boxes() input_r = tokenizer_r.encode( question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode( question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True ) self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode(question, words, boxes=boxes, max_length=max_length, padding="max_length") input_p = tokenizer_p.encode(question, words, boxes=boxes, max_length=max_length, padding="max_length") self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.encode(question, words, boxes=boxes, padding=True) input_p = tokenizer_p.encode(question, words, boxes=boxes, padding="longest") self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id) # Encode_plus - Simple input words, boxes = self.get_words_and_boxes() input_r = tokenizer_r.encode_plus(words, boxes=boxes, max_length=max_length, pad_to_max_length=True) input_p = tokenizer_p.encode_plus(words, boxes=boxes, max_length=max_length, pad_to_max_length=True) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus(words, boxes=boxes, max_length=max_length, padding="max_length") input_p = tokenizer_p.encode_plus(words, boxes=boxes, max_length=max_length, padding="max_length") self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus(words, boxes=boxes, padding="longest") input_p = tokenizer_p.encode_plus(words, boxes=boxes, padding=True) self.assert_padded_input_match( input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id ) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) # Encode_plus - Pair input question, words, boxes = self.get_question_words_and_boxes() input_r = tokenizer_r.encode_plus( question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True ) input_p = tokenizer_p.encode_plus( question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus( question, words, boxes=boxes, max_length=max_length, padding="max_length" ) input_p = tokenizer_p.encode_plus( question, words, boxes=boxes, max_length=max_length, padding="max_length" ) self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) input_r = tokenizer_r.encode_plus(question, words, boxes=boxes, padding="longest") input_p = tokenizer_p.encode_plus(question, words, boxes=boxes, padding=True) self.assert_padded_input_match( input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id ) self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"]) # Batch_encode_plus - Simple input words, boxes = self.get_words_and_boxes_batch() input_r = tokenizer_r.batch_encode_plus( words, boxes=boxes, max_length=max_length, pad_to_max_length=True, ) input_p = tokenizer_p.batch_encode_plus( words, boxes=boxes, max_length=max_length, pad_to_max_length=True, ) self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.batch_encode_plus( words, boxes=boxes, max_length=max_length, padding="max_length", ) input_p = tokenizer_p.batch_encode_plus( words, boxes=boxes, max_length=max_length, padding="max_length", ) self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.batch_encode_plus( words, boxes=boxes, max_length=max_length, padding="longest", ) input_p = tokenizer_p.batch_encode_plus( words, boxes=boxes, max_length=max_length, padding=True, ) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) input_r = tokenizer_r.batch_encode_plus(words, boxes=boxes, padding="longest") input_p = tokenizer_p.batch_encode_plus(words, boxes=boxes, padding=True) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) # Batch_encode_plus - Pair input questions, words, boxes = self.get_question_words_and_boxes_batch() input_r = tokenizer_r.batch_encode_plus( list(zip(questions, words)), is_pair=True, boxes=boxes, max_length=max_length, truncation=True, padding="max_length", ) input_p = tokenizer_p.batch_encode_plus( list(zip(questions, words)), is_pair=True, boxes=boxes, max_length=max_length, truncation=True, padding="max_length", ) self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) input_r = tokenizer_r.batch_encode_plus( list(zip(questions, words)), is_pair=True, boxes=boxes, padding=True, ) input_p = tokenizer_p.batch_encode_plus( list(zip(questions, words)), is_pair=True, boxes=boxes, padding="longest", ) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) # Using pad on single examples after tokenization words, boxes = self.get_words_and_boxes() input_r = tokenizer_r.encode_plus(words, boxes=boxes) input_r = tokenizer_r.pad(input_r) input_p = tokenizer_r.encode_plus(words, boxes=boxes) input_p = tokenizer_r.pad(input_p) self.assert_padded_input_match( input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id ) # Using pad on single examples after tokenization input_r = tokenizer_r.encode_plus(words, boxes=boxes) input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") input_p = tokenizer_r.encode_plus(words, boxes=boxes) input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length") self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id) # Using pad after tokenization words, boxes = self.get_words_and_boxes_batch() input_r = tokenizer_r.batch_encode_plus( words, boxes=boxes, ) input_r = tokenizer_r.pad(input_r) input_p = tokenizer_r.batch_encode_plus( words, boxes=boxes, ) input_p = tokenizer_r.pad(input_p) self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id) # Using pad after tokenization words, boxes = self.get_words_and_boxes_batch() input_r = tokenizer_r.batch_encode_plus( words, boxes=boxes, ) input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length") input_p = tokenizer_r.batch_encode_plus( words, boxes=boxes, ) input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length") self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id) def test_padding_warning_message_fast_tokenizer(self): if not self.test_rust_tokenizer: return words, boxes = self.get_words_and_boxes_batch() tokenizer_fast = self.get_rust_tokenizer() encoding_fast = tokenizer_fast( words, boxes=boxes, ) with self.assertLogs("transformers", level="WARNING") as cm: tokenizer_fast.pad(encoding_fast) self.assertEqual(len(cm.records), 1) self.assertIn( "Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to" " encode the text followed by a call to the `pad` method to get a padded encoding.", cm.records[0].message, ) if not self.test_slow_tokenizer: return tokenizer_slow = self.get_tokenizer() encoding_slow = tokenizer_slow( words, boxes=boxes, ) with self.assertLogs(level="WARNING") as cm: # We want to assert there are no warnings, but the 'assertLogs' method does not support that. # Therefore, we are adding a dummy warning, and then we will assert it is the only warning. logger.warning("Dummy warning") tokenizer_slow.pad(encoding_slow) self.assertEqual(len(cm.records), 1) self.assertIn( "Dummy warning", cm.records[0].message, ) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Test not batched words, boxes = self.get_words_and_boxes() encoded_sequences_1 = tokenizer.encode_plus(words, boxes=boxes) encoded_sequences_2 = tokenizer(words, boxes=boxes) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test not batched pairs question, words, boxes = self.get_question_words_and_boxes() encoded_sequences_1 = tokenizer.encode_plus(words, boxes=boxes) encoded_sequences_2 = tokenizer(words, boxes=boxes) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test batched words, boxes = self.get_words_and_boxes_batch() encoded_sequences_1 = tokenizer.batch_encode_plus(words, is_pair=False, boxes=boxes) encoded_sequences_2 = tokenizer(words, boxes=boxes) self.assertEqual(encoded_sequences_1, encoded_sequences_2) def test_batch_encode_plus_batch_sequence_length(self): # Tests that all encoded values have the correct size tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes_batch() encoded_sequences = [ tokenizer.encode_plus(words_example, boxes=boxes_example) for words_example, boxes_example in zip(words, boxes) ] encoded_sequences_batch = tokenizer.batch_encode_plus(words, is_pair=False, boxes=boxes, padding=False) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) maximum_length = len( max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len) ) # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, words) encoded_sequences_padded = [ tokenizer.encode_plus( words_example, boxes=boxes_example, max_length=maximum_length, padding="max_length" ) for words_example, boxes_example in zip(words, boxes) ] encoded_sequences_batch_padded = tokenizer.batch_encode_plus( words, is_pair=False, boxes=boxes, padding=True ) self.assertListEqual( encoded_sequences_padded, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded), ) # check 'longest' is unsensitive to a max length encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus( words, is_pair=False, boxes=boxes, padding=True ) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( words, is_pair=False, boxes=boxes, max_length=maximum_length + 10, padding="longest" ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) # check 'no_padding' is unsensitive to a max length encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus( words, is_pair=False, boxes=boxes, padding=False ) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( words, is_pair=False, boxes=boxes, max_length=maximum_length + 10, padding=False ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) @unittest.skip("batch_encode_plus does not handle overflowing tokens.") def test_batch_encode_plus_overflowing_tokens(self): pass def test_batch_encode_plus_padding(self): # Test that padded sequences are equivalent between batch_encode_plus and encode_plus # Right padding tests tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes_batch() max_length = 100 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, words) encoded_sequences = [ tokenizer.encode_plus( words_example, boxes=boxes_example, max_length=max_length, padding="max_length" ) for words_example, boxes_example in zip(words, boxes) ] encoded_sequences_batch = tokenizer.batch_encode_plus( words, is_pair=False, boxes=boxes, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) # Left padding tests tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokenizer.padding_side = "left" words, boxes = self.get_words_and_boxes_batch() max_length = 100 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, words) encoded_sequences = [ tokenizer.encode_plus( words_example, boxes=boxes_example, max_length=max_length, padding="max_length" ) for words_example, boxes_example in zip(words, boxes) ] encoded_sequences_batch = tokenizer.batch_encode_plus( words, is_pair=False, boxes=boxes, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) def test_padding_to_multiple_of(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.pad_token is None: self.skipTest("No padding token.") else: words, boxes = self.get_words_and_boxes() # empty_tokens = tokenizer([""], [[]], padding=True, pad_to_multiple_of=8) normal_tokens = tokenizer(words, boxes=boxes, padding=True, pad_to_multiple_of=8) # for key, value in empty_tokens.items(): # self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") normal_tokens = tokenizer(words, boxes=boxes, pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # Should also work with truncation normal_tokens = tokenizer(words, boxes=boxes, padding=True, truncation=True, pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # truncation to something which is not a multiple of pad_to_multiple_of raises an error self.assertRaises( ValueError, tokenizer.__call__, words, boxes=boxes, padding=True, truncation=True, max_length=12, pad_to_multiple_of=8, ) def test_tokenizer_slow_store_full_signature(self): signature = inspect.signature(self.tokenizer_class.__init__) tokenizer = self.get_tokenizer() for parameter_name, parameter in signature.parameters.items(): if parameter.default != inspect.Parameter.empty: self.assertIn(parameter_name, tokenizer.init_kwargs) def test_build_inputs_with_special_tokens(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Input tokens id words, boxes = self.get_words_and_boxes() input_simple = tokenizer_p.encode(words, boxes=boxes, add_special_tokens=False) input_pair = tokenizer_p.encode(words, boxes=boxes, add_special_tokens=False) # Generate output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple) self.assertEqual(output_p, output_r) # Generate pair output output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair) output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair) self.assertEqual(output_p, output_r) def test_special_tokens_mask_input_pairs(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes() encoded_sequence = tokenizer.encode(words, boxes=boxes, add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( words, boxes=boxes, add_special_tokens=True, return_special_tokens_mask=True, # add_prefix_space=False, ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) ] filtered_sequence = [x for x in filtered_sequence if x is not None] self.assertEqual(encoded_sequence, filtered_sequence) def test_special_tokens_mask(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes() # Testing single inputs encoded_sequence = tokenizer.encode(words, boxes=boxes, add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( words, boxes=boxes, add_special_tokens=True, return_special_tokens_mask=True ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]] self.assertEqual(encoded_sequence, filtered_sequence) def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc words, boxes = self.get_words_and_boxes() tmpdirname = tempfile.mkdtemp() before_tokens = tokenizer.encode(words, boxes=boxes, add_special_tokens=False) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(words, boxes=boxes, add_special_tokens=False) after_vocab = after_tokenizer.get_vocab() self.assertListEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) shutil.rmtree(tmpdirname) def test_right_and_left_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes() sequence = "Sequence" padding_size = 10 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_idx = tokenizer.pad_token_id # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(words, boxes=boxes) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( words, boxes=boxes, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert encoded_sequence + [padding_idx] * padding_size == padded_sequence # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "left" encoded_sequence = tokenizer.encode(words, boxes=boxes) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( words, boxes=boxes, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert [padding_idx] * padding_size + encoded_sequence == padded_sequence # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding' encoded_sequence = tokenizer.encode(words, boxes=boxes) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(words, boxes=boxes, padding=True) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(words, boxes=boxes, padding="longest") padded_sequence_left_length = len(padded_sequence_left) assert sequence_length == padded_sequence_left_length assert encoded_sequence == padded_sequence_left tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(words, boxes=boxes) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(words, boxes=boxes, padding=False) padded_sequence_left_length = len(padded_sequence_left) assert sequence_length == padded_sequence_left_length assert encoded_sequence == padded_sequence_left def test_token_type_ids(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # test 1: single sequence words, boxes = self.get_words_and_boxes() output = tokenizer(words, boxes=boxes, return_token_type_ids=True) # Assert that the token type IDs have the same length as the input IDs self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"])) # Assert that the token type IDs have the same length as the attention mask self.assertEqual(len(output["token_type_ids"]), len(output["attention_mask"])) self.assertIn(0, output["token_type_ids"]) self.assertNotIn(1, output["token_type_ids"]) # test 2: two sequences (question + words) question, words, boxes = self.get_question_words_and_boxes() output = tokenizer(question, words, boxes, return_token_type_ids=True) # Assert that the token type IDs have the same length as the input IDs self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"])) # Assert that the token type IDs have the same length as the attention mask self.assertEqual(len(output["token_type_ids"]), len(output["attention_mask"])) self.assertIn(0, output["token_type_ids"]) def test_offsets_mapping(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) text = ["a", "wonderful", "test"] boxes = [[1, 8, 12, 20] for _ in range(len(text))] # No pair tokens_with_offsets = tokenizer_r.encode_plus( text, boxes=boxes, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True, ) added_tokens = tokenizer_r.num_special_tokens_to_add(False) offsets = tokens_with_offsets["offset_mapping"] # Assert there is the same number of tokens and offsets self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) # Assert there is online added_tokens special_tokens self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) # Pairs text = "what's his name" pair = ["a", "wonderful", "test"] boxes = [[1, 8, 12, 20] for _ in range(len(pair))] tokens_with_offsets = tokenizer_r.encode_plus( text, pair, boxes=boxes, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True, ) added_tokens = tokenizer_r.num_special_tokens_to_add(True) offsets = tokens_with_offsets["offset_mapping"] # Assert there is the same number of tokens and offsets self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"])) # Assert there is online added_tokens special_tokens self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens) @require_torch @slow def test_torch_encode_plus_sent_to_model(self): import torch from transformers import MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return model = model_class(config) # Make sure the model contains at least the full vocabulary size in its embedding matrix is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight") assert ( (model.get_input_embeddings().weight.shape[0] >= len(tokenizer)) if is_using_common_embeddings else True ) # Build sequence words, boxes = self.get_words_and_boxes() encoded_sequence = tokenizer.encode_plus(words, boxes=boxes, return_tensors="pt") batch_encoded_sequence = tokenizer.batch_encode_plus( [words, words], boxes=[boxes, boxes], return_tensors="pt" ) # We add dummy pixel_values keys (as LayoutLMv3 actually also requires a feature extractor # to prepare the image input) encoded_sequence["pixel_values"] = torch.randn(1, 3, 224, 224) batch_encoded_sequence["pixel_values"] = torch.randn(2, 3, 224, 224) # This should not fail with torch.no_grad(): # saves some time model(**encoded_sequence) model(**batch_encoded_sequence) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() words, boxes = self.get_words_and_boxes() ids = tokenizer.encode(words, boxes=boxes, add_special_tokens=False) rust_ids = rust_tokenizer.encode(words, boxes=boxes, add_special_tokens=False) self.assertListEqual(ids, rust_ids) ids = tokenizer.encode(words, boxes=boxes, add_special_tokens=True) rust_ids = rust_tokenizer.encode(words, boxes=boxes, add_special_tokens=True) self.assertListEqual(ids, rust_ids) def test_tokenization_python_rust_equals(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) words, boxes = self.get_words_and_boxes() # Ensure basic input match input_p = tokenizer_p.encode_plus(words, boxes=boxes) input_r = tokenizer_r.encode_plus(words, boxes=boxes) for key in filter( lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys() ): self.assertSequenceEqual(input_p[key], input_r[key]) input_pairs_p = tokenizer_p.encode_plus(words, boxes=boxes) input_pairs_r = tokenizer_r.encode_plus(words, boxes=boxes) for key in filter( lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys() ): self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key]) words = ["hello" for _ in range(1000)] boxes = [[1000, 1000, 1000, 1000] for _ in range(1000)] # Ensure truncation match input_p = tokenizer_p.encode_plus(words, boxes=boxes, max_length=512, truncation=True) input_r = tokenizer_r.encode_plus(words, boxes=boxes, max_length=512, truncation=True) for key in filter( lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys() ): self.assertSequenceEqual(input_p[key], input_r[key]) # Ensure truncation with stride match input_p = tokenizer_p.encode_plus( words, boxes=boxes, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True ) input_r = tokenizer_r.encode_plus( words, boxes=boxes, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True ) for key in filter( lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys() ): self.assertSequenceEqual(input_p[key], input_r[key][0]) def test_embeded_special_tokens(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) words, boxes = self.get_words_and_boxes() tokens_r = tokenizer_r.encode_plus( words, boxes=boxes, add_special_tokens=True, ) tokens_p = tokenizer_p.encode_plus( words, boxes=boxes, add_special_tokens=True, ) for key in tokens_p.keys(): self.assertEqual(tokens_r[key], tokens_p[key]) if "token_type_ids" in tokens_r: self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) self.assertSequenceEqual(tokens_r, tokens_p) def test_compare_add_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False) words, boxes = self.get_words_and_boxes() # tokenize() no_special_tokens = tokenizer_r.tokenize(" ".join(words), add_special_tokens=False) with_special_tokens = tokenizer_r.tokenize(" ".join(words), add_special_tokens=True) self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add) # encode() no_special_tokens = tokenizer_r.encode(words, boxes=boxes, add_special_tokens=False) with_special_tokens = tokenizer_r.encode(words, boxes=boxes, add_special_tokens=True) self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add) # encode_plus() no_special_tokens = tokenizer_r.encode_plus(words, boxes=boxes, add_special_tokens=False) with_special_tokens = tokenizer_r.encode_plus(words, boxes=boxes, add_special_tokens=True) for key in no_special_tokens.keys(): self.assertEqual( len(no_special_tokens[key]), len(with_special_tokens[key]) - simple_num_special_tokens_to_add, ) # # batch_encode_plus words, boxes = self.get_words_and_boxes_batch() no_special_tokens = tokenizer_r.batch_encode_plus(words, boxes=boxes, add_special_tokens=False) with_special_tokens = tokenizer_r.batch_encode_plus(words, boxes=boxes, add_special_tokens=True) for key in no_special_tokens.keys(): for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]): self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add) @slow def test_layoutlmv3_truncation_integration_test(self): words, boxes = self.get_words_and_boxes() tokenizer = LayoutLMv3Tokenizer.from_pretrained("microsoft/layoutlmv3-base", model_max_length=512) for i in range(12, 512): new_encoded_inputs = tokenizer.encode(words, boxes=boxes, max_length=i, truncation=True) # Ensure that the input IDs are less than the max length defined. self.assertLessEqual(len(new_encoded_inputs), i) tokenizer.model_max_length = 20 new_encoded_inputs = tokenizer.encode(words, boxes=boxes, truncation=True) dropped_encoded_inputs = tokenizer.encode(words, boxes=boxes, truncation=True) # Ensure that the input IDs are still truncated when no max_length is specified self.assertListEqual(new_encoded_inputs, dropped_encoded_inputs) self.assertLessEqual(len(new_encoded_inputs), 20) @is_pt_tf_cross_test def test_batch_encode_plus_tensors(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes_batch() # A Tensor cannot be build by sequences which are not the same size self.assertRaises(ValueError, tokenizer.batch_encode_plus, words, boxes=boxes, return_tensors="pt") self.assertRaises(ValueError, tokenizer.batch_encode_plus, words, boxes=boxes, return_tensors="tf") if tokenizer.pad_token_id is None: self.assertRaises( ValueError, tokenizer.batch_encode_plus, words, boxes=boxes, padding=True, return_tensors="pt", ) self.assertRaises( ValueError, tokenizer.batch_encode_plus, words, boxes=boxes, padding="longest", return_tensors="tf", ) else: pytorch_tensor = tokenizer.batch_encode_plus(words, boxes=boxes, padding=True, return_tensors="pt") tensorflow_tensor = tokenizer.batch_encode_plus( words, boxes=boxes, padding="longest", return_tensors="tf" ) encoded_sequences = tokenizer.batch_encode_plus(words, boxes=boxes, padding=True) for key in encoded_sequences.keys(): pytorch_value = pytorch_tensor[key].tolist() tensorflow_value = tensorflow_tensor[key].numpy().tolist() encoded_value = encoded_sequences[key] self.assertEqual(pytorch_value, tensorflow_value, encoded_value) def test_sequence_ids(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: if not tokenizer.is_fast: continue with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0 = "Test this method." seq_1 = ["With", "these", "inputs."] boxes = [[1000, 1000, 1000, 1000] for _ in range(len(seq_1))] # We want to have sequence 0 and sequence 1 are tagged # respectively with 0 and 1 token_ids # (regardless of whether the model use token type ids) # We use this assumption in the QA pipeline among other place output = tokenizer(seq_0.split(), boxes=boxes) self.assertIn(0, output.sequence_ids()) output = tokenizer(seq_0, seq_1, boxes=boxes) self.assertIn(0, output.sequence_ids()) self.assertIn(1, output.sequence_ids()) if tokenizer.num_special_tokens_to_add(pair=True): self.assertIn(None, output.sequence_ids()) def test_special_tokens_initialization(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): added_tokens = [AddedToken("<special>", lstrip=True)] tokenizer_r = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) words = "Hey this is a <special> token".split() boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))] r_output = tokenizer_r.encode(words, boxes=boxes) special_token_id = tokenizer_r.encode( ["<special>"], boxes=[1000, 1000, 1000, 1000], add_special_tokens=False )[0] self.assertTrue(special_token_id in r_output) if self.test_slow_tokenizer: tokenizer_cr = self.rust_tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True ) tokenizer_p = self.tokenizer_class.from_pretrained( pretrained_name, additional_special_tokens=added_tokens, **kwargs ) words = "Hey this is a <special> token".split() boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))] p_output = tokenizer_p.encode(words, boxes=boxes) cr_output = tokenizer_cr.encode(words, boxes=boxes) self.assertEqual(p_output, r_output) self.assertEqual(cr_output, r_output) self.assertTrue(special_token_id in p_output) self.assertTrue(special_token_id in cr_output) def test_training_new_tokenizer(self): # This feature only exists for fast tokenizers if not self.test_rust_tokenizer: return tokenizer = self.get_rust_tokenizer() new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100) # Test we can use the new tokenizer with something not seen during training text = [["this", "is", "the"], ["how", "are", "you"]] boxes = [[[1, 2, 3, 4], [5, 6, 7, 8], [1, 3, 4, 8]], [[5, 6, 7, 8], [4, 5, 6, 7], [3, 9, 2, 7]]] inputs = new_tokenizer(text, boxes=boxes) self.assertEqual(len(inputs["input_ids"]), 2) decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) expected_result = " this is the" if tokenizer.backend_tokenizer.normalizer is not None: expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result) self.assertEqual(expected_result, decoded_input) # We check that the parameters of the tokenizer remained the same # Check we have the same number of added_tokens for both pair and non-pair inputs. self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False)) self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True)) # Check we have the correct max_length for both pair and non-pair inputs. self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence) self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair) # Assert the set of special tokens match as we didn't ask to change them self.assertSequenceEqual( tokenizer.all_special_tokens_extended, new_tokenizer.all_special_tokens_extended, ) self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map) def test_training_new_tokenizer_with_special_tokens_change(self): # This feature only exists for fast tokenizers if not self.test_rust_tokenizer: return tokenizer = self.get_rust_tokenizer() # Test with a special tokens map class_signature = inspect.signature(tokenizer.__class__) if "cls_token" in class_signature.parameters: new_tokenizer = tokenizer.train_new_from_iterator( SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"} ) cls_id = new_tokenizer.get_vocab()["<cls>"] self.assertEqual(new_tokenizer.cls_token, "<cls>") self.assertEqual(new_tokenizer.cls_token_id, cls_id) # Create a new mapping from the special tokens defined in the original tokenizer special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy() special_tokens_list.remove("additional_special_tokens") special_tokens_map = {} for token in special_tokens_list: # Get the private one to avoid unnecessary warnings. if getattr(tokenizer, f"_{token}") is not None: special_token = getattr(tokenizer, token) special_tokens_map[special_token] = f"{special_token}a" # Train new tokenizer new_tokenizer = tokenizer.train_new_from_iterator( SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map ) # Check the changes for token in special_tokens_list: # Get the private one to avoid unnecessary warnings. if getattr(tokenizer, f"_{token}") is None: continue special_token = getattr(tokenizer, token) if special_token in special_tokens_map: new_special_token = getattr(new_tokenizer, token) self.assertEqual(special_tokens_map[special_token], new_special_token) new_id = new_tokenizer.get_vocab()[new_special_token] self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id) # Check if the AddedToken / string format has been kept for special_token in tokenizer.all_special_tokens_extended: if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map: # The special token must appear identically in the list of the new tokenizer. self.assertTrue( special_token in new_tokenizer.all_special_tokens_extended, f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}", ) elif isinstance(special_token, AddedToken): # The special token must appear in the list of the new tokenizer as an object of type AddedToken with # the same parameters as the old AddedToken except the content that the user has requested to change. special_token_str = special_token.content new_special_token_str = special_tokens_map[special_token_str] find = False for candidate in new_tokenizer.all_special_tokens_extended: if ( isinstance(candidate, AddedToken) and candidate.content == new_special_token_str and candidate.lstrip == special_token.lstrip and candidate.rstrip == special_token.rstrip and candidate.normalized == special_token.normalized and candidate.single_word == special_token.single_word ): find = True break self.assertTrue( find, f"'{new_special_token_str}' doesn't appear in the list " f"'{new_tokenizer.all_special_tokens_extended}' as an AddedToken with the same parameters as " f"'{special_token}' in the list {tokenizer.all_special_tokens_extended}", ) elif special_token not in special_tokens_map: # The special token must appear identically in the list of the new tokenizer. self.assertTrue( special_token in new_tokenizer.all_special_tokens_extended, f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}", ) else: # The special token must appear in the list of the new tokenizer as an object of type string. self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended) # Test we can use the new tokenizer with something not seen during training words = [["this", "is"], ["hello", "🤗"]] boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[1, 2, 3, 4], [5, 6, 7, 8]]] inputs = new_tokenizer(words, boxes=boxes) self.assertEqual(len(inputs["input_ids"]), 2) decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True) expected_result = " this is" if tokenizer.backend_tokenizer.normalizer is not None: expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result) self.assertEqual(expected_result, decoded_input) def test_prepare_for_model(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: # only test prepare_for_model for the slow tokenizer if tokenizer.__class__.__name__ == "LayoutLMv3TokenizerFast": continue with self.subTest(f"{tokenizer.__class__.__name__}"): words, boxes = self.get_words_and_boxes() prepared_input_dict = tokenizer.prepare_for_model(words, boxes=boxes, add_special_tokens=True) input_dict = tokenizer.encode_plus(words, boxes=boxes, add_special_tokens=True) self.assertEqual(input_dict, prepared_input_dict) def test_padding_different_model_input_name(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id) pad_token_id = tokenizer_p.pad_token_id words, boxes = self.get_words_and_boxes_batch() input_r = tokenizer_r.batch_encode_plus(words, boxes=boxes) input_p = tokenizer_r.batch_encode_plus(words, boxes=boxes) # rename encoded batch to "inputs" input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]] del input_r[tokenizer_r.model_input_names[0]] input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]] del input_p[tokenizer_p.model_input_names[0]] # Renaming `input_ids` to `inputs` tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:] tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:] input_r = tokenizer_r.pad(input_r, padding="longest") input_p = tokenizer_r.pad(input_p, padding="longest") max_length = len(input_p["inputs"][0]) self.assert_batch_padded_input_match( input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs" ) def test_batch_encode_dynamic_overflowing(self): """ When calling batch_encode with multiple sequences, it can return different number of overflowing encoding for each sequence: [ Sequence 1: [Encoding 1, Encoding 2], Sequence 2: [Encoding 1], Sequence 3: [Encoding 1, Encoding 2, ... Encoding N] ] This needs to be padded so that it can represented as a tensor """ for tokenizer, pretrained_name, kwargs in self.tokenizers_list: tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"): if is_torch_available(): returned_tensor = "pt" elif is_tf_available(): returned_tensor = "tf" else: returned_tensor = "jax" # Single example words = ["HuggingFace", "is", "solving", "NLP", "one", "commit", "at", "a", "time"] boxes = [[i, i, i, i] for i in range(len(words))] tokens = tokenizer.encode_plus( words, boxes=boxes, max_length=6, padding=True, truncation=True, return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): if key != "bbox": self.assertEqual(len(tokens[key].shape), 2) else: self.assertEqual(len(tokens[key].shape), 3) # Batch of examples # For these 2 examples, 3 training examples will be created words_batched = [ ["HuggingFace", "is", "solving", "NLP", "one", "commit", "at", "a", "time"], ["Very", "tiny", "input"], ] boxes_batched = [[[i, i, i, i] for i in range(len(words_item))] for words_item in words_batched] tokens = tokenizer.batch_encode_plus( words_batched, boxes=boxes_batched, max_length=6, padding=True, truncation="only_first", return_tensors=returned_tensor, return_overflowing_tokens=True, ) for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()): if key != "bbox": self.assertEqual(len(tokens[key].shape), 2) self.assertEqual(tokens[key].shape[-1], 6) else: self.assertEqual(len(tokens[key].shape), 3) self.assertEqual(tokens[key].shape[-1], 4) @unittest.skip("TO DO: overwrite this very extensive test.") def test_alignement_methods(self): pass def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5): toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))] toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks)) toks = list( filter( lambda t: [t[0]] == tokenizer.encode(t[1].split(" "), boxes=len(t[1]) * [[1, 1, 1, 1]], add_special_tokens=False), toks, ) ) if max_length is not None and len(toks) > max_length: toks = toks[:max_length] if min_length is not None and len(toks) < min_length and len(toks) > 0: while len(toks) < min_length: toks = toks + toks # toks_str = [t[1] for t in toks] toks_ids = [t[0] for t in toks] # Ensure consistency output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False) if " " not in output_txt and len(toks_ids) > 1: output_txt = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False) ) if with_prefix_space: output_txt = " " + output_txt words = output_txt.split(" ") boxes = [[i, i, i, i] for i in range(len(words))] output_ids = tokenizer.encode(words, boxes=boxes, add_special_tokens=False) return words, boxes, output_ids def test_added_token_with_space_before(self): tokenizer_s = self.get_tokenizer() tokenizer_f = self.get_rust_tokenizer() tokens_to_add = ["AAA", "bbb"] words_with_space = [f" {token}" for token in tokens_to_add + list(tokenizer_s.added_tokens_encoder.keys())] words_without_space = tokens_to_add + list(tokenizer_s.added_tokens_encoder.keys()) boxes = [[i, i, i, i] for i in range(len(words_with_space))] tokens_to_add_formated = [ AddedToken(token, rstrip=True, lstrip=True, single_word=False) for token in tokens_to_add ] tokenizer_s.add_tokens(tokens_to_add_formated) tokenizer_f.add_tokens(tokens_to_add_formated) ids_s = tokenizer_s(words_with_space, boxes=boxes).input_ids ids_f = tokenizer_f(words_with_space, boxes=boxes).input_ids tokens_s = tokenizer_s.convert_ids_to_tokens(ids_s) tokens_f = tokenizer_f.convert_ids_to_tokens(ids_f) ids_s = tokenizer_s(words_without_space, boxes=boxes).input_ids ids_f = tokenizer_f(words_without_space, boxes=boxes).input_ids tokens_s = tokenizer_s.convert_ids_to_tokens(ids_s) tokens_f = tokenizer_f.convert_ids_to_tokens(ids_f) self.assertEqual(tokens_s, tokens_f) def test_maximum_encoding_length_pair_input(self): tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Build a sequence from our model's vocabulary stride = 2 seq_0, boxes_0, ids = self.get_clean_sequence(tokenizer, max_length=20) question_0 = " ".join(map(str, seq_0)) if len(ids) <= 2 + stride: seq_0 = (seq_0 + " ") * (2 + stride) ids = None seq0_tokens = tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False) seq0_input_ids = seq0_tokens["input_ids"] self.assertGreater(len(seq0_input_ids), 2 + stride) question_1 = "This is another sentence to be encoded." seq_1 = ["what", "a", "weird", "test", "weirdly", "weird"] boxes_1 = [[i, i, i, i] for i in range(1, len(seq_1) + 1)] seq1_tokens = tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False) if abs(len(seq0_input_ids) - len(seq1_tokens["input_ids"])) <= 2: seq1_tokens_input_ids = seq1_tokens["input_ids"] + seq1_tokens["input_ids"] seq_1 = tokenizer.decode(seq1_tokens_input_ids, clean_up_tokenization_spaces=False) seq_1 = seq_1.split(" ") boxes_1 = [[i, i, i, i] for i in range(1, len(seq_1) + 1)] seq1_tokens = tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False) seq1_input_ids = seq1_tokens["input_ids"] self.assertGreater(len(seq1_input_ids), 2 + stride) smallest = seq1_input_ids if len(seq0_input_ids) > len(seq1_input_ids) else seq0_input_ids # We are not using the special tokens - a bit too hard to test all the tokenizers with this # TODO try this again later sequence = tokenizer( question_0, seq_1, boxes=boxes_1, add_special_tokens=False ) # , add_prefix_space=False) # Test with max model input length model_max_length = tokenizer.model_max_length self.assertEqual(model_max_length, 100) seq_2 = seq_0 * model_max_length question_2 = " ".join(map(str, seq_2)) boxes_2 = boxes_0 * model_max_length self.assertGreater(len(seq_2), model_max_length) sequence1 = tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False) total_length1 = len(sequence1["input_ids"]) sequence2 = tokenizer(question_2, seq_1, boxes=boxes_1, add_special_tokens=False) total_length2 = len(sequence2["input_ids"]) self.assertLess(total_length1, model_max_length, "Issue with the testing sequence, please update it.") self.assertGreater( total_length2, model_max_length, "Issue with the testing sequence, please update it." ) # Simple padding_strategies = ( [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False] ) for padding_state in padding_strategies: with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"): for truncation_state in [True, "longest_first", "only_first"]: with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"): output = tokenizer( question_2, seq_1, boxes=boxes_1, padding=padding_state, truncation=truncation_state, ) self.assertEqual(len(output["input_ids"]), model_max_length) self.assertEqual(len(output["bbox"]), model_max_length) output = tokenizer( [question_2], [seq_1], boxes=[boxes_1], padding=padding_state, truncation=truncation_state, ) self.assertEqual(len(output["input_ids"][0]), model_max_length) self.assertEqual(len(output["bbox"][0]), model_max_length) # Simple output = tokenizer( question_1, seq_2, boxes=boxes_2, padding=padding_state, truncation="only_second" ) self.assertEqual(len(output["input_ids"]), model_max_length) self.assertEqual(len(output["bbox"]), model_max_length) output = tokenizer( [question_1], [seq_2], boxes=[boxes_2], padding=padding_state, truncation="only_second" ) self.assertEqual(len(output["input_ids"][0]), model_max_length) self.assertEqual(len(output["bbox"][0]), model_max_length) # Simple with no truncation # Reset warnings tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer( question_1, seq_2, boxes=boxes_2, padding=padding_state, truncation=False ) self.assertNotEqual(len(output["input_ids"]), model_max_length) self.assertNotEqual(len(output["bbox"]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer( [question_1], [seq_2], boxes=[boxes_2], padding=padding_state, truncation=False ) self.assertNotEqual(len(output["input_ids"][0]), model_max_length) self.assertNotEqual(len(output["bbox"][0]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) # Check the order of Sequence of input ids, overflowing tokens and bbox sequence with truncation truncated_first_sequence = ( tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)["input_ids"][:-2] + tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["input_ids"] ) truncated_second_sequence = ( tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)["input_ids"] + tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["input_ids"][:-2] ) truncated_longest_sequence = ( truncated_first_sequence if len(seq0_input_ids) > len(seq1_input_ids) else truncated_second_sequence ) overflow_first_sequence = ( tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)["input_ids"][-(2 + stride) :] + tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["input_ids"] ) overflow_second_sequence = ( tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)["input_ids"] + tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["input_ids"][-(2 + stride) :] ) overflow_longest_sequence = ( overflow_first_sequence if len(seq0_input_ids) > len(seq1_input_ids) else overflow_second_sequence ) bbox_first = [[0, 0, 0, 0]] * (len(seq0_input_ids) - 2) bbox_first_sequence = bbox_first + tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["bbox"] overflowing_token_bbox_first_sequence_slow = [[0, 0, 0, 0]] * (2 + stride) overflowing_token_bbox_first_sequence_fast = [[0, 0, 0, 0]] * (2 + stride) + tokenizer( seq_1, boxes=boxes_1, add_special_tokens=False )["bbox"] bbox_second = [[0, 0, 0, 0]] * len(seq0_input_ids) bbox_second_sequence = ( bbox_second + tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["bbox"][:-2] ) overflowing_token_bbox_second_sequence_slow = tokenizer( seq_1, boxes=boxes_1, add_special_tokens=False )["bbox"][-(2 + stride) :] overflowing_token_bbox_second_sequence_fast = [[0, 0, 0, 0]] * len(seq0_input_ids) + tokenizer( seq_1, boxes=boxes_1, add_special_tokens=False )["bbox"][-(2 + stride) :] bbox_longest_sequence = ( bbox_first_sequence if len(seq0_tokens) > len(seq1_tokens) else bbox_second_sequence ) overflowing_token_bbox_longest_sequence_fast = ( overflowing_token_bbox_first_sequence_fast if len(seq0_tokens) > len(seq1_tokens) else overflowing_token_bbox_second_sequence_fast ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, LayoutLMv3TokenizerFast): information = tokenizer( question_0, seq_1, boxes=boxes_1, max_length=len(sequence["input_ids"]) - 2, add_special_tokens=False, stride=stride, truncation="longest_first", return_overflowing_tokens=True, # add_prefix_space=False, ) truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] bbox = information["bbox"][0] overflowing_bbox = information["bbox"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2) self.assertEqual(truncated_sequence, truncated_longest_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest)) self.assertEqual(overflowing_tokens, overflow_longest_sequence) self.assertEqual(bbox, bbox_longest_sequence) self.assertEqual(len(overflowing_bbox), 2 + stride + len(smallest)) self.assertEqual(overflowing_bbox, overflowing_token_bbox_longest_sequence_fast) else: # No overflowing tokens when using 'longest' in python tokenizers with self.assertRaises(ValueError) as context: information = tokenizer( question_0, seq_1, boxes=boxes_1, max_length=len(sequence["input_ids"]) - 2, add_special_tokens=False, stride=stride, truncation="longest_first", return_overflowing_tokens=True, # add_prefix_space=False, ) self.assertTrue( context.exception.args[0].startswith( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, LayoutLMv3TokenizerFast): information = tokenizer( question_0, seq_1, boxes=boxes_1, max_length=len(sequence["input_ids"]) - 2, add_special_tokens=False, stride=stride, truncation=True, return_overflowing_tokens=True, # add_prefix_space=False, ) truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] bbox = information["bbox"][0] overflowing_bbox = information["bbox"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2) self.assertEqual(truncated_sequence, truncated_longest_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest)) self.assertEqual(overflowing_tokens, overflow_longest_sequence) self.assertEqual(bbox, bbox_longest_sequence) self.assertEqual(overflowing_bbox, overflowing_token_bbox_longest_sequence_fast) else: # No overflowing tokens when using 'longest' in python tokenizers with self.assertRaises(ValueError) as context: information = tokenizer( question_0, seq_1, boxes=boxes_1, max_length=len(sequence["input_ids"]) - 2, add_special_tokens=False, stride=stride, truncation=True, return_overflowing_tokens=True, # add_prefix_space=False, ) self.assertTrue( context.exception.args[0].startswith( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) ) information_first_truncated = tokenizer( question_0, seq_1, boxes=boxes_1, max_length=len(sequence["input_ids"]) - 2, add_special_tokens=False, stride=stride, truncation="only_first", return_overflowing_tokens=True, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, LayoutLMv3TokenizerFast): truncated_sequence = information_first_truncated["input_ids"][0] overflowing_tokens = information_first_truncated["input_ids"][1] bbox = information_first_truncated["bbox"][0] overflowing_bbox = information_first_truncated["bbox"][0] self.assertEqual(len(information_first_truncated["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2) self.assertEqual(truncated_sequence, truncated_first_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_input_ids)) self.assertEqual(overflowing_tokens, overflow_first_sequence) self.assertEqual(bbox, bbox_first_sequence) self.assertEqual(overflowing_bbox, overflowing_token_bbox_first_sequence_fast) else: truncated_sequence = information_first_truncated["input_ids"] overflowing_tokens = information_first_truncated["overflowing_tokens"] overflowing_bbox = information_first_truncated["overflowing_token_boxes"] bbox = information_first_truncated["bbox"] self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2) self.assertEqual(truncated_sequence, truncated_first_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, seq0_input_ids[-(2 + stride) :]) self.assertEqual(bbox, bbox_first_sequence) self.assertEqual(overflowing_bbox, overflowing_token_bbox_first_sequence_slow) information_second_truncated = tokenizer( question_0, seq_1, boxes=boxes_1, max_length=len(sequence["input_ids"]) - 2, add_special_tokens=False, stride=stride, truncation="only_second", return_overflowing_tokens=True, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, LayoutLMv3TokenizerFast): truncated_sequence = information_second_truncated["input_ids"][0] overflowing_tokens = information_second_truncated["input_ids"][1] bbox = information_second_truncated["bbox"][0] overflowing_bbox = information_second_truncated["bbox"][1] self.assertEqual(len(information_second_truncated["input_ids"]), 2) self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2) self.assertEqual(truncated_sequence, truncated_second_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_input_ids)) self.assertEqual(overflowing_tokens, overflow_second_sequence) self.assertEqual(bbox, bbox_second_sequence) self.assertEqual(overflowing_bbox, overflowing_token_bbox_second_sequence_fast) else: truncated_sequence = information_second_truncated["input_ids"] overflowing_tokens = information_second_truncated["overflowing_tokens"] bbox = information_second_truncated["bbox"] overflowing_bbox = information_second_truncated["overflowing_token_boxes"] self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2) self.assertEqual(truncated_sequence, truncated_second_sequence) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, seq1_input_ids[-(2 + stride) :]) self.assertEqual(bbox, bbox_second_sequence) self.assertEqual(overflowing_bbox, overflowing_token_bbox_second_sequence_slow) def test_maximum_encoding_length_single_input(self): tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): seq_0, boxes_0, ids = self.get_clean_sequence(tokenizer, max_length=20) sequence = tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False) total_length = len(sequence["input_ids"]) self.assertGreater( total_length, 4, "Issue with the testing sequence, please update it, it's too short" ) # Test with max model input length model_max_length = tokenizer.model_max_length self.assertEqual(model_max_length, 100) seq_1 = seq_0 * model_max_length boxes_1 = boxes_0 * model_max_length sequence1 = tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False) total_length1 = len(sequence1["input_ids"]) self.assertGreater( total_length1, model_max_length, "Issue with the testing sequence, please update it, it's too short", ) # Simple padding_strategies = ( [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False] ) for padding_state in padding_strategies: with self.subTest(f"Padding: {padding_state}"): for truncation_state in [True, "longest_first", "only_first"]: with self.subTest(f"Truncation: {truncation_state}"): output = tokenizer( seq_1, boxes=boxes_1, padding=padding_state, truncation=truncation_state, ) self.assertEqual(len(output["input_ids"]), model_max_length) self.assertEqual(len(output["bbox"]), model_max_length) output = tokenizer( [seq_1], boxes=[boxes_1], padding=padding_state, truncation=truncation_state, ) self.assertEqual(len(output["input_ids"][0]), model_max_length) self.assertEqual(len(output["bbox"][0]), model_max_length) # Simple with no truncation # Reset warnings tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer(seq_1, boxes=boxes_1, padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"]), model_max_length) self.assertNotEqual(len(output["bbox"]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) tokenizer.deprecation_warnings = {} with self.assertLogs("transformers", level="WARNING") as cm: output = tokenizer([seq_1], boxes=[boxes_1], padding=padding_state, truncation=False) self.assertNotEqual(len(output["input_ids"][0]), model_max_length) self.assertNotEqual(len(output["bbox"][0]), model_max_length) self.assertEqual(len(cm.records), 1) self.assertTrue( cm.records[0].message.startswith( "Token indices sequence length is longer than the specified maximum sequence length" " for this model" ) ) # Check the order of Sequence of input ids, overflowing tokens and bbox sequence with truncation stride = 2 information = tokenizer( seq_0, boxes=boxes_0, max_length=total_length - 2, add_special_tokens=False, stride=stride, truncation=True, return_overflowing_tokens=True, # add_prefix_space=False, ) # Overflowing tokens are handled quite differently in slow and fast tokenizers if isinstance(tokenizer, LayoutLMv3TokenizerFast): truncated_sequence = information["input_ids"][0] overflowing_tokens = information["input_ids"][1] # bbox = information["bbox"][0] # overflowing_bbox = information["bbox"][1] self.assertEqual(len(information["input_ids"]), 2) self.assertEqual(len(truncated_sequence), total_length - 2) self.assertEqual(truncated_sequence, sequence["input_ids"][:-2]) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence["input_ids"][-(2 + stride) :]) # self.assertEqual(bbox, sequence["bbox"][:-2]) # self.assertEqual(overflowing_bbox, sequence["bbox"][-(2 + stride) :]) else: truncated_sequence = information["input_ids"] overflowing_tokens = information["overflowing_tokens"] # bbox = information["bbox"] # overflowing_bbox = information["overflowing_token_boxes"] self.assertEqual(len(truncated_sequence), total_length - 2) self.assertEqual(truncated_sequence, sequence["input_ids"][:-2]) self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence["input_ids"][-(2 + stride) :]) # self.assertEqual(bbox, sequence["bbox"][:-2]) # self.assertEqual(overflowing_bbox, sequence["bbox"][-(2 + stride) :]) @unittest.skip("LayoutLMv3 tokenizer requires boxes besides sequences.") def test_pretokenized_inputs(self): pass @unittest.skip("LayoutLMv3 tokenizer always expects pretokenized inputs.") def test_compare_pretokenized_inputs(self): pass @unittest.skip("LayoutLMv3 fast tokenizer does not support prepare_for_model") def test_compare_prepare_for_model(self): pass @slow def test_only_label_first_subword(self): words = ["hello", "niels", "0000000000000000"] boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))] word_labels = [0, 1, 2] # test slow tokenizer tokenizer_p = LayoutLMv3Tokenizer.from_pretrained("microsoft/layoutlmv3-base", add_visual_labels=False) encoding = tokenizer_p(words, boxes=boxes, word_labels=word_labels) self.assertListEqual(encoding.labels, [-100, 0, 1, -100, 2, -100, -100]) tokenizer_p = LayoutLMv3Tokenizer.from_pretrained( "microsoft/layoutlmv3-base", only_label_first_subword=False, add_visual_labels=False, ) encoding = tokenizer_p(words, boxes=boxes, word_labels=word_labels) self.assertListEqual(encoding.labels, [-100, 0, 1, 1, 2, 2, -100]) # test fast tokenizer tokenizer_r = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base", add_visual_labels=False) encoding = tokenizer_r(words, boxes=boxes, word_labels=word_labels) self.assertListEqual(encoding.labels, [-100, 0, 1, -100, 2, -100, -100]) tokenizer_r = LayoutLMv3Tokenizer.from_pretrained( "microsoft/layoutlmv3-base", only_label_first_subword=False, add_visual_labels=False, ) encoding = tokenizer_r(words, boxes=boxes, word_labels=word_labels) self.assertListEqual(encoding.labels, [-100, 0, 1, 1, 2, 2, -100]) @slow def test_layoutlmv3_integration_test(self): tokenizer_p = LayoutLMv3Tokenizer.from_pretrained("microsoft/layoutlmv3-base") tokenizer_r = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base") # There are 3 cases: # CASE 1: document image classification (training + inference), document image token classification (inference), # in which case only words and normalized bounding boxes are provided to the tokenizer # CASE 2: document image token classification (training), # in which case one also provides word labels to the tokenizer # CASE 3: document image visual question answering (inference), # in which case one also provides a question to the tokenizer # We need to test all 3 cases both on batched and non-batched inputs. # CASE 1: not batched words, boxes = self.get_words_and_boxes() expected_results = {'input_ids': [0, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'bbox': [[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], 'attention_mask': [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} # fmt: skip encoding_p = tokenizer_p(words, boxes=boxes, padding="max_length", max_length=20) encoding_r = tokenizer_r(words, boxes=boxes, padding="max_length", max_length=20) self.assertDictEqual(dict(encoding_p), expected_results) self.assertDictEqual(dict(encoding_r), expected_results) # CASE 1: batched words, boxes = self.get_words_and_boxes_batch() expected_results = {'input_ids': [[0, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 92, 614, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'bbox': [[[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [961, 885, 992, 912], [256, 38, 330, 58], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], 'attention_mask': [[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: skip encoding_p = tokenizer_p(words, boxes=boxes, padding="max_length", max_length=20) encoding_r = tokenizer_r(words, boxes=boxes, padding="max_length", max_length=20) self.assertDictEqual(dict(encoding_p), expected_results) self.assertDictEqual(dict(encoding_r), expected_results) # CASE 2: not batched words, boxes = self.get_words_and_boxes() word_labels = [1, 2] expected_results = {'input_ids': [0, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'bbox': [[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], 'labels': [-100, 1, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100], 'attention_mask': [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} # fmt: skip encoding_p = tokenizer_p(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20) encoding_r = tokenizer_r(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20) self.assertDictEqual(dict(encoding_p), expected_results) self.assertDictEqual(dict(encoding_r), expected_results) # # CASE 2: batched words, boxes = self.get_words_and_boxes_batch() word_labels = [[1, 2], [2, 46]] expected_results = {'input_ids': [[0, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 92, 614, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'bbox': [[[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [961, 885, 992, 912], [256, 38, 330, 58], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], 'labels': [[-100, 1, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100], [-100, 2, 46, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100]], 'attention_mask': [[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: skip encoding_p = tokenizer_p(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20) encoding_r = tokenizer_r(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20) self.assertDictEqual(dict(encoding_p), expected_results) self.assertDictEqual(dict(encoding_r), expected_results) # # CASE 3: not batched question, words, boxes = self.get_question_words_and_boxes() expected_results = {'input_ids': [0, 99, 18, 39, 766, 116, 2, 2, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'bbox': [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]} # fmt: skip encoding_p = tokenizer_p(question, words, boxes, padding="max_length", max_length=20) encoding_r = tokenizer_r(question, words, boxes, padding="max_length", max_length=20) self.assertDictEqual(dict(encoding_p), expected_results) self.assertDictEqual(dict(encoding_r), expected_results) # # CASE 3: batched questions, words, boxes = self.get_question_words_and_boxes_batch() expected_results = {'input_ids': [[0, 99, 18, 39, 766, 116, 2, 2, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 141, 16, 37, 373, 116, 2, 2, 13964, 795, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'bbox': [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [256, 38, 330, 58], [256, 38, 330, 58], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: skip encoding_p = tokenizer_p(questions, words, boxes, padding="max_length", max_length=20) encoding_r = tokenizer_r(questions, words, boxes, padding="max_length", max_length=20) self.assertDictEqual(dict(encoding_p), expected_results) self.assertDictEqual(dict(encoding_r), expected_results) @unittest.skip("Doesn't support another framework than PyTorch") def test_np_encode_plus_sent_to_model(self): pass @require_tf @slow def test_tf_encode_plus_sent_to_model(self): from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return model = model_class(config) # Make sure the model contains at least the full vocabulary size in its embedding matrix self.assertGreaterEqual(model.config.vocab_size, len(tokenizer)) # Build sequence first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] boxes = [[1000, 1000, 1000, 1000] for _ in range(len(first_ten_tokens))] encoded_sequence = tokenizer.encode_plus(first_ten_tokens, boxes=boxes, return_tensors="tf") batch_encoded_sequence = tokenizer.batch_encode_plus( [first_ten_tokens, first_ten_tokens], boxes=[boxes, boxes], return_tensors="tf" ) # This should not fail model(encoded_sequence) model(batch_encoded_sequence) @unittest.skip("Chat is not supported") def test_chat_template(self): pass
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/layoutlmv3/test_processor_layoutlmv3.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from typing import List import numpy as np from transformers import PreTrainedTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast from transformers.models.layoutlmv3 import LayoutLMv3Tokenizer, LayoutLMv3TokenizerFast from transformers.models.layoutlmv3.tokenization_layoutlmv3 import VOCAB_FILES_NAMES from transformers.testing_utils import require_pytesseract, require_tokenizers, require_torch, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, cached_property, is_pytesseract_available if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMv3ImageProcessor, LayoutLMv3Processor @require_pytesseract @require_tokenizers class LayoutLMv3ProcessorTest(unittest.TestCase): tokenizer_class = LayoutLMv3Tokenizer rust_tokenizer_class = LayoutLMv3TokenizerFast def setUp(self): # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] self.tmpdirname = tempfile.mkdtemp() vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) image_processor_map = { "do_resize": True, "size": 224, "apply_ocr": True, } self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME) with open(self.feature_extraction_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(image_processor_map) + "\n") def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast: return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_tokenizers(self, **kwargs) -> List[PreTrainedTokenizerBase]: return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)] def get_image_processor(self, **kwargs): return LayoutLMv3ImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): image_processor = self.get_image_processor() tokenizers = self.get_tokenizers() for tokenizer in tokenizers: processor = LayoutLMv3Processor(image_processor=image_processor, tokenizer=tokenizer) processor.save_pretrained(self.tmpdirname) processor = LayoutLMv3Processor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, (LayoutLMv3Tokenizer, LayoutLMv3TokenizerFast)) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor.image_processor, LayoutLMv3ImageProcessor) def test_save_load_pretrained_additional_features(self): processor = LayoutLMv3Processor(image_processor=self.get_image_processor(), tokenizer=self.get_tokenizer()) processor.save_pretrained(self.tmpdirname) # slow tokenizer tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_resize=False, size=30) processor = LayoutLMv3Processor.from_pretrained( self.tmpdirname, use_fast=False, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, LayoutLMv3Tokenizer) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, LayoutLMv3ImageProcessor) # fast tokenizer tokenizer_add_kwargs = self.get_rust_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_resize=False, size=30) processor = LayoutLMv3Processor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, LayoutLMv3TokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, LayoutLMv3ImageProcessor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = LayoutLMv3Processor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() # add extra args inputs = processor(text=input_str, images=image_input, return_codebook_pixels=False, return_image_mask=False) self.assertListEqual(list(inputs.keys()), processor.model_input_names) # different use cases tests @require_torch @require_pytesseract class LayoutLMv3ProcessorIntegrationTests(unittest.TestCase): @cached_property def get_images(self): # we verify our implementation on 2 document images from the DocVQA dataset from datasets import load_dataset ds = load_dataset("hf-internal-testing/fixtures_docvqa", split="test") image_1 = Image.open(ds[0]["file"]).convert("RGB") image_2 = Image.open(ds[1]["file"]).convert("RGB") return image_1, image_2 @cached_property def get_tokenizers(self): slow_tokenizer = LayoutLMv3Tokenizer.from_pretrained("microsoft/layoutlmv3-base", add_visual_labels=False) fast_tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base", add_visual_labels=False) return [slow_tokenizer, fast_tokenizer] @slow def test_processor_case_1(self): # case 1: document image classification (training, inference) + token classification (inference), apply_ocr = True image_processor = LayoutLMv3ImageProcessor() tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv3Processor(image_processor=image_processor, tokenizer=tokenizer) # not batched input_image_proc = image_processor(images[0], return_tensors="pt") input_processor = processor(images[0], return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "input_ids", "pixel_values"] actual_keys = sorted(input_processor.keys()) self.assertListEqual(actual_keys, expected_keys) # verify image self.assertAlmostEqual( input_image_proc["pixel_values"].sum(), input_processor["pixel_values"].sum(), delta=1e-2 ) # verify input_ids # this was obtained with Tesseract 4.1.1 expected_decoding = "<s> 11:14 to 11:39 a.m 11:39 to 11:44 a.m. 11:44 a.m. to 12:25 p.m. 12:25 to 12:58 p.m. 12:58 to 4:00 p.m. 2:00 to 5:00 p.m. Coffee Break Coffee will be served for men and women in the lobby adjacent to exhibit area. Please move into exhibit area. (Exhibits Open) TRRF GENERAL SESSION (PART |) Presiding: Lee A. Waller TRRF Vice President “Introductory Remarks” Lee A. Waller, TRRF Vice Presi- dent Individual Interviews with TRRF Public Board Members and Sci- entific Advisory Council Mem- bers Conducted by TRRF Treasurer Philip G. Kuehn to get answers which the public refrigerated warehousing industry is looking for. Plus questions from the floor. Dr. Emil M. Mrak, University of Cal- ifornia, Chairman, TRRF Board; Sam R. Cecil, University of Georgia College of Agriculture; Dr. Stanley Charm, Tufts University School of Medicine; Dr. Robert H. Cotton, ITT Continental Baking Company; Dr. Owen Fennema, University of Wis- consin; Dr. Robert E. Hardenburg, USDA. Questions and Answers Exhibits Open Capt. Jack Stoney Room TRRF Scientific Advisory Council Meeting Ballroom Foyer</s>" # fmt: skip decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # batched input_image_proc = image_processor(images, return_tensors="pt") input_processor = processor(images, padding=True, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "input_ids", "pixel_values"] actual_keys = sorted(input_processor.keys()) self.assertListEqual(actual_keys, expected_keys) # verify images self.assertAlmostEqual( input_image_proc["pixel_values"].sum(), input_processor["pixel_values"].sum(), delta=1e-2 ) # verify input_ids # this was obtained with Tesseract 4.1.1 expected_decoding = "<s> 7 ITC Limited REPORT AND ACCOUNTS 2013 ITC’s Brands: An Asset for the Nation The consumer needs and aspirations they fulfil, the benefit they generate for millions across ITC’s value chains, the future-ready capabilities that support them, and the value that they create for the country, have made ITC’s brands national assets, adding to India’s competitiveness. It is ITC’s aspiration to be the No 1 FMCG player in the country, driven by its new FMCG businesses. A recent Nielsen report has highlighted that ITC's new FMCG businesses are the fastest growing among the top consumer goods companies operating in India. ITC takes justifiable pride that, along with generating economic value, these celebrated Indian brands also drive the creation of larger societal capital through the virtuous cycle of sustainable and inclusive growth. DI WILLS * ; LOVE DELIGHTFULLY SOFT SKIN? aia Ans Source: https://www.industrydocuments.ucsf.edu/docs/snbx0223</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>" # fmt: skip decoding = processor.decode(input_processor.input_ids[1].tolist()) self.assertSequenceEqual(decoding, expected_decoding) @slow def test_processor_case_2(self): # case 2: document image classification (training, inference) + token classification (inference), apply_ocr=False image_processor = LayoutLMv3ImageProcessor(apply_ocr=False) tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv3Processor(image_processor=image_processor, tokenizer=tokenizer) # not batched words = ["hello", "world"] boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] input_processor = processor(images[0], words, boxes=boxes, return_tensors="pt") # verify keys expected_keys = ["input_ids", "bbox", "attention_mask", "pixel_values"] actual_keys = list(input_processor.keys()) for key in expected_keys: self.assertIn(key, actual_keys) # verify input_ids expected_decoding = "<s> hello world</s>" decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # batched words = [["hello", "world"], ["my", "name", "is", "niels"]] boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]] input_processor = processor(images, words, boxes=boxes, padding=True, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "input_ids", "pixel_values"] actual_keys = sorted(input_processor.keys()) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "<s> hello world</s><pad><pad><pad>" decoding = processor.decode(input_processor.input_ids[0].tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify bbox expected_bbox = [ [0, 0, 0, 0], [3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3], [1, 1, 2, 3], [0, 0, 0, 0], ] self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox) @slow def test_processor_case_3(self): # case 3: token classification (training), apply_ocr=False image_processor = LayoutLMv3ImageProcessor(apply_ocr=False) tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv3Processor(image_processor=image_processor, tokenizer=tokenizer) # not batched words = ["weirdly", "world"] boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] word_labels = [1, 2] input_processor = processor(images[0], words, boxes=boxes, word_labels=word_labels, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "input_ids", "labels", "pixel_values"] actual_keys = sorted(input_processor.keys()) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "<s> weirdly world</s>" decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify labels expected_labels = [-100, 1, -100, 2, -100] self.assertListEqual(input_processor.labels.squeeze().tolist(), expected_labels) # batched words = [["hello", "world"], ["my", "name", "is", "niels"]] boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]] word_labels = [[1, 2], [6, 3, 10, 2]] input_processor = processor( images, words, boxes=boxes, word_labels=word_labels, padding=True, return_tensors="pt" ) # verify keys expected_keys = ["attention_mask", "bbox", "input_ids", "labels", "pixel_values"] actual_keys = sorted(input_processor.keys()) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "<s> my name is niels</s>" decoding = processor.decode(input_processor.input_ids[1].tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify bbox expected_bbox = [ [0, 0, 0, 0], [3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3], [1, 1, 2, 3], [0, 0, 0, 0], ] self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox) # verify labels expected_labels = [-100, 6, 3, 10, 2, -100, -100] self.assertListEqual(input_processor.labels[1].tolist(), expected_labels) @slow def test_processor_case_4(self): # case 4: visual question answering (inference), apply_ocr=True image_processor = LayoutLMv3ImageProcessor() tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv3Processor(image_processor=image_processor, tokenizer=tokenizer) # not batched question = "What's his name?" input_processor = processor(images[0], question, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "input_ids", "pixel_values"] actual_keys = sorted(input_processor.keys()) self.assertListEqual(actual_keys, expected_keys) # verify input_ids # this was obtained with Tesseract 4.1.1 expected_decoding = "<s> What's his name?</s></s> 11:14 to 11:39 a.m 11:39 to 11:44 a.m. 11:44 a.m. to 12:25 p.m. 12:25 to 12:58 p.m. 12:58 to 4:00 p.m. 2:00 to 5:00 p.m. Coffee Break Coffee will be served for men and women in the lobby adjacent to exhibit area. Please move into exhibit area. (Exhibits Open) TRRF GENERAL SESSION (PART |) Presiding: Lee A. Waller TRRF Vice President “Introductory Remarks” Lee A. Waller, TRRF Vice Presi- dent Individual Interviews with TRRF Public Board Members and Sci- entific Advisory Council Mem- bers Conducted by TRRF Treasurer Philip G. Kuehn to get answers which the public refrigerated warehousing industry is looking for. Plus questions from the floor. Dr. Emil M. Mrak, University of Cal- ifornia, Chairman, TRRF Board; Sam R. Cecil, University of Georgia College of Agriculture; Dr. Stanley Charm, Tufts University School of Medicine; Dr. Robert H. Cotton, ITT Continental Baking Company; Dr. Owen Fennema, University of Wis- consin; Dr. Robert E. Hardenburg, USDA. Questions and Answers Exhibits Open Capt. Jack Stoney Room TRRF Scientific Advisory Council Meeting Ballroom Foyer</s>" # fmt: skip decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # batched questions = ["How old is he?", "what's the time"] input_processor = processor( images, questions, padding="max_length", max_length=20, truncation=True, return_tensors="pt" ) # verify keys expected_keys = ["attention_mask", "bbox", "input_ids", "pixel_values"] actual_keys = sorted(input_processor.keys()) self.assertListEqual(actual_keys, expected_keys) # verify input_ids # this was obtained with Tesseract 4.1.1 expected_decoding = "<s> what's the time</s></s> 7 ITC Limited REPORT AND ACCOUNTS 2013 ITC</s>" decoding = processor.decode(input_processor.input_ids[1].tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify bbox expected_bbox = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 45, 67, 80], [72, 56, 109, 67], [72, 56, 109, 67], [116, 56, 189, 67], [198, 59, 253, 66], [257, 59, 285, 66], [289, 59, 365, 66], [289, 59, 365, 66], [289, 59, 365, 66], [372, 59, 407, 66], [74, 136, 161, 158], [74, 136, 161, 158], [0, 0, 0, 0]] # fmt: skip self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox) @slow def test_processor_case_5(self): # case 5: visual question answering (inference), apply_ocr=False image_processor = LayoutLMv3ImageProcessor(apply_ocr=False) tokenizers = self.get_tokenizers images = self.get_images for tokenizer in tokenizers: processor = LayoutLMv3Processor(image_processor=image_processor, tokenizer=tokenizer) # not batched question = "What's his name?" words = ["hello", "world"] boxes = [[1, 2, 3, 4], [5, 6, 7, 8]] input_processor = processor(images[0], question, words, boxes, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "input_ids", "pixel_values"] actual_keys = sorted(input_processor.keys()) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "<s> What's his name?</s></s> hello world</s>" decoding = processor.decode(input_processor.input_ids.squeeze().tolist()) self.assertSequenceEqual(decoding, expected_decoding) # batched questions = ["How old is he?", "what's the time"] words = [["hello", "world"], ["my", "name", "is", "niels"]] boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]] input_processor = processor(images, questions, words, boxes, padding=True, return_tensors="pt") # verify keys expected_keys = ["attention_mask", "bbox", "input_ids", "pixel_values"] actual_keys = sorted(input_processor.keys()) self.assertListEqual(actual_keys, expected_keys) # verify input_ids expected_decoding = "<s> How old is he?</s></s> hello world</s><pad><pad>" decoding = processor.decode(input_processor.input_ids[0].tolist()) self.assertSequenceEqual(decoding, expected_decoding) expected_decoding = "<s> what's the time</s></s> my name is niels</s>" decoding = processor.decode(input_processor.input_ids[1].tolist()) self.assertSequenceEqual(decoding, expected_decoding) # verify bbox expected_bbox = [[6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3], [1, 1, 2, 3], [0, 0, 0, 0]] self.assertListEqual(input_processor.bbox[1].tolist()[-5:], expected_bbox)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/layoutlmv3/test_modeling_tf_layoutlmv3.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow LayoutLMv3 model. """ from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMv3Config, TFLayoutLMv3ForQuestionAnswering, TFLayoutLMv3ForSequenceClassification, TFLayoutLMv3ForTokenClassification, TFLayoutLMv3Model, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMv3ImageProcessor class TFLayoutLMv3ModelTester: def __init__( self, parent, batch_size=2, num_channels=3, image_size=4, patch_size=2, text_seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=36, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, coordinate_size=6, shape_size=6, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.coordinate_size = coordinate_size self.shape_size = shape_size self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) self.text_seq_length = text_seq_length self.image_seq_length = (image_size // patch_size) ** 2 + 1 self.seq_length = self.text_seq_length + self.image_seq_length def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) bbox = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: tmp_coordinate = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: tmp_coordinate = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = tmp_coordinate bbox = tf.constant(bbox) pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) sequence_labels = None token_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) config = LayoutLMv3Config( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def create_and_check_model(self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask): model = TFLayoutLMv3Model(config=config) # text + image result = model(input_ids, pixel_values=pixel_values, training=False) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, training=False, ) result = model(input_ids, bbox=bbox, pixel_values=pixel_values, training=False) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # text only result = model(input_ids, training=False) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only result = model({"pixel_values": pixel_values}, training=False) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ): config.num_labels = self.num_labels model = TFLayoutLMv3ForSequenceClassification(config=config) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, training=False, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels ): config.num_labels = self.num_labels model = TFLayoutLMv3ForTokenClassification(config=config) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, training=False, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ): config.num_labels = 2 model = TFLayoutLMv3ForQuestionAnswering(config=config) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, training=False, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class TFLayoutLMv3ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFLayoutLMv3Model, TFLayoutLMv3ForQuestionAnswering, TFLayoutLMv3ForSequenceClassification, TFLayoutLMv3ForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( {"document-question-answering": TFLayoutLMv3ForQuestionAnswering, "feature-extraction": TFLayoutLMv3Model} if is_tf_available() else {} ) test_pruning = False test_resize_embeddings = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return True def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: inputs_dict = copy.deepcopy(inputs_dict) if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict = { k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(v, tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING): inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING): inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) elif model_class in get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING): inputs_dict["labels"] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.int32 ) return inputs_dict def setUp(self): self.model_tester = TFLayoutLMv3ModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMv3Config, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) if getattr(model, "hf_compute_loss", None): # The number of elements in the loss should be the same as the number of elements in the label prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) added_label = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0] ] expected_loss_size = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) input_ids = prepared_for_class.pop("input_ids") loss = model(input_ids, **prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss when we mask some positions prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) input_ids = prepared_for_class.pop("input_ids") if "labels" in prepared_for_class: labels = prepared_for_class["labels"].numpy() if len(labels.shape) > 1 and labels.shape[1] != 1: labels[0] = -100 prepared_for_class["labels"] = tf.convert_to_tensor(labels) loss = model(input_ids, **prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) self.assertTrue(not np.any(np.isnan(loss.numpy()))) # Test that model correctly compute the loss with a dict prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) loss = model(prepared_for_class)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss with a tuple prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) # Get keys that were added with the _prepare_for_class function label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: "input_ids"} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) def test_model(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask) def test_model_various_embeddings(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _, ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config.position_embedding_type = type self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask) def test_for_sequence_classification(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, _, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ) def test_for_token_classification(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, token_labels, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels ) def test_for_question_answering(self): ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, _, ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels ) @slow def test_model_from_pretrained(self): model_name = "microsoft/layoutlmv3-base" model = TFLayoutLMv3Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf class TFLayoutLMv3ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return LayoutLMv3ImageProcessor(apply_ocr=False) if is_vision_available() else None @slow def test_inference_no_head(self): model = TFLayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base") image_processor = self.default_image_processor image = prepare_img() pixel_values = image_processor(images=image, return_tensors="tf").pixel_values input_ids = tf.constant([[1, 2]]) bbox = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]), axis=0) # forward pass outputs = model(input_ids=input_ids, bbox=bbox, pixel_values=pixel_values, training=False) # verify the logits expected_shape = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/layoutlmv3/test_image_processing_layoutlmv3.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMv3ImageProcessor class LayoutLMv3ImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, apply_ocr=True, ): size = size if size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.apply_ocr = apply_ocr def prepare_image_processor_dict(self): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_pytesseract class LayoutLMv3ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = LayoutLMv3ImageProcessor if is_pytesseract_available() else None def setUp(self): self.image_processor_tester = LayoutLMv3ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "apply_ocr")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) def test_LayoutLMv3_integration_test(self): # with apply_OCR = True image_processing = LayoutLMv3ImageProcessor() from datasets import load_dataset ds = load_dataset("hf-internal-testing/fixtures_docvqa", split="test") image = Image.open(ds[0]["file"]).convert("RGB") encoding = image_processing(image, return_tensors="pt") self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224)) self.assertEqual(len(encoding.words), len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 5.3.0 expected_words = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 expected_boxes = [[[141, 57, 210, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [695, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, expected_words) self.assertListEqual(encoding.boxes, expected_boxes) # with apply_OCR = False image_processing = LayoutLMv3ImageProcessor(apply_ocr=False) encoding = image_processing(image, return_tensors="pt") self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/layoutlmv3/test_modeling_layoutlmv3.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch LayoutLMv3 model. """ import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMv3Config, LayoutLMv3ForQuestionAnswering, LayoutLMv3ForSequenceClassification, LayoutLMv3ForTokenClassification, LayoutLMv3Model, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMv3ImageProcessor class LayoutLMv3ModelTester: def __init__( self, parent, batch_size=2, num_channels=3, image_size=4, patch_size=2, text_seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=36, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, coordinate_size=6, shape_size=6, num_labels=3, num_choices=4, scope=None, range_bbox=1000, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.text_seq_length = text_seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.coordinate_size = coordinate_size self.shape_size = shape_size self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.range_bbox = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) self.text_seq_length = text_seq_length self.image_seq_length = (image_size // patch_size) ** 2 + 1 self.seq_length = self.text_seq_length + self.image_seq_length def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) bbox = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: t = bbox[i, j, 3] bbox[i, j, 3] = bbox[i, j, 1] bbox[i, j, 1] = t if bbox[i, j, 2] < bbox[i, j, 0]: t = bbox[i, j, 2] bbox[i, j, 2] = bbox[i, j, 0] bbox[i, j, 0] = t pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) sequence_labels = None token_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) config = LayoutLMv3Config( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def create_and_check_model( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels ): model = LayoutLMv3Model(config=config) model.to(torch_device) model.eval() # text + image result = model(input_ids, pixel_values=pixel_values) result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids ) result = model(input_ids, bbox=bbox, pixel_values=pixel_values, token_type_ids=token_type_ids) result = model(input_ids, bbox=bbox, pixel_values=pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # text only result = model(input_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only result = model(pixel_values=pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def create_and_check_for_sequence_classification( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels ): config.num_labels = self.num_labels model = LayoutLMv3ForSequenceClassification(config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels ): config.num_labels = self.num_labels model = LayoutLMv3ForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels ): model = LayoutLMv3ForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class LayoutLMv3ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): test_pruning = False test_torchscript = False test_mismatched_shapes = False all_model_classes = ( ( LayoutLMv3Model, LayoutLMv3ForSequenceClassification, LayoutLMv3ForTokenClassification, LayoutLMv3ForQuestionAnswering, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"document-question-answering": LayoutLMv3ForQuestionAnswering, "feature-extraction": LayoutLMv3Model} if is_torch_available() else {} ) # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def setUp(self): self.model_tester = LayoutLMv3ModelTester(self) self.config_tester = ConfigTester(self, config_class=LayoutLMv3Config, hidden_size=37) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict = { k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() if isinstance(v, torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING): inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device) elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING): inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class in [ *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), ]: inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class in [ *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING), ]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=torch.long, device=torch_device, ) return inputs_dict def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "microsoft/layoutlmv3-base" model = LayoutLMv3Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch class LayoutLMv3ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return LayoutLMv3ImageProcessor(apply_ocr=False) if is_vision_available() else None @slow def test_inference_no_head(self): model = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base").to(torch_device) image_processor = self.default_image_processor image = prepare_img() pixel_values = image_processor(images=image, return_tensors="pt").pixel_values.to(torch_device) input_ids = torch.tensor([[1, 2]]) bbox = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass outputs = model( input_ids=input_ids.to(torch_device), bbox=bbox.to(torch_device), pixel_values=pixel_values.to(torch_device), ) # verify the logits expected_shape = torch.Size((1, 199, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/deberta/test_modeling_tf_deberta.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import DebertaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, ) class TFDebertaModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.relative_attention = False self.max_relative_positions = -1 self.position_biased_input = True self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, max_relative_positions=self.max_relative_positions, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=True, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDebertaForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDebertaForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFDebertaModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFDebertaModel, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFDebertaModel, "fill-mask": TFDebertaForMaskedLM, "question-answering": TFDebertaForQuestionAnswering, "text-classification": TFDebertaForSequenceClassification, "token-classification": TFDebertaForTokenClassification, "zero-shot": TFDebertaForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFDebertaModelTester(self) self.config_tester = ConfigTester(self, config_class=DebertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFDebertaModel.from_pretrained("kamalkraj/deberta-base") self.assertIsNotNone(model) @require_tf class TFDeBERTaModelIntegrationTest(unittest.TestCase): @unittest.skip(reason="Model not available yet") def test_inference_masked_lm(self): pass @slow def test_inference_no_head(self): model = TFDebertaModel.from_pretrained("kamalkraj/deberta-base") input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_slice = tf.constant( [ [ [-0.59855896, -0.80552566, -0.8462135], [1.4484025, -0.93483794, -0.80593085], [0.3122741, 0.00316059, -1.4131377], ] ] ) tf.debugging.assert_near(output[:, 1:4, 1:4], expected_slice, atol=1e-4)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/deberta/test_tokenization_deberta.py
# coding=utf-8 # Copyright 2019 Hugging Face inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class DebertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "microsoft/deberta-base" tokenizer_class = DebertaTokenizer test_rust_tokenizer = True rust_tokenizer_class = DebertaTokenizerFast def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "[UNK]"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.get_tokenizer() text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def test_token_type_ids(self): tokenizer = self.get_tokenizer() tokd = tokenizer("Hello", "World") expected_token_type_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"], expected_token_type_ids) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("microsoft/deberta-base") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def test_tokenizer_integration(self): tokenizer_classes = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: tokenizer = tokenizer_class.from_pretrained("microsoft/deberta-base") sequences = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] encoding = tokenizer(sequences, padding=True) decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] # fmt: off expected_encoding = { 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on expected_decoded_sequence = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data, expected_encoding) for expected, decoded in zip(expected_decoded_sequence, decoded_sequences): self.assertEqual(expected, decoded)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/deberta/test_modeling_deberta.py
# coding=utf-8 # Copyright 2018 Microsoft Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) class DebertaModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, relative_attention=False, position_biased_input=True, pos_att_type="None", num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.relative_attention = relative_attention self.position_biased_input = position_biased_input self.pos_att_type = pos_att_type self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def check_loss_output(self, result): self.parent.assertListEqual(list(result.loss.size()), []) def create_and_check_deberta_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaModel(config=config) model.to(torch_device) model.eval() sequence_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)[0] sequence_output = model(input_ids, token_type_ids=token_type_ids)[0] sequence_output = model(input_ids)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def create_and_check_deberta_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_deberta_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DebertaForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(result) def create_and_check_deberta_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DebertaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_deberta_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class DebertaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True test_torchscript = False test_pruning = False test_head_masking = False is_encoder_decoder = False def setUp(self): self.model_tester = DebertaModelTester(self) self.config_tester = ConfigTester(self, config_class=DebertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_deberta_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "microsoft/deberta-base" model = DebertaModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch @require_sentencepiece @require_tokenizers class DebertaModelIntegrationTest(unittest.TestCase): @unittest.skip(reason="Model not available yet") def test_inference_masked_lm(self): pass @slow def test_inference_no_head(self): model = DebertaModel.from_pretrained("microsoft/deberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4), f"{output[:, 1:4, 1:4]}")
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/fastspeech2_conformer/test_modeling_fastspeech2_conformer.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch FastSpeech2Conformer model.""" import inspect import tempfile import unittest from transformers import ( FastSpeech2ConformerConfig, FastSpeech2ConformerHifiGanConfig, FastSpeech2ConformerTokenizer, FastSpeech2ConformerWithHifiGanConfig, is_torch_available, ) from transformers.testing_utils import require_g2p_en, require_torch, require_torch_accelerator, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor if is_torch_available(): import torch from transformers import FastSpeech2ConformerModel, FastSpeech2ConformerWithHifiGan, set_seed class FastSpeech2ConformerModelTester: def __init__( self, parent, batch_size=13, num_hidden_layers=1, num_attention_heads=2, hidden_size=24, seq_length=7, encoder_linear_units=384, decoder_linear_units=384, is_training=False, speech_decoder_postnet_units=128, speech_decoder_postnet_layers=2, pitch_predictor_layers=1, energy_predictor_layers=1, duration_predictor_layers=1, num_mel_bins=8, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.vocab_size = hidden_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.encoder_linear_units = encoder_linear_units self.decoder_linear_units = decoder_linear_units self.speech_decoder_postnet_units = speech_decoder_postnet_units self.speech_decoder_postnet_layers = speech_decoder_postnet_layers self.pitch_predictor_layers = pitch_predictor_layers self.energy_predictor_layers = energy_predictor_layers self.duration_predictor_layers = duration_predictor_layers self.num_mel_bins = num_mel_bins def prepare_config_and_inputs(self): config = self.get_config() input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) return config, input_ids def get_config(self): return FastSpeech2ConformerConfig( hidden_size=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_linear_units=self.encoder_linear_units, decoder_linear_units=self.decoder_linear_units, speech_decoder_postnet_units=self.speech_decoder_postnet_units, speech_decoder_postnet_layers=self.speech_decoder_postnet_layers, num_mel_bins=self.num_mel_bins, pitch_predictor_layers=self.pitch_predictor_layers, energy_predictor_layers=self.energy_predictor_layers, duration_predictor_layers=self.duration_predictor_layers, ) def create_and_check_model(self, config, input_ids, *args): model = FastSpeech2ConformerModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, return_dict=True) # total of 5 keys in result self.parent.assertEqual(len(result), 5) # check batch sizes match for value in result.values(): self.parent.assertEqual(value.size(0), self.batch_size) # check duration, pitch, and energy have the appopriate shapes # duration: (batch_size, max_text_length), pitch and energy: (batch_size, max_text_length, 1) self.parent.assertEqual(result["duration_outputs"].shape + (1,), result["pitch_outputs"].shape) self.parent.assertEqual(result["pitch_outputs"].shape, result["energy_outputs"].shape) # check predicted mel-spectrogram has correct dimension self.parent.assertEqual(result["spectrogram"].size(2), model.config.num_mel_bins) def prepare_config_and_inputs_for_common(self): config, input_ids = self.prepare_config_and_inputs() inputs_dict = {"input_ids": input_ids} return config, inputs_dict @require_torch_accelerator @require_torch class FastSpeech2ConformerModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (FastSpeech2ConformerModel,) if is_torch_available() else () test_pruning = False test_headmasking = False test_torchscript = False test_resize_embeddings = False is_encoder_decoder = True def setUp(self): self.model_tester = FastSpeech2ConformerModelTester(self) self.config_tester = ConfigTester(self, config_class=FastSpeech2ConformerConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_initialization(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: msg = f"Parameter {name} of model {model_class} seems not properly initialized" if "norm" in name: if "bias" in name: self.assertEqual(param.data.mean().item(), 0.0, msg=msg) if "weight" in name: self.assertEqual(param.data.mean().item(), 1.0, msg=msg) elif "conv" in name or "embed" in name: self.assertTrue(-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=msg) def test_duration_energy_pitch_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = self.model_tester.seq_length for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # duration self.assertListEqual(list(outputs.duration_outputs.shape), [self.model_tester.batch_size, seq_len]) # energy self.assertListEqual(list(outputs.energy_outputs.shape), [self.model_tester.batch_size, seq_len, 1]) # pitch self.assertListEqual(list(outputs.pitch_outputs.shape), [self.model_tester.batch_size, seq_len, 1]) def test_hidden_states_output(self): def _check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) for idx, hidden_states in enumerate([outputs.encoder_hidden_states, outputs.decoder_hidden_states]): expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) self.assertIsInstance(hidden_states, (list, tuple)) expected_batch_size, expected_seq_length, expected_hidden_size = hidden_states[0].shape self.assertEqual(expected_batch_size, self.model_tester.batch_size) # Only test encoder seq_length since decoder seq_length is variable based on inputs if idx == 0: self.assertEqual(expected_seq_length, self.model_tester.seq_length) self.assertEqual(expected_hidden_size, self.model_tester.hidden_size) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() inputs_dict["output_hidden_states"] = True _check_hidden_states_output(inputs_dict, config, FastSpeech2ConformerModel) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True _check_hidden_states_output(inputs_dict, config, FastSpeech2ConformerModel) def test_save_load_strict(self): config, _ = self.model_tester.prepare_config_and_inputs() model = FastSpeech2ConformerModel(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) _, info = FastSpeech2ConformerModel.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() model = FastSpeech2ConformerModel(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_ids", "attention_mask", "spectrogram_labels", "duration_labels", "pitch_labels", "energy_labels", "speaker_ids", "lang_ids", "speaker_embedding", "return_dict", "output_attentions", "output_hidden_states", ] self.assertListEqual(arg_names, expected_arg_names) # Override as FastSpeech2Conformer does not output cross attentions def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True model = FastSpeech2ConformerModel(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, FastSpeech2ConformerModel) outputs = model(**inputs) output = outputs[0] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() decoder_hidden_states = outputs.decoder_hidden_states[0] decoder_hidden_states.retain_grad() encoder_attentions = outputs.encoder_attentions[0] encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(decoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) def test_attention_outputs(self): """ Custom `test_attention_outputs` since FastSpeech2Conformer does not output cross attentions, has variable decoder attention shape, and uniquely outputs energy, pitch, and durations. """ config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = self.model_tester.seq_length for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(len(outputs.encoder_attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) encoder_attentions = outputs.encoder_attentions self.assertEqual(len(encoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(encoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) correct_outlen = 7 self.assertEqual(out_len, correct_outlen) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) @slow def test_model_from_pretrained(self): model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer") self.assertIsNotNone(model) @unittest.skip(reason="FastSpeech2Conformer does not accept inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="FastSpeech2Conformer has no input embeddings") def test_model_common_attributes(self): pass @unittest.skip( "FastSpeech2Conformer predicts durations in linear domain during inference" "Even small differences on hidden states lead to different durations, due to `torch.round`" ) def test_batching_equivalence(self): pass @require_torch @require_g2p_en @slow class FastSpeech2ConformerModelIntegrationTest(unittest.TestCase): def test_inference_integration(self): model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer") model.to(torch_device) model.eval() tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") text = "Test that this generates speech" input_ids = tokenizer(text, return_tensors="pt").to(torch_device)["input_ids"] outputs_dict = model(input_ids) spectrogram = outputs_dict["spectrogram"] # mel-spectrogram is too large (1, 205, 80), so only check top-left 100 elements # fmt: off expected_mel_spectrogram = torch.tensor( [ [-1.2426, -1.7286, -1.6754, -1.7451, -1.6402, -1.5219, -1.4480, -1.3345, -1.4031, -1.4497], [-0.7858, -1.4966, -1.3602, -1.4876, -1.2949, -1.0723, -1.0021, -0.7553, -0.6521, -0.6929], [-0.7298, -1.3908, -1.0369, -1.2656, -1.0342, -0.7883, -0.7420, -0.5249, -0.3734, -0.3977], [-0.4784, -1.3508, -1.1558, -1.4678, -1.2820, -1.0252, -1.0868, -0.9006, -0.8947, -0.8448], [-0.3963, -1.2895, -1.2813, -1.6147, -1.4658, -1.2560, -1.4134, -1.2650, -1.3255, -1.1715], [-1.4914, -1.3097, -0.3821, -0.3898, -0.5748, -0.9040, -1.0755, -1.0575, -1.2205, -1.0572], [0.0197, -0.0582, 0.9147, 1.1512, 1.1651, 0.6628, -0.1010, -0.3085, -0.2285, 0.2650], [1.1780, 0.1803, 0.7251, 1.5728, 1.6678, 0.4542, -0.1572, -0.1787, 0.0744, 0.8168], [-0.2078, -0.3211, 1.1096, 1.5085, 1.4632, 0.6299, -0.0515, 0.0589, 0.8609, 1.4429], [0.7831, -0.2663, 1.0352, 1.4489, 0.9088, 0.0247, -0.3995, 0.0078, 1.2446, 1.6998], ], device=torch_device, ) # fmt: on self.assertTrue(torch.allclose(spectrogram[0, :10, :10], expected_mel_spectrogram, atol=1e-4)) self.assertEqual(spectrogram.shape, (1, 205, model.config.num_mel_bins)) def test_training_integration(self): model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer") model.to(torch_device) # Set self.training manually to keep deterministic but run the training path model.training = True set_seed(0) tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") text = "Test that this generates speech" input_ids = tokenizer(text, return_tensors="pt").to(torch_device)["input_ids"] # NOTE: Dummy numbers since FastSpeech2Conformer does not have a feature extractor due to the package deps required (librosa, MFA) batch_size, max_text_len = input_ids.shape pitch_labels = torch.rand((batch_size, max_text_len, 1), dtype=torch.float, device=torch_device) energy_labels = torch.rand((batch_size, max_text_len, 1), dtype=torch.float, device=torch_device) duration_labels = torch.normal(10, 2, size=(batch_size, max_text_len)).clamp(1, 20).int() max_target_len, _ = duration_labels.sum(dim=1).max(dim=0) max_target_len = max_target_len.item() spectrogram_labels = torch.rand( (batch_size, max_target_len, model.num_mel_bins), dtype=torch.float, device=torch_device ) outputs_dict = model( input_ids, spectrogram_labels=spectrogram_labels, duration_labels=duration_labels, pitch_labels=pitch_labels, energy_labels=energy_labels, return_dict=True, ) spectrogram = outputs_dict["spectrogram"] loss = outputs_dict["loss"] # # mel-spectrogram is too large (1, 224, 80), so only check top-left 100 elements # fmt: off expected_mel_spectrogram = torch.tensor( [ [-1.0643e+00, -6.8058e-01, -1.0901e+00, -8.2724e-01, -7.7241e-01, -1.1905e+00, -8.5725e-01, -8.2930e-01, -1.1313e+00, -1.2449e+00], [-5.5067e-01, -2.7045e-01, -6.3483e-01, -1.9320e-01, 1.0234e-01, -3.3253e-01, -2.4423e-01, -3.5045e-01, -5.2070e-01, -4.3710e-01], [ 2.2181e-01, 3.1433e-01, -1.2849e-01, 6.0253e-01, 1.0033e+00, 1.3952e-01, 1.2851e-01, -2.3063e-02, -1.5092e-01, 2.4903e-01], [ 4.6343e-01, 4.1820e-01, 1.6468e-01, 1.1297e+00, 1.4588e+00, 1.3737e-01, 6.6355e-02, -6.0973e-02, -5.4225e-02, 5.9208e-01], [ 5.2762e-01, 4.8725e-01, 4.2735e-01, 1.4392e+00, 1.7398e+00, 2.4891e-01, -8.4531e-03, -8.1282e-02, 1.2857e-01, 8.7559e-01], [ 5.2548e-01, 5.1653e-01, 5.2034e-01, 1.3782e+00, 1.5972e+00, 1.6380e-01, -5.1807e-02, 1.5474e-03, 2.2824e-01, 8.5288e-01], [ 3.6356e-01, 4.4109e-01, 4.4257e-01, 9.4273e-01, 1.1201e+00, -9.0551e-03, -1.1627e-01, -2.0821e-02, 1.0793e-01, 5.0336e-01], [ 3.6598e-01, 3.2708e-01, 1.3297e-01, 4.5162e-01, 6.4168e-01, -2.6923e-01, -2.3101e-01, -1.4943e-01, -1.4732e-01, 7.3057e-02], [ 2.7639e-01, 2.2588e-01, -1.5310e-01, 1.0957e-01, 3.3048e-01, -5.3431e-01, -3.3822e-01, -2.8007e-01, -3.3823e-01, -1.5775e-01], [ 2.9323e-01, 1.6723e-01, -3.4153e-01, -1.1209e-01, 1.7355e-01, -6.1724e-01, -5.4201e-01, -4.9944e-01, -5.2212e-01, -2.7596e-01] ], device=torch_device, ) # fmt: on expected_loss = torch.tensor(74.4595, device=torch_device) self.assertTrue(torch.allclose(spectrogram[0, :10, :10], expected_mel_spectrogram, atol=1e-3)) self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4)) self.assertEqual(spectrogram.shape, (1, 224, model.config.num_mel_bins)) class FastSpeech2ConformerWithHifiGanTester: def __init__( self, parent, batch_size=13, num_hidden_layers=1, num_attention_heads=2, hidden_size=24, seq_length=7, encoder_linear_units=384, decoder_linear_units=384, is_training=False, speech_decoder_postnet_units=128, speech_decoder_postnet_layers=2, pitch_predictor_layers=1, energy_predictor_layers=1, duration_predictor_layers=1, num_mel_bins=8, upsample_initial_channel=64, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.vocab_size = hidden_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.encoder_linear_units = encoder_linear_units self.decoder_linear_units = decoder_linear_units self.speech_decoder_postnet_units = speech_decoder_postnet_units self.speech_decoder_postnet_layers = speech_decoder_postnet_layers self.pitch_predictor_layers = pitch_predictor_layers self.energy_predictor_layers = energy_predictor_layers self.duration_predictor_layers = duration_predictor_layers self.num_mel_bins = num_mel_bins self.upsample_initial_channel = upsample_initial_channel def prepare_config_and_inputs(self): config = self.get_config() input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) return config, input_ids def get_config(self): self.model_config = FastSpeech2ConformerConfig( hidden_size=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_linear_units=self.encoder_linear_units, decoder_linear_units=self.decoder_linear_units, speech_decoder_postnet_units=self.speech_decoder_postnet_units, speech_decoder_postnet_layers=self.speech_decoder_postnet_layers, num_mel_bins=self.num_mel_bins, pitch_predictor_layers=self.pitch_predictor_layers, energy_predictor_layers=self.energy_predictor_layers, duration_predictor_layers=self.duration_predictor_layers, ) self.vocoder_config = FastSpeech2ConformerHifiGanConfig( model_in_dim=self.num_mel_bins, upsample_initial_channel=self.upsample_initial_channel ) return FastSpeech2ConformerWithHifiGanConfig( model_config=self.model_config.to_dict(), vocoder_config=self.vocoder_config.to_dict() ) def create_and_check_model(self, config, input_ids, *args): model = FastSpeech2ConformerWithHifiGan(config=config) model.to(torch_device) model.eval() result = model(input_ids, return_dict=True) # total of 5 keys in result self.parent.assertEqual(len(result), 6) # check batch sizes match for value in result.values(): self.parent.assertEqual(value.size(0), self.batch_size) # check duration, pitch, and energy have the appopriate shapes # duration: (batch_size, max_text_length), pitch and energy: (batch_size, max_text_length, 1) self.parent.assertEqual(result["duration_outputs"].shape + (1,), result["pitch_outputs"].shape) self.parent.assertEqual(result["pitch_outputs"].shape, result["energy_outputs"].shape) # check predicted mel-spectrogram has correct dimension self.parent.assertEqual(result["spectrogram"].size(2), model.config.model_config.num_mel_bins) def prepare_config_and_inputs_for_common(self): config, input_ids = self.prepare_config_and_inputs() inputs_dict = {"input_ids": input_ids} return config, inputs_dict @require_torch_accelerator @require_torch class FastSpeech2ConformerWithHifiGanTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (FastSpeech2ConformerWithHifiGan,) if is_torch_available() else () test_pruning = False test_headmasking = False test_torchscript = False test_resize_embeddings = False is_encoder_decoder = True def setUp(self): self.model_tester = FastSpeech2ConformerWithHifiGanTester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_initialization(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: msg = f"Parameter {name} of model {model_class} seems not properly initialized" if "norm" in name: if "bias" in name: self.assertEqual(param.data.mean().item(), 0.0, msg=msg) if "weight" in name: self.assertEqual(param.data.mean().item(), 1.0, msg=msg) elif "conv" in name or "embed" in name: self.assertTrue(-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=msg) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): return inputs_dict def test_duration_energy_pitch_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.model_config.return_dict = True seq_len = self.model_tester.seq_length for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # duration self.assertListEqual(list(outputs.duration_outputs.shape), [self.model_tester.batch_size, seq_len]) # energy self.assertListEqual(list(outputs.energy_outputs.shape), [self.model_tester.batch_size, seq_len, 1]) # pitch self.assertListEqual(list(outputs.pitch_outputs.shape), [self.model_tester.batch_size, seq_len, 1]) def test_hidden_states_output(self): def _check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) for idx, hidden_states in enumerate([outputs.encoder_hidden_states, outputs.decoder_hidden_states]): expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) self.assertIsInstance(hidden_states, (list, tuple)) expected_batch_size, expected_seq_length, expected_hidden_size = hidden_states[0].shape self.assertEqual(expected_batch_size, self.model_tester.batch_size) # Only test encoder seq_length since decoder seq_length is variable based on inputs if idx == 0: self.assertEqual(expected_seq_length, self.model_tester.seq_length) self.assertEqual(expected_hidden_size, self.model_tester.hidden_size) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() inputs_dict["output_hidden_states"] = True _check_hidden_states_output(inputs_dict, config, FastSpeech2ConformerWithHifiGan) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.model_config.output_hidden_states = True _check_hidden_states_output(inputs_dict, config, FastSpeech2ConformerWithHifiGan) def test_save_load_strict(self): config, _ = self.model_tester.prepare_config_and_inputs() model = FastSpeech2ConformerWithHifiGan(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) _, info = FastSpeech2ConformerWithHifiGan.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() model = FastSpeech2ConformerWithHifiGan(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_ids", "attention_mask", "spectrogram_labels", "duration_labels", "pitch_labels", "energy_labels", "speaker_ids", "lang_ids", "speaker_embedding", "return_dict", "output_attentions", "output_hidden_states", ] self.assertListEqual(arg_names, expected_arg_names) # Override as FastSpeech2Conformer does not output cross attentions def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.model_config.output_hidden_states = True config.model_config.output_attentions = True model = FastSpeech2ConformerWithHifiGan(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, FastSpeech2ConformerModel) outputs = model(**inputs) output = outputs[0] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() decoder_hidden_states = outputs.decoder_hidden_states[0] decoder_hidden_states.retain_grad() encoder_attentions = outputs.encoder_attentions[0] encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(decoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) def test_attention_outputs(self): """ Custom `test_attention_outputs` since FastSpeech2Conformer does not output cross attentions, has variable decoder attention shape, and uniquely outputs energy, pitch, and durations. """ config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.model_config.return_dict = True seq_len = self.model_tester.seq_length for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.model_config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(len(outputs.encoder_attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.model_config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) encoder_attentions = outputs.encoder_attentions self.assertEqual(len(encoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(encoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) correct_outlen = 8 self.assertEqual(out_len, correct_outlen) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) @slow def test_model_from_pretrained(self): model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer") self.assertIsNotNone(model) @unittest.skip(reason="FastSpeech2Conformer does not accept inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="FastSpeech2Conformer has no input embeddings") def test_model_common_attributes(self): pass @unittest.skip( "FastSpeech2Conformer predicts durations in linear domain during inference" "Even small differences on hidden states lead to different durations, due to `torch.round`" ) def test_batching_equivalence(self): pass @require_torch @require_g2p_en @slow class FastSpeech2ConformerWithHifiGanIntegrationTest(unittest.TestCase): def test_inference_integration(self): model = FastSpeech2ConformerWithHifiGan.from_pretrained("espnet/fastspeech2_conformer_with_hifigan") model.to(torch_device) model.eval() tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") text = "Test that this generates speech" input_ids = tokenizer(text, return_tensors="pt").to(torch_device)["input_ids"] output = model(input_ids) waveform = output.waveform # waveform is too large (1, 52480), so only check first 100 elements # fmt: off expected_waveform = torch.tensor( [ [-9.6345e-04, 1.3557e-03, 5.7559e-04, 2.4706e-04, 2.2675e-04, 1.2258e-04, 4.7784e-04, 1.0109e-03, -1.9718e-04, 6.3495e-04, 3.2106e-04, 6.3620e-05, 9.1713e-04, -2.5664e-05, 1.9596e-04, 6.0418e-04, 8.1112e-04, 3.6342e-04, -6.3396e-04, -2.0146e-04, -1.1768e-04, 4.3155e-04, 7.5599e-04, -2.2972e-04, -9.5665e-05, 3.3078e-04, 1.3793e-04, -1.4932e-04, -3.9645e-04, 3.6473e-05, -1.7224e-04, -4.5370e-05, -4.8950e-04, -4.3059e-04, 1.0451e-04, -1.0485e-03, -6.0410e-04, 1.6990e-04, -2.1997e-04, -3.8769e-04, -7.6898e-04, -3.2372e-04, -1.9783e-04, 5.2896e-05, -1.0586e-03, -7.8516e-04, 7.6867e-04, -8.5331e-05, -4.8158e-04, -4.5362e-05, -1.0770e-04, 6.6823e-04, 3.0765e-04, 3.3669e-04, 9.5677e-04, 1.0458e-03, 5.8129e-04, 3.3737e-04, 1.0816e-03, 7.0346e-04, 4.2378e-04, 4.3131e-04, 2.8095e-04, 1.2201e-03, 5.6121e-04, -1.1086e-04, 4.9908e-04, 1.5586e-04, 4.2046e-04, -2.8088e-04, -2.2462e-04, -1.5539e-04, -7.0126e-04, -2.8577e-04, -3.3693e-04, -1.2471e-04, -6.9104e-04, -1.2867e-03, -6.2651e-04, -2.5586e-04, -1.3201e-04, -9.4537e-04, -4.8438e-04, 4.1458e-04, 6.4109e-04, 1.0891e-04, -6.3764e-04, 4.5573e-04, 8.2974e-04, 3.2973e-06, -3.8274e-04, -2.0400e-04, 4.9922e-04, 2.1508e-04, -1.1009e-04, -3.9763e-05, 3.0576e-04, 3.1485e-05, -2.7574e-05, 3.3856e-04], ], device=torch_device, ) # fmt: on self.assertTrue(torch.allclose(waveform[0, :100], expected_waveform, atol=1e-4)) self.assertEqual(waveform.shape, (1, 52480))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/fastspeech2_conformer/test_tokenization_fastspeech2_conformer.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the FastSpeech2Conformer tokenizer.""" import unittest from transformers.models.fastspeech2_conformer import FastSpeech2ConformerTokenizer from transformers.testing_utils import require_g2p_en, slow from ...test_tokenization_common import TokenizerTesterMixin @require_g2p_en class FastSpeech2ConformerTokenizerTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "espnet/fastspeech2_conformer" tokenizer_class = FastSpeech2ConformerTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer") tokenizer.save_pretrained(self.tmpdirname) def get_input_output_texts(self, tokenizer): input_text = "this is a test" output_text = "this is a test" return input_text, output_text # Custom `get_clean_sequence` since FastSpeech2ConformerTokenizer can't decode id -> string def get_clean_sequence(self, tokenizer, with_prefix_space=False, **kwargs): # max_length=20, min_length=5 input_text, output_text = self.get_input_output_texts(tokenizer) ids = tokenizer.encode(output_text, add_special_tokens=False) return output_text, ids def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<unk>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<blank>") self.assertEqual(vocab_keys[1], "<unk>") self.assertEqual(vocab_keys[-4], "UH0") self.assertEqual(vocab_keys[-2], "..") self.assertEqual(vocab_keys[-1], "<sos/eos>") self.assertEqual(len(vocab_keys), 78) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 78) @unittest.skip( "FastSpeech2Conformer tokenizer does not support adding tokens as they can't be added to the g2p_en backend" ) def test_added_token_are_matched_longest_first(self): pass @unittest.skip( "FastSpeech2Conformer tokenizer does not support adding tokens as they can't be added to the g2p_en backend" ) def test_added_tokens_do_lower_case(self): pass @unittest.skip( "FastSpeech2Conformer tokenizer does not support adding tokens as they can't be added to the g2p_en backend" ) def test_tokenize_special_tokens(self): pass def test_full_tokenizer(self): tokenizer = self.get_tokenizer() tokens = tokenizer.tokenize("This is a test") ids = [9, 12, 6, 12, 11, 2, 4, 15, 6, 4, 77] self.assertListEqual(tokens, ["DH", "IH1", "S", "IH1", "Z", "AH0", "T", "EH1", "S", "T", "<sos/eos>"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), ids) self.assertListEqual(tokenizer.convert_ids_to_tokens(ids), tokens) @slow def test_tokenizer_integration(self): # Custom test since: # 1) This tokenizer only decodes to tokens (phonemes cannot be converted to text with complete accuracy) # 2) Uses a sequence without numbers since espnet has different, custom number conversion. # This tokenizer can phonemize numbers, but where in espnet "32" is phonemized as "thirty two", # here "32" is phonemized as "thirty-two" because we haven't implemented the custom number handling. sequences = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] tokenizer = FastSpeech2ConformerTokenizer.from_pretrained( "espnet/fastspeech2_conformer", revision="07f9c4a2d6bbc69b277d87d2202ad1e35b05e113" ) actual_encoding = tokenizer(sequences) # fmt: off expected_encoding = { 'input_ids': [ [4, 7, 60, 3, 6, 22, 30, 7, 14, 21, 11, 22, 30, 7, 14, 21, 8, 29, 3, 34, 3, 18, 11, 17, 12, 4, 21, 10, 4, 7, 60, 3, 6, 22, 30, 7, 14, 21, 11, 2, 3, 5, 17, 12, 4, 21, 10, 17, 7, 29, 4, 7, 31, 3, 5, 25, 38, 4, 17, 7, 2, 20, 32, 5, 11, 40, 15, 3, 21, 2, 8, 17, 38, 17, 2, 6, 24, 7, 10, 2, 4, 45, 10, 39, 21, 11, 25, 38, 4, 23, 37, 15, 4, 6, 23, 7, 2, 25, 38, 4, 2, 23, 11, 8, 15, 14, 11, 23, 5, 13, 6, 4, 12, 8, 4, 21, 25, 23, 11, 8, 15, 3, 39, 2, 8, 1, 22, 30, 7, 3, 18, 39, 21, 2, 8, 8, 18, 36, 37, 16, 2, 40, 62, 3, 5, 21, 6, 4, 18, 3, 5, 13, 36, 3, 8, 28, 2, 3, 5, 3, 18, 39, 21, 2, 8, 8, 18, 36, 37, 16, 2, 40, 40, 45, 3, 21, 31, 35, 2, 3, 15, 8, 36, 16, 12, 9, 34, 20, 21, 43, 38, 5, 29, 4, 28, 17, 7, 29, 4, 7, 31, 3, 5, 14, 24, 5, 2, 8, 11, 13, 3, 16, 19, 3, 26, 19, 3, 5, 7, 2, 5, 17, 8, 19, 6, 8, 18, 36, 37, 16, 2, 40, 2, 11, 2, 3, 5, 5, 27, 17, 49, 3, 4, 21, 2, 17, 21, 25, 12, 8, 2, 4, 29, 25, 13, 4, 16, 27, 3, 40, 18, 10, 6, 23, 17, 12, 4, 21, 10, 2, 3, 5, 4, 15, 3, 6, 21, 8, 46, 22, 33, 77], [25, 38, 4, 12, 11, 5, 13, 11, 32, 3, 5, 4, 28, 17, 7, 27, 4, 7, 31, 3, 5, 27, 17, 25, 51, 5, 13, 7, 15, 10, 35, 2, 3, 2, 8, 7, 45, 17, 7, 2, 11, 2, 3, 4, 31, 35, 2, 3, 11, 22, 7, 19, 14, 2, 3, 8, 31, 25, 2, 8, 5, 4, 15, 10, 6, 4, 25, 32, 40, 55, 3, 4, 8, 29, 10, 2, 3, 5, 12, 35, 2, 3, 13, 36, 24, 3, 25, 34, 43, 8, 15, 22, 4, 2, 3, 5, 7, 32, 4, 10, 24, 3, 4, 54, 10, 6, 4, 13, 3, 30, 8, 8, 31, 21, 11, 33, 77], [9, 2, 10, 16, 12, 10, 25, 7, 42, 3, 22, 24, 10, 6, 40, 19, 14, 17, 6, 34, 20, 21, 9, 2, 8, 31, 11, 29, 5, 30, 37, 33, 77] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on actual_tokens = [tokenizer.decode(input_ids) for input_ids in expected_encoding["input_ids"]] expected_tokens = [ [tokenizer.convert_ids_to_tokens(id) for id in sequence] for sequence in expected_encoding["input_ids"] ] self.assertListEqual(actual_encoding["input_ids"], expected_encoding["input_ids"]) self.assertListEqual(actual_encoding["attention_mask"], expected_encoding["attention_mask"]) self.assertTrue(actual_tokens == expected_tokens) @unittest.skip( reason="FastSpeech2Conformer tokenizer does not support adding tokens as they can't be added to the g2p_en backend" ) def test_add_tokens_tokenizer(self): pass @unittest.skip( reason="FastSpeech2Conformer tokenizer does not support adding tokens as they can't be added to the g2p_en backend" ) def test_add_special_tokens(self): pass @unittest.skip( reason="FastSpeech2Conformer tokenizer does not support adding tokens as they can't be added to the g2p_en backend" ) def test_added_token_serializable(self): pass @unittest.skip( reason="FastSpeech2Conformer tokenizer does not support adding tokens as they can't be added to the g2p_en backend" ) def test_save_and_load_tokenizer(self): pass @unittest.skip(reason="Phonemes cannot be reliably converted to string due to one-many mapping") def test_internal_consistency(self): pass @unittest.skip(reason="Phonemes cannot be reliably converted to string due to one-many mapping") def test_encode_decode_with_spaces(self): pass @unittest.skip(reason="Phonemes cannot be reliably converted to string due to one-many mapping") def test_convert_tokens_to_string_format(self): pass @unittest.skip("FastSpeech2Conformer tokenizer does not support pairs.") def test_maximum_encoding_length_pair_input(self): pass @unittest.skip( "FastSpeech2Conformer tokenizer appends eos_token to each string it's passed, including `is_split_into_words=True`." ) def test_pretokenized_inputs(self): pass @unittest.skip( reason="g2p_en is slow is with large inputs and max encoding length is not a concern for FastSpeech2Conformer" ) def test_maximum_encoding_length_single_input(self): pass
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/roc_bert/test_modeling_roc_bert.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch RoCBert model. """ import unittest from transformers import RoCBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertModel, ) class RoCBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, pronunciation_vocab_size=99, shape_vocab_size=99, pronunciation_embed_dim=32, shape_embed_dim=32, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.pronunciation_vocab_size = pronunciation_vocab_size self.shape_vocab_size = shape_vocab_size self.pronunciation_embed_dim = pronunciation_embed_dim self.shape_embed_dim = shape_embed_dim self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_shape_ids = ids_tensor([self.batch_size, self.seq_length], self.shape_vocab_size) input_pronunciation_ids = ids_tensor([self.batch_size, self.seq_length], self.pronunciation_vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return ( config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def get_config(self): return RoCBertConfig( vocab_size=self.vocab_size, shape_vocab_size=self.shape_vocab_size, pronunciation_vocab_size=self.pronunciation_vocab_size, shape_embed_dim=self.shape_embed_dim, pronunciation_embed_dim=self.pronunciation_embed_dim, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): model = RoCBertModel(config=config) model.to(torch_device) model.eval() result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, ) result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, token_type_ids=token_type_ids, ) result = model(input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RoCBertModel(config) model.to(torch_device) model.eval() result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RoCBertForCausalLM(config=config) model.to(torch_device) model.eval() result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_masked_lm( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): model = RoCBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = RoCBertForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_shape_tokens = ids_tensor((self.batch_size, 3), config.shape_vocab_size) next_pronunciation_tokens = ids_tensor((self.batch_size, 3), config.pronunciation_vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_input_shape_ids = torch.cat([input_shape_ids, next_shape_tokens], dim=-1) next_input_pronunciation_ids = torch.cat([input_pronunciation_ids, next_pronunciation_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, input_shape_ids=next_input_shape_ids, input_pronunciation_ids=next_input_pronunciation_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, input_shape_ids=next_shape_tokens, input_pronunciation_ids=next_pronunciation_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_question_answering( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): model = RoCBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.num_labels = self.num_labels model = RoCBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.num_labels = self.num_labels model = RoCBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, input_shape_ids=input_shape_ids, input_pronunciation_ids=input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.num_choices = self.num_choices model = RoCBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_inputs_shape_ids = input_shape_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_inputs_pronunciation_ids = ( input_pronunciation_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() ) multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, input_shape_ids=multiple_choice_inputs_shape_ids, input_pronunciation_ids=multiple_choice_inputs_pronunciation_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "input_shape_ids": input_shape_ids, "input_pronunciation_ids": input_pronunciation_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict def create_and_check_for_pretraining( self, config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): model = RoCBertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, input_shape_ids, input_pronunciation_ids, attention_mask=input_mask, token_type_ids=token_type_ids, attack_input_ids=input_ids, attack_input_shape_ids=input_shape_ids, attack_input_pronunciation_ids=input_pronunciation_ids, attack_attention_mask=input_mask, attack_token_type_ids=token_type_ids, labels_input_ids=token_labels, labels_input_shape_ids=input_shape_ids, labels_input_pronunciation_ids=input_pronunciation_ids, labels_attention_mask=input_mask, labels_token_type_ids=token_type_ids, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) @require_torch class RoCBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( RoCBertModel, RoCBertForMaskedLM, RoCBertForCausalLM, RoCBertForMultipleChoice, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertForPreTraining, ) if is_torch_available() else () ) all_generative_model_classes = (RoCBertForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": RoCBertModel, "fill-mask": RoCBertForMaskedLM, "question-answering": RoCBertForQuestionAnswering, "text-classification": RoCBertForSequenceClassification, "text-generation": RoCBertForCausalLM, "token-classification": RoCBertForTokenClassification, "zero-shot": RoCBertForSequenceClassification, } if is_torch_available() else {} ) # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name in [ "FillMaskPipelineTests", "FeatureExtractionPipelineTests", "TextClassificationPipelineTests", "TokenClassificationPipelineTests", ]: # Get error: IndexError: index out of range in self. # `word_shape_file` and `word_pronunciation_file` should be shrunk during tiny model creation, # otherwise `IndexError` could occur in some embedding layers. Skip for now until this model has # more usage. return True return False # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels_input_ids"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["labels_input_shape_ids"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["labels_input_pronunciation_ids"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["attack_input_ids"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["attack_input_shape_ids"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["attack_input_pronunciation_ids"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = RoCBertModelTester(self) self.config_tester = ConfigTester(self, config_class=RoCBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, input_shape_ids, input_pronunciation_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) @slow def test_model_from_pretrained(self): model_name = "weiweishi/roc-bert-base-zh" model = RoCBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class RoCBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = RoCBertForMaskedLM.from_pretrained("weiweishi/roc-bert-base-zh") # input_text: ['[CLS]', 'b', 'a', '里', '系', '[MASK]', '国', '的', '首', '都', '[SEP]'] is the adversarial text # of ['[CLS]', '巴', '黎', '是', '[MASK]', '国', '的', '首', '都', '[SEP]'], means # "Paris is the [MASK] of France" in English input_ids = torch.tensor([[101, 144, 143, 7027, 5143, 103, 1744, 4638, 7674, 6963, 102]]) input_shape_ids = torch.tensor([[2, 20324, 23690, 8740, 706, 1, 10900, 23343, 20205, 5850, 2]]) input_pronunciation_ids = torch.tensor([[2, 718, 397, 52, 61, 1, 168, 273, 180, 243, 2]]) output = model(input_ids, input_shape_ids, input_pronunciation_ids) output_ids = torch.argmax(output.logits, dim=2) # convert to tokens is: ['[CLS]', '巴', '*', '黎', '是', '法', '国', '的', '首', '都', '[SEP]'] expected_output = torch.tensor([[101, 2349, 115, 7944, 3221, 3791, 1744, 4638, 7674, 6963, 102]]) assert torch.allclose(output_ids, expected_output)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/roc_bert/test_tokenization_roc_bert.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class BertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "weiweishi/roc-bert-base-zh" tokenizer_class = RoCBertTokenizer rust_tokenizer_class = None test_rust_tokenizer = False space_between_special_tokens = True from_pretrained_filter = filter_non_english def setUp(self): super().setUp() vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] word_shape = {} word_pronunciation = {} for i, value in enumerate(vocab_tokens): word_shape[value] = i word_pronunciation[value] = i self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.word_shape_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["word_shape_file"]) self.word_pronunciation_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["word_pronunciation_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) with open(self.word_shape_file, "w", encoding="utf-8") as word_shape_writer: json.dump(word_shape, word_shape_writer, ensure_ascii=False) with open(self.word_pronunciation_file, "w", encoding="utf-8") as word_pronunciation_writer: json.dump(word_pronunciation, word_pronunciation_writer, ensure_ascii=False) def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file) tokens = tokenizer.tokenize("你好[SEP]你是谁") self.assertListEqual(tokens, ["你", "好", "[SEP]", "你", "是", "谁"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(tokens), [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(tokens), [5, 6, 2, 5, 7, 8]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_chinese with BasicTokenizer->RoCBertBasicTokenizer def test_chinese(self): tokenizer = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_lower with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_lower(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_lower_strip_accents_false with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_lower_strip_accents_true with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_lower_strip_accents_default with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_no_lower with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_no_lower(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_no_lower_strip_accents_false with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_no_lower_strip_accents_true with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_basic_tokenizer_respects_never_split_tokens with BasicTokenizer->RoCBertBasicTokenizer def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = RoCBertBasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_wordpiece_tokenizer with WordpieceTokenizer->RoCBertWordpieceTokenizer def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = RoCBertWordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_is_whitespace def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_is_control def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_is_punctuation def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def test_clean_text(self): tokenizer = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) if self.test_rust_tokenizer: rust_tokenizer = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]] ) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_offsets_with_special_characters def test_offsets_with_special_characters(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False expected_results = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) # Copied from tests.models.bert.test_tokenization_bert.BertTokenizationTest.test_change_tokenize_chinese_chars def test_change_tokenize_chinese_chars(self): list_of_commun_chinese_char = ["的", "人", "有"] text_with_chinese_char = "".join(list_of_commun_chinese_char) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): kwargs["tokenize_chinese_chars"] = True tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(tokens_without_spe_char_p, list_of_commun_chinese_char) self.assertListEqual(tokens_without_spe_char_r, list_of_commun_chinese_char) kwargs["tokenize_chinese_chars"] = False tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that only the first Chinese character is not preceded by "##". expected_tokens = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(list_of_commun_chinese_char) ] self.assertListEqual(tokens_without_spe_char_p, expected_tokens) self.assertListEqual(tokens_without_spe_char_r, expected_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file) text = tokenizer.encode("你好", add_special_tokens=False) text_2 = tokenizer.encode("你是谁", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_2 + [2] def test_prepare_for_model(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): string_sequence = "你好,你是谁" tokens = tokenizer.tokenize(string_sequence) tokens_ids = tokenizer.convert_tokens_to_ids(tokens) tokens_shape_ids = tokenizer.convert_tokens_to_shape_ids(tokens) tokens_proun_ids = tokenizer.convert_tokens_to_pronunciation_ids(tokens) prepared_input_dict = tokenizer.prepare_for_model( tokens_ids, tokens_shape_ids, tokens_proun_ids, add_special_tokens=True ) input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True) self.assertEqual(input_dict, prepared_input_dict)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/mbart/test_modeling_tf_mbart.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeq2SeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class TFMBartModelTester: config_cls = MBartConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFMBartModel(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] head_mask = inputs_dict["head_mask"] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() past_key_values = past_key_values[1] def prepare_mbart_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) if decoder_attention_mask is None: decoder_attention_mask = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), ], axis=-1, ) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFMBartModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () all_generative_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) is_encoder_decoder = True test_pruning = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def setUp(self): self.model_tester = TFMBartModelTester(self) self.config_tester = ConfigTester(self, config_class=MBartConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) @require_sentencepiece @require_tokenizers @require_tf class TFMBartModelIntegrationTest(unittest.TestCase): src_text = [ " UN Chief Says There Is No Military Solution in Syria", ] expected_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] model_name = "facebook/mbart-large-en-ro" @cached_property def tokenizer(self): return AutoTokenizer.from_pretrained(self.model_name) @cached_property def model(self): model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="tf") generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2 ) generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_words @slow def test_batch_generation_en_ro(self): self._assert_generated_batch_equal_expected()
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/mbart/test_modeling_flax_mbart.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import timeout_decorator # noqa from transformers import MBartConfig, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" import jax import jax.numpy as jnp from transformers import AutoTokenizer from transformers.models.mbart.modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, shift_tokens_right, ) def prepare_mbart_inputs_dict( config, input_ids, decoder_input_ids=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) if decoder_attention_mask is None: decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0) if head_mask is None: head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } class FlaxMBartModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=32, eos_token_id=2, pad_token_id=1, bos_token_id=0, decoder_start_token_id=2, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.decoder_start_token_id = decoder_start_token_id self.initializer_range = initializer_range def prepare_config_and_inputs(self): input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) decoder_input_ids = shift_tokens_right(input_ids, 1) config = MBartConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, initializer_range=self.initializer_range, use_cache=False, ) inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4") decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=outputs_cache.past_key_values, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) decoder_attention_mask_cache = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask_cache, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=decoder_attention_mask_cache, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class MBartHeadTests(unittest.TestCase): vocab_size = 99 def _get_config_and_data(self): input_ids = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.int64, ) batch_size = input_ids.shape[0] config = MBartConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def test_sequence_classification_forward(self): config, input_ids, batch_size = self._get_config_and_data() model = FlaxMBartForSequenceClassification(config) outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) expected_shape = (batch_size, config.num_labels) self.assertEqual(outputs["logits"].shape, expected_shape) def test_question_answering_forward(self): config, input_ids, batch_size = self._get_config_and_data() model = FlaxMBartForQuestionAnswering(config) outputs = model(input_ids=input_ids) self.assertEqual(outputs["start_logits"].shape, input_ids.shape) self.assertEqual(outputs["end_logits"].shape, input_ids.shape) # @timeout_decorator.timeout(1) # not working with the decorator so far def test_lm_forward(self): config, input_ids, batch_size = self._get_config_and_data() lm_model = FlaxMBartForConditionalGeneration(config) outputs = lm_model(input_ids=input_ids) expected_shape = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) def test_lm_uneven_forward(self): config = MBartConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lm_model = FlaxMBartForConditionalGeneration(config) context = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.int64) summary = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.int64) outputs = lm_model(input_ids=context, decoder_input_ids=summary) expected_shape = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) def test_shift_tokens_right(self): input_ids = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.int64) shifted = shift_tokens_right(input_ids, 1) n_pad_before = np.equal(input_ids, 1).astype(np.float32).sum() n_pad_after = np.equal(shifted, 1).astype(np.float32).sum() self.assertEqual(shifted.shape, input_ids.shape) self.assertEqual(n_pad_after, n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0], 2).all()) @require_flax class FlaxMBartModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): is_encoder_decoder = True all_model_classes = ( ( FlaxMBartModel, FlaxMBartForConditionalGeneration, FlaxMBartForSequenceClassification, FlaxMBartForQuestionAnswering, ) if is_flax_available() else () ) all_generative_model_classes = (FlaxMBartForConditionalGeneration,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxMBartModelTester(self) def test_use_cache_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) def test_use_cache_forward_with_attn_mask(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) def test_encode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def encode_jitted(input_ids, attention_mask=None, **kwargs): return model.encode(input_ids=input_ids, attention_mask=attention_mask) with self.subTest("JIT Enabled"): jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = encode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_decode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): model = model_class(config) encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"]) prepared_inputs_dict = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs): return model.decode( decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, ) with self.subTest("JIT Enabled"): jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = decode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("facebook/mbart-large-cc25", from_pt=True) # FlaxMBartForSequenceClassification expects eos token in input_ids input_ids = np.ones((1, 1)) * model.config.eos_token_id outputs = model(input_ids) self.assertIsNotNone(outputs) @require_flax @require_sentencepiece @require_tokenizers class FlaxMBartModelIntegrationTest(unittest.TestCase): src_text = [ " UN Chief Says There Is No Military Solution in Syria", ] expected_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] model_name = "facebook/mbart-large-en-ro" @cached_property def tokenizer(self): return AutoTokenizer.from_pretrained(self.model_name) @cached_property def model(self): model = FlaxMBartForConditionalGeneration.from_pretrained(self.model_name, from_pt=True) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="np") generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, decoder_start_token_id=self.tokenizer.lang_code_to_id["ro_RO"], early_stopping=True, num_beams=2, ).sequences generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_words @slow def test_batch_generation_en_ro(self): self._assert_generated_batch_equal_expected()
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/mbart/test_tokenization_mbart.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right EN_CODE = 250004 RO_CODE = 250020 @require_sentencepiece @require_tokenizers class MBartTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "facebook/mbart-large-en-ro" tokenizer_class = MBartTokenizer rust_tokenizer_class = MBartTokenizerFast test_rust_tokenizer = True test_sentencepiece = True def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True) tokenizer.save_pretrained(self.tmpdirname) def test_full_tokenizer(self): tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) # overwrite from test_tokenization_common to speed up test def test_save_pretrained(self): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f) self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(tmpdirname2) # Save tokenizer rust, legacy_format=True tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it save with the same files self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) shutil.rmtree(tmpdirname2) # Save tokenizer rust, legacy_format=False tmpdirname2 = tempfile.mkdtemp() tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False) tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2) tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(tokenizer_rp, key)) shutil.rmtree(tmpdirname2) @unittest.skip("Need to fix this after #26538") def test_training_new_tokenizer(self): pass @require_torch @require_sentencepiece @require_tokenizers class MBartEnroIntegrationTest(unittest.TestCase): checkpoint_name = "facebook/mbart-large-en-ro" src_text = [ " UN Chief Says There Is No Military Solution in Syria", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def setUpClass(cls): cls.tokenizer: MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO" ) cls.pad_token_id = 1 return cls def check_language_codes(self): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020) def test_enro_tokenizer_batch_encode_plus(self): ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, ids) def test_enro_tokenizer_decode_ignores_language_codes(self): self.assertIn(RO_CODE, self.tokenizer.all_special_ids) generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) self.assertEqual(result, expected_romanian) self.assertNotIn(self.tokenizer.eos_token, result) def test_enro_tokenizer_truncation(self): src_text = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0], str) desired_max_length = 10 ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0] self.assertEqual(ids[-2], 2) self.assertEqual(ids[-1], EN_CODE) self.assertEqual(len(ids), desired_max_length) def test_mask_token(self): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250026, 250001]) def test_special_tokens_unaffacted_by_save_load(self): tmpdirname = tempfile.mkdtemp() original_special_tokens = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(tmpdirname) new_tok = MBartTokenizer.from_pretrained(tmpdirname) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens) @require_torch def test_batch_fairseq_parity(self): batch = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=True, return_tensors="pt") batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def test_enro_tokenizer_prepare_batch(self): batch = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=True, truncation=True, max_length=len(self.expected_src_tokens), return_tensors="pt", ) batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id) self.assertIsInstance(batch, BatchEncoding) self.assertEqual((2, 14), batch.input_ids.shape) self.assertEqual((2, 14), batch.attention_mask.shape) result = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, result) self.assertEqual(2, batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, []) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE]) def test_seq2seq_max_length(self): batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt") targets = self.tokenizer( text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt" ) labels = targets["input_ids"] batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1], 3) self.assertEqual(batch.decoder_input_ids.shape[1], 10) @require_torch def test_tokenizer_translation(self): inputs = self.tokenizer._build_translation_inputs( "A test", return_tensors="pt", src_lang="en_XX", tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(inputs), { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, }, )
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/mbart/test_modeling_mbart.py
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MBART model. """ import copy import tempfile import unittest from transformers import MBartConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoTokenizer, BatchEncoding, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, ) from transformers.models.mbart.modeling_mbart import MBartDecoder, MBartEncoder def prepare_mbart_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class MBartModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=100, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id # forcing a certain token to be generated, sets all other tokens to -inf # if however the token to be generated is already at -inf then it can lead token # `nan` values and thus break generation self.forced_bos_token_id = None self.forced_eos_token_id = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return MBartConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, forced_bos_token_id=self.forced_bos_token_id, forced_eos_token_id=self.forced_eos_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = MBartModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = MBartModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = MBartEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = MBartDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class MBartModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (MBartModel, MBartForConditionalGeneration, MBartForSequenceClassification, MBartForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (MBartForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": MBartForConditionalGeneration, "feature-extraction": MBartModel, "fill-mask": MBartForConditionalGeneration, "question-answering": MBartForQuestionAnswering, "summarization": MBartForConditionalGeneration, "text-classification": MBartForSequenceClassification, "text-generation": MBartForCausalLM, "text2text-generation": MBartForConditionalGeneration, "translation": MBartForConditionalGeneration, "zero-shot": MBartForSequenceClassification, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = False # Fix me Michael test_pruning = False test_missing_keys = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False def setUp(self): self.model_tester = MBartModelTester(self) self.config_tester = ConfigTester(self, config_class=MBartConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) # MBartForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MBartModel, MBartForConditionalGeneration, MBartForQuestionAnswering): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = MBartForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_ensure_weights_are_shared(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() config.tie_word_embeddings = True model = MBartForConditionalGeneration(config) # MBart shares four weights. # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors. self.assertEqual( len( { model.get_output_embeddings().weight.data_ptr(), model.get_input_embeddings().weight.data_ptr(), model.base_model.decoder.embed_tokens.weight.data_ptr(), model.base_model.encoder.embed_tokens.weight.data_ptr(), } ), 1, ) config.tie_word_embeddings = False model = MBartForConditionalGeneration(config) # MBart shares four weights. # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors. self.assertEqual( len( { model.get_output_embeddings().weight.data_ptr(), model.get_input_embeddings().weight.data_ptr(), model.base_model.decoder.embed_tokens.weight.data_ptr(), model.base_model.encoder.embed_tokens.weight.data_ptr(), } ), 2, ) def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) @require_torch @require_sentencepiece @require_tokenizers class AbstractSeq2SeqIntegrationTest(unittest.TestCase): maxDiff = 1000 # longer string compare tracebacks checkpoint_name = None @classmethod def setUpClass(cls): cls.tokenizer = AutoTokenizer.from_pretrained(cls.checkpoint_name, use_fast=False) return cls @cached_property def model(self): """Only load the model if needed.""" model = MBartForConditionalGeneration.from_pretrained(self.checkpoint_name).to(torch_device) if "cuda" in torch_device: model = model.half() return model @require_torch @require_sentencepiece @require_tokenizers class MBartEnroIntegrationTest(AbstractSeq2SeqIntegrationTest): checkpoint_name = "facebook/mbart-large-en-ro" src_text = [ " UN Chief Says There Is No Military Solution in Syria", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] tgt_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' " face decât să înrăutăţească violenţa şi mizeria pentru milioane de oameni.", ] expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, 250004] @slow def test_enro_generate_one(self): batch: BatchEncoding = self.tokenizer( ["UN Chief Says There Is No Military Solution in Syria"], return_tensors="pt" ).to(torch_device) translated_tokens = self.model.generate(**batch) decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) self.assertEqual(self.tgt_text[0], decoded[0]) # self.assertEqual(self.tgt_text[1], decoded[1]) @slow def test_enro_generate_batch(self): batch: BatchEncoding = self.tokenizer(self.src_text, return_tensors="pt", padding=True, truncation=True).to( torch_device ) translated_tokens = self.model.generate(**batch) decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) assert self.tgt_text == decoded def test_mbart_enro_config(self): mbart_models = ["facebook/mbart-large-en-ro"] expected = {"scale_embedding": True, "output_past": True} for name in mbart_models: config = MBartConfig.from_pretrained(name) for k, v in expected.items(): try: self.assertEqual(v, getattr(config, k)) except AssertionError as e: e.args += (name, k) raise def test_mbart_fast_forward(self): config = MBartConfig( vocab_size=99, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, add_final_layer_norm=True, ) lm_model = MBartForConditionalGeneration(config).to(torch_device) context = torch.tensor( [[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long ) summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long) result = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary) expected_shape = (*summary.shape, config.vocab_size) self.assertEqual(result.logits.shape, expected_shape) @require_torch @require_sentencepiece @require_tokenizers class MBartCC25IntegrationTest(AbstractSeq2SeqIntegrationTest): checkpoint_name = "facebook/mbart-large-cc25" src_text = [ " UN Chief Says There Is No Military Solution in Syria", " I ate lunch twice yesterday", ] tgt_text = ["Şeful ONU declară că nu există o soluţie militară în Siria", "to be padded"] @unittest.skip("This test is broken, still generates english") def test_cc25_generate(self): inputs = self.tokenizer([self.src_text[0]], return_tensors="pt").to(torch_device) translated_tokens = self.model.generate( input_ids=inputs["input_ids"].to(torch_device), decoder_start_token_id=self.tokenizer.lang_code_to_id["ro_RO"], ) decoded = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) self.assertEqual(self.tgt_text[0], decoded[0]) @slow def test_fill_mask(self): inputs = self.tokenizer(["One of the best <mask> I ever read!"], return_tensors="pt").to(torch_device) outputs = self.model.generate( inputs["input_ids"], decoder_start_token_id=self.tokenizer.lang_code_to_id["en_XX"], num_beams=1 ) prediction: str = self.tokenizer.batch_decode( outputs, clean_up_tokenization_spaces=True, skip_special_tokens=True )[0] self.assertEqual(prediction, "of the best books I ever read!") class MBartStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = MBartConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = MBartDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = MBartDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class MBartStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (MBartDecoder, MBartForCausalLM) if is_torch_available() else () all_generative_model_classes = (MBartForCausalLM,) if is_torch_available() else () test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = MBartStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=MBartConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/glpn/test_modeling_glpn.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch GLPN model. """ import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNModel from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class GLPNConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_attention_heads")) self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) class GLPNModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, num_encoder_blocks=4, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], hidden_sizes=[16, 32, 64, 128], downsampling_rates=[1, 4, 8, 16], num_attention_heads=[1, 2, 4, 8], is_training=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, decoder_hidden_size=16, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.sr_ratios = sr_ratios self.depths = depths self.hidden_sizes = hidden_sizes self.downsampling_rates = downsampling_rates self.num_attention_heads = num_attention_heads self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.decoder_hidden_size = decoder_hidden_size self.num_labels = num_labels self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return GLPNConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, decoder_hidden_size=self.decoder_hidden_size, ) def create_and_check_model(self, config, pixel_values, labels): model = GLPNModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def create_and_check_for_depth_estimation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = GLPNForDepthEstimation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) result = model(pixel_values, labels=labels) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class GLPNModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GLPNModel, GLPNForDepthEstimation) if is_torch_available() else () pipeline_model_mapping = ( {"depth-estimation": GLPNForDepthEstimation, "image-feature-extraction": GLPNModel} if is_torch_available() else {} ) test_head_masking = False test_pruning = False test_resize_embeddings = False def setUp(self): self.model_tester = GLPNModelTester(self) self.config_tester = GLPNConfigTester(self, config_class=GLPNConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_depth_estimation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs) @unittest.skip("GLPN does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("GLPN does not have get_input_embeddings method and get_output_embeddings methods") def test_model_common_attributes(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = sum(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) expected_seq_len = (self.model_tester.image_size // 32) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_encoder_blocks self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class.__name__ in MODEL_MAPPING_NAMES.values(): continue # TODO: remove the following 3 lines once we have a MODEL_FOR_DEPTH_ESTIMATION_MAPPING # this can then be incorporated into _prepare_for_class in test_modeling_common.py if model_class.__name__ == "GLPNForDepthEstimation": batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape inputs_dict["labels"] = torch.zeros( [self.model_tester.batch_size, height, width], device=torch_device ).long() model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @slow def test_model_from_pretrained(self): model_name = "vinvino02/glpn-kitti" model = GLPNModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow class GLPNModelIntegrationTest(unittest.TestCase): @slow def test_inference_depth_estimation(self): image_processor = GLPNImageProcessor.from_pretrained("vinvino02/glpn-kitti") model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-kitti").to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the predicted depth expected_shape = torch.Size([1, 480, 640]) self.assertEqual(outputs.predicted_depth.shape, expected_shape) expected_slice = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/glpn/test_image_processing_glpn.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class GLPNImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size_divisor=32, do_rescale=True, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size_divisor = size_divisor self.do_rescale = do_rescale def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } def expected_output_image_shape(self, images): if isinstance(images[0], Image.Image): width, height = images[0].size else: height, width = images[0].shape[1], images[0].shape[2] height = height // self.size_divisor * self.size_divisor width = width // self.size_divisor * self.size_divisor return self.num_channels, height, width def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, size_divisor=self.size_divisor, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class GLPNImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = GLPNImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = GLPNImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size_divisor")) self.assertTrue(hasattr(image_processing, "resample")) self.assertTrue(hasattr(image_processing, "do_rescale")) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape)) def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape)) def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape)) def test_call_numpy_4_channels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors self.image_processing_class.num_channels = 4 image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape)) self.image_processing_class.num_channels = 3
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/qdqbert/test_modeling_qdqbert.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # Copyright 2021 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch QDQBERT model. """ import unittest from transformers import QDQBertConfig, is_torch_available from transformers.testing_utils import require_pytorch_quantization, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( QDQBertForMaskedLM, QDQBertForMultipleChoice, QDQBertForNextSentencePrediction, QDQBertForQuestionAnswering, QDQBertForSequenceClassification, QDQBertForTokenClassification, QDQBertLMHeadModel, QDQBertModel, ) class QDQBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): # Set default quantizers before creating the model. import pytorch_quantization.nn as quant_nn from pytorch_quantization.tensor_quant import QuantDescriptor # The default tensor quantizer is set to use Max calibration method input_desc = QuantDescriptor(num_bits=8, calib_method="max") # The default tensor quantizer is set to be per-channel quantization for weights weight_desc = QuantDescriptor(num_bits=8, axis=((0,))) quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) # For the test cases, since QDQBert model is tested in one run without calibration, the quantized tensors are set as fake quantized tensors which give float type tensors in the end. quant_nn.TensorQuantizer.use_fb_fake_quant = True input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return QDQBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = QDQBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = QDQBertModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = QDQBertLMHeadModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = QDQBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_model_for_causal_lm_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = QDQBertLMHeadModel(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = QDQBertLMHeadModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = QDQBertForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = QDQBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = QDQBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = QDQBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = QDQBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch @require_pytorch_quantization class QDQBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( QDQBertModel, QDQBertForMaskedLM, QDQBertForMultipleChoice, QDQBertForNextSentencePrediction, QDQBertForQuestionAnswering, QDQBertForSequenceClassification, QDQBertForTokenClassification, QDQBertLMHeadModel, ) if is_torch_available() else () ) all_generative_model_classes = (QDQBertLMHeadModel,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": QDQBertModel, "fill-mask": QDQBertForMaskedLM, "question-answering": QDQBertForQuestionAnswering, "text-classification": QDQBertForSequenceClassification, "text-generation": QDQBertLMHeadModel, "token-classification": QDQBertForTokenClassification, "zero-shot": QDQBertForSequenceClassification, } if is_torch_available() else {} ) def setUp(self): self.model_tester = QDQBertModelTester(self) self.config_tester = ConfigTester(self, config_class=QDQBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_causal_lm_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "google-bert/bert-base-uncased" model = QDQBertModel.from_pretrained(model_name) self.assertIsNotNone(model) # Override def test_feed_forward_chunking(self): # feed forward chunking is not supported in QDQBert pass @require_torch @require_pytorch_quantization class QDQBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): # Set default quantizers before creating the model. import pytorch_quantization.nn as quant_nn from pytorch_quantization.tensor_quant import QuantDescriptor # The default tensor quantizer is set to use Max calibration method input_desc = QuantDescriptor(num_bits=8, calib_method="max") # The default tensor quantizer is set to be per-channel quantization for weights weight_desc = QuantDescriptor(num_bits=8, axis=((0,))) quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) model = QDQBertModel.from_pretrained("google-bert/bert-base-uncased") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.4571, -0.0735, 0.8594], [0.2774, -0.0278, 0.8794], [0.3548, -0.0473, 0.7593]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/phobert/test_tokenization_phobert.py
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class PhobertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "vinai/phobert-base" tokenizer_class = PhobertTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = ["T@@", "i", "I", "R@@", "r", "e@@"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "l à</w>"] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "Tôi là VinAI Research" output_text = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def test_full_tokenizer(self): tokenizer = PhobertTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "Tôi là VinAI Research" bpe_tokens = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() tokens = tokenizer.tokenize(text) print(tokens) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/splinter/test_modeling_splinter.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Splinter model. """ import copy import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import SplinterConfig, SplinterForPreTraining, SplinterForQuestionAnswering, SplinterModel class SplinterModelTester: def __init__( self, parent, batch_size=13, num_questions=3, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, question_token_id=1, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.num_questions = num_questions self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.question_token_id = question_token_id self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids[:, 1] = self.question_token_id input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) start_positions = None end_positions = None question_positions = None if self.use_labels: start_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size) end_positions = ids_tensor([self.batch_size, self.num_questions], self.type_sequence_label_size) question_positions = ids_tensor([self.batch_size, self.num_questions], self.num_labels) config = SplinterConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, question_token_id=self.question_token_id, ) return (config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions, ): model = SplinterModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions, ): model = SplinterForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=start_positions[:, 0], end_positions=end_positions[:, 0], ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions, ): model = SplinterForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=start_positions, end_positions=end_positions, question_positions=question_positions, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.num_questions, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.num_questions, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, start_positions, end_positions, question_positions, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SplinterModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( SplinterModel, SplinterForQuestionAnswering, SplinterForPreTraining, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": SplinterModel, "question-answering": SplinterForQuestionAnswering} if is_torch_available() else {} ) # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "QAPipelineTests": return True elif pipeline_test_casse_name == "FeatureExtractionPipelineTests" and tokenizer_name.endswith("Fast"): return True return False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if issubclass(model_class, SplinterForPreTraining): inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, self.model_tester.num_questions, dtype=torch.long, device=torch_device, ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, self.model_tester.num_questions, dtype=torch.long, device=torch_device, ) inputs_dict["question_positions"] = torch.zeros( self.model_tester.batch_size, self.model_tester.num_questions, dtype=torch.long, device=torch_device, ) elif issubclass(model_class, SplinterForQuestionAnswering): inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = SplinterModelTester(self) self.config_tester = ConfigTester(self, config_class=SplinterConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): if isinstance(model, SplinterForPreTraining): with self.assertRaises(TypeError): # question_positions must not be None. model(**inputs)[0] else: model(**inputs)[0] @slow def test_model_from_pretrained(self): model_name = "tau/splinter-base" model = SplinterModel.from_pretrained(model_name) self.assertIsNotNone(model) # overwrite from common since `SplinterForPreTraining` could contain different number of question tokens in inputs. # When the batch is distributed to multiple devices, each replica could get different values for the maximal number # of question tokens (see `SplinterForPreTraining._prepare_question_positions()`), and the model returns different # shape along dimension 1 (i.e. `num_questions`) that could not be combined into a single tensor as an output. @require_torch_multi_gpu def test_multi_gpu_data_parallel_forward(self): from torch import nn config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # some params shouldn't be scattered by nn.DataParallel # so just remove them if they are present. blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"] for k in blacklist_non_batched_params: inputs_dict.pop(k, None) # move input tensors to cuda:O for k, v in inputs_dict.items(): if torch.is_tensor(v): inputs_dict[k] = v.to(0) for model_class in self.all_model_classes: # Skip this case since it will fail sometimes, as described above. if model_class == SplinterForPreTraining: continue model = model_class(config=config) model.to(0) model.eval() # Wrap model in nn.DataParallel model = nn.DataParallel(model) with torch.no_grad(): _ = model(**self._prepare_for_class(inputs_dict, model_class)) @require_torch class SplinterModelIntegrationTest(unittest.TestCase): @slow def test_splinter_question_answering(self): model = SplinterForQuestionAnswering.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] Brad was born in [QUESTION] . He returned to the United Kingdom later . [SEP]" # Output should be the span "the United Kingdom" input_ids = torch.tensor( [[101, 7796, 1108, 1255, 1107, 104, 119, 1124, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]] ) output = model(input_ids) expected_shape = torch.Size((1, 16)) self.assertEqual(output.start_logits.shape, expected_shape) self.assertEqual(output.end_logits.shape, expected_shape) self.assertEqual(torch.argmax(output.start_logits), 10) self.assertEqual(torch.argmax(output.end_logits), 12) @slow def test_splinter_pretraining(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" # Output should be the spans "Brad" and "the United Kingdom" input_ids = torch.tensor( [[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]] ) question_positions = torch.tensor([[1, 5]], dtype=torch.long) output = model(input_ids, question_positions=question_positions) expected_shape = torch.Size((1, 2, 16)) self.assertEqual(output.start_logits.shape, expected_shape) self.assertEqual(output.end_logits.shape, expected_shape) self.assertEqual(torch.argmax(output.start_logits[0, 0]), 7) self.assertEqual(torch.argmax(output.end_logits[0, 0]), 7) self.assertEqual(torch.argmax(output.start_logits[0, 1]), 10) self.assertEqual(torch.argmax(output.end_logits[0, 1]), 12) @slow def test_splinter_pretraining_loss_requires_question_positions(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" # Output should be the spans "Brad" and "the United Kingdom" input_ids = torch.tensor( [[101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102]] ) start_positions = torch.tensor([[7, 10]], dtype=torch.long) end_positions = torch.tensor([7, 12], dtype=torch.long) with self.assertRaises(TypeError): model( input_ids, start_positions=start_positions, end_positions=end_positions, ) @slow def test_splinter_pretraining_loss(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" # Output should be the spans "Brad" and "the United Kingdom" input_ids = torch.tensor( [ [101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102], [101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102], ] ) start_positions = torch.tensor([[7, 10], [7, 10]], dtype=torch.long) end_positions = torch.tensor([[7, 12], [7, 12]], dtype=torch.long) question_positions = torch.tensor([[1, 5], [1, 5]], dtype=torch.long) output = model( input_ids, start_positions=start_positions, end_positions=end_positions, question_positions=question_positions, ) self.assertAlmostEqual(output.loss.item(), 0.0024, 4) @slow def test_splinter_pretraining_loss_with_padding(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") # Input: "[CLS] [QUESTION] was born in [QUESTION] . Brad returned to the United Kingdom later . [SEP]" # Output should be the spans "Brad" and "the United Kingdom" input_ids = torch.tensor( [ [101, 104, 1108, 1255, 1107, 104, 119, 7796, 1608, 1106, 1103, 1244, 2325, 1224, 119, 102], ] ) start_positions = torch.tensor([[7, 10]], dtype=torch.long) end_positions = torch.tensor([7, 12], dtype=torch.long) question_positions = torch.tensor([[1, 5]], dtype=torch.long) start_positions_with_padding = torch.tensor([[7, 10, 0]], dtype=torch.long) end_positions_with_padding = torch.tensor([7, 12, 0], dtype=torch.long) question_positions_with_padding = torch.tensor([[1, 5, 0]], dtype=torch.long) output = model( input_ids, start_positions=start_positions, end_positions=end_positions, question_positions=question_positions, ) output_with_padding = model( input_ids, start_positions=start_positions_with_padding, end_positions=end_positions_with_padding, question_positions=question_positions_with_padding, ) self.assertAlmostEqual(output.loss.item(), output_with_padding.loss.item(), 4) # Note that the original code uses 0 to denote padded question tokens # and their start and end positions. As the pad_token_id of the model's # config is used for the losse's ignore_index in SplinterForPreTraining, # we add this test to ensure anybody making changes to the default # value of the config, will be aware of the implication. self.assertEqual(model.config.pad_token_id, 0) @slow def test_splinter_pretraining_prepare_question_positions(self): model = SplinterForPreTraining.from_pretrained("tau/splinter-base-qass") input_ids = torch.tensor( [ [101, 104, 1, 2, 104, 3, 4, 102], [101, 1, 104, 2, 104, 3, 104, 102], [101, 1, 2, 104, 104, 3, 4, 102], [101, 1, 2, 3, 4, 5, 104, 102], ] ) question_positions = torch.tensor([[1, 4, 0], [2, 4, 6], [3, 4, 0], [6, 0, 0]], dtype=torch.long) output_without_positions = model(input_ids) output_with_positions = model(input_ids, question_positions=question_positions) self.assertTrue((output_without_positions.start_logits == output_with_positions.start_logits).all()) self.assertTrue((output_without_positions.end_logits == output_with_positions.end_logits).all())
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/auto/test_processor_auto.py
# coding=utf-8 # Copyright 2021 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, Wav2Vec2Config, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, PROCESSOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 SAMPLE_PROCESSOR_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json") SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json") SAMPLE_PROCESSOR_CONFIG_DIR = get_tests_dir("fixtures") class AutoFeatureExtractorTest(unittest.TestCase): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 def test_processor_from_model_shortcut(self): processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsInstance(processor, Wav2Vec2Processor) def test_processor_from_local_directory_from_repo(self): with tempfile.TemporaryDirectory() as tmpdirname: model_config = Wav2Vec2Config() processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") # save in new folder model_config.save_pretrained(tmpdirname) processor.save_pretrained(tmpdirname) processor = AutoProcessor.from_pretrained(tmpdirname) self.assertIsInstance(processor, Wav2Vec2Processor) def test_processor_from_local_directory_from_extractor_config(self): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(SAMPLE_PROCESSOR_CONFIG, os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME)) copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json")) processor = AutoProcessor.from_pretrained(tmpdirname) self.assertIsInstance(processor, Wav2Vec2Processor) def test_processor_from_processor_class(self): with tempfile.TemporaryDirectory() as tmpdirname: feature_extractor = Wav2Vec2FeatureExtractor() tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor(feature_extractor, tokenizer) # save in new folder processor.save_pretrained(tmpdirname) if not os.path.isfile(os.path.join(tmpdirname, PROCESSOR_NAME)): # create one manually in order to perform this test's objective config_dict = {"processor_class": "Wav2Vec2Processor"} with open(os.path.join(tmpdirname, PROCESSOR_NAME), "w") as fp: json.dump(config_dict, fp) # drop `processor_class` in tokenizer config with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "r") as f: config_dict = json.load(f) config_dict.pop("processor_class") with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f: f.write(json.dumps(config_dict)) processor = AutoProcessor.from_pretrained(tmpdirname) self.assertIsInstance(processor, Wav2Vec2Processor) def test_processor_from_feat_extr_processor_class(self): with tempfile.TemporaryDirectory() as tmpdirname: feature_extractor = Wav2Vec2FeatureExtractor() tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor(feature_extractor, tokenizer) # save in new folder processor.save_pretrained(tmpdirname) if os.path.isfile(os.path.join(tmpdirname, PROCESSOR_NAME)): # drop `processor_class` in processor with open(os.path.join(tmpdirname, PROCESSOR_NAME), "r") as f: config_dict = json.load(f) config_dict.pop("processor_class") with open(os.path.join(tmpdirname, PROCESSOR_NAME), "w") as f: f.write(json.dumps(config_dict)) # drop `processor_class` in tokenizer with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "r") as f: config_dict = json.load(f) config_dict.pop("processor_class") with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f: f.write(json.dumps(config_dict)) processor = AutoProcessor.from_pretrained(tmpdirname) self.assertIsInstance(processor, Wav2Vec2Processor) def test_processor_from_tokenizer_processor_class(self): with tempfile.TemporaryDirectory() as tmpdirname: feature_extractor = Wav2Vec2FeatureExtractor() tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") processor = Wav2Vec2Processor(feature_extractor, tokenizer) # save in new folder processor.save_pretrained(tmpdirname) if os.path.isfile(os.path.join(tmpdirname, PROCESSOR_NAME)): # drop `processor_class` in processor with open(os.path.join(tmpdirname, PROCESSOR_NAME), "r") as f: config_dict = json.load(f) config_dict.pop("processor_class") with open(os.path.join(tmpdirname, PROCESSOR_NAME), "w") as f: f.write(json.dumps(config_dict)) # drop `processor_class` in feature extractor with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "r") as f: config_dict = json.load(f) config_dict.pop("processor_class") with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f: f.write(json.dumps(config_dict)) processor = AutoProcessor.from_pretrained(tmpdirname) self.assertIsInstance(processor, Wav2Vec2Processor) def test_processor_from_local_directory_from_model_config(self): with tempfile.TemporaryDirectory() as tmpdirname: model_config = Wav2Vec2Config(processor_class="Wav2Vec2Processor") model_config.save_pretrained(tmpdirname) # copy relevant files copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json")) # create emtpy sample processor with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f: f.write("{}") processor = AutoProcessor.from_pretrained(tmpdirname) self.assertIsInstance(processor, Wav2Vec2Processor) def test_from_pretrained_dynamic_processor(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): processor = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor", trust_remote_code=False ) processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor", trust_remote_code=True) self.assertTrue(processor.special_attribute_present) self.assertEqual(processor.__class__.__name__, "NewProcessor") feature_extractor = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") tokenizer = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") # Test we can also load the slow version new_processor = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor", trust_remote_code=True, use_fast=False ) new_tokenizer = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present) self.assertEqual(new_tokenizer.__class__.__name__, "NewTokenizer") else: self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") def test_new_processor_registration(self): try: AutoConfig.register("custom", CustomConfig) AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor) AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer) AutoProcessor.register(CustomConfig, CustomProcessor) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoProcessor.register(Wav2Vec2Config, Wav2Vec2Processor) # Now that the config is registered, it can be used as any other config with the auto-API feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR) with tempfile.TemporaryDirectory() as tmp_dir: vocab_file = os.path.join(tmp_dir, "vocab.txt") with open(vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) tokenizer = CustomTokenizer(vocab_file) processor = CustomProcessor(feature_extractor, tokenizer) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(tmp_dir) new_processor = AutoProcessor.from_pretrained(tmp_dir) self.assertIsInstance(new_processor, CustomProcessor) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_processor_conflict(self): class NewFeatureExtractor(Wav2Vec2FeatureExtractor): special_attribute_present = False class NewTokenizer(BertTokenizer): special_attribute_present = False class NewProcessor(ProcessorMixin): feature_extractor_class = "AutoFeatureExtractor" tokenizer_class = "AutoTokenizer" special_attribute_present = False try: AutoConfig.register("custom", CustomConfig) AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor) AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer) AutoProcessor.register(CustomConfig, NewProcessor) # If remote code is not set, the default is to use local classes. processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor") self.assertEqual(processor.__class__.__name__, "NewProcessor") self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote code is disabled, we load the local ones. processor = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor", trust_remote_code=False ) self.assertEqual(processor.__class__.__name__, "NewProcessor") self.assertFalse(processor.special_attribute_present) self.assertFalse(processor.feature_extractor.special_attribute_present) self.assertFalse(processor.tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub. processor = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor", trust_remote_code=True ) self.assertEqual(processor.__class__.__name__, "NewProcessor") self.assertTrue(processor.special_attribute_present) self.assertTrue(processor.feature_extractor.special_attribute_present) self.assertTrue(processor.tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_processor_with_extra_attributes(self): class NewFeatureExtractor(Wav2Vec2FeatureExtractor): pass class NewTokenizer(BertTokenizer): pass class NewProcessor(ProcessorMixin): feature_extractor_class = "AutoFeatureExtractor" tokenizer_class = "AutoTokenizer" def __init__(self, feature_extractor, tokenizer, processor_attr_1=1, processor_attr_2=True): super().__init__(feature_extractor, tokenizer) self.processor_attr_1 = processor_attr_1 self.processor_attr_2 = processor_attr_2 try: AutoConfig.register("custom", CustomConfig) AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor) AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer) AutoProcessor.register(CustomConfig, NewProcessor) # If remote code is not set, the default is to use local classes. processor = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor", processor_attr_2=False ) self.assertEqual(processor.__class__.__name__, "NewProcessor") self.assertEqual(processor.processor_attr_1, 1) self.assertEqual(processor.processor_attr_2, False) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def test_auto_processor_creates_tokenizer(self): processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(processor.__class__.__name__, "BertTokenizerFast") def test_auto_processor_creates_image_processor(self): processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext") self.assertEqual(processor.__class__.__name__, "ConvNextImageProcessor") @is_staging_test class ProcessorPushToHubTester(unittest.TestCase): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def setUpClass(cls): cls._token = TOKEN HfFolder.save_token(TOKEN) @classmethod def tearDownClass(cls): try: delete_repo(token=cls._token, repo_id="test-processor") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-processor-org") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-dynamic-processor") except HTTPError: pass def test_push_to_hub(self): processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(os.path.join(tmp_dir, "test-processor"), push_to_hub=True, token=self._token) new_processor = Wav2Vec2Processor.from_pretrained(f"{USER}/test-processor") for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(v, getattr(new_processor.feature_extractor, k)) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab()) def test_push_to_hub_in_organization(self): processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(tmp_dir, "test-processor-org"), push_to_hub=True, token=self._token, organization="valid_org", ) new_processor = Wav2Vec2Processor.from_pretrained("valid_org/test-processor-org") for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(v, getattr(new_processor.feature_extractor, k)) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab()) def test_push_to_hub_dynamic_processor(self): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR) with tempfile.TemporaryDirectory() as tmp_dir: vocab_file = os.path.join(tmp_dir, "vocab.txt") with open(vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens])) tokenizer = CustomTokenizer(vocab_file) processor = CustomProcessor(feature_extractor, tokenizer) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"{USER}/test-dynamic-processor", token=self._token) repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-processor", token=self._token) processor.save_pretrained(tmp_dir) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map, { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", }, ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(tmp_dir, "tokenizer_config.json")) as f: tokenizer_config = json.load(f) self.assertDictEqual( tokenizer_config["auto_map"], { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", }, ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py"))) self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_tokenization.py"))) self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_processing.py"))) repo.push_to_hub() new_processor = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor", trust_remote_code=True) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__, "CustomProcessor")
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/auto/test_configuration_auto.py
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 SAMPLE_ROBERTA_CONFIG = get_tests_dir("fixtures/dummy-config.json") class AutoConfigTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 def test_module_spec(self): self.assertIsNotNone(transformers.models.auto.__spec__) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto")) def test_config_from_model_shortcut(self): config = AutoConfig.from_pretrained("google-bert/bert-base-uncased") self.assertIsInstance(config, BertConfig) def test_config_model_type_from_local_file(self): config = AutoConfig.from_pretrained(SAMPLE_ROBERTA_CONFIG) self.assertIsInstance(config, RobertaConfig) def test_config_model_type_from_model_identifier(self): config = AutoConfig.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) self.assertIsInstance(config, RobertaConfig) def test_config_for_model_str(self): config = AutoConfig.for_model("roberta") self.assertIsInstance(config, RobertaConfig) def test_pattern_matching_fallback(self): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. folder = os.path.join(tmp_dir, "fake-roberta") os.makedirs(folder, exist_ok=True) with open(os.path.join(folder, "config.json"), "w") as f: f.write(json.dumps({})) config = AutoConfig.from_pretrained(folder) self.assertEqual(type(config), RobertaConfig) def test_new_config_registration(self): try: AutoConfig.register("custom", CustomConfig) # Wrong model type will raise an error with self.assertRaises(ValueError): AutoConfig.register("model", CustomConfig) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoConfig.register("bert", BertConfig) # Now that the config is registered, it can be used as any other config with the auto-API config = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(tmp_dir) new_config = AutoConfig.from_pretrained(tmp_dir) self.assertIsInstance(new_config, CustomConfig) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = AutoConfig.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoConfig.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_configuration_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.", ): _ = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo") def test_from_pretrained_dynamic_config(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): config = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): config = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False) config = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True) self.assertEqual(config.__class__.__name__, "NewModelConfig") # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(tmp_dir) reloaded_config = AutoConfig.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_config.__class__.__name__, "NewModelConfig") def test_from_pretrained_dynamic_config_conflict(self): class NewModelConfigLocal(BertConfig): model_type = "new-model" try: AutoConfig.register("new-model", NewModelConfigLocal) # If remote code is not set, the default is to use local config = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model") self.assertEqual(config.__class__.__name__, "NewModelConfigLocal") # If remote code is disabled, we load the local one. config = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False) self.assertEqual(config.__class__.__name__, "NewModelConfigLocal") # If remote is enabled, we load from the Hub config = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True) self.assertEqual(config.__class__.__name__, "NewModelConfig") finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/auto/test_tokenization_auto.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPT2Tokenizer, GPT2TokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class AutoTokenizerTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 @slow def test_tokenizer_from_pretrained(self): for model_name in {"google-bert/bert-base-uncased", "google-bert/bert-base-cased"}: tokenizer = AutoTokenizer.from_pretrained(model_name) self.assertIsNotNone(tokenizer) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(tokenizer), 0) for model_name in ["openai-community/gpt2", "openai-community/gpt2-medium"]: tokenizer = AutoTokenizer.from_pretrained(model_name) self.assertIsNotNone(tokenizer) self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast)) self.assertGreater(len(tokenizer), 0) def test_tokenizer_from_pretrained_identifier(self): tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 12) def test_tokenizer_from_model_type(self): tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 20) def test_tokenizer_from_tokenizer_class(self): config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER) self.assertIsInstance(config, RobertaConfig) # Check that tokenizer_type ≠ model_type tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size, 12) def test_tokenizer_from_type(self): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt")) tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert", use_fast=False) self.assertIsInstance(tokenizer, BertTokenizer) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json")) shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt")) tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2", use_fast=False) self.assertIsInstance(tokenizer, GPT2Tokenizer) @require_tokenizers def test_tokenizer_from_type_fast(self): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt")) tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert") self.assertIsInstance(tokenizer, BertTokenizerFast) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json")) shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt")) tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2") self.assertIsInstance(tokenizer, GPT2TokenizerFast) def test_tokenizer_from_type_incorrect_name(self): with pytest.raises(ValueError): AutoTokenizer.from_pretrained("./", tokenizer_type="xxx") @require_tokenizers def test_tokenizer_identifier_with_correct_config(self): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased") self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) if isinstance(tokenizer, BertTokenizer): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False) else: self.assertEqual(tokenizer.do_lower_case, False) self.assertEqual(tokenizer.model_max_length, 512) @require_tokenizers def test_tokenizer_identifier_non_existent(self): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( EnvironmentError, "julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier", ): _ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists") def test_model_name_edge_cases_in_mappings(self): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai tokenizers = TOKENIZER_MAPPING.values() tokenizer_names = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(tokenizer_name) @require_tokenizers def test_from_pretrained_use_fast_toggle(self): self.assertIsInstance( AutoTokenizer.from_pretrained("google-bert/bert-base-cased", use_fast=False), BertTokenizer ) self.assertIsInstance(AutoTokenizer.from_pretrained("google-bert/bert-base-cased"), BertTokenizerFast) @require_tokenizers def test_do_lower_case(self): tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased", do_lower_case=False) sample = "Hello, world. How are you?" tokens = tokenizer.tokenize(sample) self.assertEqual("[UNK]", tokens[0]) tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base", do_lower_case=False) tokens = tokenizer.tokenize(sample) self.assertEqual("[UNK]", tokens[0]) @require_tokenizers def test_PreTrainedTokenizerFast_from_pretrained(self): tokenizer = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config") self.assertEqual(type(tokenizer), PreTrainedTokenizerFast) self.assertEqual(tokenizer.model_max_length, 512) self.assertEqual(tokenizer.vocab_size, 30000) self.assertEqual(tokenizer.unk_token, "[UNK]") self.assertEqual(tokenizer.padding_side, "right") self.assertEqual(tokenizer.truncation_side, "right") def test_auto_tokenizer_from_local_folder(self): tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) tokenizer2 = AutoTokenizer.from_pretrained(tmp_dir) self.assertIsInstance(tokenizer2, tokenizer.__class__) self.assertEqual(tokenizer2.vocab_size, 12) def test_auto_tokenizer_fast_no_slow(self): tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(tokenizer, CTRLTokenizer) def test_get_tokenizer_config(self): # Check we can load the tokenizer config of an online model. config = get_tokenizer_config("google-bert/bert-base-cased") _ = config.pop("_commit_hash", None) # If we ever update google-bert/bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(config, {"do_lower_case": False, "model_max_length": 512}) # This model does not have a tokenizer_config so we get back an empty dict. config = get_tokenizer_config(SMALL_MODEL_IDENTIFIER) self.assertDictEqual(config, {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) config = get_tokenizer_config(tmp_dir) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"], "BertTokenizer") def test_new_tokenizer_registration(self): try: AutoConfig.register("custom", CustomConfig) AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoTokenizer.register(BertConfig, slow_tokenizer_class=BertTokenizer) tokenizer = CustomTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) self.assertIsInstance(new_tokenizer, CustomTokenizer) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def test_new_tokenizer_fast_registration(self): try: AutoConfig.register("custom", CustomConfig) # Can register in two steps AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, None)) AutoTokenizer.register(CustomConfig, fast_tokenizer_class=CustomTokenizerFast) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( CustomConfig, slow_tokenizer_class=CustomTokenizer, fast_tokenizer_class=CustomTokenizerFast ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoTokenizer.register(BertConfig, fast_tokenizer_class=BertTokenizerFast) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: bert_tokenizer = BertTokenizerFast.from_pretrained(SMALL_MODEL_IDENTIFIER) bert_tokenizer.save_pretrained(tmp_dir) tokenizer = CustomTokenizerFast.from_pretrained(tmp_dir) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) self.assertIsInstance(new_tokenizer, CustomTokenizerFast) new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, use_fast=False) self.assertIsInstance(new_tokenizer, CustomTokenizer) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_tokenizer(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False ) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizerFast") # Test we can also load the slow version tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False ) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(tmp_dir) reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True, use_fast=False) self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer") self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer") @require_tokenizers def test_from_pretrained_dynamic_tokenizer_conflict(self): class NewTokenizer(BertTokenizer): special_attribute_present = False class NewTokenizerFast(BertTokenizerFast): slow_tokenizer_class = NewTokenizer special_attribute_present = False try: AutoConfig.register("custom", CustomConfig) AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer) AutoTokenizer.register(CustomConfig, fast_tokenizer_class=NewTokenizerFast) # If remote code is not set, the default is to use local tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer") self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", use_fast=False) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False ) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") self.assertFalse(tokenizer.special_attribute_present) tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=False, use_fast=False ) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True ) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") self.assertTrue(tokenizer.special_attribute_present) tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False ) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_tokenizer_legacy_format(self): tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True ) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") # Test we can also load the slow version tokenizer = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True, use_fast=False ) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") else: self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = AutoTokenizer.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_cached_tokenizer_has_minimum_calls_to_head(self): # Make sure we have cached the tokenizer. _ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: _ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter["GET"], 0) self.assertEqual(counter["HEAD"], 1) self.assertEqual(counter.total_calls, 1) def test_init_tokenizer_with_trust(self): nop_tokenizer_code = """ import transformers class NopTokenizer(transformers.PreTrainedTokenizer): def get_vocab(self): return {} """ nop_config_code = """ from transformers import PretrainedConfig class NopConfig(PretrainedConfig): model_type = "test_unregistered_dynamic" def __init__(self, **kwargs): super().__init__(**kwargs) """ with tempfile.TemporaryDirectory() as tmp_dir: fake_model_id = "hf-internal-testing/test_unregistered_dynamic" fake_repo = os.path.join(tmp_dir, fake_model_id) os.makedirs(fake_repo) tokenizer_src_file = os.path.join(fake_repo, "tokenizer.py") with open(tokenizer_src_file, "w") as wfp: wfp.write(nop_tokenizer_code) model_config_src_file = os.path.join(fake_repo, "config.py") with open(model_config_src_file, "w") as wfp: wfp.write(nop_config_code) config = { "model_type": "test_unregistered_dynamic", "auto_map": {"AutoConfig": f"{fake_model_id}--config.NopConfig"}, } config_file = os.path.join(fake_repo, "config.json") with open(config_file, "w") as wfp: json.dump(config, wfp, indent=2) tokenizer_config = { "auto_map": { "AutoTokenizer": [ f"{fake_model_id}--tokenizer.NopTokenizer", None, ] } } tokenizer_config_file = os.path.join(fake_repo, "tokenizer_config.json") with open(tokenizer_config_file, "w") as wfp: json.dump(tokenizer_config, wfp, indent=2) prev_dir = os.getcwd() try: # it looks like subdir= is broken in the from_pretrained also, so this is necessary os.chdir(tmp_dir) # this should work because we trust the code _ = AutoTokenizer.from_pretrained(fake_model_id, local_files_only=True, trust_remote_code=True) try: # this should fail because we don't trust and we're not at a terminal for interactive response _ = AutoTokenizer.from_pretrained(fake_model_id, local_files_only=True, trust_remote_code=False) self.fail("AutoTokenizer.from_pretrained with trust_remote_code=False should raise ValueException") except ValueError: pass finally: os.chdir(prev_dir)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/auto/test_modeling_tf_auto.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPT2Config, T5Config, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPT2LMHeadModel, TFRobertaForMaskedLM, TFT5ForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) class NewModelConfig(BertConfig): model_type = "new-model" if is_tf_available(): class TFNewModel(TFBertModel): config_class = NewModelConfig @require_tf class TFAutoModelTest(unittest.TestCase): @slow def test_model_from_pretrained(self): model_name = "google-bert/bert-base-cased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModel.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertModel) @slow def test_model_for_pretraining_from_pretrained(self): model_name = "google-bert/bert-base-cased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForPreTraining.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForPreTraining) @slow def test_model_for_causal_lm(self): model_name = "openai-community/gpt2" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, GPT2Config) model = TFAutoModelForCausalLM.from_pretrained(model_name) model, loading_info = TFAutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFGPT2LMHeadModel) @slow def test_lmhead_model_from_pretrained(self): model_name = "openai-community/gpt2" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, GPT2Config) model = TFAutoModelWithLMHead.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFGPT2LMHeadModel) @slow def test_model_for_masked_lm(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForMaskedLM.from_pretrained(model_name) model, loading_info = TFAutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForMaskedLM) @slow def test_model_for_encoder_decoder_lm(self): model_name = "google-t5/t5-base" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, T5Config) model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name) model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFT5ForConditionalGeneration) @slow def test_sequence_classification_model_from_pretrained(self): # model_name = 'openai-community/gpt2' for model_name in ["google-bert/bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForSequenceClassification.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForSequenceClassification) @slow def test_question_answering_model_from_pretrained(self): # model_name = 'openai-community/gpt2' for model_name in ["google-bert/bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForQuestionAnswering.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForQuestionAnswering) @slow @require_tensorflow_probability def test_table_question_answering_model_from_pretrained(self): model_name = "google/tapas-base" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, TapasConfig) model = TFAutoModelForTableQuestionAnswering.from_pretrained(model_name) model, loading_info = TFAutoModelForTableQuestionAnswering.from_pretrained( model_name, output_loading_info=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFTapasForQuestionAnswering) def test_from_pretrained_identifier(self): model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(model, TFBertForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) def test_from_identifier_from_model_type(self): model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) self.assertIsInstance(model, TFRobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) def test_from_pretrained_with_tuple_values(self): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel model = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny") self.assertIsInstance(model, TFFunnelModel) config = copy.deepcopy(model.config) config.architectures = ["FunnelBaseModel"] model = TFAutoModel.from_config(config) model.build_in_name_scope() self.assertIsInstance(model, TFFunnelBaseModel) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) model = TFAutoModel.from_pretrained(tmp_dir) self.assertIsInstance(model, TFFunnelBaseModel) def test_new_model_registration(self): try: AutoConfig.register("new-model", NewModelConfig) auto_classes = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(ValueError): auto_class.register(BertConfig, TFNewModel) auto_class.register(NewModelConfig, TFNewModel) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): auto_class.register(BertConfig, TFBertModel) # Now that the config is registered, it can be used as any other config with the auto-API tiny_config = BertModelTester(self).get_config() config = NewModelConfig(**tiny_config.to_dict()) model = auto_class.from_config(config) model.build_in_name_scope() self.assertIsInstance(model, TFNewModel) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) new_model = auto_class.from_pretrained(tmp_dir) self.assertIsInstance(new_model, TFNewModel) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = TFAutoModel.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = TFAutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_model_file_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin", ): _ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model") def test_model_from_pt_suggestion(self): with self.assertRaisesRegex(EnvironmentError, "Use `from_pt=True` to load this model"): _ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") def test_cached_model_has_minimum_calls_to_head(self): # Make sure we have cached the model. _ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: _ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter["GET"], 0) self.assertEqual(counter["HEAD"], 1) self.assertEqual(counter.total_calls, 1) # With a sharded checkpoint _ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") with RequestCounter() as counter: _ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") self.assertEqual(counter["GET"], 0) self.assertEqual(counter["HEAD"], 1) self.assertEqual(counter.total_calls, 1)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/auto/test_feature_extraction_auto.py
# coding=utf-8 # Copyright 2021 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, Wav2Vec2Config, Wav2Vec2FeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures") SAMPLE_FEATURE_EXTRACTION_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json") SAMPLE_CONFIG = get_tests_dir("fixtures/dummy-config.json") class AutoFeatureExtractorTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 def test_feature_extractor_from_model_shortcut(self): config = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") self.assertIsInstance(config, Wav2Vec2FeatureExtractor) def test_feature_extractor_from_local_directory_from_key(self): config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) self.assertIsInstance(config, Wav2Vec2FeatureExtractor) def test_feature_extractor_from_local_directory_from_config(self): with tempfile.TemporaryDirectory() as tmpdirname: model_config = Wav2Vec2Config() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally config_dict = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR).to_dict() config_dict.pop("feature_extractor_type") config = Wav2Vec2FeatureExtractor(**config_dict) # save in new folder model_config.save_pretrained(tmpdirname) config.save_pretrained(tmpdirname) config = AutoFeatureExtractor.from_pretrained(tmpdirname) # make sure private variable is not incorrectly saved dict_as_saved = json.loads(config.to_json_string()) self.assertTrue("_processor_class" not in dict_as_saved) self.assertIsInstance(config, Wav2Vec2FeatureExtractor) def test_feature_extractor_from_local_file(self): config = AutoFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG) self.assertIsInstance(config, Wav2Vec2FeatureExtractor) def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = AutoFeatureExtractor.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoFeatureExtractor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_feature_extractor_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.", ): _ = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model") def test_from_pretrained_dynamic_feature_extractor(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False ) feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True ) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(tmp_dir) reloaded_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_feature_extractor.__class__.__name__, "NewFeatureExtractor") def test_new_feature_extractor_registration(self): try: AutoConfig.register("custom", CustomConfig) AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoFeatureExtractor.register(Wav2Vec2Config, Wav2Vec2FeatureExtractor) # Now that the config is registered, it can be used as any other config with the auto-API feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(tmp_dir) new_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_dir) self.assertIsInstance(new_feature_extractor, CustomFeatureExtractor) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_feature_extractor_conflict(self): class NewFeatureExtractor(Wav2Vec2FeatureExtractor): is_local = True try: AutoConfig.register("custom", CustomConfig) AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor) # If remote code is not set, the default is to use local feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") self.assertTrue(feature_extractor.is_local) # If remote code is disabled, we load the local one. feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=False ) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") self.assertTrue(feature_extractor.is_local) # If remote is enabled, we load from the Hub feature_extractor = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor", trust_remote_code=True ) self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor") self.assertTrue(not hasattr(feature_extractor, "is_local")) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/auto/test_modeling_tf_pytorch.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPT2Config, T5Config, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPT2LMHeadModel, TFRobertaForMaskedLM, TFT5ForConditionalGeneration, ) if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPT2LMHeadModel, RobertaForMaskedLM, T5ForConditionalGeneration, ) @is_pt_tf_cross_test class TFPTAutoModelTest(unittest.TestCase): @slow def test_model_from_pretrained(self): # model_name = 'google-bert/bert-base-uncased' for model_name in ["google-bert/bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModel.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertModel) model = AutoModel.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertModel) @slow def test_model_for_pretraining_from_pretrained(self): # model_name = 'google-bert/bert-base-uncased' for model_name in ["google-bert/bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForPreTraining.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForPreTraining) model = AutoModelForPreTraining.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForPreTraining) @slow def test_model_for_causal_lm(self): model_name = "openai-community/gpt2" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, GPT2Config) model = TFAutoModelForCausalLM.from_pretrained(model_name, from_pt=True) model, loading_info = TFAutoModelForCausalLM.from_pretrained( model_name, output_loading_info=True, from_pt=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFGPT2LMHeadModel) model = AutoModelForCausalLM.from_pretrained(model_name, from_tf=True) model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, GPT2LMHeadModel) @slow def test_lmhead_model_from_pretrained(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelWithLMHead.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForMaskedLM) model = AutoModelWithLMHead.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_masked_lm(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForMaskedLM.from_pretrained(model_name, from_pt=True) model, loading_info = TFAutoModelForMaskedLM.from_pretrained( model_name, output_loading_info=True, from_pt=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForMaskedLM) model = AutoModelForMaskedLM.from_pretrained(model_name, from_tf=True) model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_encoder_decoder_lm(self): model_name = "google-t5/t5-base" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, T5Config) model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, from_pt=True) model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained( model_name, output_loading_info=True, from_pt=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFT5ForConditionalGeneration) model = AutoModelForSeq2SeqLM.from_pretrained(model_name, from_tf=True) model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, T5ForConditionalGeneration) @slow def test_sequence_classification_model_from_pretrained(self): # model_name = 'google-bert/bert-base-uncased' for model_name in ["google-bert/bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForSequenceClassification.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForSequenceClassification) model = AutoModelForSequenceClassification.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForSequenceClassification) @slow def test_question_answering_model_from_pretrained(self): # model_name = 'google-bert/bert-base-uncased' for model_name in ["google-bert/bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForQuestionAnswering.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForQuestionAnswering) model = AutoModelForQuestionAnswering.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForQuestionAnswering) def test_from_pretrained_identifier(self): model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_pt=True) self.assertIsInstance(model, TFBertForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_tf=True) self.assertIsInstance(model, BertForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) def test_from_identifier_from_model_type(self): model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, from_pt=True) self.assertIsInstance(model, TFRobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, from_tf=True) self.assertIsInstance(model, RobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/auto/test_modeling_flax_auto.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class FlaxAutoModelTest(unittest.TestCase): @slow def test_bert_from_pretrained(self): for model_name in ["google-bert/bert-base-cased", "google-bert/bert-large-uncased"]: with self.subTest(model_name): config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = FlaxAutoModel.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, FlaxBertModel) @slow def test_roberta_from_pretrained(self): for model_name in ["FacebookAI/roberta-base", "FacebookAI/roberta-large"]: with self.subTest(model_name): config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = FlaxAutoModel.from_pretrained(model_name) self.assertIsNotNone(model) self.assertIsInstance(model, FlaxRobertaModel) @slow def test_bert_jax_jit(self): for model_name in ["google-bert/bert-base-cased", "google-bert/bert-large-uncased"]: tokenizer = AutoTokenizer.from_pretrained(model_name) model = FlaxBertModel.from_pretrained(model_name) tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX) @jax.jit def eval(**kwargs): return model(**kwargs) eval(**tokens).block_until_ready() @slow def test_roberta_jax_jit(self): for model_name in ["FacebookAI/roberta-base", "FacebookAI/roberta-large"]: tokenizer = AutoTokenizer.from_pretrained(model_name) model = FlaxRobertaModel.from_pretrained(model_name) tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX) @jax.jit def eval(**kwargs): return model(**kwargs) eval(**tokens).block_until_ready() def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = FlaxAutoModel.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = FlaxAutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_model_file_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): _ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model") def test_model_from_pt_suggestion(self): with self.assertRaisesRegex(EnvironmentError, "Use `from_pt=True` to load this model"): _ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/auto/test_modeling_auto.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import sys import tempfile import unittest from collections import OrderedDict from pathlib import Path import pytest import transformers from transformers import BertConfig, GPT2Model, is_safetensors_available, is_torch_available from transformers.models.auto.configuration_auto import CONFIG_MAPPING from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_torch, slow, ) from ..bert.test_modeling_bert import BertModelTester sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 if is_torch_available(): import torch from test_module.custom_modeling import CustomModel from transformers import ( AutoBackbone, AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTableQuestionAnswering, AutoModelForTokenClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertModel, FunnelBaseModel, FunnelModel, GPT2Config, GPT2LMHeadModel, ResNetBackbone, RobertaForMaskedLM, T5Config, T5ForConditionalGeneration, TapasConfig, TapasForQuestionAnswering, TimmBackbone, ) from transformers.models.auto.modeling_auto import ( MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_MAPPING, ) @require_torch class AutoModelTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 @slow def test_model_from_pretrained(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModel.from_pretrained(model_name) model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertModel) self.assertEqual(len(loading_info["missing_keys"]), 0) # When using PyTorch checkpoint, the expected value is `8`. With `safetensors` checkpoint (if it is # installed), the expected value becomes `7`. EXPECTED_NUM_OF_UNEXPECTED_KEYS = 7 if is_safetensors_available() else 8 self.assertEqual(len(loading_info["unexpected_keys"]), EXPECTED_NUM_OF_UNEXPECTED_KEYS) self.assertEqual(len(loading_info["mismatched_keys"]), 0) self.assertEqual(len(loading_info["error_msgs"]), 0) @slow def test_model_for_pretraining_from_pretrained(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForPreTraining.from_pretrained(model_name) model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForPreTraining) # Only one value should not be initialized and in the missing keys. for key, value in loading_info.items(): self.assertEqual(len(value), 0) @slow def test_lmhead_model_from_pretrained(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelWithLMHead.from_pretrained(model_name) model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_causal_lm(self): model_name = "openai-community/gpt2" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, GPT2Config) model = AutoModelForCausalLM.from_pretrained(model_name) model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, GPT2LMHeadModel) @slow def test_model_for_masked_lm(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForMaskedLM.from_pretrained(model_name) model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_encoder_decoder_lm(self): model_name = "google-t5/t5-base" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, T5Config) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, T5ForConditionalGeneration) @slow def test_sequence_classification_model_from_pretrained(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForSequenceClassification.from_pretrained(model_name) model, loading_info = AutoModelForSequenceClassification.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForSequenceClassification) @slow def test_question_answering_model_from_pretrained(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForQuestionAnswering.from_pretrained(model_name) model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForQuestionAnswering) @slow def test_table_question_answering_model_from_pretrained(self): model_name = "google/tapas-base" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, TapasConfig) model = AutoModelForTableQuestionAnswering.from_pretrained(model_name) model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, TapasForQuestionAnswering) @slow def test_token_classification_model_from_pretrained(self): model_name = "google-bert/bert-base-uncased" config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = AutoModelForTokenClassification.from_pretrained(model_name) model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForTokenClassification) @slow def test_auto_backbone_timm_model_from_pretrained(self): # Configs can't be loaded for timm models model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True) with pytest.raises(ValueError): # We can't pass output_loading_info=True as we're loading from timm AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, TimmBackbone) # Check kwargs are correctly passed to the backbone model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_indices=(-2, -1)) self.assertEqual(model.out_indices, (-2, -1)) # Check out_features cannot be passed to Timm backbones with self.assertRaises(ValueError): _ = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_features=["stage1"]) @slow def test_auto_backbone_from_pretrained(self): model = AutoBackbone.from_pretrained("microsoft/resnet-18") model, loading_info = AutoBackbone.from_pretrained("microsoft/resnet-18", output_loading_info=True) self.assertIsNotNone(model) self.assertIsInstance(model, ResNetBackbone) # Check kwargs are correctly passed to the backbone model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_indices=[-2, -1]) self.assertEqual(model.out_indices, [-2, -1]) self.assertEqual(model.out_features, ["stage3", "stage4"]) model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_features=["stage2", "stage4"]) self.assertEqual(model.out_indices, [2, 4]) self.assertEqual(model.out_features, ["stage2", "stage4"]) def test_from_pretrained_identifier(self): model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) self.assertIsInstance(model, BertForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) def test_from_identifier_from_model_type(self): model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) self.assertIsInstance(model, RobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) def test_from_pretrained_with_tuple_values(self): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel model = AutoModel.from_pretrained("sgugger/funnel-random-tiny") self.assertIsInstance(model, FunnelModel) config = copy.deepcopy(model.config) config.architectures = ["FunnelBaseModel"] model = AutoModel.from_config(config) self.assertIsInstance(model, FunnelBaseModel) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) model = AutoModel.from_pretrained(tmp_dir) self.assertIsInstance(model, FunnelBaseModel) def test_from_pretrained_dynamic_model_local(self): try: AutoConfig.register("custom", CustomConfig) AutoModel.register(CustomConfig, CustomModel) config = CustomConfig(hidden_size=32) model = CustomModel(config) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) for p1, p2 in zip(model.parameters(), new_model.parameters()): self.assertTrue(torch.equal(p1, p2)) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in MODEL_MAPPING._extra_content: del MODEL_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_model_distant(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False) model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True) self.assertEqual(model.__class__.__name__, "NewModel") # Test model can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_model.__class__.__name__, "NewModel") for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): self.assertTrue(torch.equal(p1, p2)) # This one uses a relative import to a util file, this checks it is downloaded and used properly. model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_with_util", trust_remote_code=True) self.assertEqual(model.__class__.__name__, "NewModel") # Test model can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_model.__class__.__name__, "NewModel") for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): self.assertTrue(torch.equal(p1, p2)) def test_from_pretrained_dynamic_model_distant_with_ref(self): model = AutoModel.from_pretrained("hf-internal-testing/ref_to_test_dynamic_model", trust_remote_code=True) self.assertEqual(model.__class__.__name__, "NewModel") # Test model can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_model.__class__.__name__, "NewModel") for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): self.assertTrue(torch.equal(p1, p2)) # This one uses a relative import to a util file, this checks it is downloaded and used properly. model = AutoModel.from_pretrained( "hf-internal-testing/ref_to_test_dynamic_model_with_util", trust_remote_code=True ) self.assertEqual(model.__class__.__name__, "NewModel") # Test model can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_model.__class__.__name__, "NewModel") for p1, p2 in zip(model.parameters(), reloaded_model.parameters()): self.assertTrue(torch.equal(p1, p2)) def test_from_pretrained_dynamic_model_with_period(self): # We used to have issues where repos with "." in the name would cause issues because the Python # import machinery would treat that as a directory separator, so we test that case # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_v1.0") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_v1.0", trust_remote_code=False) model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_v1.0", trust_remote_code=True) self.assertEqual(model.__class__.__name__, "NewModel") # Test that it works with a custom cache dir too with tempfile.TemporaryDirectory() as tmp_dir: model = AutoModel.from_pretrained( "hf-internal-testing/test_dynamic_model_v1.0", trust_remote_code=True, cache_dir=tmp_dir ) self.assertEqual(model.__class__.__name__, "NewModel") def test_new_model_registration(self): AutoConfig.register("custom", CustomConfig) auto_classes = [ AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoModelForTokenClassification, ] try: for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(ValueError): auto_class.register(BertConfig, CustomModel) auto_class.register(CustomConfig, CustomModel) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): auto_class.register(BertConfig, BertModel) # Now that the config is registered, it can be used as any other config with the auto-API tiny_config = BertModelTester(self).get_config() config = CustomConfig(**tiny_config.to_dict()) model = auto_class.from_config(config) self.assertIsInstance(model, CustomModel) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) new_model = auto_class.from_pretrained(tmp_dir) # The model is a CustomModel but from the new dynamically imported class. self.assertIsInstance(new_model, CustomModel) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] for mapping in ( MODEL_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, ): if CustomConfig in mapping._extra_content: del mapping._extra_content[CustomConfig] def test_from_pretrained_dynamic_model_conflict(self): class NewModelConfigLocal(BertConfig): model_type = "new-model" class NewModel(BertModel): config_class = NewModelConfigLocal try: AutoConfig.register("new-model", NewModelConfigLocal) AutoModel.register(NewModelConfigLocal, NewModel) # If remote code is not set, the default is to use local model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model") self.assertEqual(model.config.__class__.__name__, "NewModelConfigLocal") # If remote code is disabled, we load the local one. model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False) self.assertEqual(model.config.__class__.__name__, "NewModelConfigLocal") # If remote is enabled, we load from the Hub model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True) self.assertEqual(model.config.__class__.__name__, "NewModelConfig") finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] if NewModelConfigLocal in MODEL_MAPPING._extra_content: del MODEL_MAPPING._extra_content[NewModelConfigLocal] def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" ): _ = AutoModel.from_pretrained("bert-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_model_file_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin", ): _ = AutoModel.from_pretrained("hf-internal-testing/config-no-model") def test_model_from_tf_suggestion(self): with self.assertRaisesRegex(EnvironmentError, "Use `from_tf=True` to load this model"): _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") def test_model_from_flax_suggestion(self): with self.assertRaisesRegex(EnvironmentError, "Use `from_flax=True` to load this model"): _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only") def test_cached_model_has_minimum_calls_to_head(self): # Make sure we have cached the model. _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter["GET"], 0) self.assertEqual(counter["HEAD"], 1) self.assertEqual(counter.total_calls, 1) # With a sharded checkpoint _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded") with RequestCounter() as counter: _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded") self.assertEqual(counter["GET"], 0) self.assertEqual(counter["HEAD"], 1) self.assertEqual(counter.total_calls, 1) def test_attr_not_existing(self): from transformers.models.auto.auto_factory import _LazyAutoMapping _CONFIG_MAPPING_NAMES = OrderedDict([("bert", "BertConfig")]) _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GhostModel")]) _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES) with pytest.raises(ValueError, match=r"Could not find GhostModel neither in .* nor in .*!"): _MODEL_MAPPING[BertConfig] _MODEL_MAPPING_NAMES = OrderedDict([("bert", "BertModel")]) _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES) self.assertEqual(_MODEL_MAPPING[BertConfig], BertModel) _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GPT2Model")]) _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES) self.assertEqual(_MODEL_MAPPING[BertConfig], GPT2Model)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/auto/test_image_processing_auto.py
# coding=utf-8 # Copyright 2021 the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class AutoImageProcessorTest(unittest.TestCase): def setUp(self): transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0 def test_image_processor_from_model_shortcut(self): config = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32") self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_directory_from_key(self): with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) config = AutoImageProcessor.from_pretrained(tmpdirname) self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_directory_from_feature_extractor_key(self): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) config = AutoImageProcessor.from_pretrained(tmpdirname) self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_directory_from_config(self): with tempfile.TemporaryDirectory() as tmpdirname: model_config = CLIPConfig() # Create a dummy config file with image_proceesor_type processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) # remove image_processor_type to make sure config.json alone is enough to load image processor locally config_dict = AutoImageProcessor.from_pretrained(tmpdirname).to_dict() config_dict.pop("image_processor_type") config = CLIPImageProcessor(**config_dict) # save in new folder model_config.save_pretrained(tmpdirname) config.save_pretrained(tmpdirname) config = AutoImageProcessor.from_pretrained(tmpdirname) # make sure private variable is not incorrectly saved dict_as_saved = json.loads(config.to_json_string()) self.assertTrue("_processor_class" not in dict_as_saved) self.assertIsInstance(config, CLIPImageProcessor) def test_image_processor_from_local_file(self): with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) config = AutoImageProcessor.from_pretrained(processor_tmpfile) self.assertIsInstance(config, CLIPImageProcessor) def test_repo_not_found(self): with self.assertRaisesRegex( EnvironmentError, "clip-base is not a local folder and is not a valid model identifier" ): _ = AutoImageProcessor.from_pretrained("clip-base") def test_revision_not_found(self): with self.assertRaisesRegex( EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _ = AutoImageProcessor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") def test_image_processor_not_found(self): with self.assertRaisesRegex( EnvironmentError, "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.", ): _ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model") def test_from_pretrained_dynamic_image_processor(self): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(ValueError): image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") # If remote code is disabled, we can't load this config. with self.assertRaises(ValueError): image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False ) image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True ) self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(tmp_dir) reloaded_image_processor = AutoImageProcessor.from_pretrained(tmp_dir, trust_remote_code=True) self.assertEqual(reloaded_image_processor.__class__.__name__, "NewImageProcessor") def test_new_image_processor_registration(self): try: AutoConfig.register("custom", CustomConfig) AutoImageProcessor.register(CustomConfig, CustomImageProcessor) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(ValueError): AutoImageProcessor.register(CLIPConfig, CLIPImageProcessor) with tempfile.TemporaryDirectory() as tmpdirname: processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json" config_tmpfile = Path(tmpdirname) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"}, open(processor_tmpfile, "w"), ) json.dump({"model_type": "clip"}, open(config_tmpfile, "w")) image_processor = CustomImageProcessor.from_pretrained(tmpdirname) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(tmp_dir) new_image_processor = AutoImageProcessor.from_pretrained(tmp_dir) self.assertIsInstance(new_image_processor, CustomImageProcessor) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def test_from_pretrained_dynamic_image_processor_conflict(self): class NewImageProcessor(CLIPImageProcessor): is_local = True try: AutoConfig.register("custom", CustomConfig) AutoImageProcessor.register(CustomConfig, NewImageProcessor) # If remote code is not set, the default is to use local image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor") self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False ) self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub image_processor = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True ) self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor") self.assertTrue(not hasattr(image_processor, "is_local")) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/realm/test_retrieval_realm.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class RealmRetrieverTest(TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() self.num_block_records = 5 # Realm tok vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] realm_tokenizer_path = os.path.join(self.tmpdirname, "realm_tokenizer") os.makedirs(realm_tokenizer_path, exist_ok=True) self.vocab_file = os.path.join(realm_tokenizer_path, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) realm_block_records_path = os.path.join(self.tmpdirname, "realm_block_records") os.makedirs(realm_block_records_path, exist_ok=True) def get_tokenizer(self) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname, "realm_tokenizer")) def tearDown(self): shutil.rmtree(self.tmpdirname) def get_config(self): config = RealmConfig(num_block_records=self.num_block_records) return config def get_dummy_dataset(self): dataset = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def get_dummy_block_records(self): block_records = np.array( [ b"This is the first record", b"This is the second record", b"This is the third record", b"This is the fourth record", b"This is the fifth record", b"This is a longer longer longer record", ], dtype=object, ) return block_records def get_dummy_retriever(self): retriever = RealmRetriever( block_records=self.get_dummy_block_records(), tokenizer=self.get_tokenizer(), ) return retriever def test_retrieve(self): config = self.get_config() retriever = self.get_dummy_retriever() tokenizer = retriever.tokenizer retrieved_block_ids = np.array([0, 3], dtype="long") question_input_ids = tokenizer(["Test question"]).input_ids answer_ids = tokenizer( ["the fourth"], add_special_tokens=False, return_token_type_ids=False, return_attention_mask=False, ).input_ids max_length = config.reader_seq_len has_answers, start_pos, end_pos, concat_inputs = retriever( retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np" ) self.assertEqual(len(has_answers), 2) self.assertEqual(len(start_pos), 2) self.assertEqual(len(end_pos), 2) self.assertEqual(concat_inputs.input_ids.shape, (2, 10)) self.assertEqual(concat_inputs.attention_mask.shape, (2, 10)) self.assertEqual(concat_inputs.token_type_ids.shape, (2, 10)) self.assertEqual(concat_inputs.special_tokens_mask.shape, (2, 10)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]), ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"], ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]), ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"], ) def test_block_has_answer(self): config = self.get_config() retriever = self.get_dummy_retriever() tokenizer = retriever.tokenizer retrieved_block_ids = np.array([0, 3, 5], dtype="long") question_input_ids = tokenizer(["Test question"]).input_ids answer_ids = tokenizer( ["the fourth", "longer longer"], add_special_tokens=False, return_token_type_ids=False, return_attention_mask=False, ).input_ids max_length = config.reader_seq_len has_answers, start_pos, end_pos, _ = retriever( retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np" ) self.assertEqual([False, True, True], has_answers) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]], start_pos) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]], end_pos) def test_save_load_pretrained(self): retriever = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname, "realm_block_records")) # Test local path retriever = retriever.from_pretrained(os.path.join(self.tmpdirname, "realm_block_records")) self.assertEqual(retriever.block_records[0], b"This is the first record") # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download") as mock_hf_hub_download: mock_hf_hub_download.return_value = os.path.join( os.path.join(self.tmpdirname, "realm_block_records"), _REALM_BLOCK_RECORDS_FILENAME ) retriever = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa") self.assertEqual(retriever.block_records[0], b"This is the first record")
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/realm/test_tokenization_realm.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import RealmTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.realm.tokenization_realm import RealmTokenizer from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class RealmTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "google/realm-cc-news-pretrained-embedder" tokenizer_class = RealmTokenizer rust_tokenizer_class = RealmTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True from_pretrained_filter = filter_non_english def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11]) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) # With lower casing tokenizer = self.get_tokenizer(do_lower_case=True) rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True) sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_chinese(self): tokenizer = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_no_lower(self): tokenizer = BasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def test_clean_text(self): tokenizer = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) if self.test_rust_tokenizer: rust_tokenizer = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]] ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("google-bert/bert-base-uncased") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_2 + [102] def test_offsets_with_special_characters(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False expected_results = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) @slow def test_batch_encode_candidates(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]] encoded_sentence_r = tokenizer_r.batch_encode_candidates(text, max_length=10, return_tensors="np") encoded_sentence_p = tokenizer_p.batch_encode_candidates(text, max_length=10, return_tensors="np") expected_shape = (2, 2, 10) self.assertEqual(encoded_sentence_r["input_ids"].shape, expected_shape) self.assertEqual(encoded_sentence_r["attention_mask"].shape, expected_shape) self.assertEqual(encoded_sentence_r["token_type_ids"].shape, expected_shape) self.assertEqual(encoded_sentence_p["input_ids"].shape, expected_shape) self.assertEqual(encoded_sentence_p["attention_mask"].shape, expected_shape) self.assertEqual(encoded_sentence_p["token_type_ids"].shape, expected_shape)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/realm/test_modeling_realm.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch REALM model. """ import copy import unittest import numpy as np from transformers import RealmConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( RealmEmbedder, RealmForOpenQA, RealmKnowledgeAugEncoder, RealmReader, RealmRetriever, RealmScorer, RealmTokenizer, ) class RealmModelTester: def __init__( self, parent, batch_size=13, retriever_proj_size=128, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, layer_norm_eps=1e-12, span_hidden_size=50, max_span_width=10, reader_layer_norm_eps=1e-3, reader_beam_size=4, reader_seq_len=288 + 32, num_block_records=13353718, searcher_beam_size=8, searcher_seq_len=64, num_labels=3, num_choices=4, num_candidates=10, scope=None, ): # General config self.parent = parent self.batch_size = batch_size self.retriever_proj_size = retriever_proj_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps # Reader config self.span_hidden_size = span_hidden_size self.max_span_width = max_span_width self.reader_layer_norm_eps = reader_layer_norm_eps self.reader_beam_size = reader_beam_size self.reader_seq_len = reader_seq_len # Searcher config self.num_block_records = num_block_records self.searcher_beam_size = searcher_beam_size self.searcher_seq_len = searcher_seq_len self.num_labels = num_labels self.num_choices = num_choices self.num_candidates = num_candidates self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) candiate_input_ids = ids_tensor([self.batch_size, self.num_candidates, self.seq_length], self.vocab_size) reader_input_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.vocab_size) input_mask = None candiate_input_mask = None reader_input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) candiate_input_mask = random_attention_mask([self.batch_size, self.num_candidates, self.seq_length]) reader_input_mask = random_attention_mask([self.reader_beam_size, self.reader_seq_len]) token_type_ids = None candidate_token_type_ids = None reader_token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) candidate_token_type_ids = ids_tensor( [self.batch_size, self.num_candidates, self.seq_length], self.type_vocab_size ) reader_token_type_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() # inputs with additional num_candidates axis. scorer_encoder_inputs = (candiate_input_ids, candiate_input_mask, candidate_token_type_ids) # reader inputs reader_inputs = (reader_input_ids, reader_input_mask, reader_token_type_ids) return ( config, input_ids, token_type_ids, input_mask, scorer_encoder_inputs, reader_inputs, sequence_labels, token_labels, choice_labels, ) def get_config(self): return RealmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, retriever_proj_size=self.retriever_proj_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, num_candidates=self.num_candidates, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def create_and_check_embedder( self, config, input_ids, token_type_ids, input_mask, scorer_encoder_inputs, reader_inputs, sequence_labels, token_labels, choice_labels, ): model = RealmEmbedder(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.projected_score.shape, (self.batch_size, self.retriever_proj_size)) def create_and_check_encoder( self, config, input_ids, token_type_ids, input_mask, scorer_encoder_inputs, reader_inputs, sequence_labels, token_labels, choice_labels, ): model = RealmKnowledgeAugEncoder(config=config) model.to(torch_device) model.eval() relevance_score = floats_tensor([self.batch_size, self.num_candidates]) result = model( scorer_encoder_inputs[0], attention_mask=scorer_encoder_inputs[1], token_type_ids=scorer_encoder_inputs[2], relevance_score=relevance_score, labels=token_labels, ) self.parent.assertEqual( result.logits.shape, (self.batch_size * self.num_candidates, self.seq_length, self.vocab_size) ) def create_and_check_reader( self, config, input_ids, token_type_ids, input_mask, scorer_encoder_inputs, reader_inputs, sequence_labels, token_labels, choice_labels, ): model = RealmReader(config=config) model.to(torch_device) model.eval() relevance_score = floats_tensor([self.reader_beam_size]) result = model( reader_inputs[0], attention_mask=reader_inputs[1], token_type_ids=reader_inputs[2], relevance_score=relevance_score, ) self.parent.assertEqual(result.block_idx.shape, ()) self.parent.assertEqual(result.candidate.shape, ()) self.parent.assertEqual(result.start_pos.shape, ()) self.parent.assertEqual(result.end_pos.shape, ()) def create_and_check_scorer( self, config, input_ids, token_type_ids, input_mask, scorer_encoder_inputs, reader_inputs, sequence_labels, token_labels, choice_labels, ): model = RealmScorer(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, candidate_input_ids=scorer_encoder_inputs[0], candidate_attention_mask=scorer_encoder_inputs[1], candidate_token_type_ids=scorer_encoder_inputs[2], ) self.parent.assertEqual(result.relevance_score.shape, (self.batch_size, self.num_candidates)) self.parent.assertEqual(result.query_score.shape, (self.batch_size, self.retriever_proj_size)) self.parent.assertEqual( result.candidate_score.shape, (self.batch_size, self.num_candidates, self.retriever_proj_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, scorer_encoder_inputs, reader_inputs, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RealmModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( RealmEmbedder, RealmKnowledgeAugEncoder, # RealmScorer is excluded from common tests as it is a container model # consisting of two RealmEmbedders & a simple inner product calculation. # RealmScorer ) if is_torch_available() else () ) all_generative_model_classes = () pipeline_model_mapping = {} if is_torch_available() else {} # disable these tests because there is no base_model in Realm test_save_load_fast_init_from_base = False test_save_load_fast_init_to_base = False def setUp(self): self.test_pruning = False self.model_tester = RealmModelTester(self) self.config_tester = ConfigTester(self, config_class=RealmConfig) def test_config(self): self.config_tester.run_common_tests() def test_embedder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_embedder(*config_and_inputs) def test_encoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_encoder(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_embedder(*config_and_inputs) self.model_tester.create_and_check_encoder(*config_and_inputs) def test_scorer(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_scorer(*config_and_inputs) def test_training(self): if not self.model_tester.is_training: return config, *inputs = self.model_tester.prepare_config_and_inputs() input_ids, token_type_ids, input_mask, scorer_encoder_inputs = inputs[0:4] config.return_dict = True tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa") # RealmKnowledgeAugEncoder training model = RealmKnowledgeAugEncoder(config) model.to(torch_device) model.train() inputs_dict = { "input_ids": scorer_encoder_inputs[0].to(torch_device), "attention_mask": scorer_encoder_inputs[1].to(torch_device), "token_type_ids": scorer_encoder_inputs[2].to(torch_device), "relevance_score": floats_tensor([self.model_tester.batch_size, self.model_tester.num_candidates]), } inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs = inputs_dict loss = model(**inputs).loss loss.backward() # RealmForOpenQA training openqa_config = copy.deepcopy(config) openqa_config.vocab_size = 30522 # the retrieved texts will inevitably have more than 99 vocabs. openqa_config.num_block_records = 5 openqa_config.searcher_beam_size = 2 block_records = np.array( [ b"This is the first record.", b"This is the second record.", b"This is the third record.", b"This is the fourth record.", b"This is the fifth record.", ], dtype=object, ) retriever = RealmRetriever(block_records, tokenizer) model = RealmForOpenQA(openqa_config, retriever) model.to(torch_device) model.train() inputs_dict = { "input_ids": input_ids[:1].to(torch_device), "attention_mask": input_mask[:1].to(torch_device), "token_type_ids": token_type_ids[:1].to(torch_device), "answer_ids": input_ids[:1].tolist(), } inputs = self._prepare_for_class(inputs_dict, RealmForOpenQA) loss = model(**inputs).reader_output.loss loss.backward() # Test model.block_embedding_to device = torch.device("cpu") model.block_embedding_to(device) loss = model(**inputs).reader_output.loss loss.backward() self.assertEqual(model.block_emb.device.type, device.type) @slow def test_embedder_from_pretrained(self): model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder") self.assertIsNotNone(model) @slow def test_encoder_from_pretrained(self): model = RealmKnowledgeAugEncoder.from_pretrained("google/realm-cc-news-pretrained-encoder") self.assertIsNotNone(model) @slow def test_open_qa_from_pretrained(self): model = RealmForOpenQA.from_pretrained("google/realm-orqa-nq-openqa") self.assertIsNotNone(model) @slow def test_reader_from_pretrained(self): model = RealmReader.from_pretrained("google/realm-orqa-nq-reader") self.assertIsNotNone(model) @slow def test_scorer_from_pretrained(self): model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer") self.assertIsNotNone(model) @require_torch class RealmModelIntegrationTest(unittest.TestCase): @slow def test_inference_embedder(self): retriever_projected_size = 128 model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = torch.Size((1, retriever_projected_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[-0.0714, -0.0837, -0.1314]]) self.assertTrue(torch.allclose(output[:, :3], expected_slice, atol=1e-4)) @slow def test_inference_encoder(self): num_candidates = 2 vocab_size = 30522 model = RealmKnowledgeAugEncoder.from_pretrained( "google/realm-cc-news-pretrained-encoder", num_candidates=num_candidates ) input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) relevance_score = torch.tensor([[0.3, 0.7]], dtype=torch.float32) output = model(input_ids, relevance_score=relevance_score)[0] expected_shape = torch.Size((2, 6, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[[-11.0888, -11.2544], [-10.2170, -10.3874]]]) self.assertTrue(torch.allclose(output[1, :2, :2], expected_slice, atol=1e-4)) @slow def test_inference_open_qa(self): from transformers.models.realm.retrieval_realm import RealmRetriever tokenizer = RealmTokenizer.from_pretrained("google/realm-orqa-nq-openqa") retriever = RealmRetriever.from_pretrained("google/realm-orqa-nq-openqa") model = RealmForOpenQA.from_pretrained( "google/realm-orqa-nq-openqa", retriever=retriever, ) question = "Who is the pioneer in modern computer science?" question = tokenizer( [question], padding=True, truncation=True, max_length=model.config.searcher_seq_len, return_tensors="pt", ).to(model.device) predicted_answer_ids = model(**question).predicted_answer_ids predicted_answer = tokenizer.decode(predicted_answer_ids) self.assertEqual(predicted_answer, "alan mathison turing") @slow def test_inference_reader(self): config = RealmConfig(reader_beam_size=2, max_span_width=3) model = RealmReader.from_pretrained("google/realm-orqa-nq-reader", config=config) concat_input_ids = torch.arange(10).view((2, 5)) concat_token_type_ids = torch.tensor([[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]], dtype=torch.int64) concat_block_mask = torch.tensor([[0, 0, 1, 1, 0], [0, 0, 1, 1, 0]], dtype=torch.int64) relevance_score = torch.tensor([0.3, 0.7], dtype=torch.float32) output = model( concat_input_ids, token_type_ids=concat_token_type_ids, relevance_score=relevance_score, block_mask=concat_block_mask, return_dict=True, ) block_idx_expected_shape = torch.Size(()) start_pos_expected_shape = torch.Size((1,)) end_pos_expected_shape = torch.Size((1,)) self.assertEqual(output.block_idx.shape, block_idx_expected_shape) self.assertEqual(output.start_pos.shape, start_pos_expected_shape) self.assertEqual(output.end_pos.shape, end_pos_expected_shape) expected_block_idx = torch.tensor(1) expected_start_pos = torch.tensor(3) expected_end_pos = torch.tensor(3) self.assertTrue(torch.allclose(output.block_idx, expected_block_idx, atol=1e-4)) self.assertTrue(torch.allclose(output.start_pos, expected_start_pos, atol=1e-4)) self.assertTrue(torch.allclose(output.end_pos, expected_end_pos, atol=1e-4)) @slow def test_inference_scorer(self): num_candidates = 2 model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer", num_candidates=num_candidates) input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) candidate_input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) output = model(input_ids, candidate_input_ids=candidate_input_ids)[0] expected_shape = torch.Size((1, 2)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[0.7410, 0.7170]]) self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/timesformer/test_modeling_timesformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch TimeSformer model. """ import copy import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) if is_vision_available(): from transformers import VideoMAEImageProcessor class TimesformerModelTester: def __init__( self, parent, batch_size=13, image_size=10, num_channels=3, patch_size=2, num_frames=2, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, num_labels=10, initializer_range=0.02, attention_type="divided_space_time", scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.patch_size = patch_size self.num_frames = num_frames self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.attention_type = attention_type self.initializer_range = initializer_range self.scope = scope self.num_labels = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token self.num_patches_per_frame = (image_size // patch_size) ** 2 self.seq_length = (num_frames) * self.num_patches_per_frame + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): config = TimesformerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, attention_type=self.attention_type, ) config.num_labels = self.num_labels return config def create_and_check_model(self, config, pixel_values, labels): model = TimesformerModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_video_classification(self, config, pixel_values, labels): model = TimesformerForVideoClassification(config) model.to(torch_device) model.eval() result = model(pixel_values) # verify the logits shape expected_shape = torch.Size((self.batch_size, self.num_labels)) self.parent.assertEqual(result.logits.shape, expected_shape) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class TimesformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as TimeSformer does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = TimesformerModelTester(self) self.config_tester = ConfigTester( self, config_class=TimesformerConfig, has_text_modality=False, hidden_size=37 ) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: if model_class in get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING): inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_video_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "facebook/timesformer-base-finetuned-k400" model = TimesformerModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_attention_outputs(self): if not self.has_attentions: pass else: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: seq_len = self.model_tester.seq_length num_frames = self.model_tester.num_frames inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # We will verify our results on a video of eating spaghetti # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] def prepare_video(): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) video = np.load(file) return list(video) @require_torch @require_vision class TimesformerModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def test_inference_for_video_classification(self): model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400").to( torch_device ) image_processor = self.default_image_processor video = prepare_video() inputs = image_processor(video[:8], return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 400)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.3016, -0.7713, -0.4205]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/vit/test_modeling_vit.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ViT model. """ import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_accelerator, require_torch_fp16, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class ViTModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, scope=None, encoder_stride=2, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.encoder_stride = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def create_and_check_model(self, config, pixel_values, labels): model = ViTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): model = ViTForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images config.num_channels = 1 model = ViTForMaskedImageModeling(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = ViTForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = ViTForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class ViTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ViT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = ViTModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "google/vit-base-patch16-224" model = ViTModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViTModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.2744, 0.8215, -0.0836]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_interpolate_pos_encoding(self): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. model = ViTModel.from_pretrained("facebook/dino-vits8").to(torch_device) image_processor = ViTImageProcessor.from_pretrained("facebook/dino-vits8", size=480) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # forward pass with torch.no_grad(): outputs = model(pixel_values, interpolate_pos_encoding=True) # verify the logits expected_shape = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) @slow @require_accelerate @require_torch_accelerator @require_torch_fp16 def test_inference_fp16(self): r""" A small test to make sure that inference work in half precision without any problem. """ model = ViTModel.from_pretrained("facebook/dino-vits8", torch_dtype=torch.float16, device_map="auto") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt") pixel_values = inputs.pixel_values.to(torch_device) # forward pass to make sure inference works in fp16 with torch.no_grad(): _ = model(pixel_values)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/vit/test_modeling_tf_vit.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow ViT model. """ from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel from transformers.modeling_tf_utils import keras if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class TFViTModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = TFViTModel(config=config) result = model(pixel_values, training=False) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Test with an image with different size than the one specified in config. image_size = self.image_size // 2 pixel_values = pixel_values[:, :, :image_size, :image_size] result = model(pixel_values, interpolate_pos_encoding=True, training=False) seq_length = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, seq_length, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = TFViTForImageClassification(config) result = model(pixel_values, labels=labels, training=False) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # Test with an image with different size than the one specified in config. image_size = self.image_size // 2 pixel_values = pixel_values[:, :, :image_size, :image_size] result = model(pixel_values, interpolate_pos_encoding=True, training=False) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = TFViTForImageClassification(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFViTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_tf_common.py, as ViT does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFViTModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="ViT does not use inputs_embeds") def test_graph_mode_with_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, keras.layers.Layer)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFViTModel.from_pretrained("google/vit-base-patch16-224") self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class TFViTModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # forward pass outputs = model(**inputs) # verify the logits expected_shape = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant([-0.2744, 0.8215, -0.0836]) tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/vit/test_image_processing_vit.py
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import ViTImageProcessor class ViTImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class ViTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ViTImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ViTImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42})
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/vit/test_modeling_flax_vit.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class FlaxViTModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, ) return config, pixel_values def create_and_check_model(self, config, pixel_values): model = FlaxViTModel(config=config) result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values): config.num_labels = self.type_sequence_label_size model = FlaxViTForImageClassification(config=config) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = FlaxViTForImageClassification(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class FlaxViTModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def setUp(self) -> None: self.model_tester = FlaxViTModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) # We need to override this test because ViT's forward signature is different than text models. def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # We need to override this test because ViT expects pixel_values instead of input_ids def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(pixel_values, **kwargs): return model(pixel_values=pixel_values, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("google/vit-base-patch16-224") outputs = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(outputs)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/bigbird_pegasus/test_modeling_bigbird_pegasus.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch BigBirdPegasus model. """ import copy import tempfile import unittest from transformers import BigBirdPegasusConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, PegasusTokenizer, ) from transformers.models.bigbird_pegasus.modeling_bigbird_pegasus import ( BigBirdPegasusDecoder, BigBirdPegasusEncoder, ) MODEL_ID = "google/bigbird-pegasus-large-pubmed" def prepare_bigbird_pegasus_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) input_dict = { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } input_dict = {k: input_dict[k].to(torch_device) for k in input_dict} return input_dict class BigBirdPegasusModelTester: def __init__( self, parent, batch_size=7, seq_length=256, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=31, hidden_act="gelu_fast", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=260, eos_token_id=1, pad_token_id=0, bos_token_id=2, attention_type="block_sparse", use_bias=False, block_size=16, num_random_blocks=3, scale_embedding=True, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.attention_type = attention_type self.use_bias = use_bias self.block_size = block_size self.num_random_blocks = num_random_blocks self.scale_embedding = scale_embedding def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_bigbird_pegasus_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return BigBirdPegasusConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, attention_type=self.attention_type, use_bias=self.use_bias, block_size=self.block_size, num_random_blocks=self.num_random_blocks, scale_embedding=self.scale_embedding, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = BigBirdPegasusModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = BigBirdPegasusModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = BigBirdPegasusEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = BigBirdPegasusDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) def create_and_check_model(self, config, inputs_dict): model = BigBirdPegasusModel(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] decoder_input_ids = inputs_dict["decoder_input_ids"] result = model(input_ids, decoder_input_ids=decoder_input_ids, use_cache=True) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) @require_torch class BigBirdPegasusModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( BigBirdPegasusModel, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForSequenceClassification, BigBirdPegasusForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (BigBirdPegasusForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": BigBirdPegasusForConditionalGeneration, "feature-extraction": BigBirdPegasusModel, "question-answering": BigBirdPegasusForQuestionAnswering, "summarization": BigBirdPegasusForConditionalGeneration, "text-classification": BigBirdPegasusForSequenceClassification, "text-generation": BigBirdPegasusForCausalLM, "text2text-generation": BigBirdPegasusForConditionalGeneration, "translation": BigBirdPegasusForConditionalGeneration, "zero-shot": BigBirdPegasusForSequenceClassification, } if is_torch_available() else {} ) is_encoder_decoder = True test_missing_keys = False test_pruning = False test_head_masking = False # torchscript tests are not passing for now. # Also torchscript is not an important feature to have in the beginning. test_torchscript = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False # overwrite from GenerationTesterMixin to solve problem # with conflicting random seeds def _get_input_ids_and_config(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.attention_type = "original_full" input_ids = inputs_dict[self.input_name] attention_mask = torch.ones_like(input_ids, dtype=torch.long) # cut to half length & take max batch_size 3 sequence_length = input_ids.shape[-1] // 2 input_ids = input_ids[:batch_size, :sequence_length] attention_mask = attention_mask[:batch_size, :sequence_length] if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` config.pad_token_id = config.eos_token_id return config, input_ids, attention_mask def setUp(self): self.model_tester = BigBirdPegasusModelTester(self) self.config_tester = ConfigTester(self, config_class=BigBirdPegasusConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_model_various_attn_type(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["original_full", "block_sparse"]: config_and_inputs[0].attention_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_generate_without_input_ids(self): if self.model_tester.attention_type == "block_sparse": # this test can never pass for BigBird-block-sparse attention since input_ids must be multiple of block_size return super().test_generate_without_input_ids() def test_retain_grad_hidden_states_attentions(self): if self.model_tester.attention_type == "block_sparse": # this test can't pass since attention matrix (which is getting returned) can't have gradients (& just 0 at many locations) return super().test_retain_grad_hidden_states_attentions() # BigBirdPegasusForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in ( BigBirdPegasusModel, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, ): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_dict.pop("decoder_attention_mask") input_dict.pop("decoder_input_ids") model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(**input_dict) model.generate(**input_dict, do_sample=True, early_stopping=False, num_return_sequences=3) @slow def test_batched_forward_original_full(self): self._check_batched_forward(attn_type="original_full") @slow def test_batched_forward_block_sparse(self): self._check_batched_forward(attn_type="block_sparse", tolerance=1e-1) def _check_batched_forward(self, attn_type, tolerance=1e-3): config, _ = self.model_tester.prepare_config_and_inputs() config.max_position_embeddings = 128 config.block_size = 16 config.attention_type = attn_type model = BigBirdPegasusForConditionalGeneration(config).to(torch_device) model.eval() chunk_length = 32 sample_with_padding = [3, 8, 11] * chunk_length + [0] * chunk_length sample_without_padding = [4, 7, 9, 13] * chunk_length target_ids_without_padding = [2, 3] * 8 target_ids_with_padding = [7, 8] * 6 + 4 * [-100] attention_mask = torch.tensor( [[1] * 3 * chunk_length + [0] * chunk_length, [1] * 4 * chunk_length], device=torch_device, dtype=torch.long, ) input_ids = torch.tensor([sample_with_padding, sample_without_padding], device=torch_device, dtype=torch.long) labels = torch.tensor( [target_ids_without_padding, target_ids_with_padding], device=torch_device, dtype=torch.long ) with torch.no_grad(): logits_batched = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).logits with torch.no_grad(): logits_single_first = model(input_ids=input_ids[:1, :-chunk_length], labels=labels[:1]).logits self.assertTrue(torch.allclose(logits_batched[0, -3:], logits_single_first[0, -3:], atol=tolerance)) with torch.no_grad(): logits_single_second = model(input_ids=input_ids[1:], labels=labels[1:, :-4]).logits self.assertTrue(torch.allclose(logits_batched[1, :3], logits_single_second[0, :3], atol=tolerance)) def test_auto_padding(self): ids = [[7, 6, 9] * 65] config, _ = self.model_tester.prepare_config_and_inputs() input_ids = torch.tensor(ids, device=torch_device, dtype=torch.long) attention_mask = input_ids.new_ones(input_ids.shape) decoder_input_ids = torch.tensor([[33, 5, 8] * 3], device=torch_device, dtype=torch.long) config.block_size = 8 model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device) output1 = model(input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids)[ "logits" ] ids = [[7, 6, 9] * 65 + [0] * 5] input_ids = torch.tensor(ids, device=torch_device, dtype=torch.long) attention_mask = torch.tensor([[1] * 3 * 65 + [0] * 5], device=torch_device, dtype=torch.long) output2 = model(input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids)[ "logits" ] self.assertTrue(torch.allclose(output1, output2, atol=1e-5)) def test_for_change_to_full_attn(self): self.model_tester.seq_length = 9 config, input_dict = self.model_tester.prepare_config_and_inputs() # automatic switch will happen config.attention_type = "block_sparse" model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device) state_dict = model.state_dict() outputs1 = model(**input_dict)["logits"] config.attention_type = "original_full" model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device) model.load_state_dict(state_dict) outputs2 = model(**input_dict)["logits"] self.assertTrue(torch.allclose(outputs1, outputs2, atol=1e-5)) @require_torch @require_sentencepiece @require_tokenizers @slow class BigBirdPegasusModelIntegrationTests(unittest.TestCase): def _get_dummy_input_ids(self): # fmt: off ids = torch.tensor( [[685, 560, 630, 193, 836, 764, 708, 360, 10, 724, 278, 755, 805, 600, 71, 473, 601, 397, 315, 706, 487, 552, 88, 175, 601, 850, 678, 538, 846, 73, 778, 917, 116, 977, 756, 710, 1023, 848, 432, 449, 851, 100, 985, 178, 756, 798, 660, 148, 911, 424, 289, 962, 266, 698, 640, 545, 544, 715, 245, 152, 676, 511, 460, 883, 184, 29, 803, 129, 129, 933, 54, 902, 551, 489, 757, 274, 336, 389, 618, 43, 443, 544, 889, 258, 322, 1000, 938, 58, 292, 871, 120, 780, 431, 83, 92, 897, 399, 612, 566, 909, 634, 939, 85, 204, 325, 775, 965, 48, 640, 1013, 132, 973, 869, 181, 1001, 847, 144, 661, 228, 955, 792, 720, 910, 374, 854, 561, 306, 582, 170, 676, 449, 96, 198, 607, 257, 882, 691, 293, 931, 817, 862, 388, 611, 555, 974, 369, 1000, 918, 202, 384, 513, 907, 371, 556, 955, 384, 24, 700, 131, 378, 99, 575, 932, 735, 124, 964, 595, 943, 740, 149, 210, 563, 412, 783, 42, 59, 706, 37, 779, 87, 44, 873, 12, 771, 308, 81, 33, 183, 129, 807, 276, 175, 555, 372, 185, 445, 489, 590, 287, 281, 638, 771, 516, 95, 227, 876, 270, 881, 297, 329, 20, 608, 841, 411, 451, 249, 181, 324, 1005, 830, 783, 865, 261, 964, 750, 140, 1021, 599, 462, 890, 622, 844, 697, 529, 153, 926, 150, 111, 26, 465, 957, 890, 887, 118, 446, 596, 674, 873, 929, 229, 508, 764, 122, 327, 470, 288, 526, 840, 697, 153, 592, 42, 275, 553, 439, 208, 780, 167, 112, 350, 1018, 130, 736, 887, 813, 217, 382, 25, 68, 979, 1008, 772, 235, 717, 999, 292, 727, 1023, 702, 710, 728, 556, 33, 12, 617, 213, 139, 695, 1004, 422, 638, 669, 624, 489, 771, 540, 980, 218, 664, 822, 308, 175, 149, 950, 542, 580, 548, 808, 394, 74, 298, 920, 900, 815, 731, 947, 877, 772, 800, 778, 395, 540, 430, 200, 424, 62, 342, 866, 45, 803, 931, 89, 34, 646, 233, 768, 37, 769, 460, 291, 198, 895, 950, 255, 81, 447, 137, 190, 130, 210, 369, 292, 377, 348, 169, 885, 805, 177, 538, 324, 872, 509, 804, 115, 799, 30, 754, 290, 147, 274, 222, 341, 510, 515, 70, 358, 909, 557, 886, 766, 323, 624, 92, 342, 424, 552, 972, 663, 415, 658, 711, 968, 275, 861, 44, 84, 434, 810, 94, 175, 406, 202, 858, 499, 481, 988, 330, 541, 1004, 210, 618, 955, 897, 983, 576, 17, 107, 165, 607, 537, 629, 192, 196, 308, 137, 953, 860, 94, 892, 751, 88, 161, 148, 585, 456, 88, 14, 315, 594, 121, 885, 952, 833, 716, 733, 933, 282, 801, 427, 783, 471, 285, 277, 979, 325, 535, 228, 891, 596, 648, 969, 574, 654, 518, 257, 137, 208, 464, 950, 140, 5, 424, 349, 942, 283, 587, 821, 1007, 434, 220, 820, 740, 874, 787, 374, 291, 564, 671, 438, 827, 940, 824, 509, 1021, 787, 942, 856, 450, 327, 491, 54, 817, 95, 60, 337, 667, 637, 164, 571, 946, 107, 202, 301, 782, 890, 839, 551, 680, 649, 14, 1017, 904, 721, 1017, 535, 505, 848, 986, 777, 740, 775, 210, 456, 469, 474, 963, 573, 401, 57, 883, 750, 664, 281, 5, 613, 1005, 306, 344, 543, 567, 154, 789, 354, 358, 698, 408, 412, 30, 930, 372, 822, 632, 948, 855, 503, 8, 618, 1010, 138, 695, 897, 852, 377, 933, 722, 149, 886, 1009, 260, 127, 811, 578, 533, 805, 325, 977, 113, 944, 651, 238, 361, 991, 860, 556, 64, 928, 917, 455, 266, 445, 604, 624, 420, 340, 845, 275, 370, 843, 227, 226, 940, 644, 909, 229, 827, 898, 370, 129, 808, 25, 699, 293, 356, 838, 135, 4, 227, 890, 681, 445, 418, 285, 837, 27, 737, 249, 366, 948, 202, 438, 198, 930, 648, 638, 607, 73, 247, 853, 136, 708, 214, 476, 621, 324, 103, 853, 328, 596, 224, 257, 646, 348, 108, 927, 970, 980, 520, 150, 998, 477, 393, 684, 559, 1, 361, 692, 551, 90, 75, 500, 739, 636, 344, 97, 852, 283, 719, 33, 116, 455, 866, 429, 828, 826, 691, 174, 746, 133, 442, 94, 348, 402, 420, 707, 405, 942, 186, 976, 376, 677, 874, 703, 517, 498, 499, 206, 415, 366, 856, 739, 420, 586, 219, 952, 539, 375, 23, 461, 720, 355, 603, 52, 999, 815, 721, 574, 445, 816, 1019, 105, 641, 395, 972, 910, 328, 607, 519, 686, 246, 415, 528, 170, 167, 310, 940, 595, 392, 221, 834, 682, 835, 115, 861, 335, 742, 220, 247, 101, 416, 222, 179, 509, 175, 606, 627, 674, 781, 737, 746, 849, 67, 457, 1012, 126, 139, 625, 731, 156, 697, 121, 322, 449, 710, 857, 291, 976, 4, 701, 239, 678, 172, 724, 857, 583, 661, 903, 797, 628, 903, 835, 605, 989, 615, 870, 380, 710, 110, 330, 101, 695, 846, 918, 508, 672, 594, 36, 238, 244, 251, 393, 767, 282, 22, 430, 230, 983, 401, 154, 1007, 120, 678, 896, 386, 390, 711, 397, 347, 587, 1020, 951, 79, 831, 585, 200, 814, 134, 560, 700, 171, 452, 139, 755, 314, 476, 346, 388, 126, 719, 851, 198, 699, 901, 18, 710, 448, 351, 665, 644, 326, 425, 165, 571, 178, 440, 665, 674, 915, 866, 463, 754, 136, 950, 748, 47, 497, 1013, 640, 930, 338, 158, 525, 631, 815, 887, 289, 803, 116, 600, 637, 410, 175, 499, 876, 565, 1002, 623, 577, 333, 887, 586, 147, 773, 776, 644, 49, 77, 294, 117, 494, 561, 110, 979, 180, 562, 72, 859, 434, 1007, 286, 516, 75, 597, 491, 322, 888, 533, 209, 43, 499, 29, 411, 856, 181, 305, 963, 615, 778, 259, 373, 877, 746, 858, 381, 886, 613, 91, 69, 618, 523, 13, 617, 226, 422, 168, 929, 379, 290, 923, 100, 218, 307, 345, 211, 789, 735, 669, 585, 275, 410, 921, 552, 235, 636, 285, 665, 659, 708, 173, 724, 302, 823, 1, 139, 708, 903, 732, 868, 442, 967, 916, 163, 51, 243, 871]], # noqa: E231 dtype=torch.long, device=torch_device, ) # fmt: on return ids def _get_dummy_target_ids(self): # fmt: off ids = torch.tensor( [[13, 6, 1, 4, 12, 4, 8, 10, 4, 6, 3, 5, 8, 7, 9, 9]], # noqa: E231 dtype=torch.long, device=torch_device, ) # fmt: on return ids def test_inference_block_sparse(self): model = BigBirdPegasusForConditionalGeneration.from_pretrained( MODEL_ID, attention_type="block_sparse", block_size=16, num_random_blocks=3 ) model.to(torch_device) input_ids = self._get_dummy_input_ids() target_ids = self._get_dummy_target_ids() outputs = model(input_ids, labels=target_ids) prediction_logits = outputs.logits self.assertEqual(prediction_logits.shape, torch.Size((1, 16, 96103))) # fmt: off expected_prediction_logits_slice = torch.tensor( [[1.5118, 5.5227, 4.8125, 1.7603, 8.1704, 3.996, 4.8118, 6.7806, 2.2297, 6.9834, 3.1906, 0.103, 7.1515, 6.3679, 3.1896, 6.3054, 3.9741, 6.3772, 5.0042, -0.6338, 6.7868, 0.592, 0.5363, 1.87, -0.331, -2.4518, 1.8263, 3.1899], [1.5702, 5.8135, 4.6675, 2.3674, 8.9828, 3.7913, 5.4027, 7.6567, 1.9007, 7.3706, 3.8824, 0.0247, 7.6094, 6.6985, 3.2826, 7.0094, 3.8713, 5.6555, 5.0439, -0.3519, 7.1525, 0.4062, -0.2419, 2.2194, -0.6447, -2.9614, 2.0713, 3.248], [1.4527, 5.6003, 4.5381, 2.6382, 9.2809, 3.2969, 5.6811, 8.4011, 1.6909, 7.4937, 4.3185, -0.0878, 7.61, 6.6822, 3.4753, 7.3962, 3.5336, 4.9216, 4.943, -0.2043, 7.3326, 0.2199, -0.6016, 2.4367, -0.7043, -3.0689, 2.3215, 3.0611], [1.1084, 5.6308, 4.4886, 2.717, 9.4103, 3.0733, 5.5825, 8.4325, 1.3075, 7.5495, 4.4782, -0.1092, 7.8115, 6.6285, 3.5311, 7.6853, 3.509, 4.4994, 4.9224, -0.1384, 7.3069, -0.0473, -0.8578, 2.4632, -0.5249, -3.4627, 2.2671, 2.8818]], # noqa: E231 device=torch_device, ) # fmt: on self.assertTrue( torch.allclose(prediction_logits[0, 4:8, 128:156], expected_prediction_logits_slice, atol=1e-4) ) def test_inference_full_attn(self): model = BigBirdPegasusForConditionalGeneration.from_pretrained(MODEL_ID, attention_type="original_full") model.to(torch_device) input_ids = self._get_dummy_input_ids() target_ids = self._get_dummy_target_ids() outputs = model(input_ids, labels=target_ids) prediction_logits = outputs.logits self.assertEqual(prediction_logits.shape, torch.Size((1, 16, 96103))) # fmt: off expected_prediction_logits_slice = torch.tensor( [[1.3418, 5.8304, 6.5662, 2.0448, 8.7702, 4.6579, 4.9947, 6.429, 2.4296, 7.9431, 4.217, 0.0672, 7.334, 5.1966, 2.9603, 6.0814, 4.6756, 7.5522, 5.076, 0.213, 6.6638, 0.6577, 0.244, 2.1221, 0.7531, -2.4076, 1.8731, 3.5594], [1.5525, 6.0524, 6.309, 2.6245, 9.229, 4.5213, 5.0913, 7.0622, 1.7992, 8.0962, 4.7994, -0.0248, 7.7168, 5.5878, 3.0883, 6.5248, 4.7895, 6.9974, 4.8787, 0.5445, 6.6686, 0.0102, -0.1659, 2.6195, 0.7389, -2.8956, 1.9928, 3.3777], [1.6407, 6.2104, 6.0331, 2.8076, 9.4074, 3.9772, 5.0574, 7.5316, 1.4201, 8.3035, 5.0212, -0.1031, 7.553, 5.5023, 3.1427, 6.7674, 4.4409, 6.457, 4.525, 0.728, 6.5422, -0.6234, -0.4726, 2.7486, 0.6985, -3.0804, 1.9669, 3.2365], [1.5065, 6.1271, 5.8296, 2.8405, 9.5649, 3.6834, 5.1214, 7.546, 0.9758, 8.3335, 5.1952, -0.1395, 7.4348, 5.6893, 3.2942, 7.0356, 4.1665, 5.9695, 4.3898, 0.8931, 6.3988, -0.8957, -0.7522, 2.8924, 0.6498, -3.4358, 1.8654, 2.9735]], # noqa: E231 device=torch_device, ) # fmt: on self.assertTrue( torch.allclose(prediction_logits[0, 4:8, 128:156], expected_prediction_logits_slice, atol=1e-4) ) def test_seq_to_seq_generation(self): MODEL_ID = "google/bigbird-pegasus-large-arxiv" model = BigBirdPegasusForConditionalGeneration.from_pretrained(MODEL_ID).to(torch_device) tokenizer = PegasusTokenizer.from_pretrained(MODEL_ID) ARTICLE_LEP = r"""the lep experiments at the resonance of @xmath1-boson have tested the standard model ( sm ) at quantum level , measuring the @xmath1-decay into fermion pairs with an accuracy of one part in ten thousands . the good agreement of the lep data with the sm predictions have severely constrained the behavior of new physics at the @xmath1-pole . taking these achievements into account one can imagine that the physics of @xmath1-boson will again play the central role in the frontier of particle physics if the next generation @xmath1 factory comes true with the generated @xmath1 events several orders of magnitude higher than that of the lep . this factory can be realized in the gigaz option of the international linear collider ( ilc)@xcite . the ilc is a proposed electron - positron collider with tunable energy ranging from @xmath12 to @xmath13 and polarized beams in its first phase , and the gigaz option corresponds to its operation on top of the resonance of @xmath1 boson by adding a bypass to its main beam line . given the high luminosity , @xmath14 , and the cross section at the resonance of @xmath1 boson , @xmath15 , about @xmath16 @xmath1 events can be generated in an operational year of @xmath17 of gigaz , which implies that the expected sensitivity to the branching ratio of @xmath1-decay can be improved from @xmath18 at the lep to @xmath19 at the gigaz@xcite . in light of this , the @xmath1-boson properties , especially its exotic or rare decays which are widely believed to be sensitive to new physics , should be investigated comprehensively to evaluate their potential in probing new physics . among the rare @xmath1-decays , the flavor changing ( fc ) processes were most extensively studied to explore the flavor texture in new physics @xcite , and it was found that , although these processes are severely suppressed in the sm , their branching ratios in new physics models can be greatly enhanced to @xmath19 for lepton flavor violation decays @xcite and @xmath20 for quark flavor violation decays @xcite . besides the fc processes , the @xmath1-decay into light higgs boson(s ) is another type of rare process that was widely studied , e.g. the decay @xmath21 ( @xmath22 ) with the particle @xmath0 denoting a light higgs boson was studied in @xcite , the decay @xmath23 was studied in the two higgs doublet model ( 2hdm)@xcite and the minimal supersymmetric standard model ( mssm)@xcite , and the decay @xmath4 was studied in a model independent way @xcite , in 2hdm@xcite and also in mssm@xcite . these studies indicate that , in contrast with the kinematic forbidden of these decays in the sm , the rates of these decays can be as large as @xmath18 in new physics models , which lie within the expected sensitivity of the gigaz . in this work , we extend the previous studies of these decays to some new models and investigate these decays altogether . we are motivated by some recent studies on the singlet extension of the mssm , such as the next - to - minimal supersymmetric standard model ( nmssm ) @xcite and the nearly minimal supersymmetric standard model ( nmssm ) @xcite , where a light cp - odd higgs boson @xmath0 with singlet - dominant component may naturally arise from the spontaneous breaking of some approximate global symmetry like @xmath24 or peccei - quuin symmetry @xcite . these non - minimal supersymmetric models can not only avoid the @xmath25-problem , but also alleviate the little hierarchy by having such a light higgs boson @xmath0 @xcite . we are also motivated by that , with the latest experiments , the properties of the light higgs boson are more stringently constrained than before . so it is worth updating the previous studies . so far there is no model - independent lower bound on the lightest higgs boson mass . in the sm , it must be heavier than @xmath26 gev , obtained from the null observation of the higgs boson at lep experiments . however , due to the more complex structure of the higgs sector in the extensions of the sm , this lower bound can be significantly relaxed according to recent studies , e.g. , for the cp - odd higgs boson @xmath0 we have @xmath27 gev in the nmssm @xcite , @xmath28 gev in the nmssm @xcite , and @xmath29 gev in the lepton - specific 2hdm ( l2hdm ) @xcite . with such a light cp - odd higgs boson , the z - decay into one or more @xmath0 is open up . noting that the decay @xmath30 is forbidden due to bose symmetry , we in this work study the rare @xmath1-decays @xmath6 ( @xmath22 ) , @xmath31 and @xmath4 in a comparative way for four models , namely the type - ii 2hdm@xcite , the l2hdm @xcite , the nmssm and the nmssm . in our study , we examine carefully the constraints on the light @xmath0 from many latest experimental results . this work is organized as follows . in sec . ii we briefly describe the four new physics models . in sec . iii we present the calculations of the rare @xmath1-decays . in sec . iv we list the constraints on the four new physics models . in sec . v we show the numerical results for the branching ratios of the rare @xmath1-decays in various models . finally , the conclusion is given in sec . as the most economical way , the sm utilizes one higgs doublet to break the electroweak symmetry . as a result , the sm predicts only one physical higgs boson with its properties totally determined by two free parameters . in new physics models , the higgs sector is usually extended by adding higgs doublets and/or singlets , and consequently , more physical higgs bosons are predicted along with more free parameters involved in . the general 2hdm contains two @xmath32 doublet higgs fields @xmath33 and @xmath34 , and with the assumption of cp - conserving , its scalar potential can be parameterized as@xcite : @xmath35,\end{aligned}\ ] ] where @xmath36 ( @xmath37 ) are free dimensionless parameters , and @xmath38 ( @xmath39 ) are the parameters with mass dimension . after the electroweak symmetry breaking , the spectrum of this higgs sector includes three massless goldstone modes , which become the longitudinal modes of @xmath40 and @xmath1 bosons , and five massive physical states : two cp - even higgs bosons @xmath41 and @xmath42 , one neutral cp - odd higgs particle @xmath0 and a pair of charged higgs bosons @xmath43 . noting the constraint @xmath44 with @xmath45 and @xmath46 denoting the vacuum expectation values ( vev ) of @xmath33 and @xmath34 respectively , we choose @xmath47 as the input parameters with @xmath48 , and @xmath49 being the mixing angle that diagonalizes the mass matrix of the cp - even higgs fields . the difference between the type - ii 2hdm and the l2hdm comes from the yukawa coupling of the higgs bosons to quark / lepton . in the type - ii 2hdm , one higgs doublet @xmath34 generates the masses of up - type quarks and the other doublet @xmath33 generates the masses of down - type quarks and charged leptons ; while in the l2hdm one higgs doublet @xmath33 couples only to leptons and the other doublet @xmath34 couples only to quarks . so the yukawa interactions of @xmath0 to fermions in these two models are given by @xcite @xmath50 with @xmath51 denoting generation index . obviously , in the type - ii 2hdm the @xmath52 coupling and the @xmath53 coupling can be simultaneously enhanced by @xmath54 , while in the l2hdm only the @xmath53 coupling is enhanced by @xmath55 . the structures of the nmssm and the nmssm are described by their superpotentials and corresponding soft - breaking terms , which are given by @xcite @xmath56 where @xmath57 is the superpotential of the mssm without the @xmath25 term , @xmath58 and @xmath59 are higgs doublet and singlet superfields with @xmath60 and @xmath61 being their scalar component respectively , @xmath62 , @xmath63 , @xmath64 , @xmath65 , @xmath66 and @xmath67 are soft breaking parameters , and @xmath68 and @xmath69 are coefficients of the higgs self interactions . with the superpotentials and the soft - breaking terms , one can get the higgs potentials of the nmssm and the nmssm respectively . like the 2hdm , the higgs bosons with same cp property will mix and the mass eigenstates are obtained by diagonalizing the corresponding mass matrices : @xmath70 where the fields on the right hands of the equations are component fields of @xmath71 , @xmath72 and @xmath61 defined by @xmath73 @xmath74 and @xmath75 are respectively the cp - even and cp - odd neutral higgs bosons , @xmath76 and @xmath77 are goldstone bosons eaten by @xmath1 and @xmath78 , and @xmath79 is the charged higgs boson . so both the nmssm and nmssm predict three cp - even higgs bosons , two cp - odd higgs bosons and one pair of charged higgs bosons . in general , the lighter cp - odd higgs @xmath0 in these model is the mixture of the singlet field @xmath80 and the doublet field combination , @xmath81 , i.e. @xmath82 and its couplings to down - type quarks are then proportional to @xmath83 . so for singlet dominated @xmath0 , @xmath84 is small and the couplings are suppressed . as a comparison , the interactions of @xmath0 with the squarks are given by@xcite @xmath85 i.e. the interaction does not vanish when @xmath86 approaches zero . just like the 2hdm where we use the vevs of the higgs fields as fundamental parameters , we choose @xmath68 , @xmath69 , @xmath87 , @xmath88 , @xmath66 and @xmath89 as input parameters for the nmssm@xcite and @xmath68 , @xmath54 , @xmath88 , @xmath65 , @xmath90 and @xmath91 as input parameters for the nmssm@xcite . about the nmssm and the nmssm , three points should be noted . the first is for the two models , there is no explicit @xmath92term , and the effective @xmath25 parameter ( @xmath93 ) is generated when the scalar component of @xmath59 develops a vev . the second is , the nmssm is actually same as the nmssm with @xmath94@xcite , because the tadpole terms @xmath95 and its soft breaking term @xmath96 in the nmssm do not induce any interactions , except for the tree - level higgs boson masses and the minimization conditions . and the last is despite of the similarities , the nmssm has its own peculiarity , which comes from its neutralino sector . in the basis @xmath97 , its neutralino mass matrix is given by @xcite @xmath98 where @xmath99 and @xmath100 are @xmath101 and @xmath102 gaugino masses respectively , @xmath103 , @xmath104 , @xmath105 and @xmath106 . after diagonalizing this matrix one can get the mass eigenstate of the lightest neutralino @xmath107 with mass taking the following form @xcite @xmath108 this expression implies that @xmath107 must be lighter than about @xmath109 gev for @xmath110 ( from lower bound on chargnio mass ) and @xmath111 ( perturbativity bound ) . like the other supersymmetric models , @xmath107 as the lightest sparticle acts as the dark matter in the universe , but due to its singlino - dominated nature , it is difficult to annihilate sufficiently to get the correct density in the current universe . so the relic density of @xmath107 plays a crucial way in selecting the model parameters . for example , as shown in @xcite , for @xmath112 , there is no way to get the correct relic density , and for the other cases , @xmath107 mainly annihilates by exchanging @xmath1 boson for @xmath113 , or by exchanging a light cp - odd higgs boson @xmath0 with mass satisfying the relation @xmath114 for @xmath115 . for the annihilation , @xmath54 and @xmath25 are required to be less than 10 and @xmath116 respectively because through eq.([mass - exp ] ) a large @xmath87 or @xmath25 will suppress @xmath117 to make the annihilation more difficult . the properties of the lightest cp - odd higgs boson @xmath0 , such as its mass and couplings , are also limited tightly since @xmath0 plays an important role in @xmath107 annihilation . the phenomenology of the nmssm is also rather special , and this was discussed in detail in @xcite . in the type - ii 2hdm , l2hdm , nmssm and nmssm , the rare @xmath1-decays @xmath118 ( @xmath22 ) , @xmath3 and @xmath4 may proceed by the feynman diagrams shown in fig.[fig1 ] , fig.[fig2 ] and fig.[fig3 ] respectively . for these diagrams , the intermediate state @xmath119 represents all possible cp - even higgs bosons in the corresponding model , i.e. @xmath41 and @xmath42 in type - ii 2hdm and l2hdm and @xmath41 , @xmath42 and @xmath120 in nmssm and nmssm . in order to take into account the possible resonance effects of @xmath119 in fig.[fig1](c ) for @xmath2 and fig.[fig3 ] ( a ) for @xmath11 , we have calculated all the decay modes of @xmath119 and properly included the width effect in its propagator . as to the decay @xmath121 , two points should be noted . one is , unlike the decays @xmath6 and @xmath11 , this process proceeds only through loops mediated by quarks / leptons in the type - ii 2hdm and l2hdm , and additionally by sparticles in the nmssm and nmssm . so in most cases its rate should be much smaller than the other two . the other is due to cp - invariance , loops mediated by squarks / sleptons give no contribution to the decay@xcite . in actual calculation , this is reflected by the fact that the coupling coefficient of @xmath122 differs from that of @xmath123 by a minus sign ( see eq.([asqsq ] ) ) , and as a result , the squark - mediated contributions to @xmath121 are completely canceled out . with regard to the rare decay @xmath11 , we have more explanations . in the lowest order , this decay proceeds by the diagram shown in fig.[fig3 ] ( a ) , and hence one may think that , as a rough estimate , it is enough to only consider the contributions from fig.[fig3](a ) . however , we note that in some cases of the type - ii 2hdm and l2hdm , due to the cancelation of the contributions from different @xmath119 in fig.[fig3 ] ( a ) and also due to the potentially largeness of @xmath124 couplings ( i.e. larger than the electroweak scale @xmath125 ) , the radiative correction from the higgs - mediated loops may dominate over the tree level contribution even when the tree level prediction of the rate , @xmath126 , exceeds @xmath20 . on the other hand , we find the contribution from quark / lepton - mediated loops can be safely neglected if @xmath127 in the type - ii 2hdm and the l2hdm . in the nmssm and the nmssm , besides the corrections from the higgs- and quark / lepton - mediated loops , loops involving sparticles such as squarks , charginos and neutralinos can also contribute to the decay . we numerically checked that the contributions from squarks and charginos can be safely neglected if @xmath127 . we also calculated part of potentially large neutralino correction ( note that there are totally about @xmath128 diagrams for such correction ! ) and found they can be neglected too . since considering all the radiative corrections will make our numerical calculation rather slow , we only include the most important correction , namely that from higgs - mediated loops , in presenting our results for the four models . one can intuitively understand the relative smallness of the sparticle contribution to @xmath11 as follows . first consider the squark contribution which is induced by the @xmath129 interaction ( @xmath130 denotes the squark in chirality state ) and the @xmath131 interaction through box diagrams . because the @xmath132 interaction conserves the chirality of the squarks while the @xmath133 interaction violates the chirality , to get non - zero contribution to @xmath11 from the squark loops , at least four chiral flippings are needed , with three of them provided by @xmath131 interaction and the rest provided by the left - right squark mixing . this means that , if one calculates the amplitude in the chirality basis with the mass insertion method , the amplitude is suppressed by the mixing factor @xmath134 with @xmath135 being the off diagonal element in squark mass matrix . next consider the chargino / neutralino contributions . since for a light @xmath0 , its doublet component , parameterized by @xmath84 in eq.([mixing ] ) , is usually small , the couplings of @xmath0 with the sparticles will never be tremendously large@xcite . so the chargino / neutralino contributions are not important too . in our calculation of the decays , we work in the mass eigenstates of sparticles instead of in the chirality basis . for the type - ii 2hdm and the l2hdm , we consider the following constraints @xcite : * theoretical constraints on @xmath136 from perturbativity , unitarity and requirements that the scalar potential is finit at large field values and contains no flat directions @xcite , which imply that @xmath137 * the constraints from the lep search for neutral higgs bosons . we compute the signals from the higgs - strahlung production @xmath138 ( @xmath139 ) with @xmath140 @xcite and from the associated production @xmath141 with @xmath142 @xcite , and compare them with the corresponding lep data which have been inputted into our code . we also consider the constraints from @xmath138 by looking for a peak of @xmath143 recoil mass distribution of @xmath1-boson @xcite and the constraint of @xmath144 mev when @xmath145 @xcite . + these constraints limit the quantities such as @xmath146 \times br ( h_i \to \bar{b } b ) $ ] on the @xmath147 plane with the the subscript @xmath148 denoting the coupling coefficient of the @xmath149 interaction . they also impose a model - dependent lower bound on @xmath150 , e.g. , @xmath151 for the type - ii 2hdm ( from our scan results ) , @xmath152 for the l2hdm@xcite , and @xmath153 for the nmssm @xcite . these bounds are significantly lower than that of the sm , i.e. @xmath154 , partially because in new physics models , unconventional decay modes of @xmath155 such as @xmath156 are open up . as to the nmssm , another specific reason for allowing a significantly lighter cp - even higgs boson is that the boson may be singlet - dominated in this model . + with regard to the lightest cp - odd higgs boson @xmath0 , we checked that there is no lower bound on its mass so long as the @xmath157 interaction is weak or @xmath155 is sufficiently heavy . * the constraints from the lep search for a light higgs boson via the yukawa process @xmath158 with @xmath22 and @xmath61 denoting a scalar @xcite . these constraints can limit the @xmath159 coupling versus @xmath160 in new physics models . * the constraints from the cleo - iii limit on @xmath161 and the latest babar limits on @xmath162 . these constraints will put very tight constraints on the @xmath163 coupling for @xmath164 . in our analysis , we use the results of fig.8 in the second paper of @xcite to excluded the unfavored points . * the constraints from @xmath165 couplings . since the higgs sector can give sizable higher order corrections to @xmath165 couplings , we calculate them to one loop level and require the corrected @xmath165 couplings to lie within the @xmath166 range of their fitted value . the sm predictions for the couplings at @xmath1-pole are given by @xmath167 and @xmath168 @xcite , and the fitted values are given by @xmath169 and @xmath170 , respectively@xcite . we adopt the formula in @xcite to the 2hdm in our calculation . * the constraints from @xmath171 leptonic decay . we require the new physics correction to the branching ratio @xmath172 to be in the range of @xmath173 @xcite . we use the formula in @xcite in our calculation . + about the constraints ( 5 ) and ( 6 ) , two points should be noted . one is all higgs bosons are involved in the constraints by entering the self energy of @xmath171 lepton , the @xmath174 vertex correction or the @xmath175 vertex correction , and also the box diagrams for @xmath176@xcite . since the yukawa couplings of the higgs bosons to @xmath171 lepton get enhanced by @xmath54 and so do the corrections , @xmath54 must be upper bounded for given spectrum of the higgs sector . generally speaking , the lighter @xmath0 is , the more tightly @xmath54 is limited@xcite . the other point is in the type - ii 2hdm , @xmath177 , b - physics observables as well as @xmath178 decays discussed above can constraint the model in a tighter way than the constraints ( 5 ) and ( 6 ) since the yukawa couplings of @xmath171 lepton and @xmath179 quark are simultaneously enhanced by @xmath54 . but for the l2hdm , because only the yukawa couplings of @xmath171 lepton get enhanced ( see eq.[yukawa ] ) , the constraints ( 5 ) and ( 6 ) are more important in limiting @xmath54 . * indirect constraints from the precision electroweak observables such as @xmath180 , @xmath181 and @xmath182 , or their combinations @xmath183 @xcite . we require @xmath184 to be compatible with the lep / sld data at @xmath185 confidence level@xcite . we also require new physics prediction of @xmath186 is within the @xmath187 range of its experimental value . the latest results for @xmath188 are @xmath189 ( measured value ) and @xmath190 ( sm prediction ) for @xmath191 gev @xcite . in our code , we adopt the formula for these observables presented in @xcite to the type - ii 2hdm and the l2hdm respectively . + in calculating @xmath180 , @xmath181 and @xmath182 , we note that these observables get dominant contributions from the self energies of the gauge bosons @xmath1 , @xmath192 and @xmath193 . since there is no @xmath194 coupling or @xmath195 coupling , @xmath0 must be associated with the other higgs bosons to contribute to the self energies . so by the uv convergence of these quantities , one can infer that , for the case of a light @xmath0 and @xmath196 , these quantities depend on the spectrum of the higgs sector in a way like @xmath197 at leading order , which implies that a light @xmath0 can still survive the constraints from the precision electroweak observables given the splitting between @xmath150 and @xmath198 is moderate@xcite . * the constraints from b physics observables such as the branching ratios for @xmath199 , @xmath200 and @xmath201 , and the mass differences @xmath202 and @xmath203 . we require their theoretical predications to agree with the corresponding experimental values at @xmath187 level . + in the type - ii 2hdm and the l2hdm , only the charged higgs boson contributes to these observables by loops , so one can expect that @xmath198 versus @xmath54 is to be limited . combined analysis of the limits in the type - ii 2hdm has been done by the ckmfitter group , and the lower bound of @xmath204 as a function of @xmath87 was given in fig.11 of @xcite . this analysis indicates that @xmath198 must be heavier than @xmath205 at @xmath185 c.l . regardless the value of @xmath54 . in this work , we use the results of fig.11 in @xcite to exclude the unfavored points . as for the l2hdm , b physics actually can not put any constraints@xcite because in this model the couplings of the charged higgs boson to quarks are proportional to @xmath206 and in the case of large @xmath54 which we are interested in , they are suppressed . in our analysis of the l2hdm , we impose the lep bound on @xmath198 , i.e. @xmath207@xcite . * the constraints from the muon anomalous magnetic moment @xmath208 . now both the theoretical prediction and the experimental measured value of @xmath208 have reached a remarkable precision , but a significant deviation still exists : @xmath209 @xcite . in the 2hdm , @xmath208 gets additional contributions from the one - loop diagrams induced by the higgs bosons and also from the two - loop barr - zee diagrams mediated by @xmath0 and @xmath155@xcite . if the higgs bosons are much heavier than @xmath25 lepton mass , the contributions from the barr - zee diagrams are more important , and to efficiently alleviate the discrepancy of @xmath208 , one needs a light @xmath0 along with its enhanced couplings to @xmath25 lepton and also to heavy fermions such as bottom quark and @xmath171 lepton to push up the effects of the barr - zee diagram@xcite . the cp - even higgs bosons are usually preferred to be heavy since their contributions to @xmath208 are negative . + in the type - ii 2hdm , because @xmath54 is tightly constrained by the process @xmath210 at the lep@xcite and the @xmath178 decay@xcite , the barr - zee diagram contribution is insufficient to enhance @xmath208 to @xmath187 range around its measured value@xcite . so in our analysis , we require the type - ii 2hdm to explain @xmath208 at @xmath211 level . while for the l2hdm , @xmath54 is less constrained compared with the type - ii 2hdm , and the barr - zee diagram involving the @xmath171-loop is capable to push up greatly the theoretical prediction of @xmath208@xcite . therefore , we require the l2hdm to explain the discrepancy at @xmath187 level . + unlike the other constraints discussed above , the @xmath208 constraint will put a two - sided bound on @xmath54 since on the one hand , it needs a large @xmath54 to enhance the barr - zee contribution , but on the other hand , too large @xmath54 will result in an unacceptable large @xmath208 . * since this paper concentrates on a light @xmath0 , the decay @xmath212 is open up with a possible large decay width . we require the width of any higgs boson to be smaller than its mass to avoid a too fat higgs boson@xcite . we checked that for the scenario characterized by @xmath213 , the coefficient of @xmath214 interaction is usually larger than the electroweak scale @xmath125 , and consequently a large decay width is resulted . for the nmssm and nmssm , the above constraints become more complicated because in these models , not only more higgs bosons are involved in , but also sparticles enter the constraints . so it is not easy to understand some of the constraints intuitively . take the process @xmath199 as an example . in the supersymmetric models , besides the charged higgs contribution , chargino loops , gluino loops as well as neutralino loops also contribute to the process@xcite , and depending on the susy parameters , any of these contributions may become dominated over or be canceled by other contributions . as a result , although the charged higgs affects the process in the same way as that in the type - ii 2hdm , charged higgs as light as @xmath215 is still allowed even for @xmath216@xcite . since among the constraints , @xmath208 is rather peculiar in that it needs new physics to explain the discrepancy between @xmath217 and @xmath218 , we discuss more about its dependence on susy parameters . in the nmssm and the nmssm , @xmath208 receives contributions from higgs loops and neutralino / chargino loops . for the higgs contribution , it is quite similar to that of the type - ii 2hdm except that more higgs bosons are involved in@xcite . for the neutralino / chargino contribution , in the light bino limit ( i.e. @xmath219 ) , it can be approximated by@xcite @xmath220 for @xmath221 with @xmath222 being smuon mass . so combining the two contributions together , one can learn that a light @xmath0 along with large @xmath54 and/or light smuon with moderate @xmath87 are favored to dilute the discrepancy . because more parameters are involved in the constraints on the supersymmetric models , we consider following additional constraints to further limit their parameters : * direct bounds on sparticle masses from the lep1 , the lep2 and the tevatron experiments @xcite . * the lep1 bound on invisible z decay @xmath223 ; the lep2 bound on neutralino production @xmath224 and @xmath225@xcite . * dark matter constraints from the wmap relic density 0.0975 @xmath226 0.1213 @xcite . note that among the above constraints , the constraint ( 2 ) on higgs sector and the constraint ( c ) on neutralino sector are very important . this is because in the supersymmetric models , the sm - like higgs is upper bounded by about @xmath227 at tree level and by about @xmath228 at loop level , and that the relic density restricts the lsp annihilation cross section in a certain narrow range . in our analysis of the nmssm , we calculate the constraints ( 3 ) and ( 5 - 7 ) by ourselves and utilize the code nmssmtools @xcite to implement the rest constraints . we also extend nmssmtools to the nmssm to implement the constraints . for the extension , the most difficult thing we faced is how to adapt the code micromegas@xcite to the nmssm case . we solve this problem by noting the following facts : * as we mentioned before , the nmssm is actually same as the nmssm with the trilinear singlet term setting to zero . so we can utilize the model file of the nmssm as the input of the micromegas and set @xmath229 . * since in the nmssm , the lsp is too light to annihilate into higgs pairs , there is no need to reconstruct the effective higgs potential to calculate precisely the annihilation channel @xmath230 with @xmath61 denoting any of higgs bosons@xcite . we thank the authors of the nmssmtools for helpful discussion on this issue when we finish such extension@xcite . with the above constraints , we perform four independent random scans over the parameter space of the type - ii 2hdm , the l2hdm , the nmssm and the nmssm respectively . we vary the parameters in following ranges : @xmath231 for the type - ii 2hdm , @xmath232 for the l2hdm , @xmath233 for the nmssm , and @xmath234 for the nmssm . in performing the scans , we note that for the nmssm and the nmssm , some constraints also rely on the gaugino masses and the soft breaking parameters in the squark sector and the slepton sector . since these parameters affect little on the properties of @xmath0 , we fix them to reduce the number of free parameters in our scan . for the squark sector , we adopt the @xmath235 scenario which assumes that the soft mass parameters for the third generation squarks are degenerate : @xmath236 800 gev , and that the trilinear couplings of the third generation squarks are also degenerate , @xmath237 with @xmath238 . for the slepton sector , we assume all the soft - breaking masses and trilinear parameters to be 100 gev . this setting is necessary for the nmssm since this model is difficult to explain the muon anomalous moment at @xmath239 level for heavy sleptons@xcite . finally , we assume the grand unification relation @xmath240 for the gaugino masses with @xmath241 being fine structure constants of the different gauge group . with large number of random points in the scans , we finally get about @xmath242 , @xmath243 , @xmath244 and @xmath242 samples for the type - ii 2hdm , the l2hdm , the nmssm and the nmssm respectively which survive the constraints and satisfy @xmath245 . analyzing the properties of the @xmath0 indicates that for most of the surviving points in the nmssm and the nmssm , its dominant component is the singlet field ( numerically speaking , @xmath246 ) so that its couplings to the sm fermions are suppressed@xcite . our analysis also indicates that the main decay products of @xmath0 are @xmath247 for the l2hdm@xcite , @xmath248 ( dominant ) and @xmath247 ( subdominant ) for the type - ii 2hdm , the nmssm and the nmssm , and in some rare cases , neutralino pairs in the nmssm@xcite . in fig.[fig4 ] , we project the surviving samples on the @xmath249 plane . this figure shows that the allowed range of @xmath54 is from @xmath250 to @xmath251 in the type - ii 2hdm , and from @xmath252 to @xmath253 in the l2hdm . just as we introduced before , the lower bounds of @xmath254 come from the fact that we require the models to explain the muon anomalous moment , while the upper bound is due to we have imposed the constraint from the lep process @xmath255 , which have limited the upper reach of the @xmath256 coupling for light @xmath61 @xcite(for the dependence of @xmath256 coupling on @xmath54 , see sec . this figure also indicates that for the nmssm and the nmssm , @xmath54 is upper bounded by @xmath257 . for the nmssm , this is because large @xmath87 can suppress the dark matter mass to make its annihilation difficult ( see @xcite and also sec . ii ) , but for the nmssm , this is because we choose a light slepton mass so that large @xmath54 can enhance @xmath208 too significantly to be experimentally unacceptable . we checked that for the slepton mass as heavy as @xmath258 , @xmath259 is still allowed for the nmssm . in fig.[fig5 ] and fig.[fig6 ] , we show the branching ratios of @xmath260 and @xmath261 respectively . fig.[fig5 ] indicates , among the four models , the type - ii 2hdm predicts the largest ratio for @xmath260 with its value varying from @xmath262 to @xmath263 . the underlying reason is in the type - ii 2hdm , the @xmath264 coupling is enhanced by @xmath54 ( see fig.[fig4 ] ) , while in the other three model , the coupling is suppressed either by @xmath265 or by the singlet component of the @xmath0 . fig.[fig6 ] shows that the l2hdm predicts the largest rate for @xmath266 with its value reaching @xmath5 in optimum case , and for the other three models , the ratio of @xmath261 is at least about one order smaller than that of @xmath267 . this feature can be easily understood from the @xmath268 coupling introduced in sect . we emphasize that , if the nature prefers a light @xmath0 , @xmath260 and/or @xmath269 in the type - ii 2hdm and the l2hdm will be observable at the gigaz . then by the rates of the two decays , one can determine whether the type - ii 2hdm or the l2hdm is the right theory . on the other hand , if both decays are observed with small rates or fail to be observed , the singlet extensions of the mssm are favored . in fig.[fig7 ] , we show the rate of @xmath3 as the function of @xmath270 . this figure indicates that the branching ratio of @xmath121 can reach @xmath271 , @xmath272 , @xmath273 and @xmath274 for the optimal cases of the type - ii 2hdm , the l2hdm , the nmssm and the nmssm respectively , which implies that the decay @xmath121 will never be observable at the gigaz if the studied model is chosen by nature . the reason for the smallness is , as we pointed out before , that the decay @xmath121 proceeds only at loop level . comparing the optimum cases of the type - ii 2hdm , the nmssm and the nmssm shown in fig.5 - 7 , one may find that the relation @xmath275 holds for any of the decays . this is because the decays are all induced by the yukawa couplings with similar structure for the models . in the supersymmetric models , the large singlet component of the light @xmath0 is to suppress the yukawa couplings , and the @xmath0 in the nmssm has more singlet component than that in the nmssm . next we consider the decay @xmath11 , which , unlike the above decays , depends on the higgs self interactions . in fig.[fig8 ] we plot its rate as a function of @xmath270 and this figure indicates that the @xmath276 may be the largest among the ratios of the exotic @xmath1 decays , reaching @xmath277 in the optimum cases of the type - ii 2hdm , the l2hdm and the nmssm . the underlying reason is , in some cases , the intermediate state @xmath119 in fig.[fig3 ] ( a ) may be on - shell . in fact , we find this is one of the main differences between the nmssm and the nmssm , that is , in the nmssm , @xmath119 in fig.[fig3 ] ( a ) may be on - shell ( corresponds to the points with large @xmath278 ) while in the nmssm , this seems impossible . so we conclude that the decay @xmath11 may serve as an alternative channel to test new physics models , especially it may be used to distinguish the nmssm from the nmssm if the supersymmetry is found at the lhc and the @xmath11 is observed at the gigaz with large rate . before we end our discussion , we note that in the nmssm , the higgs boson @xmath0 may be lighter than @xmath279 without conflicting with low energy data from @xmath178 decays and the other observables ( see fig.[fig4]-[fig8 ] ) . in this case , @xmath0 is axion - like as pointed out in @xcite . we checked that , among the rare @xmath1 decays discussed in this paper , the largest branching ratio comes from @xmath280 which can reach @xmath281 . since in this case , the decay product of @xmath0 is highly collinear muon pair , detecting the decay @xmath280 may need some knowledge about detectors , which is beyond our discussion . in this paper , we studied the rare @xmath1-decays @xmath2 ( @xmath7 ) , @xmath282 and @xmath4 in the type - ii 2hdm , lepton - specific 2hdm , nmssm and nmssm , which predict a light cp - odd higgs boson @xmath0 . in the parameter space allowed by current experiments , the branching ratio can be as large as @xmath5 for @xmath118 , @xmath8 for @xmath3 and @xmath9 for @xmath4 , which implies that the decays @xmath2 and @xmath283 may be accessible at the gigaz option . since different models predict different size of branching ratios , these decays can be used to distinguish different model through the measurement of these rare decays . this work was supported in part by hastit under grant no . 2009hastit004 , by the national natural science foundation of china ( nnsfc ) under grant nos . 10821504 , 10725526 , 10635030 , 10775039 , 11075045 and by the project of knowledge innovation program ( pkip ) of chinese academy of sciences under grant no . . for some reviews , see , e.g. , m. a. perez , g. tavares - velasco and j. j. toscano , int . j. mod . a * 19 * , 159 ( 2004 ) ; j. m. yang , arxiv:1006.2594 . j. i. illana , m. masip , 67 , 035004 ( 2003 ) ; j. cao , z. xiong , j. m. yang , 32 , 245 ( 2004 ) . d. atwood _ et al_. , 66 , 093005 ( 2002 ) . j. kalinowski , and s. pokorski , 219 , 116 ( 1989 ) ; a. djouadi , p. m. zerwas and j. zunft , 259 , 175 ( 1991 ) ; a. djouadi , j. kalinowski , and p. m. zerwas , z. phys . c * 54 * , 255 ( 1992 ) . m. krawczyk , _ et al . _ , 19 , 463 ( 2001 ) ; 8 , 495 ( 1999 ) . j. f. gunion , g. gamberini and s. f. novaes , 38 , 3481 ( 1988 ) ; thomas j. weiler and tzu - chiang yuan , 318 , 337 ( 1989 ) ; a. djouadi , _ et al . _ , 1 , 163 ( 1998)[hep - ph/9701342 ] . d. chang and w. y. keung , phys . lett . * 77 * , 3732 ( 1996 ) . e. keith and e. ma , 57 , 2017 ( 1998 ) ; m. a. perez , g. tavares - velasco and j. j. toscano , int . j. mod.phys . a * 19 * , 159 ( 2004 ) . f. larios , g. tavares - velasco and c. p. yuan , 64 , 055004 ( 2001 ) ; 66 , 075006 ( 2002 ) . a. djouadi , _ et al . _ , 10 , 27 ( 1999 ) [ hep - ph/9903229 ] . for a detailed introduction of the nmssm , see f. franke and h. fraas , int . j. mod . a * 12 * ( 1997 ) 479 ; for a recent review of the nmssm , see for example , u. ellwanger , c. hugonie , and a. m. teixeira , arxiv : 0910.1785 . see , e.g. , j. r. ellis , j. f. gunion , h. e. haber , l. roszkowski and f. zwirner , phys . rev . d * 39 * ( 1989 ) 844 ; m. drees , int . j. mod . phys . a * 4 * ( 1989 ) 3635 ; u. ellwanger , m. rausch de traubenberg and c. a. savoy , phys . b * 315 * ( 1993 ) 331 ; nucl . b * 492 * ( 1997 ) 21 ; d.j . miller , r. nevzorov , p.m. zerwas , 681 , 3 ( 2004 ) . c. panagiotakopoulos , k. tamvakis , 446 , 224 ( 1999 ) ; 469 , 145 ( 1999 ) ; c. panagiotakopoulos , a. pilaftsis , 63 , 055003 ( 2001 ) ; a. dedes , _ et al . _ , 63 , 055009 ( 2001 ) ; a. menon , _ et al . _ , 70 , 035005 ( 2004 ) ; v. barger , _ et al . _ , 630 , 85 ( 2005 ) . c. balazs , _ et al . _ , 0706 , 066 ( 2007 ) . b. a. dobrescu , k. t. matchev , 0009 , 031 ( 2000 ) ; a. arhrib , k. cheung , t. j. hou , k. w. song , hep - ph/0611211 ; 0703 , 073 ( 2007 ) ; x. g. he , j. tandean , and g. valencia , 98 , 081802 ( 2007 ) ; 0806 , 002 ( 2008 ) ; f. domingo _ et al_. , 0901 , 061 ( 2009 ) ; gudrun hiller , 70 , 034018 ( 2004 ) ; r. dermisek , and john f. gunion , 75 , 075019 ( 2007 ) ; 79 , 055014 ( 2009 ) ; 81 , 055001 ( 2010 ) ; r. dermisek , john f. gunion , and b. mcelrath , 76 , 051105 ( 2007 ) ; z. heng , _ et al_. , 77 , 095012 ( 2008 ) ; a. belyaev _ et al_. , 81 , 075021 ( 2010 ) ; d. das and u. ellwanger , arxiv:1007.1151 [ hep - ph ] . s. andreas , o. lebedev , s. ramos - sanchez and a. ringwald , arxiv:1005.3978 [ hep - ph ] . j. f. gunion , jhep * 0908 * , 032 ( 2009 ) ; r. dermisek and j. f. gunion , phys . rev . d * 81 * , 075003 ( 2010 ) . r. dermisek and j. f. gunion , phys . lett . * 95 * , 041801 ( 2005 ) ; phys . d * 73 * , 111701 ( 2006 ) . j. cao , h. e. logan , j. m. yang , 79 , 091701 ( 2009 ) . j. cao , p. wan , l. wu , j. m. yang , 80 , 071701 ( 2009 ) . j. f. gunion and h. e. haber , 67 , 075019 ( 2003 ) . r. m. barnett , _ et al . _ , phys . b * 136 * , 191 ( 1984 ) ; r. m. barnett , g. senjanovic and d. wyler , phys . d * 30 * , 1529 ( 1984 ) ; y. grossman , nucl . b * 426 * , 355 ( 1994 ) . h. s. goh , l. j. hall and p. kumar , jhep * 0905 * , 097 ( 2009 ) ; a. g. akeroyd and w. j. stirling , nucl . b * 447 * , 3 ( 1995 ) ; a. g. akeroyd , phys . b * 377 * , 95 ( 1996 ) ; h. e. logan and d. maclennan , phys . rev . d * 79 * , 115022 ( 2009 ) ; m. aoki , _ et al . _ , arxiv:0902.4665 [ hep - ph ] . v. barger , p. langacker , h. s. lee and g. shaughnessy , phys . d * 73 * , 115010 ( 2006 ) . s. hesselbach , _ et . _ , arxiv:0810.0511v2 [ hep - ph ] . de vivie and p. janot [ aleph collaboration ] , pa13 - 027 contribution to the international conference on high energy physics , warsaw , poland , 2531 july 1996 ; j. kurowska , o. grajek and p. zalewski [ delphi collaboration ] , cern - open-99 - 385 . [ aleph collaboration and delphi collaboration and l3 collaboration ] , phys . rept . * 427 * , 257 ( 2006 ) . j. cao and j. m. yang , jhep * 0812 * , 006 ( 2008 ) . m. krawczyk and d. temes , eur . j. c * 44 * , 435 ( 2005 ) . g. altarelli and r. barbieri , 253 , 161 ( 1991 ) ; m. e. peskin , t. takeuchi , 46 , 381 ( 1992 ) . c. amsler , _ et al . _ , ( particle data group ) , 667 , 1 ( 2008 ) . o. deschamps , s. descotes - genon , s. monteil , v. niess , s. tjampens and v. tisserand , arxiv:0907.5135 [ hep - ph ] . s. su and b. thomas , phys . d * 79 * , 095014 ( 2009 ) . g. abbiendi , _ et al . _ , eur . phys . j. c * 32 * , 453 ( 2004 ) . m. davier , _ et al . _ , 66 , 1 ( 2010 ) . k. cheung , _ et al . _ , phys . d * 64 * , 111301 ( 2001 ) . k. cheung and o. c. w. kong , phys . d * 68 * , 053003 ( 2003 ) . t. besmer , c. greub , t.hurth , 609 , 359 ( 2001 ) ; f. borzumati , _ et al . _ , 62 , 075005(2000 ) . j. cao , k. i. hikasa , w. wang , j. m. yang and l. x. yu , phys . d * 82 * , 051701 ( 2010 ) [ arxiv:1006.4811 [ hep - ph ] ] . j. f. gunion , _ et . d * 73 * , 015011 ( 2006 ) . martin and j. d. wells , phys . d * 64 * , 035003 ( 2001 ) . j. abdallah _ et al . _ , eur . j. c * 31 * , 421 ( 2004 ) ; g. abbiendi _ et al . _ , eur . j. c * 35 * , 1 ( 2004 ) . j. dunkley _ et al . _ [ wmap collaboration ] , astrophys . j. suppl . * 180 * , 306 ( 2009 ) [ arxiv:0803.0586 [ astro - ph ] ] . u. ellwanger _ et al . _ , 02 , 066 ( 2005 ) . g. belanger , f. boudjema , a. pukhov and a. semenov , comput . commun . * 174 * , 577 ( 2006 ) ; comput . phys . commun . * 176 * , 367 ( 2007 ) . g. belanger , f. boudjema , c. hugonie , a. pukhov and a. semenov , jcap * 0509 * , 001 ( 2005 ) .""" ARTICLE_MAGNET = r"""it is well known that the classical magnetoresistance ( mr ) in metals or semiconductors with a closed free electron fermi surface increases quadratically with increasing magnetic field @xmath2 for @xmath3 and saturates when @xmath4 . here @xmath5 is the zero - magnetic - field mobility . hence , the extraordinarily high and linear mr ( lmr ) , which breaks this familiar rule , has been gaining much attention as soon as its discovery . in the past decade , this unexpected lmr has been reported in silver chalcogenide,@xcite indium antimonide,@xcite silicon,@xcite mnas - gaas composite material,@xcite and graphene.@xcite kapitza s linear law@xcite indicates that the metal shows a magnetoresistance linear in perpendicular magnetic field when it has an open fermi surface and a mean free path longer than the electronic larmor radius . recently , another two models , irrespective of the open fermi surface , have been constructed to provide possible mechanisms for the lmr phenomenon . abrikosov suggested a quantum - limit origin of lmr for the homogenous system with a gapless linear energy spectrum.@xcite his model requires that landau levels are well formed and the carrier concentration is small that all electrons occupy only the lowest landau band . alternatively , parish and littlewood developed a classical model without involving linear spectrum.@xcite ignoring the concrete microscopic mechanism , they attributed this unusual mr to the mobility fluctuations in a strongly inhomogenous system . topological insulators@xcite ( tis ) are novel materials with a full energy gap in bulk , while there are gapless surface states . due to its unique band structure with only one helical dirac cone and linear energy dispersion,@xcite the surface states of the ti bi@xmath0se@xmath1 become an excellent platform for the study of quantum - limit lmr . the recent experiment in this flat surface system , however , reported that a large positive mr , which becomes very linear above a characteristic field of @xmath6@xmath7@xmath8 t , was observed even in an opposite situation where the carrier sheet density is high that electrons occupy more than one landau levels.@xcite moreover , they found that raising temperature to room temperature almost has no influence on the observed lmr . it is striking that this observation is in conflict with abrikosov s model and also with the classical parish - littlewood model . so far a reliable theoretical scheme capable of explaining this novel experiment has still been lacking . in this paper , we generalize the balance - equation approach@xcite to a system modeling the surface states of a three - dimensional ti to investigate the two - dimensional magnetotransport in it . we find that a positive , nonsaturating and dominantly linear magnetoresistance can appear within quite wide magnetic - field range in the ti surface state having a positive and finite effective g - factor . this linear magnetoresistance shows up in the system of high carrier concentration and low mobility when electrons are in extended states and spread over many smeared landau levels , and persists up to room temperature , providing a possible mechanism for the recently observed linear magnetoresistance in topological insulator bi@xmath0se@xmath1 nanoribbons.@xcite we consider the surface state of a bi@xmath0se@xmath1-type large bulk gap ti in the @xmath9-@xmath10 plane under the influence of a uniform magnetic field @xmath11 applied along the @xmath12 direction.@xcite following the experimental observation,@xcite we assume that the fermi energy locates in the gap of the bulk band and above the dirac point , i.e. the surface carriers are electrons . further , the separations of the fermi energy from the bottom of bulk band and dirac point are much larger than the highest temperature ( @xmath13 ) considered in this work . hence , the contribution from the bulk band to the magnetotransport is negligible . these electrons , scattered by randomly distributed impurities and by phonons , are driven by a uniform in - plane electric field @xmath14 in the topological surface . the hamiltonian of this many - electron and phonon system consists of an electron part @xmath15 , a phonon part @xmath16 , and electron - impurity and electron - phonon interactions @xmath17 and @xmath18 : @xmath19 here , the electron hamiltonian is taken in the form @xmath20 , \ ] ] in which @xmath21 , @xmath22 , @xmath23 and @xmath24 , stand , respectively , for the canonical momentum , coordinate , momentum and spin operators of the @xmath25th electron having charge @xmath26 , @xmath27 is the vector potential of the perpendicular magnetic field @xmath28 in the landau gauge , @xmath29 is the fermi velocity , @xmath30 is the effective g - factor of the surface electron , and @xmath31 is the bohr magneton with @xmath32 the free electron mass . the sum index @xmath25 in eq.([helectron ] ) goes over all electrons of total number @xmath33 in the surface state of unit area . in the frame work of balance equation approach,@xcite the two - dimensional center - of - mass ( c.m . ) momentum and coordinate @xmath34 and @xmath35 , and the relative - electron momenta and coordinates @xmath36 and @xmath37 are introduced to write the hamiltonian @xmath15 into the sum of a single - particle c.m . part @xmath38 and a many - particle relative - electron part @xmath39 : @xmath40 , with @xmath41.\end{aligned}\ ] ] in this , @xmath42 is the canonical momentum of the center - of - mass and @xmath43 is the canonical momentum for the @xmath25th relative electron . here we have also introduced c.m . spin operators @xmath44 and @xmath45 . the commutation relations between the c.m . spin operators @xmath46 and @xmath47 and the spin operators @xmath48 , @xmath49 and @xmath50 of the @xmath25th electron are of order of @xmath51 : @xmath52= n^{-1}2\,{\rm i}\,\varepsi lon_{\beta_1\beta_2\beta_3}\sigma_j^{\beta_3}$ ] with @xmath53 . therefore , for a macroscopic large @xmath33 system , the c.m . part @xmath38 actually commutes with the relative - electron part @xmath54 in the hamiltonian , i.e. the c.m . motion and the relative motion of electrons are truly separated from each other . the couplings between the two emerge only through the electron impurity and electron phonon interactions . furthermore , the electric field @xmath55 shows up only in @xmath38 . and , in view of @xmath56={\rm i}\delta_{\alpha \beta}(\delta_{ij}-1/n)\simeq { \rm i}\delta_{\alpha\beta}\delta_{ij}$ ] , i.e. the relative - electron momenta and coordinates can be treated as canonical conjugate variables , the relative - motion part @xmath54 is just the hamiltonian of @xmath33 electrons in the surface state of ti in the magnetic field without the presence of the electric field . in terms of the c.m . coordinate @xmath57 and the relative electron density operator @xmath58 , the electron impurity and electron phonon interactions can be written as@xcite @xmath59 here @xmath60 and @xmath61 are respectively the impurity potential ( an impurity at randomly distributed position @xmath62 ) and electron phonon coupling matrix element in the plane - wave representation , and @xmath63 with @xmath64 and @xmath65 being the creation and annihilation operators for a phonon of wavevector @xmath66 in branch @xmath67 having frequency @xmath68 . velocity ( operator ) @xmath69 is the time variation of its coordinate : @xmath70= v_{\rm f}(\sigma_{\rm c}^y\ , \hat{i}-\sigma_{\rm c}^x\ , \hat{j})$ ] . to derive a force - balance equation for steady state transport we consider the heisenberg equation for the rate of change of the c.m . canonical momentum @xmath71 : @xmath72= - n e({\bm v}\times { \bm b})- n e{\bm e}+{\bm { f}}_{\rm i}+{\bm { f}}_{\rm p},\ ] ] in which the frictional forces @xmath73 and @xmath74 share the same expressions as given in ref .. the statistical average of the operator equation can be determined to linear order in the electron impurity and electron phonon interactions @xmath17 and @xmath18 with the initial density matrix @xmath75 at temperature @xmath76 when the in - plane electric field @xmath77 is not strong . for steady - transport states we have @xmath78 , leading to a force - balance equation of the form @xmath79 here @xmath80 , the statistically averaged velocity of the moving center - of - mass , is identified as the average rate of change of its position , i.e. the drift velocity of the electron system driven by the electric field @xmath77 , and @xmath81 and @xmath82 are frictional forces experienced by the center - of - mass due to impurity and phonon scatterings : @xmath83,\label{fp}\end{aligned}\ ] ] in which @xmath84 is the bose distribution function , @xmath85 , and @xmath86 stands for the imaginary part of the fourier spectrum of the relative - electron density correlation function defined by @xmath87\big\rangle_{0},\ ] ] where @xmath88 and @xmath89 denotes the statistical averaging over the initial density matrix @xmath90.@xcite the force - balance equation describes the steady - state two - dimensional magnetotransport in the surface state of a ti . note that the frictional forces @xmath81 and @xmath82 are in the opposite direction of the drift velocity @xmath91 and their magnitudes are functions of @xmath92 only . with the drift velocity @xmath93 in the @xmath9 direction , the force - balance equation eq . yields a transverse resistivity @xmath94 , and a longitudinal resistivity @xmath95 . the linear one is in the form @xmath96 for calculating the electron density correlation function @xmath97 we proceed in the landau representation.@xcite the landau levels of the single - particle hamiltonian @xmath98 of the relative - electron system in the absence of electric field are composed of a positive `` @xmath99 '' and a negative `` @xmath100 '' branch@xcite @xmath101 with @xmath102 and @xmath103 , and a zero ( @xmath104 ) level @xmath105 the corresponding landau wave functions are @xmath106 and @xmath107 for @xmath108 ; and @xmath109 for @xmath104 . here @xmath110 is the wavevector of the system along @xmath9 direction ; @xmath111 with @xmath112 ; and @xmath113 is the harmonic oscillator eigenfunction with @xmath114 being the hermite polynomial , @xmath115 , and @xmath116 . each landau level contains @xmath117 electron states for system of unit surface area . the positive branch @xmath118 and the @xmath104 level @xmath119 of the above energy spectra are indeed quite close to those of the surface states in the bulk gap of bi@xmath0se@xmath1-family materials derived from microscopic band calculation.@xcite the landau levels are broadened due to impurity , phonon and electron - electron scatterings . we model the imaginary part of the retarded green s function , or the density - of - states , of the broadened landau level @xmath120 ( written for `` + ' ' -branch and @xmath104 levels ) , using a gaussian - type form:@xcite @xmath121,\ ] ] with a half - width @xmath122 of the form:@xcite @xmath123^{1/2}$ ] . here @xmath124 is the single - particle lifetime and @xmath125 is the cyclotron frequency of linear - energy - dispersion system with @xmath126 being the zero - temperature fermi level . using a semi - empirical parameter @xmath127 to relate @xmath124 with the transport scattering time @xmath128 , and expressing @xmath129 with the zero - field mobility @xmath5 at finite temperature,@xcite we can write the landau - level broadening as @xmath130^{1/2}.\ ] ] in the present study we consider the case of @xmath120-doping , i.e. the fermi level is high enough above the energy zero of the dirac cone in the range of `` + ' ' -branch levels and the states of `` @xmath100''-branch levels are completely filled , that they are irrelevant to electron transport . special attention has to be paid to the @xmath104 level , since , depending on the direction of exchange potential the effective g - factor of a ti surface state , @xmath30 , can be positive , zero or negative.@xcite the sign and magnitude of the effective g - factor determines how many states of the zero level should be included in or excluded from the available states for electron occupation in the case of @xmath120-doping at a magnetic field . ( i ) if @xmath131 , the @xmath104 level center is exactly at @xmath132 and the system is electron - hole symmetric . the total number of negative energy states ( including the states of the lower half of the @xmath104 level and states of the @xmath100"-branch levels ) and that of positive energy states ( including the states of the upper half of the @xmath104 level and states of the @xmath99"-branch levels ) do not change when changing magnetic field . therefore , the lower - half negative energy states of this level are always filled and the upper - half positive - energy states of it are available for the occupation of particles which are counted as electrons participating in transport in the case of @xmath120-doping . ( ii ) for a finite positive @xmath133 , the @xmath104 level @xmath134 moves downward to negative energy and its distance to the nearest @xmath100"-branch level is @xmath135 closer than to the nearest + " -branch level at finite magnetic field strength @xmath2 . this is equivalent to the opening of an increasingly enlarged ( with increasing @xmath2 ) energy gap between the + " -branch states and the states of the zero - level and the @xmath100"-branch levels . the opening of a sufficient energy gap implies that with increasing magnetic field the states in the + " -branch levels would no longer shrink into the zero - level , and thus the @xmath104 level should be completely excluded from the conduction band , i.e. only particles occupying the + " -branch states are counted as electrons participating in transport in the case of @xmath120-doping , when the magnetic field @xmath2 gets larger than a certain value ( depending on the magnitude of @xmath30 ) . ( iii ) for a finite negative @xmath136 , the @xmath104 level @xmath134 moves upward to positive energy and an increasingly enlarged energy gap will be opened between the states of the zero - level and the + " -branch and the states of @xmath100"-branch levels , and particles occupying the @xmath104 level and + " -branch states are electrons participating in transport when the magnetic field @xmath2 gets larger than a certain value . as a result , the experimentally accessible sheet density @xmath33 of electrons participating in transport is related to the fermi energy @xmath137 by the following equation valid at finite @xmath30 for the magnetic field @xmath2 larger than a certain value : @xmath138 in which @xmath139 + 1\}^{-1}$ ] is the fermi distribution function at temperature @xmath76 and the summation index @xmath120 goes over @xmath140 for @xmath133 , or @xmath141 for @xmath136 . in the case of @xmath131 , @xmath142\ ] ] valid for arbitrary magnetic field , in which @xmath143 . the imaginary part of relative - electron density correlation function in the presence of a magnetic field , @xmath86 , can be expressed in the landau representation as@xcite @xmath144 in which the transform factor @xmath145 ^ 2,\end{aligned}\ ] ] with @xmath146 , @xmath147 , @xmath148 , and @xmath149 being associated laguerre polynomials . the landau - representation correlation function @xmath150 in eq.([piqw ] ) can be constructed with the imaginary part of the retarded green s function @xmath151 , or the density - of - states , of the @xmath120th landau level as@xcite @xmath152\nonumber\\ & \hspace{1.2cm}\times{\rm im}g_n(\epsilon+\omega){\rm im}g_{n'}(\epsilon).\end{aligned}\ ] ] the summation indices @xmath120 and @xmath153 in eq.([piqw ] ) are taken over @xmath140 for @xmath133 , or @xmath154 for @xmath136 . in the case of @xmath131 , eq.([piqw ] ) still works and the summation indices @xmath120 and @xmath153 go over @xmath154 but with @xmath155 replaced by @xmath156 in eq.([p2nn ] ) . numerical calculations are performed for the magnetoresistivity @xmath157 of surface state in a uniform ti bi@xmath0se@xmath1 . at zero temperature the elastic scattering contributing to the resistivity is modeled by a coulomb potential due to charged impurities:@xcite @xmath158 with @xmath159 being the impurity density , which is determined by the zero - magnetic - field mobility @xmath5 . at temperatures higher than @xmath160,@xcite phonon scatterings play increasingly important role and the dominant inelastic contribution comes from optical phonons . for this polar material , the scattering by optical phonons via the deformation potential can be neglected . hence , we take account of inelastic scattering from optical phonons via frhlich coupling : @xmath161 . in the numerical calculation we use the following parameters:@xcite fermi velocity @xmath162 , static dielectric constant @xmath163 , optical dielectric constant @xmath164 , and phonon energy @xmath165 . the broadening parameter is taken to be @xmath166 . as a function of the magnetic field @xmath2 having different effective g - factors : @xmath167 and @xmath168 for a ti surface system with electron sheet density @xmath169 in the cases of zero - magnetic - field mobility @xmath170 ( a ) and @xmath171 ( b ) . several integer - number positions of filling factor @xmath172 are marked in ( b).,scaledwidth=40.0% ] fig.[diffg ] shows the calculated magnetoresistivity @xmath157 versus the magnetic field strength @xmath2 for a ti surface system with electron sheet density @xmath169 but having different effective g - factors : @xmath167 and @xmath168 for two values of zero - magnetic - field mobility @xmath170 and @xmath171 , representing different degree of landau - level broadening . in the case without zeeman splitting ( @xmath131 ) the resistivity @xmath157 exhibits almost no change with changing magnetic field up to 10 t , except the shubnikov - de haas ( sdh ) oscillation showing up in the case of @xmath171 . this kind of magnetoresistance behavior was indeed seen experimentally in the electron - hole symmetrical massless system of single - layer graphene.@xcite in the case of a positive g - factor , @xmath173 , the magnetoresistivity increases linearly with increasing magnetic field ; while for a negative g - factor , @xmath174 , the magnetoresistivity decreases linearly with increasing magnetic field . is shown as a function of the magnetic field @xmath2 for different values of zero - magnetic - field mobility : ( a ) @xmath175 , ( b ) @xmath176 , ( c ) @xmath177 , ( d ) @xmath178 , ( e ) @xmath179 , and ( f ) @xmath180 . the inset of ( a ) illustrates the same for a larger magnetic - field range @xmath181 . the filling factor @xmath182 is plotted versus the magnetic field in ( f ) ; and several integer - number positions of @xmath182 are also marked in ( d ) and ( e ) . here the surface electron density @xmath169 and the lattice temperature @xmath183.,scaledwidth=47.0% ] in the following we will give more detailed examination on the linearly increasing magnetoresistance in the positive @xmath30 case . fig.[rhob ] shows the calculated resistivity @xmath157 versus the magnetic field strength @xmath2 at lattice temperature @xmath183 for system of carrier sheet density @xmath169 and @xmath173 , having different zero - field mobility @xmath184 and @xmath180 . all resistivity curves for mobility @xmath185 exhibit clear linearity in the magnetic - field range and appear no tendency of saturation at the highest field shown in the figure . especially , for the case @xmath170 , the linear behavior extends even up to the magnetic field of @xmath186 , as illustrated in the inset of fig.[rhob](a ) . this feature contradicts the classical mr which saturates at sufficiently large magnetic field @xmath187 . note that here we only present the calculated @xmath157 for magnetic field @xmath2 larger than @xmath188 t , for which a sufficient energy gap @xmath135 is assumed to open that with further increase of the magnetic field the states in the `` + ' ' -branch levels no longer shrink into the zero level and thus it should be excluded from the conduction band . this is of course not true for very weak magnetic field . when @xmath189 the energy gap @xmath190 , the situation becomes similar to the case of @xmath131 : the whole upper half of the zero - level states are available to electron occupation and we should have a flat resistivity @xmath157 when changing magnetic field . with increasing @xmath2 the portion of the zero - level states available to conduction electrons decreases until the magnetic field reaches @xmath191 . as a result the resistivity @xmath157 should exhibit a crossover from a flat changing at small @xmath2 to positively linear increasing at @xmath192 . this is just the behavior observed in the ti bi@xmath0se@xmath1.@xcite note that in the case of @xmath170 , the broadened landau - level widths are always larger than the neighboring level interval : @xmath193 , which requires @xmath194 ^ 2 $ ] , even for the lowest landau level @xmath195 , i.e. the whole landau - level spectrum is smeared . with increasing the zero - field mobility the magnitude of resistivity @xmath157 decreases , and when the broadened landau - level width becomes smaller than the neighboring level interval , @xmath196 , a weak sdh oscillation begin to occur around the linearly - dependent average value of @xmath157 at higher portion of the magnetic field range , as seen in fig.[rhob](c ) , ( d ) and ( e ) for @xmath197 and @xmath198 . on the other hand , in the case of large mobility , e.g. @xmath199 , where the broadened landau - level widths @xmath200 are much smaller than the neighboring level interval even for level index @xmath120 as large as @xmath201 , the magnetoresistivity shows pronounced sdh oscillation and the linear - dependent behavior disappears , before the appearance of quantum hall effect,@xcite as shown in fig.[rhob](f ) . abrikosov s model for the lmr requires the applied magnetic field large enough to reach the quantum limit at which all the carriers are within the lowest landau level,@xcite while it is obvious that more than one landau levels are occupied in the experimental samples in the field range in which the linear and non - saturating magnetoresistivity was observed.@xcite for the given electron surface density @xmath202 , the number of occupied landau levels , or the filling factor @xmath172 , at different magnetic fields is shown in fig.[rhob](f ) , as well as in the fig.[rhob](d ) and ( e ) , where the integer - number positions of @xmath203 , i.e. filling up to entire @xmath182 landau levels , coincide with the minima of the density - of - states or the dips of sdh oscillation . this is in contrast with @xmath131 case , where the integer number of @xmath203 , which implies a filling up to the center position of the @xmath182th landau levels , locates at a peak of sdh oscillation , as shown in fig.[diffg]b . the observed sdh oscillations in the bi@xmath0se@xmath1 nanoribbon exhibiting nonsaturating surface lmr in the experiment@xcite favor the former case : a finite positive effective @xmath133 . is plotted as a function of the surface electron density @xmath33 at magnetic field @xmath204 : ( a ) at different values of zero - field mobility @xmath5 , and ( b ) at different values of zero - field conductivity @xmath205.,scaledwidth=40.0% ] at various lattice temperatures . here the zero - magnetic - field mobility at zero temperature is @xmath206.,scaledwidth=35.0% ] next , we examine the density - dependence of the linear magnetoresistivity . to compare with abrikosov s quantum magnetoresistance which suggests a @xmath207 behavior,@xcite we show the calculated @xmath208 for above lmr versus the carrier sheet density @xmath33 in fig.[rhon ] at fixed magnetic field @xmath209 t . the mobility is taken respectively to be @xmath210 and @xmath211m@xmath212/vs to make the resistivity in the lmr regime . a clearly linear dependence of @xmath213 on the surface density @xmath33 is seen in all cases , indicating that this non - saturating linear resistivity is almost inversely proportional to the carrier density . in the figure we also show @xmath208 versus @xmath33 under the condition of different given conductivity @xmath214 and @xmath215 . in this case the half - width @xmath216 is independent of surface density . the linear dependence still holds , indicating that this linear behavior is not sensitive to the modest @xmath33-dependence of landau level broadening @xmath216 as long as the system is in the overlapped landau level regime . from the above discussion , it is obvious that lmr shows up in the system having overlapped landau levels and the separation of landau levels makes the mr departure from the linear increase . at high temperature , the thermal energy would smear the level separation and phonon scatterings further broaden landau levels . hence , it is believed that this lmr will be robust against raising temperature . this is indeed the case as seen in fig.[rhot ] , where we plot the calculated magnetoresistivity @xmath157 for the above system with zero - temperature linear mobility @xmath217m@xmath212/vs versus the magnetic field at different lattice temperatures . we can see that raising temperature to room temperature has little effect on the linearity of mr . due to the decreased mobility at higher temperature from phonon scattering , the weak sdh oscillation on the linear background tends to vanish . these features are in good agreement with the experimental report.@xcite in summary , we have studied the two - dimensional magnetotransport in the flat surface of a three - dimensional ti , which arises from the surface states with a wavevector - linear energy dispersion and a finite , positive zeeman splitting within the bulk energy gap . when the level broadening is comparable to or larger than the landau - level separation and the conduction electrons spread over many landau levels , a positive , dominantly linear and non - saturating magnetoresistance appears within a quite wide range of magnetic field and persists up to room temperature . this remarkable lmr provides a possible mechanism for the recently observed linear magnetoresistance in topological insulator bi@xmath0se@xmath1 nanoribbons.@xcite in contrast to quantum hall effect which appears in the case of well formed landau levels and to abrikosov s quantum magnetotransport,@xcite which is limited to the extreme quantum limit that all electrons coalesce into the lowest landau level , the discussed lmr is a phenomena of pure classical two - dimensional magnetotransport in a system having linear - energy - dispersion , appearing in the regime of overlapped landau levels , irrespective of its showing up in relatively high magnetic field range . furthermore , the present scheme deals with spatially uniform case without invoking the mobility fluctuation in a strongly inhomogeneous system , which is required in the classical parish and littlewood model to produce a lmr.@xcite the appearance of this significant positive - increasing linear magnetoresistance depends on the existence of a positive and sizable effective g - factor . if the zeeman energy splitting is quite small the resistivity @xmath157 would exhibit little change with changing magnetic field . in the case of a negative and sizable effective g - factor the magnetoresistivity would decrease linearly with increasing magnetic field . therefore , the behavior of the longitudinal resistivity versus magnetic field may provide a useful way for judging the direction and the size of the effective zeeman energy splitting in ti surface states . this work was supported by the national science foundation of china ( grant no . 11104002 ) , the national basic research program of china ( grant no . 2012cb927403 ) and by the program for science&technology innovation talents in universities of henan province ( grant no . 2012hastit029 ) .""" inputs = tokenizer( [ARTICLE_LEP, ARTICLE_MAGNET], max_length=1024, padding="max_length", truncation=True, return_tensors="pt", ) inputs = {k: inputs[k].to(torch_device) for k in inputs} hypotheses_batch = model.generate(**inputs) EXPECTED_LEP = ( "we study the rare decays @xmath0 ( @xmath1 ) at the gigaz option of the international linear collider " "( ilc ).<n> we calculate the branching ratios of @xmath2 in the two higgs doublet model ( 2hdm ), the " "minimal supersymmetric standard model ( mssm ), the next - to - minimal supersymmetric standard model " "( nmssm ) and the nearly minimal supersymmetric standard model ( nmssm ).<n> we find that the branching " "ratios of @xmath3 can reach @xmath4 in 2hdm, @xmath5 in mssm, @xmath6 in nmssm and @xmath7 in nmssm, " "while they are much smaller than @xmath8 in 2hdm, @xmath9 in mssm, @xmath10 in nmssm and @xmath11 in " "nmssm." ) EXPECTED_MAGNET = ( "we investigate the two - dimensional magnetotransport in the surface state of a topological insulator " "( ti ).<n> we find that a positive, nonsaturating and dominantly linear magnetoresistance can appear " "within quite wide magnetic - field range in the ti surface state having a positive and finite effective g " "- factor.<n> this linear magnetoresistance shows up in the system of high carrier concentration and low " "mobility when electrons are in extended states and spread over many smeared landau levels, and persists " "up to room temperature, providing a possible mechanism for the recently observed linear magnetoresistance " "in topological insulator bi@xmath0se@xmath1 nanoribbons." ) generated = tokenizer.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) self.assertTrue(generated == [EXPECTED_LEP, EXPECTED_MAGNET]) class BigBirdPegasusStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=7, d_model=32, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, attention_type="original_full", use_bias=True, block_size=16, num_random_blocks=3, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 self.attention_type = attention_type self.use_bias = use_bias self.block_size = block_size self.num_random_blocks = num_random_blocks def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = BigBirdPegasusConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, attention_type=self.attention_type, use_bias=self.use_bias, block_size=self.block_size, num_random_blocks=self.num_random_blocks, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = BigBirdPegasusDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = BigBirdPegasusDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice # big bird has extremely high logits which requires # such a high error tolerance here assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=5e-1) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, lm_labels = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class BigBirdPegasusStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (BigBirdPegasusDecoder, BigBirdPegasusForCausalLM) if is_torch_available() else () all_generative_model_classes = (BigBirdPegasusForCausalLM,) if is_torch_available() else () test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = BigBirdPegasusStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=BigBirdPegasusConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/gpt_sw3/test_tokenization_gpt_sw3.py
# coding=utf-8 # Copyright 2022 Hugging Face inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import GPTSw3Tokenizer from transformers.testing_utils import get_tests_dir, require_jinja, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class GPTSw3TokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "AI-Sweden-Models/gpt-sw3-126m" tokenizer_class = GPTSw3Tokenizer test_rust_tokenizer = False test_sentencepiece = True test_sentencepiece_ignore_case = False def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = GPTSw3Tokenizer(SAMPLE_VOCAB, eos_token="<unk>", bos_token="<unk>", pad_token="<unk>") tokenizer.save_pretrained(self.tmpdirname) def get_input_output_texts(self, tokenizer): input_text = "This is a test" output_text = "This is a test" return input_text, output_text def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<s>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<unk>") self.assertEqual(vocab_keys[1], "<s>") self.assertEqual(vocab_keys[-1], "j") self.assertEqual(len(vocab_keys), 2_000) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 2_000) def test_full_tokenizer(self): tokenizer = GPTSw3Tokenizer(SAMPLE_VOCAB) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [465, 287, 265, 631, 842]) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") # fmt: off self.assertListEqual( tokens, ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."], ) # fmt: on ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) # fmt: off self.assertListEqual( back_tokens, ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def test_fast_encode_decode(self): tokenizer = GPTSw3Tokenizer(SAMPLE_VOCAB) texts = ["This is a test", "I was born in 92000, and this is falsé."] expected_ids_list = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(texts, expected_ids_list): self.assertListEqual(tokenizer.encode_fast(text), expected_ids) # Test that decode_fast returns the input text for text, token_ids in zip(texts, expected_ids_list): self.assertEqual(tokenizer.decode_fast(token_ids), text) @slow def test_tokenizer_integration(self): sequences = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] expected_encoding = {"input_ids": [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: skip self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="AI-Sweden-Models/gpt-sw3-126m", sequences=sequences, ) @require_jinja def test_tokenization_for_chat(self): tokenizer = GPTSw3Tokenizer(SAMPLE_VOCAB) # This is in English, but it's just here to make sure the chat control tokens are being added properly test_chats = [ [{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}], [ {"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Nice to meet you."}, ], [{"role": "assistant", "content": "Nice to meet you."}, {"role": "user", "content": "Hello!"}], ] tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats] # fmt: off expected_tokens = [ [2000, 1, 575, 541, 419, 530, 339, 265, 878, 708, 727, 275, 347, 541, 260, 1, 968, 263, 314, 419, 366, 354, 294, 360, 1, 575, 541, 419], [2000, 1, 575, 541, 419, 530, 339, 265, 878, 708, 727, 275, 347, 541, 260, 1, 968, 263, 314, 419, 366, 354, 294, 360, 1, 575, 541, 419, 984, 429, 281, 264, 1261, 291, 260, 1, 575, 541, 419], [2000, 1, 575, 541, 419, 984, 429, 281, 264, 1261, 291, 260, 1, 968, 263, 314, 419, 366, 354, 294, 360, 1, 575, 541, 419] ] # fmt: on for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens): self.assertListEqual(tokenized_chat, expected_tokens)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/codegen/test_modeling_codegen.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import unittest from transformers import CodeGenConfig, is_torch_available from transformers.file_utils import cached_property from transformers.testing_utils import backend_manual_seed, is_flaky, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, CodeGenForCausalLM, CodeGenModel class CodeGenModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=256, hidden_size=32, rotary_dim=4, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.rotary_dim = rotary_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def get_large_model_config(self): return CodeGenConfig.from_pretrained("Salesforce/codegen-2B-mono") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def get_config(self): return CodeGenConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_codegen_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CodeGenModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_codegen_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CodeGenModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_codegen_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = CodeGenModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_codegen_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = CodeGenModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = CodeGenForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False ): model = CodeGenForCausalLM(config) if gradient_checkpointing: model.gradient_checkpointing_enable() model.to(torch_device) result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict @require_torch class CodeGenModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (CodeGenModel, CodeGenForCausalLM) if is_torch_available() else () all_generative_model_classes = (CodeGenForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": CodeGenModel, "text-generation": CodeGenForCausalLM} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_missing_keys = False test_model_parallel = False test_head_masking = False # special case for DoubleHeads model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) return inputs_dict def setUp(self): self.model_tester = CodeGenModelTester(self) self.config_tester = ConfigTester(self, config_class=CodeGenConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_codegen_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_codegen_model(*config_and_inputs) def test_codegen_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_codegen_model_past(*config_and_inputs) def test_codegen_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_codegen_model_attention_mask_past(*config_and_inputs) def test_codegen_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_codegen_model_past_large_inputs(*config_and_inputs) def test_codegen_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_codegen_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) @slow def test_batch_generation(self): tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") model = CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") model.to(torch_device) tokenizer.padding_side = "left" # Define PAD Token = EOS Token = 50256 tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id # use different length sentences to test batching sentences = ["def hellow_world():", "def greet(name):"] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) token_type_ids = torch.cat( [ input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0), input_ids.new_full((input_ids.shape[0], 1), 500), ], dim=-1, ) outputs = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), ) outputs_tt = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), token_type_ids=token_type_ids, ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ 'def hellow_world():\n print("Hello World")\n\nhellow_world()', 'def greet(name):\n print(f"Hello {name}")\n\ng', ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertTrue(batch_out_sentence_tt != batch_out_sentence) # token_type_ids should change output self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) @slow def test_model_from_pretrained(self): model_name = "Salesforce/codegen-350M-nl" model = CodeGenModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class CodeGenModelLanguageGenerationTest(unittest.TestCase): @cached_property def cached_tokenizer(self): return AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono") @cached_property def cached_model(self): return CodeGenForCausalLM.from_pretrained("Salesforce/codegen-350M-mono") @slow def test_lm_generate_codegen(self): tokenizer = self.cached_tokenizer for checkpointing in [True, False]: model = self.cached_model if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(torch_device) inputs = tokenizer("def hello_world():", return_tensors="pt").to(torch_device) expected_output = 'def hello_world():\n print("Hello World")\n\nhello_world()\n\n' output_ids = model.generate(**inputs, do_sample=False) output_str = tokenizer.batch_decode(output_ids)[0] self.assertEqual(output_str, expected_output) @slow def test_codegen_sample(self): tokenizer = self.cached_tokenizer model = self.cached_model model.to(torch_device) torch.manual_seed(0) backend_manual_seed(torch_device, 0) tokenized = tokenizer("def hello_world():", return_tensors="pt", return_token_type_ids=True) input_ids = tokenized.input_ids.to(torch_device) output_ids = model.generate(input_ids, do_sample=True) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) token_type_ids = tokenized.token_type_ids.to(torch_device) output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5) output_seq_tt = model.generate( input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5 ) output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True) output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True) if torch_device == "cuda": EXPECTED_OUTPUT_STR = 'def hello_world():\n print("Hello World")\n return True\n\nresult =' else: EXPECTED_OUTPUT_STR = "def hello_world():\r\n print('Hello, World.')\r\n\r\n\r" self.assertEqual(output_str, EXPECTED_OUTPUT_STR) self.assertTrue( all(output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs))) ) # token_type_ids should change output @is_flaky(max_attempts=3, description="measure of timing is somehow flaky.") @slow def test_codegen_sample_max_time(self): tokenizer = self.cached_tokenizer model = self.cached_model model.to(torch_device) torch.manual_seed(0) tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True) input_ids = tokenized.input_ids.to(torch_device) MAX_TIME = 0.05 start = datetime.datetime.now() model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=2 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=None, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=2 * MAX_TIME))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/codegen/test_tokenization_codegen.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class CodeGenTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "Salesforce/codegen-350M-mono" tokenizer_class = CodeGenTokenizer rust_tokenizer_class = CodeGenTokenizerFast test_rust_tokenizer = True from_pretrained_kwargs = {"add_prefix_space": True} test_seq2seq = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = CodeGenTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "lower newer" bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text, add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) sequence = "lower newer" # Testing tokenization tokens = tokenizer.tokenize(sequence, add_prefix_space=True) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) # Testing conversion to ids without special tokens ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) # Testing conversion to ids with special tokens rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True) ids = tokenizer.encode(sequence, add_prefix_space=True) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) # Testing the unknown token input_tokens = tokens + [rust_tokenizer.unk_token] input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def test_pretokenized_inputs(self, *args, **kwargs): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def test_padding(self, max_length=15): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # Simple input s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, padding="max_length", ) # Pair input self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, padding="max_length", ) def test_padding_if_pad_token_set_slow(self): tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>") # Simple input s = "This is a simple input" s2 = ["This is a simple input looooooooong", "This is a simple input"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] pad_token_id = tokenizer.pad_token_id out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np") out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np") out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np") out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np") # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1], 30) self.assertTrue(pad_token_id in out_s["input_ids"]) self.assertTrue(0 in out_s["attention_mask"]) # s2 # test automatic padding self.assertEqual(out_s2["input_ids"].shape[-1], 33) # long slice doesn't have padding self.assertFalse(pad_token_id in out_s2["input_ids"][0]) self.assertFalse(0 in out_s2["attention_mask"][0]) # short slice does have padding self.assertTrue(pad_token_id in out_s2["input_ids"][1]) self.assertTrue(0 in out_s2["attention_mask"][1]) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1], 60) self.assertTrue(pad_token_id in out_p["input_ids"]) self.assertTrue(0 in out_p["attention_mask"]) # p2 # test automatic padding pair self.assertEqual(out_p2["input_ids"].shape[-1], 52) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_p2["input_ids"][0]) self.assertFalse(0 in out_p2["attention_mask"][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_p2["input_ids"][1]) self.assertTrue(0 in out_p2["attention_mask"][1]) def test_add_bos_token_slow(self): bos_token = "$$$" tokenizer = CodeGenTokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True) s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] bos_token_id = tokenizer.bos_token_id out_s = tokenizer(s) out_s2 = tokenizer(s2) self.assertEqual(out_s.input_ids[0], bos_token_id) self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids)) decode_s = tokenizer.decode(out_s.input_ids) decode_s2 = tokenizer.batch_decode(out_s2.input_ids) self.assertTrue(decode_s.startswith(bos_token)) self.assertTrue(all(d.startswith(bos_token) for d in decode_s2)) @slow def test_truncation(self): tokenizer = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") text = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" expected_trucated_text = "\nif len_a > len_b: result = a\nelse: result = b" input_ids = tokenizer.encode(text) truncation_pattern = ["^#", re.escape("<|endoftext|>"), "^'''", '^"""', "\n\n\n"] decoded_text = tokenizer.decode(input_ids, truncate_before_pattern=truncation_pattern) self.assertEqual(decoded_text, expected_trucated_text) # TODO @ArthurZ outputs of the fast tokenizer are different in this case, un-related to the PR # tokenizer has no padding token def test_padding_different_model_input_name(self): pass @slow def test_tokenizer_integration(self): # Custom test since this tokenizer takes return_token_type_ids as an init argument for backward compatibility. sequences = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained " "models in 100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] tokenizer_classes = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) # Test default case. i.e. return_token_type_ids is False. for tokenizer_class in tokenizer_classes: tokenizer = tokenizer_class.from_pretrained("Salesforce/codegen-350M-mono") encoding = tokenizer(sequences) decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] # fmt: off expected_encoding = {'input_ids': [[41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13], [13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13], [464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on encoding_data = encoding.data self.assertDictEqual(encoding_data, expected_encoding) for expected, decoded in zip(sequences, decoded_sequences): self.assertEqual(expected, decoded) # Test return_token_type_ids is True case. for tokenizer_class in tokenizer_classes: tokenizer = tokenizer_class.from_pretrained("Salesforce/codegen-350M-mono", return_token_type_ids=True) encoding = tokenizer(sequences) decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] # fmt: off expected_encoding = {'input_ids': [[41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13], [13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13], [464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on encoding_data = encoding.data self.assertDictEqual(encoding_data, expected_encoding) for expected, decoded in zip(sequences, decoded_sequences): self.assertEqual(expected, decoded)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/bert/test_modeling_bert.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from transformers import BertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import ( CaptureLogger, require_torch, require_torch_accelerator, require_torch_sdpa, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLMHeadModel, BertModel, logging, ) class BertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): """ Returns a tiny configuration by default. """ return BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = BertModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = BertLMHeadModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_model_for_causal_lm_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = BertLMHeadModel(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = BertLMHeadModel(config=config).to(torch_device).eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = BertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = BertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = BertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class BertModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( BertModel, BertLMHeadModel, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = (BertLMHeadModel,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": BertModel, "fill-mask": BertForMaskedLM, "question-answering": BertForQuestionAnswering, "text-classification": BertForSequenceClassification, "text-generation": BertLMHeadModel, "token-classification": BertForTokenClassification, "zero-shot": BertForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = BertModelTester(self) self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_causal_lm_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_warning_if_padding_and_no_attention_mask(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.model_tester.prepare_config_and_inputs() # Set pad tokens in the input_ids input_ids[0, 0] = config.pad_token_id # Check for warnings if the attention_mask is missing. logger = logging.get_logger("transformers.modeling_utils") # clear cache so we can test the warning is emitted (from `warning_once`). logger.warning_once.cache_clear() with CaptureLogger(logger) as cl: model = BertModel(config=config) model.to(torch_device) model.eval() model(input_ids, attention_mask=None, token_type_ids=token_type_ids) self.assertIn("We strongly recommend passing in an `attention_mask`", cl.out) @slow def test_model_from_pretrained(self): model_name = "google-bert/bert-base-uncased" model = BertModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow @require_torch_accelerator def test_torchscript_device_change(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == BertForMultipleChoice: return config.torchscript = True model = model_class(config=config) inputs_dict = self._prepare_for_class(inputs_dict, model_class) traced_model = torch.jit.trace( model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(traced_model, os.path.join(tmp, "bert.pt")) loaded = torch.jit.load(os.path.join(tmp, "bert.pt"), map_location=torch_device) loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device)) # This test was copied from the common test_eager_matches_sdpa_generate(), but without low_cpu_mem_usage=True. # TODO: Remove this and use the parent method (in common tests) once BERT supports low_cpu_mem_usage=True. @require_torch_sdpa @slow def test_eager_matches_sdpa_generate(self): max_new_tokens = 30 if len(self.all_generative_model_classes) == 0: self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test") for model_class in self.all_generative_model_classes: if not model_class._supports_sdpa: self.skipTest(f"{model_class.__name__} does not support SDPA") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() dummy_input = inputs_dict[model_class.main_input_name] if dummy_input.dtype in [torch.float32, torch.bfloat16]: dummy_input = dummy_input.to(torch.float16) # make sure that all models have enough positions for generation if hasattr(config, "max_position_embeddings"): config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1 model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input)) model_sdpa = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, # low_cpu_mem_usage=True, ).to(torch_device) self.assertTrue(model_sdpa.config._attn_implementation == "sdpa") model_eager = model_class.from_pretrained( tmpdirname, torch_dtype=torch.float16, # low_cpu_mem_usage=True, attn_implementation="eager", ).to(torch_device) self.assertTrue(model_eager.config._attn_implementation == "eager") for name, submodule in model_eager.named_modules(): class_name = submodule.__class__.__name__ if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name: raise ValueError("The eager model should not have SDPA attention layers") has_sdpa = False for name, submodule in model_sdpa.named_modules(): class_name = submodule.__class__.__name__ if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name: has_sdpa = True break if not has_sdpa: raise ValueError("The SDPA model should have SDPA attention layers") # Just test that a large cache works as expected res_eager = model_eager.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False ) res_sdpa = model_sdpa.generate( dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False ) self.assertTrue(torch.allclose(res_eager, res_sdpa)) @require_torch class BertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = BertModel.from_pretrained("google-bert/bert-base-uncased") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[[0.4249, 0.1008, 0.7531], [0.3771, 0.1188, 0.7467], [0.4152, 0.1098, 0.7108]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) @slow def test_inference_no_head_relative_embedding_key(self): model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.0756, 0.3142, -0.5128], [0.3761, 0.3462, -0.5477], [0.2052, 0.3760, -0.1240]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) @slow def test_inference_no_head_relative_embedding_key_query(self): model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key-query") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.6496, 0.3784, 0.8203], [0.8148, 0.5656, 0.2636], [-0.0681, 0.5597, 0.7045]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/bert/test_modeling_flax_bert.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class FlaxBertModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_choices = num_choices def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def prepare_config_and_inputs_for_decoder(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class FlaxBertModelTest(FlaxModelTesterMixin, unittest.TestCase): test_head_masking = True all_model_classes = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def setUp(self): self.model_tester = FlaxBertModelTester(self) @slow def test_model_from_pretrained(self): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. model = FlaxBertModel.from_pretrained("google-bert/bert-base-cased") outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/bert/test_tokenization_bert.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class BertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "google-bert/bert-base-uncased" tokenizer_class = BertTokenizer rust_tokenizer_class = BertTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True from_pretrained_filter = filter_non_english def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11]) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) # With lower casing tokenizer = self.get_tokenizer(do_lower_case=True) rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True) sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_chinese(self): tokenizer = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_no_lower(self): tokenizer = BasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def test_basic_tokenizer_splits_on_punctuation(self): tokenizer = BasicTokenizer() text = "a\n'll !!to?'d of, can't." expected = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(text), expected) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def test_clean_text(self): tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]] ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("google-bert/bert-base-uncased") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_2 + [102] def test_offsets_with_special_characters(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False expected_results = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) def test_change_tokenize_chinese_chars(self): list_of_commun_chinese_char = ["的", "人", "有"] text_with_chinese_char = "".join(list_of_commun_chinese_char) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): kwargs["tokenize_chinese_chars"] = True tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(tokens_without_spe_char_p, list_of_commun_chinese_char) self.assertListEqual(tokens_without_spe_char_r, list_of_commun_chinese_char) kwargs["tokenize_chinese_chars"] = False tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that only the first Chinese character is not preceded by "##". expected_tokens = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(list_of_commun_chinese_char) ] self.assertListEqual(tokens_without_spe_char_p, expected_tokens) self.assertListEqual(tokens_without_spe_char_r, expected_tokens)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/bert/test_tokenization_bert_tf.py
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf from transformers.modeling_tf_utils import keras if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer TOKENIZER_CHECKPOINTS = ["google-bert/bert-base-uncased", "google-bert/bert-base-cased"] TINY_MODEL_CHECKPOINT = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): from transformers.modeling_tf_utils import keras class ModelToSave(keras.Model): def __init__(self, tokenizer): super().__init__() self.tokenizer = tokenizer config = AutoConfig.from_pretrained(TINY_MODEL_CHECKPOINT) self.bert = TFAutoModel.from_config(config) def call(self, inputs): tokenized = self.tokenizer(inputs) out = self.bert(tokenized) return out["pooler_output"] @require_tf @require_tensorflow_text class BertTokenizationTest(unittest.TestCase): # The TF tokenizers are usually going to be used as pretrained tokenizers from existing model checkpoints, # so that's what we focus on here. def setUp(self): super().setUp() self.tokenizers = [BertTokenizer.from_pretrained(checkpoint) for checkpoint in TOKENIZER_CHECKPOINTS] self.tf_tokenizers = [TFBertTokenizer.from_pretrained(checkpoint) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) self.test_sentences = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] self.paired_sentences = list(zip(self.test_sentences, self.test_sentences[::-1])) def test_output_equivalence(self): for tokenizer, tf_tokenizer in zip(self.tokenizers, self.tf_tokenizers): for test_inputs in (self.test_sentences, self.paired_sentences): python_outputs = tokenizer(test_inputs, return_tensors="tf", padding="longest") tf_outputs = tf_tokenizer(test_inputs) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape)) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key], tf.int64) == tf_outputs[key])) @slow def test_different_pairing_styles(self): for tf_tokenizer in self.tf_tokenizers: merged_outputs = tf_tokenizer(self.paired_sentences) separated_outputs = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences], text_pair=[sentence[1] for sentence in self.paired_sentences], ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key], tf.int64) == separated_outputs[key])) @slow def test_graph_mode(self): for tf_tokenizer in self.tf_tokenizers: compiled_tokenizer = tf.function(tf_tokenizer) for test_inputs in (self.test_sentences, self.paired_sentences): test_inputs = tf.constant(test_inputs) compiled_outputs = compiled_tokenizer(test_inputs) eager_outputs = tf_tokenizer(test_inputs) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def test_export_for_inference(self): for tf_tokenizer in self.tf_tokenizers: model = ModelToSave(tokenizer=tf_tokenizer) test_inputs = tf.convert_to_tensor(self.test_sentences) out = model(test_inputs) # Build model with some sample inputs with TemporaryDirectory() as tempdir: save_path = Path(tempdir) / "saved.model" model.export(save_path) loaded_model = tf.saved_model.load(save_path) loaded_output = loaded_model.serve(test_inputs) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output)), 1e-5)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/bert/test_modeling_tf_bert.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import BertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING from transformers.models.bert.modeling_tf_bert import ( TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertModel, ) class TFBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFBertModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_causal_lm_base_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.is_decoder = True model = TFBertModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFBertModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) # Also check the case where encoder outputs are not passed result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_causal_lm_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.is_decoder = True model = TFBertLMHeadModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } prediction_scores = model(inputs)["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] ) def create_and_check_causal_lm_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFBertLMHeadModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) prediction_scores = result["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size] ) def create_and_check_causal_lm_model_past( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TFBertLMHeadModel(config=config) # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0] output_from_past = model( next_tokens, past_key_values=past_key_values, output_hidden_states=True ).hidden_states[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_causal_lm_model_past_with_attn_mask( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TFBertLMHeadModel(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass outputs = model(input_ids, attention_mask=attn_mask, use_cache=True) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) past_key_values = outputs.past_key_values # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat( [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], axis=1, ) output_from_no_past = model( next_input_ids, attention_mask=attn_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True ).hidden_states[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_causal_lm_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TFBertLMHeadModel(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, use_cache=True) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, ).hidden_states[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFBertLMHeadModel(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] encoder_hidden_states = encoder_hidden_states[:1, :, :] encoder_attention_mask = encoder_attention_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, ).hidden_states[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFBertForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFBertForNextSentencePrediction(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFBertForPreTraining(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFBertForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFBertForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFBertForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFBertForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFBertModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFBertModel, TFBertForMaskedLM, TFBertLMHeadModel, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertForMultipleChoice, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFBertModel, "fill-mask": TFBertForMaskedLM, "question-answering": TFBertForQuestionAnswering, "text-classification": TFBertForSequenceClassification, "text-generation": TFBertLMHeadModel, "token-classification": TFBertForTokenClassification, "zero-shot": TFBertForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = True onnx_min_opset = 10 # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) return inputs_dict def setUp(self): self.model_tester = TFBertModelTester(self) self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): """Test the base model""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_causal_lm_base_model(self): """Test the base model of the causal LM model is_deocder=True, no cross_attention, no encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs) def test_model_as_decoder(self): """Test the base model as a decoder (of an encoder-decoder architecture) is_deocder=True + cross_attention + pass encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_causal_lm(self): """Test the causal LM model""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model(*config_and_inputs) def test_causal_lm_model_as_decoder(self): """Test the causal LM model as a decoder""" config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_causal_lm_model_as_decoder(*config_and_inputs) def test_causal_lm_model_past(self): """Test causal LM model with `past_key_values`""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past(*config_and_inputs) def test_causal_lm_model_past_with_attn_mask(self): """Test the causal LM model with `past_key_values` and `attention_mask`""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past_with_attn_mask(*config_and_inputs) def test_causal_lm_model_past_with_large_inputs(self): """Test the causal LM model with `past_key_values` and a longer decoder sequence length""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): """Similar to `test_causal_lm_model_past_with_large_inputs` but with cross-attention""" config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_model_from_pretrained(self): model = TFBertModel.from_pretrained("jplu/tiny-tf-bert-random") self.assertIsNotNone(model) def test_custom_load_tf_weights(self): model, output_loading_info = TFBertForTokenClassification.from_pretrained( "jplu/tiny-tf-bert-random", output_loading_info=True ) self.assertEqual(sorted(output_loading_info["unexpected_keys"]), []) for layer in output_loading_info["missing_keys"]: self.assertTrue(layer.split("_")[0] in ["dropout", "classifier"]) # TODO (Joao): fix me @unittest.skip("Onnx compliancy broke with TF 2.10") def test_onnx_compliancy(self): pass @require_tf class TFBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFBertForPreTraining.from_pretrained("lysandre/tiny-bert-random") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 32000] self.assertEqual(output.shape, expected_shape) print(output[:, :3, :3]) expected_slice = tf.constant( [ [ [-0.05243197, -0.04498899, 0.05512108], [-0.07444685, -0.01064632, 0.04352357], [-0.05020351, 0.05530146, 0.00700043], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/canine/test_tokenization_canine.py
# coding=utf-8 # Copyright 2021 Google AI and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class CanineTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "nielsr/canine-s" tokenizer_class = CanineTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() tokenizer = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def canine_tokenizer(self): return CanineTokenizer.from_pretrained("google/canine-s") def get_tokenizer(self, **kwargs) -> CanineTokenizer: tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) tokenizer._unicode_vocab_size = 1024 return tokenizer @require_torch def test_prepare_batch_integration(self): tokenizer = self.canine_tokenizer src_text = ["Life is like a box of chocolates.", "You never know what you're gonna get."] expected_src_tokens = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: skip batch = tokenizer(src_text, padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) result = list(batch.input_ids.numpy()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 39), batch.input_ids.shape) self.assertEqual((2, 39), batch.attention_mask.shape) @require_torch def test_encoding_keys(self): tokenizer = self.canine_tokenizer src_text = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] batch = tokenizer(src_text, padding=True, return_tensors="pt") # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertIn("token_type_ids", batch) @require_torch def test_max_length_integration(self): tokenizer = self.canine_tokenizer tgt_text = [ "What's the weater?", "It's about 25 degrees.", ] targets = tokenizer( text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors="pt" ) self.assertEqual(32, targets["input_ids"].shape[1]) # cannot use default save_and_load_tokenizer test method because tokenizer has no vocab def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) shutil.rmtree(tmpdirname) tokenizers = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" additional_special_tokens = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: new_additional_special_token = chr(0xE007) additional_special_tokens.append(new_additional_special_token) tokenizer.add_special_tokens( {"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False ) before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) self.assertIn(new_additional_special_token, after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(tmpdirname) def test_add_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, ids = self.get_clean_sequence(tokenizer) # a special token for Canine can be defined as follows: SPECIAL_TOKEN = 0xE005 special_token = chr(SPECIAL_TOKEN) tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False) encoded = tokenizer.encode(text, add_special_tokens=False) input_encoded = tokenizer.encode(input_text, add_special_tokens=False) special_token_id = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(encoded, input_encoded + special_token_id) decoded = tokenizer.decode(encoded, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_tokenize_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): SPECIAL_TOKEN_1 = chr(0xE005) SPECIAL_TOKEN_2 = chr(0xE006) tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]}) token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) self.assertEqual(len(token_1), 1) self.assertEqual(len(token_2), 1) self.assertEqual(token_1[0], SPECIAL_TOKEN_1) self.assertEqual(token_2[0], SPECIAL_TOKEN_2) @require_tokenizers def test_added_token_serializable(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # a special token for Canine can be defined as follows: NEW_TOKEN = 0xE006 new_token = chr(NEW_TOKEN) new_token = AddedToken(new_token, lstrip=True) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]}) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(tmp_dir_name) tokenizer.from_pretrained(tmp_dir_name) def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: special_tokens_map = json.load(json_file) with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) # a special token for Canine can be defined as follows: NEW_TOKEN = 0xE006 new_token_1 = chr(NEW_TOKEN) special_tokens_map["additional_special_tokens"] = [new_token_1] tokenizer_config["additional_special_tokens"] = [new_token_1] with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(special_tokens_map, outfile) with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir, extra_ids=0) self.assertIn(new_token_1, tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_1], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_1]) ), ) NEW_TOKEN = 0xE007 new_token_2 = chr(NEW_TOKEN) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = [AddedToken(new_token_2, lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, extra_ids=0 ) self.assertIn(new_token_2, tokenizer.additional_special_tokens) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_2], tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_2])) ) @require_tokenizers def test_encode_decode_with_spaces(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input = "hello world" if self.space_between_special_tokens: output = "[CLS] hello world [SEP]" else: output = input encoded = tokenizer.encode(input, add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(decoded, [output, output.lower()]) # cannot use default `test_tokenizers_common_ids_setters` method because tokenizer has no vocab def test_tokenizers_common_ids_setters(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] token_to_test_setters = "a" token_id_to_test_setters = ord(token_to_test_setters) for attr in attributes_list: setattr(tokenizer, attr + "_id", None) self.assertEqual(getattr(tokenizer, attr), None) self.assertEqual(getattr(tokenizer, attr + "_id"), None) setattr(tokenizer, attr + "_id", token_id_to_test_setters) self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) setattr(tokenizer, "additional_special_tokens_ids", []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) additional_special_token_id = 0xE006 additional_special_token = chr(additional_special_token_id) setattr(tokenizer, "additional_special_tokens_ids", [additional_special_token_id]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [additional_special_token]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [additional_special_token_id]) # tokenizer has a fixed vocab_size (namely all possible unicode code points) def test_add_tokens_tokenizer(self): pass # CanineTokenizer does not support do_lower_case = True, as each character has its own Unicode code point # ("b" and "B" for example have different Unicode code points) def test_added_tokens_do_lower_case(self): pass # CanineModel does not support the get_input_embeddings nor the get_vocab method def test_np_encode_plus_sent_to_model(self): pass # CanineModel does not support the get_input_embeddings nor the get_vocab method def test_torch_encode_plus_sent_to_model(self): pass # tokenizer does not have vocabulary def test_get_vocab(self): pass # inputs cannot be pretokenized since ids depend on whole input string and not just on single characters def test_pretokenized_inputs(self): pass # tests all ids in vocab => vocab doesn't exist so unnecessary to test def test_conversion_reversible(self): pass
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/canine/test_modeling_canine.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch CANINE model. """ import unittest from typing import List, Tuple from transformers import CanineConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, global_rng, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineModel, ) class CanineModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, # let's use a vocab size that's way bigger than BERT's one # NOTE: this is not a model parameter, just an input vocab_size=100000, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, num_hash_buckets=16, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.num_hash_buckets = num_hash_buckets self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor(input_ids.shape, self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return CanineConfig( hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, num_hash_buckets=self.num_hash_buckets, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = CanineModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = CanineForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = CanineForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = CanineForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = CanineForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class CanineModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( CanineModel, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": CanineModel, "question-answering": CanineForQuestionAnswering, "text-classification": CanineForSequenceClassification, "token-classification": CanineForTokenClassification, "zero-shot": CanineForSequenceClassification, } if is_torch_available() else {} ) test_mismatched_shapes = False test_resize_embeddings = False test_pruning = False def setUp(self): self.model_tester = CanineModelTester(self) # we set has_text_modality to False as the config has no vocab_size attribute self.config_tester = ConfigTester(self, config_class=CanineConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states # expected_num_layers equals num_hidden_layers of the deep encoder + 1, + 2 for the first shallow encoder, + 2 # for the final shallow encoder expected_num_layers = self.model_tester.num_hidden_layers + 1 + 2 + 2 self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.seq_length for i in range(expected_num_layers): if (i < 2) or ((expected_num_layers - i) < 3): # the expected length of the hidden_states of the first and final shallow encoders # is equal to the seq_length self.assertListEqual( list(hidden_states[i].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) else: # the expected length of the hidden_states of the deep encoder need to be updated # for CANINE since the seq length is downsampled self.assertListEqual( list(hidden_states[i].shape[-2:]), [seq_length // config.downsampling_rate, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions # we add + 2 due to the 2 shallow encoders self.assertEqual(len(attentions), self.model_tester.num_hidden_layers + 2) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions # we add + 2 due to the 2 shallow encoders self.assertEqual(len(attentions), self.model_tester.num_hidden_layers + 2) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers + 2) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: print(model_class) model = model_class(config) model.to(torch_device) model.eval() tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence( model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} ) def test_headmasking(self): if not self.test_head_masking: return global_rng.seed(42) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() global_rng.seed() inputs_dict["output_attentions"] = True config.output_hidden_states = True configs_no_init = _config_zero_init(config) # To be sure we have no Nan for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() # Prepare head_mask # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior) head_mask = torch.ones( self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device, ) head_mask[0, 0] = 0 head_mask[-1, :-1] = 0 head_mask.requires_grad_(requires_grad=True) inputs = self._prepare_for_class(inputs_dict, model_class).copy() inputs["head_mask"] = head_mask outputs = model(**inputs, return_dict=True) # Test that we can get a gradient back for importance score computation output = sum(t.sum() for t in outputs[0]) output = output.sum() output.backward() multihead_outputs = head_mask.grad self.assertIsNotNone(multihead_outputs) self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers) def check_attentions_validity(attentions): # Remove Nan for t in attentions: self.assertLess( torch.sum(torch.isnan(t)), t.numel() / 4 ) # Check we don't have more than 25% nans (arbitrary) attentions = [ t.masked_fill(torch.isnan(t), 0.0) for t in attentions ] # remove them (the test is less complete) self.assertAlmostEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[1][..., -1, :, :].flatten().sum().item(), 0.0) self.assertAlmostEqual(attentions[-2][..., -2, :, :].flatten().sum().item(), 0.0) self.assertNotEqual(attentions[-2][..., -1, :, :].flatten().sum().item(), 0.0) check_attentions_validity(outputs.attentions) @unittest.skip("CANINE does not have a get_input_embeddings() method.") def test_inputs_embeds(self): # ViT does not use inputs_embeds pass @unittest.skip(reason="Canine Tower does not use inputs_embeds") def test_inputs_embeds_matches_input_ids(self): pass @unittest.skip("CANINE does not have a get_input_embeddings() method.") def test_model_common_attributes(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @slow def test_model_from_pretrained(self): model_name = "google/canine-s" model = CanineModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class CanineModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head(self): model = CanineModel.from_pretrained("google/canine-s") # this one corresponds to the first example of the TydiQA dev set (in Swahili) # fmt: off input_ids = [57344, 57349, 85, 107, 117, 98, 119, 97, 32, 119, 97, 32, 82, 105, 106, 105, 108, 105, 32, 75, 97, 110, 116, 111, 114, 105, 32, 110, 105, 32, 107, 105, 97, 115, 105, 32, 103, 97, 110, 105, 63, 57345, 57350, 32, 82, 105, 106, 105, 108, 105, 32, 75, 97, 110, 116, 111, 114, 105, 32, 44, 32, 82, 105, 106, 105, 108, 105, 32, 75, 97, 110, 116, 97, 114, 117, 115, 105, 32, 97, 117, 32, 105, 110, 103, 46, 32, 65, 108, 112, 104, 97, 32, 67, 101, 110, 116, 97, 117, 114, 105, 32, 40, 112, 105, 97, 58, 32, 84, 111, 108, 105, 109, 97, 110, 32, 97, 117, 32, 82, 105, 103, 105, 108, 32, 75, 101, 110, 116, 97, 117, 114, 117, 115, 41, 32, 110, 105, 32, 110, 121, 111, 116, 97, 32, 105, 110, 97, 121, 111, 110, 103, 39, 97, 97, 32, 115, 97, 110, 97, 32, 107, 97, 116, 105, 107, 97, 32, 97, 110, 103, 97, 32, 121, 97, 32, 107, 117, 115, 105, 110, 105, 32, 107, 119, 101, 110, 121, 101, 32, 107, 117, 110, 100, 105, 110, 121, 111, 116, 97, 32, 121, 97, 32, 75, 97, 110, 116, 97, 114, 117, 115, 105, 32, 40, 112, 105, 97, 58, 32, 105, 110, 103, 46, 32, 67, 101, 110, 116, 97, 117, 114, 117, 115, 41, 46, 32, 78, 105, 32, 110, 121, 111, 116, 97, 32, 121, 97, 32, 107, 117, 110, 103, 97, 97, 32, 115, 97, 110, 97, 32, 121, 97, 32, 110, 110, 101, 32, 97, 110, 103, 97, 110, 105, 32, 108, 97, 107, 105, 110, 105, 32, 104, 97, 105, 111, 110, 101, 107, 97, 110, 105, 32, 107, 119, 101, 110, 121, 101, 32, 110, 117, 115, 117, 100, 117, 110, 105, 97, 32, 121, 97, 32, 107, 97, 115, 107, 97, 122, 105, 110, 105, 46, 32, 57351, 32, 65, 108, 112, 104, 97, 32, 67, 101, 110, 116, 97, 117, 114, 105, 32, 110, 105, 32, 110, 121, 111, 116, 97, 32, 121, 97, 32, 112, 101, 107, 101, 101, 32, 107, 119, 97, 32, 115, 97, 98, 97, 98, 117, 32, 110, 105, 32, 110, 121, 111, 116, 97, 32, 121, 101, 116, 117, 32, 106, 105, 114, 97, 110, 105, 32, 107, 97, 116, 105, 107, 97, 32, 97, 110, 103, 97, 32, 105, 110, 97, 32, 117, 109, 98, 97, 108, 105, 32, 119, 97, 32, 109, 105, 97, 107, 97, 32, 121, 97, 32, 110, 117, 114, 117, 32, 52, 46, 50, 46, 32, 73, 110, 97, 111, 110, 101, 107, 97, 110, 97, 32, 97, 110, 103, 97, 110, 105, 32, 107, 97, 114, 105, 98, 117, 32, 110, 97, 32, 107, 117, 110, 100, 105, 110, 121, 111, 116, 97, 32, 121, 97, 32, 83, 97, 108, 105, 98, 117, 32, 40, 67, 114, 117, 120, 41, 46, 32, 57352, 32, 82, 105, 106, 105, 108, 105, 32, 75, 97, 110, 116, 97, 114, 117, 115, 105, 32, 40, 65, 108, 112, 104, 97, 32, 67, 101, 110, 116, 97, 117, 114, 105, 41, 32, 105, 110, 97, 111, 110, 101, 107, 97, 110, 97, 32, 107, 97, 109, 97, 32, 110, 121, 111, 116, 97, 32, 109, 111, 106, 97, 32, 108, 97, 107, 105, 110, 105, 32, 107, 119, 97, 32, 100, 97, 114, 117, 98, 105, 110, 105, 32, 107, 117, 98, 119, 97, 32, 105, 110, 97, 111, 110, 101, 107, 97, 110, 97, 32, 107, 117, 119, 97, 32, 109, 102, 117, 109, 111, 32, 119, 97, 32, 110, 121, 111, 116, 97, 32, 116, 97, 116, 117, 32, 122, 105, 110, 97, 122, 111, 107, 97, 97, 32, 107, 97, 114, 105, 98, 117, 32, 110, 97, 32, 107, 117, 115, 104, 105, 107, 97, 109, 97, 110, 97, 32, 107, 97, 116, 105, 32, 121, 97, 111, 46, 32, 78, 121, 111, 116, 97, 32, 109, 97, 112, 97, 99, 104, 97, 32, 122, 97, 32, 65, 108, 112, 104, 97, 32, 67, 101, 110, 116, 97, 117, 114, 105, 32, 65, 32, 110, 97, 32, 65, 108, 112, 104, 97, 32, 67, 101, 110, 116, 97, 117, 114, 105, 32, 66, 32, 122, 105, 107, 111, 32, 109, 105, 97, 107, 97, 32, 121, 97, 32, 110, 117, 114, 117, 32, 52, 46, 51, 54, 32, 107, 117, 116, 111, 107, 97, 32, 107, 119, 101, 116, 117, 32, 110, 97, 32, 110, 121, 111, 116, 97, 32, 121, 97, 32, 116, 97, 116, 117, 32, 65, 108, 112, 104, 97, 32, 67, 101, 110, 116, 97, 117, 114, 105, 32, 67, 32, 97, 117, 32, 80, 114, 111, 120, 105, 109, 97, 32, 67, 101, 110, 116, 97, 117, 114, 105, 32, 105, 110, 97, 32, 117, 109, 98, 97, 108, 105, 32, 119, 97, 32, 109, 105, 97, 107, 97, 32, 121, 97, 32, 110, 117, 114, 117, 32, 52, 46, 50, 50, 46, 32, 57353, 32, 80, 114, 111, 120, 105, 109, 97, 32, 67, 101, 110, 116, 97, 117, 114, 105, 32, 40, 121, 97, 97, 110, 105, 32, 110, 121, 111, 116, 97, 32, 121, 97, 32, 75, 97, 110, 116, 97, 114, 117, 115, 105, 32, 105, 108, 105, 121, 111, 32, 107, 97, 114, 105, 98, 117, 32, 122, 97, 105, 100, 105, 32, 110, 97, 115, 105, 41, 32, 105, 109, 101, 103, 117, 110, 100, 117, 108, 105, 119, 97, 32, 107, 117, 119, 97, 32, 110, 97, 32, 115, 97, 121, 97, 114, 105, 32, 109, 111, 106, 97, 46, 32, 86, 105, 112, 105, 109, 111, 32, 118, 105, 110, 97, 118, 121, 111, 112, 97, 116, 105, 107, 97, 110, 97, 32, 104, 97, 100, 105, 32, 115, 97, 115, 97, 32, 122, 105, 110, 97, 111, 110, 121, 101, 115, 104, 97, 32, 117, 119, 101, 122, 101, 107, 97, 110, 111, 32, 109, 107, 117, 98, 119, 97, 32, 121, 97, 32, 107, 119, 97, 109, 98, 97, 32, 115, 97, 121, 97, 114, 105, 32, 104, 105, 105, 32, 110, 105, 32, 121, 97, 32, 109, 119, 97, 109, 98, 97, 32, 40, 107, 97, 109, 97, 32, 100, 117, 110, 105, 97, 32, 121, 101, 116, 117, 44, 32, 77, 105, 114, 105, 104, 105, 32, 97, 117, 32, 90, 117, 104, 117, 114, 97, 41, 32, 110, 97, 32, 105, 110, 97, 119, 101, 122, 97, 32, 107, 117, 119, 97, 32, 110, 97, 32, 97, 110, 103, 97, 104, 101, 119, 97, 44, 32, 116, 101, 110, 97, 32, 107, 97, 116, 105, 107, 97, 32, 117, 112, 101, 111, 32, 119, 97, 32, 106, 111, 116, 111, 32, 117, 110, 97, 111, 114, 117, 104, 117, 115, 117, 32, 107, 117, 119, 101, 112, 111, 32, 107, 119, 97, 32, 117, 104, 97, 105, 46, 32, 91, 49, 93, 57345, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] attention_mask = [1 if x != 0 else 0 for x in input_ids] token_type_ids = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # fmt: on input_ids = torch.tensor([input_ids]) attention_mask = torch.tensor([attention_mask]) token_type_ids = torch.tensor([token_type_ids]) outputs = model(input_ids, attention_mask, token_type_ids) # verify sequence output expected_shape = torch.Size((1, 2048, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [ [-0.161433131, 0.395568609, 0.0407391489], [-0.108025983, 0.362060368, -0.544592619], [-0.141537309, 0.180541009, 0.076907], ] ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-2)) # verify pooled output expected_shape = torch.Size((1, 768)) self.assertEqual(outputs.pooler_output.shape, expected_shape) expected_slice = torch.tensor([-0.884311497, -0.529064834, 0.723164916]) self.assertTrue(torch.allclose(outputs.pooler_output[0, :3], expected_slice, atol=1e-2))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/luke/test_modeling_luke.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch LUKE model. """ import unittest from transformers import LukeConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukeTokenizer, ) class LukeModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, entity_length=3, mention_length=5, use_attention_mask=True, use_token_type_ids=True, use_entity_ids=True, use_entity_attention_mask=True, use_entity_token_type_ids=True, use_entity_position_ids=True, use_labels=True, vocab_size=99, entity_vocab_size=10, entity_emb_size=6, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, num_entity_classification_labels=9, num_entity_pair_classification_labels=6, num_entity_span_classification_labels=4, use_entity_aware_attention=True, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.entity_length = entity_length self.mention_length = mention_length self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_entity_ids = use_entity_ids self.use_entity_attention_mask = use_entity_attention_mask self.use_entity_token_type_ids = use_entity_token_type_ids self.use_entity_position_ids = use_entity_position_ids self.use_labels = use_labels self.vocab_size = vocab_size self.entity_vocab_size = entity_vocab_size self.entity_emb_size = entity_emb_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.num_entity_classification_labels = num_entity_classification_labels self.num_entity_pair_classification_labels = num_entity_pair_classification_labels self.num_entity_span_classification_labels = num_entity_span_classification_labels self.scope = scope self.use_entity_aware_attention = use_entity_aware_attention self.encoder_seq_length = seq_length self.key_length = seq_length self.num_hidden_states_types = 2 # hidden_states and entity_hidden_states def prepare_config_and_inputs(self): # prepare words input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) # prepare entities entity_ids = ids_tensor([self.batch_size, self.entity_length], self.entity_vocab_size) entity_attention_mask = None if self.use_entity_attention_mask: entity_attention_mask = random_attention_mask([self.batch_size, self.entity_length]) entity_token_type_ids = None if self.use_token_type_ids: entity_token_type_ids = ids_tensor([self.batch_size, self.entity_length], self.type_vocab_size) entity_position_ids = None if self.use_entity_position_ids: entity_position_ids = ids_tensor( [self.batch_size, self.entity_length, self.mention_length], self.mention_length ) sequence_labels = None token_labels = None choice_labels = None entity_labels = None entity_classification_labels = None entity_pair_classification_labels = None entity_span_classification_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) entity_labels = ids_tensor([self.batch_size, self.entity_length], self.entity_vocab_size) entity_classification_labels = ids_tensor([self.batch_size], self.num_entity_classification_labels) entity_pair_classification_labels = ids_tensor( [self.batch_size], self.num_entity_pair_classification_labels ) entity_span_classification_labels = ids_tensor( [self.batch_size, self.entity_length], self.num_entity_span_classification_labels ) config = self.get_config() return ( config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ) def get_config(self): return LukeConfig( vocab_size=self.vocab_size, entity_vocab_size=self.entity_vocab_size, entity_emb_size=self.entity_emb_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, use_entity_aware_attention=self.use_entity_aware_attention, ) def create_and_check_model( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): model = LukeModel(config=config) model.to(torch_device) model.eval() # test with words + entities result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual( result.entity_last_hidden_state.shape, (self.batch_size, self.entity_length, self.hidden_size) ) # test with words only result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_classification_labels model = LukeForMaskedLM(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=token_labels, entity_labels=entity_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) if entity_ids is not None: self.parent.assertEqual( result.entity_logits.shape, (self.batch_size, self.entity_length, self.entity_vocab_size) ) else: self.parent.assertIsNone(result.entity_logits) def create_and_check_for_entity_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_classification_labels model = LukeForEntityClassification(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=entity_classification_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_entity_classification_labels)) def create_and_check_for_entity_pair_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_pair_classification_labels model = LukeForEntityClassification(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=entity_pair_classification_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_entity_pair_classification_labels)) def create_and_check_for_entity_span_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_span_classification_labels model = LukeForEntitySpanClassification(config) model.to(torch_device) model.eval() entity_start_positions = ids_tensor([self.batch_size, self.entity_length], self.seq_length) entity_end_positions = ids_tensor([self.batch_size, self.entity_length], self.seq_length) result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, entity_start_positions=entity_start_positions, entity_end_positions=entity_end_positions, labels=entity_span_classification_labels, ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.entity_length, self.num_entity_span_classification_labels) ) def create_and_check_for_question_answering( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): model = LukeForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_labels model = LukeForSequenceClassification(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_labels model = LukeForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=token_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_choices = self.num_choices model = LukeForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_attention_mask = attention_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_entity_ids = entity_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_entity_token_type_ids = ( entity_token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() ) multiple_choice_entity_attention_mask = ( entity_attention_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() ) multiple_choice_entity_position_ids = ( entity_position_ids.unsqueeze(1).expand(-1, self.num_choices, -1, -1).contiguous() ) result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_attention_mask, token_type_ids=multiple_choice_token_type_ids, entity_ids=multiple_choice_entity_ids, entity_attention_mask=multiple_choice_entity_attention_mask, entity_token_type_ids=multiple_choice_entity_token_type_ids, entity_position_ids=multiple_choice_entity_position_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, "entity_ids": entity_ids, "entity_token_type_ids": entity_token_type_ids, "entity_attention_mask": entity_attention_mask, "entity_position_ids": entity_position_ids, } return config, inputs_dict @require_torch class LukeModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( LukeModel, LukeForMaskedLM, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeForMultipleChoice, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": LukeModel, "fill-mask": LukeForMaskedLM, "question-answering": LukeForQuestionAnswering, "text-classification": LukeForSequenceClassification, "token-classification": LukeForTokenClassification, "zero-shot": LukeForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = True test_head_masking = True # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name in ["QAPipelineTests", "ZeroShotClassificationPipelineTests"]: return True return False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): entity_inputs_dict = {k: v for k, v in inputs_dict.items() if k.startswith("entity")} inputs_dict = {k: v for k, v in inputs_dict.items() if not k.startswith("entity")} inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if model_class == LukeForMultipleChoice: entity_inputs_dict = { k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() if v.ndim == 2 else v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1, -1).contiguous() for k, v in entity_inputs_dict.items() } inputs_dict.update(entity_inputs_dict) if model_class == LukeForEntitySpanClassification: inputs_dict["entity_start_positions"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device ) inputs_dict["entity_end_positions"] = torch.ones( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device ) if return_labels: if model_class in ( LukeForEntityClassification, LukeForEntityPairClassification, LukeForSequenceClassification, LukeForMultipleChoice, ): inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class == LukeForEntitySpanClassification: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device, ) elif model_class == LukeForTokenClassification: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) elif model_class == LukeForMaskedLM: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["entity_labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device, ) return inputs_dict def setUp(self): self.model_tester = LukeModelTester(self) self.config_tester = ConfigTester(self, config_class=LukeConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "studio-ousia/luke-base" model = LukeModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_masked_lm_with_word_only(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = (*config_and_inputs[:4], *((None,) * len(config_and_inputs[4:]))) self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_entity_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_entity_classification(*config_and_inputs) def test_for_entity_pair_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_entity_pair_classification(*config_and_inputs) def test_for_entity_span_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_entity_span_classification(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_length = self.model_tester.seq_length entity_length = self.model_tester.entity_length key_length = seq_length + entity_length for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length + entity_length, key_length], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = self.model_tester.num_hidden_states_types self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length + entity_length, key_length], ) def test_entity_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) entity_hidden_states = outputs.entity_hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(entity_hidden_states), expected_num_layers) entity_length = self.model_tester.entity_length self.assertListEqual( list(entity_hidden_states[0].shape[-2:]), [entity_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_entity_hidden_states(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] entity_hidden_states = outputs.entity_hidden_states[0] entity_hidden_states.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(entity_hidden_states.grad) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @require_torch class LukeModelIntegrationTests(unittest.TestCase): @slow def test_inference_base_model(self): model = LukeModel.from_pretrained("studio-ousia/luke-base").eval() model.to(torch_device) tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification") text = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt") # move all values to device for key, value in encoding.items(): encoding[key] = encoding[key].to(torch_device) outputs = model(**encoding) # Verify word hidden states expected_shape = torch.Size((1, 42, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) # Verify entity hidden states expected_shape = torch.Size((1, 1, 768)) self.assertEqual(outputs.entity_last_hidden_state.shape, expected_shape) expected_slice = torch.tensor([[0.1457, 0.1044, 0.0174]]).to(torch_device) self.assertTrue(torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_large_model(self): model = LukeModel.from_pretrained("studio-ousia/luke-large").eval() model.to(torch_device) tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large", task="entity_classification") text = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt") # move all values to device for key, value in encoding.items(): encoding[key] = encoding[key].to(torch_device) outputs = model(**encoding) # Verify word hidden states expected_shape = torch.Size((1, 42, 1024)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) # Verify entity hidden states expected_shape = torch.Size((1, 1, 1024)) self.assertEqual(outputs.entity_last_hidden_state.shape, expected_shape) expected_slice = torch.tensor([[0.0466, -0.0106, -0.0179]]).to(torch_device) self.assertTrue(torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/luke/test_tokenization_luke.py
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Tuple from transformers import AddedToken, LukeTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json") SAMPLE_MERGE_FILE = get_tests_dir("fixtures/merges.txt") SAMPLE_ENTITY_VOCAB = get_tests_dir("fixtures/test_entity_vocab.json") class LukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "studio-ousia/luke-base" tokenizer_class = LukeTokenizer test_rust_tokenizer = False from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() self.special_tokens_map = {"entity_token_1": "<ent>", "entity_token_2": "<ent2>"} def get_tokenizer(self, task=None, **kwargs): kwargs.update(self.special_tokens_map) tokenizer = LukeTokenizer( vocab_file=SAMPLE_VOCAB, merges_file=SAMPLE_MERGE_FILE, entity_vocab_file=SAMPLE_ENTITY_VOCAB, task=task, **kwargs, ) return tokenizer def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.get_tokenizer() text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "Ġ", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) # , add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("studio-ousia/luke-large") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) self.assertEqual(encoded_sentence, encoded_text_from_decode) self.assertEqual(encoded_pair, encoded_pair_from_decode) def get_clean_sequence(self, tokenizer, max_length=20) -> Tuple[str, list]: txt = "Beyonce lives in Los Angeles" ids = tokenizer.encode(txt, add_special_tokens=False) return txt, ids def test_space_encoding(self): tokenizer = self.get_tokenizer() sequence = "Encode this sequence." space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]] # Testing encoder arguments encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(first_char, space_encoding) tokenizer.add_special_tokens({"bos_token": "<s>"}) encoded = tokenizer.encode(sequence, add_special_tokens=True) first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(first_char, space_encoding) # Testing spaces after special tokens mask = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(mask, lstrip=True, rstrip=False)} ) # mask token has a left space mask_ind = tokenizer.convert_tokens_to_ids(mask) sequence = "Encode <mask> sequence" sequence_nospace = "Encode <mask>sequence" encoded = tokenizer.encode(sequence) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence_nospace) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(first_char, space_encoding) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def test_padding_entity_inputs(self): tokenizer = self.get_tokenizer() sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) pad_id = tokenizer.entity_vocab["[PAD]"] mask_id = tokenizer.entity_vocab["[MASK]"] encoding = tokenizer([sentence, sentence], entity_spans=[[span], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[mask_id, pad_id], [mask_id, mask_id]]) # test with a sentence with no entity encoding = tokenizer([sentence, sentence], entity_spans=[[], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[pad_id, pad_id], [mask_id, mask_id]]) def test_if_tokenize_single_text_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer() sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." spans = [(15, 34)] entities = ["East Asian language"] with self.assertRaises(ValueError): tokenizer(sentence, entities=tuple(entities), entity_spans=spans) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=tuple(spans)) with self.assertRaises(ValueError): tokenizer(sentence, entities=[0], entity_spans=spans) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=[0]) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=spans + [(0, 9)]) def test_if_tokenize_entity_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[span, span]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0]) def test_if_tokenize_entity_pair_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_pair_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." # head and tail information with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0]) def test_if_tokenize_entity_span_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_span_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0, 0]) @slow @require_torch class LukeTokenizerIntegrationTests(unittest.TestCase): tokenizer_class = LukeTokenizer from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() def test_single_text_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["Ana Ivanovic"], tokenizer.entity_vocab["Thursday"], tokenizer.entity_vocab["[UNK]"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_single_text_only_entity_spans_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ] ] ) # fmt: on def test_single_text_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer( sentence, entities=entities, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_text_pair_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday"] entities_pair = ["Dummy Entity"] spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["Ana Ivanovic"], tokenizer.entity_vocab["Thursday"], tokenizer.entity_vocab["[UNK]"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_text_pair_only_entity_spans_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_text_pair_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday"] entities_pair = ["Dummy Entity"] spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_entity_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification") sentence = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(sentence, entity_spans=[span], return_token_type_ids=True) # test words self.assertEqual(len(encoding["input_ids"]), 42) self.assertEqual(len(encoding["attention_mask"]), 42) self.assertEqual(len(encoding["token_type_ids"]), 42) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday<ent> she<ent> could hardly believe her luck as a fortuitous" " netcord helped the new world number one avoid a humiliating second- round exit at Wimbledon.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][9:12], spaces_between_special_tokens=False), "<ent> she<ent>" ) # test entities self.assertEqual(encoding["entity_ids"], [2]) self.assertEqual(encoding["entity_attention_mask"], [1]) self.assertEqual(encoding["entity_token_type_ids"], [0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [9, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ] ) # fmt: on def test_entity_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_classification", return_token_type_ids=True ) sentence = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) # entity information span = (39, 42) encoding = tokenizer( sentence, entity_spans=[span], return_token_type_ids=True, padding="max_length", return_tensors="pt" ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 512)) self.assertEqual(encoding["attention_mask"].shape, (1, 512)) self.assertEqual(encoding["token_type_ids"].shape, (1, 512)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 1)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 1)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 1)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_pair_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." # head and tail information spans = [(9, 21), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed<ent> Ana Ivanovic<ent> said on Thursday<ent2> she<ent2> could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:8], spaces_between_special_tokens=False), "<ent> Ana Ivanovic<ent>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][11:14], spaces_between_special_tokens=False), "<ent2> she<ent2>" ) self.assertEqual(encoding["entity_ids"], [2, 3]) self.assertEqual(encoding["entity_attention_mask"], [1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_entity_pair_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." # head and tail information spans = [(9, 21), (39, 42)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 2)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 2)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 2)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_span_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(0, 8), (9, 21), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual(encoding["entity_ids"], [2, 2, 2]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on self.assertEqual(encoding["entity_start_positions"], [1, 3, 9]) self.assertEqual(encoding["entity_end_positions"], [2, 5, 9]) def test_entity_span_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(0, 8), (9, 21), (39, 42)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) self.assertEqual(encoding["entity_start_positions"].shape, (1, 16)) self.assertEqual(encoding["entity_end_positions"].shape, (1, 16))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/flava/test_processor_flava.py
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import random import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import FlavaImageProcessor, FlavaProcessor from transformers.models.flava.image_processing_flava import ( FLAVA_CODEBOOK_MEAN, FLAVA_CODEBOOK_STD, FLAVA_IMAGE_MEAN, FLAVA_IMAGE_STD, ) @require_vision class FlavaProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: skip self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write("".join([x + "\n" for x in vocab_tokens])) image_processor_map = { "image_mean": FLAVA_IMAGE_MEAN, "image_std": FLAVA_IMAGE_STD, "do_normalize": True, "do_resize": True, "size": 224, "do_center_crop": True, "crop_size": 224, "input_size_patches": 14, "total_mask_patches": 75, "mask_group_max_patches": None, "mask_group_min_patches": 16, "mask_group_min_aspect_ratio": 0.3, "mask_group_max_aspect_ratio": None, "codebook_do_resize": True, "codebook_size": 112, "codebook_do_center_crop": True, "codebook_crop_size": 112, "codebook_do_map_pixels": True, "codebook_do_normalize": True, "codebook_image_mean": FLAVA_CODEBOOK_MEAN, "codebook_image_std": FLAVA_CODEBOOK_STD, } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return FlavaImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = FlavaProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = FlavaProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = FlavaProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = FlavaProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, BertTokenizer) self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, FlavaImageProcessor) self.assertIsInstance(processor_fast.image_processor, FlavaImageProcessor) def test_save_load_pretrained_additional_features(self): processor = FlavaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = FlavaProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, BertTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, FlavaImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) # With rest of the args random.seed(1234) input_feat_extract = image_processor( image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np" ) random.seed(1234) input_processor = processor( images=image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # add extra args inputs = processor(text=input_str, images=image_input, return_codebook_pixels=True, return_image_mask=True) self.assertListEqual( list(inputs.keys()), [ "input_ids", "token_type_ids", "attention_mask", "pixel_values", "codebook_pixel_values", "bool_masked_pos", ], ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/flava/test_image_processing_flava.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): import PIL from transformers import FlavaImageProcessor from transformers.image_utils import PILImageResampling from transformers.models.flava.image_processing_flava import ( FLAVA_CODEBOOK_MEAN, FLAVA_CODEBOOK_STD, FLAVA_IMAGE_MEAN, FLAVA_IMAGE_STD, ) else: FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None class FlavaImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, resample=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=FLAVA_IMAGE_MEAN, image_std=FLAVA_IMAGE_STD, input_size_patches=14, total_mask_patches=75, mask_group_max_patches=None, mask_group_min_patches=16, mask_group_min_aspect_ratio=0.3, mask_group_max_aspect_ratio=None, codebook_do_resize=True, codebook_size=None, codebook_resample=None, codebook_do_center_crop=True, codebook_crop_size=None, codebook_do_map_pixels=True, codebook_do_normalize=True, codebook_image_mean=FLAVA_CODEBOOK_MEAN, codebook_image_std=FLAVA_CODEBOOK_STD, ): size = size if size is not None else {"height": 224, "width": 224} crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112} codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.do_resize = do_resize self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.min_resolution = min_resolution self.max_resolution = max_resolution self.size = size self.resample = resample if resample is not None else PILImageResampling.BICUBIC self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_center_crop = do_center_crop self.crop_size = crop_size self.input_size_patches = input_size_patches self.total_mask_patches = total_mask_patches self.mask_group_max_patches = mask_group_max_patches self.mask_group_min_patches = mask_group_min_patches self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio self.codebook_do_resize = codebook_do_resize self.codebook_size = codebook_size self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS self.codebook_do_center_crop = codebook_do_center_crop self.codebook_crop_size = codebook_crop_size self.codebook_do_map_pixels = codebook_do_map_pixels self.codebook_do_normalize = codebook_do_normalize self.codebook_image_mean = codebook_image_mean self.codebook_image_std = codebook_image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "resample": self.resample, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "input_size_patches": self.input_size_patches, "total_mask_patches": self.total_mask_patches, "mask_group_max_patches": self.mask_group_max_patches, "mask_group_min_patches": self.mask_group_min_patches, "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio, "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio, "codebook_do_resize": self.codebook_do_resize, "codebook_size": self.codebook_size, "codebook_resample": self.codebook_resample, "codebook_do_center_crop": self.codebook_do_center_crop, "codebook_crop_size": self.codebook_crop_size, "codebook_do_map_pixels": self.codebook_do_map_pixels, "codebook_do_normalize": self.codebook_do_normalize, "codebook_image_mean": self.codebook_image_mean, "codebook_image_std": self.codebook_image_std, } def get_expected_image_size(self): return (self.size["height"], self.size["width"]) def get_expected_mask_size(self): return ( (self.input_size_patches, self.input_size_patches) if not isinstance(self.input_size_patches, tuple) else self.input_size_patches ) def get_expected_codebook_image_size(self): return (self.codebook_size["height"], self.codebook_size["width"]) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = FlavaImageProcessor if is_vision_available() else None maxDiff = None def setUp(self): self.image_processor_tester = FlavaImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "resample")) self.assertTrue(hasattr(image_processing, "crop_size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "masking_generator")) self.assertTrue(hasattr(image_processing, "codebook_do_resize")) self.assertTrue(hasattr(image_processing, "codebook_size")) self.assertTrue(hasattr(image_processing, "codebook_resample")) self.assertTrue(hasattr(image_processing, "codebook_do_center_crop")) self.assertTrue(hasattr(image_processing, "codebook_crop_size")) self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels")) self.assertTrue(hasattr(image_processing, "codebook_do_normalize")) self.assertTrue(hasattr(image_processing, "codebook_image_mean")) self.assertTrue(hasattr(image_processing, "codebook_image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 224, "width": 224}) self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224}) self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112}) self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112}) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66 ) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33}) self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66}) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, PIL.Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt") # Test no bool masked pos self.assertFalse("bool_masked_pos" in encoded_images) expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() # Test no bool masked pos self.assertFalse("bool_masked_pos" in encoded_images) self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def _test_call_framework(self, instance_class, prepare_kwargs): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs) for image in image_inputs: self.assertIsInstance(image, instance_class) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) expected_height, expected_width = self.image_processor_tester.get_expected_mask_size() self.assertEqual( encoded_images.bool_masked_pos.shape, ( self.image_processor_tester.batch_size, expected_height, expected_width, ), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test masking encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) expected_height, expected_width = self.image_processor_tester.get_expected_mask_size() self.assertEqual( encoded_images.bool_masked_pos.shape, ( self.image_processor_tester.batch_size, expected_height, expected_width, ), ) def test_call_numpy(self): self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True}) def test_call_numpy_4_channels(self): self.image_processing_class.num_channels = 4 self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True}) self.image_processing_class.num_channels = 3 def test_call_pytorch(self): self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True}) def test_masking(self): # Initialize image_processing random.seed(1234) image_processing = self.image_processing_class(**self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) # Test not batched input encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt") self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75) def test_codebook_pixels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, PIL.Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size() self.assertEqual( encoded_images.codebook_pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size() self.assertEqual( encoded_images.codebook_pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), )
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/flava/test_modeling_flava.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch FLAVA model. """ import inspect import os import random import tempfile import unittest import numpy as np import requests from transformers import ( FlavaConfig, FlavaImageCodebookConfig, FlavaImageConfig, FlavaMultimodalConfig, FlavaTextConfig, ) from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FlavaForPreTraining, FlavaImageCodebook, FlavaImageModel, FlavaModel, FlavaMultimodalModel, FlavaTextModel, ) else: FlavaModel = None FlavaForPreTraining = None torch = {} if is_vision_available(): from PIL import Image from transformers import FlavaProcessor class FlavaImageModelTester: def __init__( self, parent, batch_size=12, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=30, patch_size=2, num_channels=3, qkv_bias=True, mask_token=True, vocab_size=99, ): self.parent = parent self.batch_size = batch_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.mask_token = mask_token self.vocab_size = vocab_size def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) num_patches = self.image_size // self.patch_size bool_masked_pos = ( torch.rand((self.batch_size, num_patches, num_patches), device=pixel_values.device) < 0.9 ).long() config = self.get_config() return config, pixel_values, bool_masked_pos def get_config(self): return FlavaImageConfig( hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, qkv_bias=self.qkv_bias, mask_token=self.mask_token, vocab_size=self.vocab_size, ) def create_and_check_model(self, config, pixel_values, bool_masked_pos): model = FlavaImageModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values, bool_masked_pos) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, bool_masked_pos = config_and_inputs inputs_dict = {"pixel_values": pixel_values, "bool_masked_pos": bool_masked_pos} return config, inputs_dict @require_torch class FlavaImageModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as FLAVA does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (FlavaImageModel,) if is_torch_available() else () test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = FlavaImageModelTester(self) self.config_tester = ConfigTester(self, config_class=FlavaImageConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_inputs_embeds(self): # FLAVA does not use inputs_embeds pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # in FLAVA, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_len = num_patches + 1 for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # FLAVA has a different seq_length image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_length = num_patches + 1 self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass # skip this test as FlavaImageModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as FlavaImageModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "facebook/flava-full" model = FlavaImageModel.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, vocab_size=102, type_vocab_size=2, max_position_embeddings=512, position_embedding_type="absolute", hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, qkv_bias=True, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.seq_length = seq_length self.vocab_size = vocab_size self.type_vocab_size = type_vocab_size self.max_position_embeddings = max_position_embeddings self.position_embedding_type = position_embedding_type self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.pad_token_id = pad_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = self.get_config() return config, input_ids, token_type_ids, input_mask def get_config(self): return FlavaTextConfig( vocab_size=self.vocab_size, type_vocab_size=self.type_vocab_size, max_position_embeddings=self.max_position_embeddings, position_embedding_type=self.position_embedding_type, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, pad_token_id=self.pad_token_id, qkv_bias=self.qkv_bias, ) def create_and_check_model(self, config, input_ids, token_type_ids, input_mask): model = FlavaTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class FlavaTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (FlavaTextModel,) if is_torch_available() else () test_pruning = False test_head_masking = False test_torchscript = False def setUp(self): self.model_tester = FlavaTextModelTester(self) self.config_tester = ConfigTester(self, config_class=FlavaTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_inputs_embeds(self): # FLAVA does not use inputs_embeds pass # skip this test as FlavaTextModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as FlavaTextModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "facebook/flava-full" model = FlavaTextModel.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaMultimodalModelTester: def __init__( self, parent, batch_size=12, seq_length=44, use_input_mask=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, qkv_bias=True, ce_ignore_index=-100, use_cls_token=True, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.use_input_mask = use_input_mask self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.ce_ignore_index = ce_ignore_index self.use_cls_token = use_cls_token def prepare_config_and_inputs(self): hidden_states = floats_tensor([self.batch_size, self.seq_length - 1, self.hidden_size]) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, hidden_states, input_mask def get_config(self): return FlavaMultimodalConfig( hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, qkv_bias=self.qkv_bias, use_cls_token=self.use_cls_token, ce_ignore_index=self.ce_ignore_index, ) def create_and_check_model(self, config, hidden_states, input_mask): model = FlavaMultimodalModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(hidden_states, attention_mask=input_mask) result = model(hidden_states) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, hidden_states, input_mask = config_and_inputs inputs_dict = {"hidden_states": hidden_states, "attention_mask": input_mask} return config, inputs_dict @require_torch class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (FlavaMultimodalModel,) if is_torch_available() else () test_pruning = False test_head_masking = False test_resize_embeddings = False test_torchscript = False def setUp(self): self.model_tester = FlavaMultimodalModelTester(self) self.config_tester = ConfigTester( self, config_class=FlavaMultimodalConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["hidden_states"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model_common_attributes(self): # No embedding in multimodal model pass def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_inputs_embeds(self): # FLAVA does not use inputs_embeds pass # skip this test as FlavaMultimodalModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as FlavaMultimodalModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "facebook/flava-full" model = FlavaMultimodalModel.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaImageCodebookTester: def __init__( self, parent, batch_size=12, image_size=112, num_channels=3, hidden_size=32, num_groups=2, vocab_size=99, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.hidden_size = hidden_size self.num_groups = num_groups self.vocab_size = vocab_size def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return FlavaImageCodebookConfig( hidden_size=self.hidden_size, num_groups=self.num_groups, vocab_size=self.vocab_size ) def create_and_check_model(self, config, pixel_values): model = FlavaImageCodebook(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) self.parent.assertEqual( result.shape, (self.batch_size, config.vocab_size, self.image_size // 8, self.image_size // 8) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class FlavaImageCodebookTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (FlavaImageCodebook,) if is_torch_available() else () test_pruning = False test_head_masking = False test_resize_embeddings = False test_torchscript = False has_attentions = False def setUp(self): self.model_tester = FlavaImageCodebookTester(self) self.config_tester = ConfigTester(self, config_class=FlavaImageCodebookConfig, has_text_modality=False) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) @unittest.skip(reason="Flava does not output attentions") def test_attention_outputs(self): pass def test_model_common_attributes(self): # No embedding in multimodal model pass def test_training(self): pass def test_hidden_states_output(self): pass def test_retain_grad_hidden_states_attentions(self): # no attentions pass def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_inputs_embeds(self): # FLAVA does not use inputs_embeds pass def test_model_outputs_equivalence(self): pass # skip this test as FlavaImageCodebook has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as FlavaImageCodebook has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): model_name = "facebook/flava-full" model = FlavaImageCodebook.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaModelTester: model_class = FlavaModel def __init__( self, parent, text_kwargs=None, image_kwargs=None, multimodal_kwargs=None, image_codebook_kwargs=None, is_training=True, hidden_size=32, projection_dim=32, initializer_range=0.02, layer_norm_eps=1e-12, ): if text_kwargs is None: text_kwargs = {} if image_kwargs is None: image_kwargs = {} if multimodal_kwargs is None: multimodal_kwargs = {} if image_codebook_kwargs is None: image_codebook_kwargs = {} self.parent = parent self.image_model_tester = FlavaImageModelTester(parent, **image_kwargs) self.text_model_tester = FlavaTextModelTester(parent, **text_kwargs) self.multimodal_model_tester = FlavaMultimodalModelTester(parent, **multimodal_kwargs) self.image_codebook_tester = FlavaImageCodebookTester(parent, **image_codebook_kwargs) self.is_training = is_training self.config_tester = ConfigTester(self, config_class=FlavaConfig, hidden_size=37) self.hidden_size = hidden_size self.projection_dim = projection_dim self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test def test_config(self): self.config_tester.run_common_tests() def prepare_config_and_inputs_for_common(self): _, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs() _, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() config = self.get_config() return config, { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "bool_masked_pos": bool_masked_pos, } def get_config(self): return FlavaConfig.from_configs( self.image_model_tester.get_config(), self.text_model_tester.get_config(), self.multimodal_model_tester.get_config(), self.image_codebook_tester.get_config(), hidden_size=self.hidden_size, projection_dim=self.projection_dim, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, ) def create_and_check_model(self, config, inputs): self._test_model(config, inputs, test_image=True) self._test_model(config, inputs, test_text=True) self._test_model(config, inputs, test_image=True, test_text=True) def _test_model(self, config, inputs, test_image=False, test_text=False): model = self.model_class(config).to(torch_device).eval() with torch.no_grad(): result = model( input_ids=inputs["input_ids"] if test_text else None, attention_mask=inputs["attention_mask"] if test_text else None, token_type_ids=inputs["token_type_ids"] if test_text else None, pixel_values=inputs["pixel_values"] if test_image else None, bool_masked_pos=inputs["bool_masked_pos"] if test_image else None, ) image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size) patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) if test_image: self.parent.assertEqual( result.image_embeddings.shape, (self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size), ) else: self.parent.assertIsNone(result.image_embeddings) if test_text: self.parent.assertEqual( result.text_embeddings.shape, ( self.text_model_tester.batch_size, self.text_model_tester.seq_length, self.text_model_tester.hidden_size, ), ) else: self.parent.assertIsNone(result.text_embeddings) if test_image and test_text: self.parent.assertEqual( result.multimodal_embeddings.shape, ( self.multimodal_model_tester.batch_size, self.text_model_tester.seq_length + num_patches + 2, self.multimodal_model_tester.hidden_size, ), ) else: self.parent.assertIsNone(result.multimodal_embeddings) @require_torch class FlavaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (FlavaModel,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": FlavaModel} if is_torch_available() else {} class_for_tester = FlavaModelTester test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = self.class_for_tester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_model(*config_and_inputs) # hidden_states are tested in individual model tests def test_hidden_states_output(self): pass # input_embeds are tested in individual model tests def test_inputs_embeds(self): pass # tested in individual model tests def test_retain_grad_hidden_states_attentions(self): pass # FlavaModel does not have input/output embeddings def test_model_common_attributes(self): pass # override as the `logit_scale` parameter initilization is different for FLAVA def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale" or name == "flava.logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False configs_no_init.return_loss = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # FLAVA needs pixel_values if "input_ids_masked" in inputs_dict: # For pretraining inputs = (input_ids, inputs_dict["input_ids_masked"], pixel_values) else: inputs = (input_ids, pixel_values) traced_model = torch.jit.trace(model, inputs) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() # Non persistent buffers won't be in original state dict loaded_model_state_dict.pop("text_model.embeddings.token_type_ids", None) non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_image_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save FlavaConfig and check if we can load FlavaImageConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) image_config = FlavaImageConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.image_config.to_dict(), image_config.to_dict()) # Save FlavaConfig and check if we can load FlavaTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = FlavaTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) # Save FlavaConfig and check if we can load FlavaMultimodalConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) multimodal_config = FlavaMultimodalConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.multimodal_config.to_dict(), multimodal_config.to_dict()) # overwrite from common since FlavaModel/TFFlavaModel return FLAVAOutput/TFFLAVAOutput @slow def test_model_from_pretrained(self): model_name = "facebook/flava-full" model = FlavaModel.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaForPreTrainingTester(FlavaModelTester): model_class = FlavaForPreTraining def prepare_config_and_inputs_for_common(self): _, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs() _, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() config = self.get_config() input_ids_masked = input_ids.detach().clone() input_ids_masked[:, 1:3] = 100 mlm_labels = input_ids.detach().clone() mlm_labels[:, :] = config.ce_ignore_index mlm_labels[:, 1:3] = input_ids[:, 1:3] mim_labels = torch.randint( 0, self.image_model_tester.vocab_size, bool_masked_pos.size(), device=bool_masked_pos.device ).long() mim_labels[bool_masked_pos.ne(True)] = config.ce_ignore_index itm_labels = torch.ones(mlm_labels.size(0), device=bool_masked_pos.device).long() return config, { "input_ids": input_ids, "input_ids_masked": input_ids_masked, "token_type_ids": token_type_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "bool_masked_pos": bool_masked_pos, "mlm_labels": mlm_labels, "mim_labels": mim_labels, "itm_labels": itm_labels, "return_loss": True, } def _test_model(self, config, inputs, test_image=False, test_text=False): model = self.model_class(config).to(torch_device).eval() with torch.no_grad(): result = model( input_ids=inputs["input_ids"] if test_text else None, input_ids_masked=inputs["input_ids_masked"] if test_text else None, attention_mask=inputs["attention_mask"] if test_text else None, token_type_ids=inputs["token_type_ids"] if test_text else None, pixel_values=inputs["pixel_values"] if test_image else None, bool_masked_pos=inputs["bool_masked_pos"] if test_image else None, mlm_labels=inputs["mlm_labels"], mim_labels=inputs["mim_labels"], itm_labels=inputs["itm_labels"], return_loss=inputs["return_loss"], ) image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size) patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) if test_image: self.parent.assertEqual( result.image_embeddings.shape, (self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size), ) if not test_text: self.parent.assertEqual( result.loss_info.mim.dim(), 0, ) self.parent.assertEqual( result.mim_logits.shape, (inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size), ) else: self.parent.assertIsNone(result.image_embeddings) if test_text: self.parent.assertEqual( result.text_embeddings.shape, ( self.text_model_tester.batch_size, self.text_model_tester.seq_length, self.text_model_tester.hidden_size, ), ) if not test_image: self.parent.assertEqual(result.loss_info.mlm.dim(), 0) self.parent.assertEqual( result.mlm_logits.shape, ( (inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(), self.text_model_tester.vocab_size, ), ) else: self.parent.assertIsNone(result.text_embeddings) if test_image and test_text: self.parent.assertEqual( result.multimodal_masked_embeddings.shape, ( self.multimodal_model_tester.batch_size, self.text_model_tester.seq_length + num_patches + 2, self.multimodal_model_tester.hidden_size, ), ) self.parent.assertEqual( result.itm_logits.shape, (self.text_model_tester.batch_size, 2), ) self.parent.assertEqual( result.mmm_text_logits.shape, ( (inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(), self.text_model_tester.vocab_size, ), ) self.parent.assertEqual( result.mmm_image_logits.shape, (inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size), ) self.parent.assertEqual( result.contrastive_logits_per_image.shape, (self.image_model_tester.batch_size, self.text_model_tester.batch_size), ) self.parent.assertEqual( result.contrastive_logits_per_text.shape, (self.text_model_tester.batch_size, self.image_model_tester.batch_size), ) for item in [ result.loss_info.global_contrastive, result.loss_info.itm, result.loss_info.mmm_text, result.loss_info.mmm_image, ]: self.parent.assertEqual(item.dim(), 0) for item in [result.loss_info.mim, result.loss_info.mlm]: self.parent.assertIsNone(item) else: self.parent.assertIsNone(result.multimodal_masked_embeddings) for item in [ result.loss_info.global_contrastive, result.loss_info.itm, result.loss_info.mmm_text, result.loss_info.mmm_image, ]: self.parent.assertIsNone(item) self.parent.assertIsNone(result.multimodal_embeddings) @require_torch class FlavaForPreTrainingTest(FlavaModelTest): all_model_classes = (FlavaForPreTraining,) if is_torch_available() else () class_for_tester = FlavaForPreTrainingTester test_torchscript = False @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch class FlavaModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "facebook/flava-full" model = FlavaModel.from_pretrained(model_name).to(torch_device) processor = FlavaProcessor.from_pretrained(model_name) image = prepare_img() inputs = processor( text=["a photo of a cat", "a photo of a dog"], images=[image, image], padding="max_length", max_length=77, return_tensors="pt", ).to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs, return_dict=True) # verify the embeddings self.assertAlmostEqual(outputs.image_embeddings.sum().item(), -1352.53540, places=4) self.assertAlmostEqual(outputs.text_embeddings.sum().item(), -198.98225, places=4) self.assertAlmostEqual(outputs.multimodal_embeddings.sum().item(), -4030.4602050, places=4) @require_vision @require_torch class FlavaForPreTrainingIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "facebook/flava-full" model = FlavaForPreTraining.from_pretrained(model_name).to(torch_device) processor = FlavaProcessor.from_pretrained(model_name) torch.manual_seed(1) random.seed(1) image = prepare_img() inputs = processor( text=["a photo of a cat", "a photo of a dog"], images=[image, image], padding="max_length", max_length=77, return_tensors="pt", return_codebook_pixels=True, return_image_mask=True, ) # Create a clone of the input_ids tensor that will be its masked version inputs["input_ids_masked"] = inputs["input_ids"].clone() # Mask the tokens "a" & "cat" from the "a photo of a cat" text using the special 103 value inputs["input_ids_masked"][0, 4:6] = 103 # MLM labels. It is a cloned version of input_ids where all values are -100 (i.e., ignored) # except those that are masked, whose original values are stored inputs["mlm_labels"] = inputs["input_ids"].clone() inputs["mlm_labels"][:, :] = -100 inputs["mlm_labels"][0, 4:6] = inputs["input_ids"][0, 4:6] inputs = inputs.to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits self.assertEqual( outputs.contrastive_logits_per_image.shape, torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), ) self.assertEqual( outputs.contrastive_logits_per_text.shape, torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), ) expected_logits = torch.tensor([[16.1291, 8.4033], [16.1291, 8.4033]], device=torch_device) self.assertTrue(torch.allclose(outputs.contrastive_logits_per_image, expected_logits, atol=1e-3)) self.assertAlmostEqual(outputs.loss_info.mmm_text.item(), 2.0727925, places=4) self.assertAlmostEqual(outputs.loss_info.mmm_image.item(), 7.0282096, places=4) self.assertAlmostEqual(outputs.loss.item(), 11.3792324, places=4) @slow def test_inference_with_itm_labels(self): model_name = "facebook/flava-full" model = FlavaForPreTraining.from_pretrained(model_name).to(torch_device) processor = FlavaProcessor.from_pretrained(model_name) torch.manual_seed(1) random.seed(1) image = prepare_img() inputs = processor( text=["a photo of a cat", "a photo of a dog"], images=[image, image], padding="max_length", max_length=77, return_tensors="pt", return_codebook_pixels=True, return_image_mask=True, ) # Create a clone of the input_ids tensor that will be its masked version inputs["input_ids_masked"] = inputs["input_ids"].clone() # Mask the tokens "a" & "cat" from the "a photo of a cat" text using the special 103 value inputs["input_ids_masked"][0, 4:6] = 103 # MLM labels. It is a cloned version of input_ids where all values are -100 (i.e., ignored) # except those that are masked, whose original values are stored inputs["mlm_labels"] = inputs["input_ids"].clone() inputs["mlm_labels"][:, :] = -100 inputs["mlm_labels"][0, 4:6] = inputs["input_ids"][0, 4:6] # Manually create the itm_labels tensor that indicates if the image-text match. # In this case, the firs pair matches and the second does not inputs["itm_labels"] = torch.tensor([1, 0]) inputs = inputs.to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits self.assertEqual( outputs.contrastive_logits_per_image.shape, torch.Size((torch.count_nonzero(inputs["itm_labels"]).item(), inputs.input_ids.shape[0])), ) self.assertEqual( outputs.contrastive_logits_per_text.shape, torch.Size((torch.count_nonzero(inputs["itm_labels"]).item(), inputs.pixel_values.shape[0])), ) expected_logits = torch.tensor([[16.1291, 8.4033], [16.1291, 8.4033]], device=torch_device) self.assertTrue(torch.allclose(outputs.contrastive_logits_per_image, expected_logits, atol=1e-3)) self.assertAlmostEqual(outputs.loss_info.mmm_text.item(), 2.0727925, places=4) self.assertAlmostEqual(outputs.loss_info.mmm_image.item(), 6.8965902, places=4) self.assertAlmostEqual(outputs.loss.item(), 9.6084213, places=4)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/seamless_m4t_v2/test_modeling_seamless_m4t_v2.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch SeamlessM4Tv2 model. """ import copy import tempfile import unittest from transformers import SeamlessM4Tv2Config, is_speech_available, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from transformers.trainer_utils import set_seed from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) if is_torch_available(): import torch from transformers import ( SeamlessM4Tv2ForSpeechToSpeech, SeamlessM4Tv2ForSpeechToText, SeamlessM4Tv2ForTextToSpeech, SeamlessM4Tv2ForTextToText, SeamlessM4Tv2Model, ) if is_speech_available(): from transformers import SeamlessM4TProcessor class SeamlessM4Tv2ModelTester: def __init__( self, parent, input_modality="speech", batch_size=2, seq_length=4, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, max_new_tokens=None, num_labels=3, num_choices=4, scope=None, vocab_size=20, t2u_vocab_size=20, hidden_size=6, num_hidden_layers=2, intermediate_size=6, max_position_embeddings=256, encoder_layers=2, decoder_layers=2, encoder_ffn_dim=6, decoder_ffn_dim=6, t2u_encoder_layers=2, t2u_decoder_layers=2, t2u_encoder_ffn_dim=6, t2u_decoder_ffn_dim=6, num_heads=2, vocoder_num_spkrs=5, vocoder_num_langs=5, upsample_initial_channel=32, unit_embed_dim=25, spkr_embed_dim=6, lang_embed_dim=6, num_conv_pos_embeddings=8, unit_hifi_gan_vocab_size=20, t2u_num_langs=0, t2u_offset_tgt_lang=0, vocoder_offset=0, t2u_variance_predictor_hidden_dim=4, char_vocab_size=4, left_max_position_embeddings=2, right_max_position_embeddings=1, speech_encoder_chunk_size=2, speech_encoder_left_chunk_num=1, ): self.parent = parent self.input_modality = input_modality self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.vocab_size = vocab_size self.t2u_vocab_size = t2u_vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.decoder_ffn_dim = decoder_ffn_dim self.t2u_encoder_layers = t2u_encoder_layers self.t2u_decoder_layers = t2u_decoder_layers self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim self.num_heads = num_heads self.num_attention_heads = num_heads self.vocoder_num_spkrs = vocoder_num_spkrs self.vocoder_num_langs = vocoder_num_langs self.upsample_initial_channel = upsample_initial_channel self.unit_embed_dim = unit_embed_dim self.spkr_embed_dim = spkr_embed_dim self.num_conv_pos_embeddings = num_conv_pos_embeddings self.lang_embed_dim = lang_embed_dim self.max_new_tokens = max_new_tokens self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size self.t2u_num_langs = t2u_num_langs self.t2u_offset_tgt_lang = t2u_offset_tgt_lang self.vocoder_offset = vocoder_offset self.t2u_variance_predictor_hidden_dim = t2u_variance_predictor_hidden_dim self.char_vocab_size = char_vocab_size self.left_max_position_embeddings = left_max_position_embeddings self.right_max_position_embeddings = right_max_position_embeddings self.speech_encoder_chunk_size = speech_encoder_chunk_size self.speech_encoder_left_chunk_num = speech_encoder_left_chunk_num def prepare_config_and_inputs(self): if self.input_modality == "text": inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) else: inputs = ids_tensor([self.batch_size, self.seq_length, 160], self.vocab_size - 1).float() input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) lm_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return config, inputs, decoder_input_ids, input_mask, lm_labels def get_config(self): return SeamlessM4Tv2Config( hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, vocab_size=self.vocab_size, t2u_vocab_size=self.t2u_vocab_size, hidden_size=self.hidden_size, speech_encoder_layers=self.num_heads, speech_encoder_intermediate_size=self.intermediate_size, max_position_embeddings=self.max_position_embeddings, encoder_layers=self.encoder_layers, decoder_layers=self.decoder_layers, encoder_ffn_dim=self.encoder_ffn_dim, decoder_ffn_dim=self.decoder_ffn_dim, t2u_encoder_layers=self.t2u_encoder_layers, t2u_decoder_layers=self.t2u_decoder_layers, t2u_encoder_ffn_dim=self.t2u_encoder_ffn_dim, t2u_decoder_ffn_dim=self.t2u_decoder_ffn_dim, num_attention_heads=self.num_heads, encoder_attention_heads=self.num_heads, decoder_attention_heads=self.num_heads, t2u_encoder_attention_heads=self.num_heads, t2u_decoder_attention_heads=self.num_heads, speech_encoder_attention_heads=self.num_heads, unit_hifigan_vocab_vise=self.t2u_vocab_size, vocoder_num_spkrs=self.vocoder_num_spkrs, vocoder_num_langs=self.vocoder_num_langs, upsample_initial_channel=self.upsample_initial_channel, unit_embed_dim=self.unit_embed_dim, spkr_embed_dim=self.spkr_embed_dim, num_conv_pos_embeddings=self.num_conv_pos_embeddings, lang_embed_dim=self.lang_embed_dim, max_new_tokens=self.max_new_tokens, unit_hifi_gan_vocab_size=self.unit_hifi_gan_vocab_size, t2u_num_langs=self.t2u_num_langs, t2u_offset_tgt_lang=self.t2u_offset_tgt_lang, vocoder_offset=self.vocoder_offset, t2u_variance_predictor_embed_dim=self.hidden_size, t2u_variance_predictor_hidden_dim=self.t2u_variance_predictor_hidden_dim, char_vocab_size=self.char_vocab_size, left_max_position_embeddings=self.left_max_position_embeddings, right_max_position_embeddings=self.right_max_position_embeddings, speech_encoder_chunk_size=self.speech_encoder_chunk_size, speech_encoder_left_chunk_num=self.speech_encoder_left_chunk_num, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, decoder_input_ids, input_mask, lm_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, decoder_input_ids, input_mask, lm_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model(self, config, input_ids, decoder_input_ids, input_mask, labels): model = SeamlessM4Tv2Model(config=config) model.to(torch_device) model.eval() if self.input_modality == "text": result = model(input_ids=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) else: result = model(input_features=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids) result = model(input_features=input_ids, decoder_input_ids=decoder_input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) decoder_output = result.logits decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state if self.input_modality == "text": seq_length = self.seq_length else: # if speech, expected length has been subsampled. seq_length = model._compute_sub_sample_lengths_from_attention_mask(input_mask).max().item() self.parent.assertEqual(encoder_output.size(), (self.batch_size, seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, decoder_input_ids.shape[1], self.vocab_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.decoder_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, input_mask, lm_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True model = SeamlessM4Tv2Model(config=config) model.to(torch_device) model.eval() # make sure no pad token in decoder_input_ids decoder_input_ids = torch.clamp(decoder_input_ids, config.pad_token_id + 1) # first forward pass outputs = model( input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=input_mask, use_cache=True ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([decoder_input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( input_ids, decoder_input_ids=next_input_ids, decoder_attention_mask=next_attention_mask, output_hidden_states=True, ) output_from_no_past = output_from_no_past["decoder_hidden_states"][0] output_from_past = model( input_ids, decoder_input_ids=next_tokens, decoder_attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["decoder_hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, input_mask, lm_labels, ) = config_and_inputs input_name = "input_ids" if self.input_modality == "text" else "input_features" inputs_dict = { input_name: input_ids, "attention_mask": input_mask, "decoder_input_ids": decoder_input_ids, "labels": lm_labels, } return config, inputs_dict @require_torch class SeamlessM4Tv2ModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase): is_encoder_decoder = True fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False test_resize_embeddings = False test_headmasking = False test_torchscript = False all_model_classes = ( ( SeamlessM4Tv2Model, SeamlessM4Tv2ForSpeechToSpeech, SeamlessM4Tv2ForSpeechToText, ) if is_torch_available() else () ) all_generative_model_classes = (SeamlessM4Tv2ForSpeechToText,) if is_torch_available() else () input_name = "input_features" def setUp(self): self.model_tester = SeamlessM4Tv2ModelTester(self, input_modality="speech") self.config_tester = ConfigTester(self, config_class=SeamlessM4Tv2Config) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "facebook/seamless-m4t-v2-large" model = SeamlessM4Tv2Model.from_pretrained(model_name) self.assertIsNotNone(model) def _get_input_ids_and_config(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict[self.input_name] # cut to half length & take max batch_size 3 sequence_length = input_ids.shape[-1] // 2 input_ids = input_ids[:batch_size, :sequence_length] # generate max 3 tokens max_length = input_ids.shape[-1] + 3 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` if isinstance(config.eos_token_id, int): config.eos_token_id = [config.eos_token_id] config.pad_token_id = config.eos_token_id[0] attention_mask = torch.ones(input_ids.shape[:2], dtype=torch.long)[:batch_size, :sequence_length] return config, input_ids.float(), attention_mask, max_length @staticmethod def _get_encoder_outputs( model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 ): encoder = model.get_encoder() encoder_outputs = encoder( input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( num_interleave, dim=0 ) input_ids = ( torch.zeros(input_ids.shape[:2], dtype=torch.int64, layout=input_ids.layout, device=input_ids.device) + model._get_decoder_start_token_id() ) attention_mask = None return encoder_outputs, input_ids, attention_mask def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", "adapter", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="SeamlessM4Tv2SpeechEncoder doesn't have an embedding layer") def test_inputs_embeds(self): pass @unittest.skip(reason="SeamlessM4TSpeechEncoder doesn't have an embedding layer") def test_inputs_embeds_matches_input_ids(self): pass @unittest.skip( reason="Expected missing keys serve when using SeamlessM4Tv2ForXXX.from_pretrained from a checkpoint saved by SeamlessM4Tv2Model.save_pretrained." ) def test_model_weights_reload_no_missing_tied_weights(self): pass @unittest.skip( reason="SeamlessM4Tv2Model is base class but has actually a bigger architecture than seamlessM4T task-specific models." ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="SeamlessM4Tv2Model can takes input_ids or input_features") def test_forward_signature(self): pass @unittest.skip(reason="SeamlessM4Tv2 has no base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_attention_outputs(self): # expected length is subsampled so need to change a bit this test if not self.has_attentions: self.skipTest(reason="Model does not output attentions") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) # no more chunk_length test for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) sub_sampled_length = ( model._compute_sub_sample_lengths_from_attention_mask(inputs_dict["attention_mask"]).max().item() ) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, sub_sampled_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) @require_torch class SeamlessM4Tv2ModelWithTextInputTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): is_encoder_decoder = True fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False test_resize_embeddings = True test_headmasking = False test_torchscript = False all_model_classes = ( ( SeamlessM4Tv2Model, SeamlessM4Tv2ForTextToSpeech, SeamlessM4Tv2ForTextToText, ) if is_torch_available() else () ) all_generative_model_classes = (SeamlessM4Tv2ForTextToText,) if is_torch_available() else () def setUp(self): self.model_tester = SeamlessM4Tv2ModelTester(self, input_modality="text") self.config_tester = ConfigTester(self, config_class=SeamlessM4Tv2Config) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "facebook/seamless-m4t-v2-large" model = SeamlessM4Tv2Model.from_pretrained(model_name) self.assertIsNotNone(model) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", "adapter", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip( reason="Expected missing keys serve when using SeamlessM4Tv2ForXXX.from_pretrained from a checkpoint saved by SeamlessM4Tv2Model.save_pretrained." ) def test_model_weights_reload_no_missing_tied_weights(self): pass @unittest.skip(reason="SeamlessM4Tv2Model can take input_ids or input_features") def test_forward_signature(self): pass def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) @unittest.skip( reason="SeamlessM4Tv2Model is base class but has actually a bigger architecture than seamlessM4T task-specific models." ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="SeamlessM4Tv2 has no base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @require_torch class SeamlessM4Tv2GenerationTest(unittest.TestCase): # test that non-standard generation works # test generation of: SeamlessM4Tv2Model, SeamlessM4Tv2ForSpeechToSpeech, SeamlessM4Tv2ForSpeechToText, SeamlessM4Tv2ForTextToSpeech def setUp(self): self.speech_model_tester = SeamlessM4Tv2ModelTester(self, input_modality="speech") self.text_model_tester = SeamlessM4Tv2ModelTester(self, input_modality="text") self.tmpdirname = tempfile.mkdtemp() def update_generation(self, model): text_lang_code_to_id = { "fra": 4, "eng": 4, "rus": 4, } speech_lang_code_to_id = { "fra": 4, "eng": 4, } id_to_text = {str(i): "a" for i in range(model.config.vocab_size)} id_to_text["0"] = "ab" id_to_text["1"] = "_b" id_to_text["3"] = "," id_to_text["4"] = "_cd" char_to_id = {char: i for (i, char) in enumerate("abcd")} generation_config = copy.deepcopy(model.generation_config) generation_config.__setattr__("text_decoder_lang_to_code_id", text_lang_code_to_id) generation_config.__setattr__("t2u_lang_code_to_id", speech_lang_code_to_id) generation_config.__setattr__("vocoder_lang_code_to_id", speech_lang_code_to_id) generation_config.__setattr__("id_to_text", id_to_text) generation_config.__setattr__("char_to_id", char_to_id) generation_config.__setattr__("eos_token_id", 0) generation_config._from_model_config = False model.generation_config = generation_config def prepare_text_input(self, tgt_lang): config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs() input_dict = { "input_ids": inputs, "attention_mask": input_mask, "tgt_lang": tgt_lang, "num_beams": 2, "do_sample": True, } return config, input_dict def prepare_speech_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs() input_dict = { "input_features": inputs, "attention_mask": input_mask, "tgt_lang": "fra", "num_beams": 2, "do_sample": True, } return config, input_dict def prepare_speech_and_text_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs() input_speech = { "input_features": inputs, "attention_mask": input_mask, "tgt_lang": "fra", "num_beams": 2, "do_sample": True, } config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs() input_text = { "input_ids": inputs, "attention_mask": input_mask, "tgt_lang": "eng", "num_beams": 2, "do_sample": True, } return config, input_speech, input_text def factory_generation_speech_test(self, model, inputs): set_seed(0) output = model.generate(**inputs) return output def test_generation_languages(self): config, input_text_rus = self.prepare_text_input(tgt_lang="rus") model = SeamlessM4Tv2Model(config=config) self.update_generation(model) model.to(torch_device) model.eval() # make sure that generating speech, with a language that is only supported for text translation, raises error with self.assertRaises(ValueError): model.generate(**input_text_rus) # make sure that generating text only works model.generate(**input_text_rus, generate_speech=False) # make sure it works for languages supported by both output modalities config, input_text_eng = self.prepare_text_input(tgt_lang="eng") model.generate(**input_text_eng) model.generate(**input_text_eng, generate_speech=False) def test_speech_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() model = SeamlessM4Tv2Model(config=config) self.update_generation(model) model.save_pretrained(self.tmpdirname) model.to(torch_device) model.eval() output_original_text = self.factory_generation_speech_test(model, input_text) output_original_speech = self.factory_generation_speech_test(model, input_speech) state_dict = model.state_dict() text_model = SeamlessM4Tv2ForTextToSpeech.from_pretrained(self.tmpdirname) self.update_generation(text_model) text_model.to(torch_device) text_model.eval() output_text = self.factory_generation_speech_test(model, input_text) speech_model = SeamlessM4Tv2ForSpeechToSpeech.from_pretrained(self.tmpdirname) self.update_generation(speech_model) speech_model.to(torch_device) speech_model.eval() for name, tensor in speech_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}") output_speech = self.factory_generation_speech_test(model, input_speech) # test same text output from input text self.assertListEqual(output_original_text[0].ravel().tolist(), output_text[0].ravel().tolist()) self.assertListEqual(output_original_text[1].ravel().tolist(), output_text[1].ravel().tolist()) # test same speech output from input text # assertTrue because super long list makes this hang in case of failure self.assertTrue( output_original_speech[0].ravel().tolist() == output_speech[0].ravel().tolist(), "Speech generated was different", ) self.assertTrue( output_original_speech[1].ravel().tolist() == output_speech[1].ravel().tolist(), "Speech generated was different", ) def test_text_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() # to return speech input_speech["generate_speech"] = False input_text["generate_speech"] = False model = SeamlessM4Tv2Model(config=config) self.update_generation(model) model.save_pretrained(self.tmpdirname) model.to(torch_device) model.eval() output_original_text = self.factory_generation_speech_test(model, input_text) output_original_speech = self.factory_generation_speech_test(model, input_speech) # other models don't need it input_speech.pop("generate_speech") input_text.pop("generate_speech") state_dict = model.state_dict() text_model = SeamlessM4Tv2ForTextToText.from_pretrained(self.tmpdirname) self.update_generation(text_model) text_model.to(torch_device) text_model.eval() for name, tensor in text_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist()) output_text = self.factory_generation_speech_test(text_model, input_text) speech_model = SeamlessM4Tv2ForSpeechToText.from_pretrained(self.tmpdirname) for name, tensor in speech_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}") self.update_generation(speech_model) speech_model.to(torch_device) speech_model.eval() output_speech = self.factory_generation_speech_test(speech_model, input_speech) # test same text output from input text self.assertListEqual(output_original_text[0].ravel().tolist(), output_text.ravel().tolist()) # test same speech output from input text self.assertListEqual(output_original_speech[0].ravel().tolist(), output_speech.ravel().tolist()) def test_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() input_speech["num_beams"] = 3 input_speech["do_sample"] = True input_speech["temperature"] = 0.5 input_speech["num_return_sequences"] = 3 input_text["num_beams"] = 3 input_text["do_sample"] = True input_text["temperature"] = 0.5 input_text["num_return_sequences"] = 3 for model_class in [SeamlessM4Tv2ForSpeechToSpeech, SeamlessM4Tv2ForSpeechToText, SeamlessM4Tv2Model]: model = model_class(config=config) self.update_generation(model) model.to(torch_device) model.eval() output = model.generate(**input_speech) output = output[0] if isinstance(output, tuple) else output self.assertEqual(output.shape[0], 3 * input_speech["input_features"].shape[0]) for model_class in [SeamlessM4Tv2ForTextToSpeech, SeamlessM4Tv2ForTextToText, SeamlessM4Tv2Model]: model = model_class(config=config) self.update_generation(model) model.to(torch_device) model.eval() output = model.generate(**input_text) output = output[0] if isinstance(output, tuple) else output self.assertEqual(output.shape[0], 3 * input_text["input_ids"].shape[0]) @require_torch class SeamlessM4Tv2ModelIntegrationTest(unittest.TestCase): repo_id = "facebook/seamless-m4t-v2-large" def assertListAlmostEqual(self, list1, list2, tol=1e-4): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) @cached_property def processor(self): return SeamlessM4TProcessor.from_pretrained(self.repo_id) @cached_property def input_text(self): # corresponds to "C'est un test." with seamlessM4T_medium checkpoint input_ids = torch.tensor([[256026, 109, 247729, 171, 128, 6816, 247676, 3]]) # fmt: skip input_ids = input_ids.to(torch_device) attention_mask = torch.ones_like(input_ids).to(torch_device) inputs = { "attention_mask": attention_mask, "input_ids": input_ids, } return inputs @cached_property def input_audio(self): set_seed(0) seq_len = 20000 sampling_rate = 16000 input_features = torch.rand((2, seq_len)) return self.processor(audios=[input_features.tolist()], sampling_rate=sampling_rate, return_tensors="pt").to( torch_device ) def factory_test_task(self, class1, class2, inputs, class1_kwargs, class2_kwargs): # half-precision loading to limit GPU usage model1 = class1.from_pretrained(self.repo_id, torch_dtype=torch.float16).to(torch_device) model2 = class2.from_pretrained(self.repo_id, torch_dtype=torch.float16).to(torch_device) set_seed(0) output_1 = model1.generate(**inputs, **class1_kwargs) set_seed(0) output_2 = model2.generate(**inputs, **class2_kwargs) for key in output_1: if isinstance(output_1[key], torch.Tensor): if len(output_1[key].shape) == 0: self.assertEqual(output_1[key].item(), output_2[key].item()) else: self.assertListAlmostEqual(output_1[key].squeeze().tolist(), output_2[key].squeeze().tolist()) @slow def test_to_eng_text(self): model = SeamlessM4Tv2Model.from_pretrained(self.repo_id).to(torch_device) # test text - tgt lang: eng expected_text_tokens = [3, 256022, 3080, 1, 247669, 10, 6816, 247676, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 4746,7163,8208,8208,1315,1266,4307,1119,989,9594,3007,3007,4341,5205,7631,7631,3202,4061,9092,3191,7509,1715, 5280,5280,3554,8812,8197,6366,5382,5382,7330,2758,9433,9433,6863,7510,5800,5800,5286,1948,1825,1825,3956,8724, 8724,5331,8914,9315,9315,5288,2588,8167,8787,8787,8063,6008,2621,2621,2621,5696 ] # fmt: on expected_wav_slice = [9.485097e-04, 8.320558e-04, 7.178137e-04, 9.349979e-04, 1.121628e-03, 1.091766e-03, 1.279693e-03, 1.387754e-03, 1.296396e-03, 1.143557e-03] # fmt: skip set_seed(0) output = model.generate(**self.input_text, num_beams=1, tgt_lang="eng", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual( expected_unit_tokens, (output.unit_sequences - model.config.vocoder_offset).squeeze().tolist() ) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) # assert mean and std equality self.assertListAlmostEqual( [-2.349690e-04, 9.920777e-02], [output.waveform.mean().item(), output.waveform.std().item()] ) @slow @unittest.skip(reason="Equivalence is broken since a new update") def test_to_swh_text(self): model = SeamlessM4Tv2Model.from_pretrained(self.repo_id).to(torch_device) # test text - tgt lang: swh expected_text_tokens = [3, 256084, 109, 247729, 171, 10, 6816, 247676, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 5725,7163,7472,7472,6915,3099,3099,9921,2765,6515,6515,1374,1374,1347,8252,9854,9854,5662,2420,6600,2216,4503, 7208,6107,6107,7298,9123,6472,9663,9663,6366,6366,6445,575,3575,2052,2052,5788,5800,5800,5286,5286,1825,1825,3956, 3956,8724,8724,5331,8914,8914,9315,9315,2821,8167,8167,8787,8787,8787,8700,8700,8700,2175,2175,3196,3196,2621,1725, 1725,7507,5696 ] # fmt: on expected_wav_slice = [3.124037e-04, 2.450471e-04, 2.286572e-04, 2.317214e-04, 2.732605e-04, 2.478790e-04, 2.704144e-04, 2.665847e-04, 2.828784e-04, 2.684390e-04] # fmt: skip set_seed(0) output = model.generate(**self.input_text, num_beams=1, tgt_lang="swh", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual( expected_unit_tokens, (output.unit_sequences - model.config.vocoder_offset).squeeze().tolist() ) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) # assert mean and std equality self.assertListAlmostEqual( [-2.001826e-04, 8.580012e-02], [output.waveform.mean().item(), output.waveform.std().item()] ) @slow def test_to_rus_speech(self): model = SeamlessM4Tv2Model.from_pretrained(self.repo_id).to(torch_device) # test audio - tgt lang: rus expected_text_tokens = [3, 256074, 107, 248213, 404, 247792, 247789, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 8976,7163,6915,2728,2728,5198,3318,3318,3686,1049,9643,1200,2052,2052,8196,8196,7624,7624,7555,7555,7555,7555, 9717,9717,4869,8167,8167,8167,8053,972,9362,8167,297,297,297,3993,3993,3993,3993,4660,4660,4660,4660,4660,4660, 7962,7962,225,225,8737,4199 ] # fmt: on expected_wav_slice = [1.415287e-03, 1.360976e-03, 1.297727e-03, 1.305321e-03, 1.352087e-03, 1.283812e-03, 1.352623e-03, 1.387384e-03, 1.449627e-03, 1.411701e-03] # fmt: skip set_seed(0) output = model.generate(**self.input_audio, num_beams=1, tgt_lang="rus", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual( expected_unit_tokens, (output.unit_sequences - model.config.vocoder_offset).squeeze().tolist() ) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) # assert mean and std equality - higher tolerance for speech self.assertListAlmostEqual( [-2.818016e-04, 7.169888e-02], [output.waveform.mean().item(), output.waveform.std().item()], tol=5e-4 ) @slow def test_text_to_text_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False} kwargs2 = { "tgt_lang": "eng", "output_hidden_states": True, "return_dict_in_generate": True, "output_scores": True, } self.factory_test_task(SeamlessM4Tv2Model, SeamlessM4Tv2ForTextToText, self.input_text, kwargs1, kwargs2) @slow def test_speech_to_text_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False} kwargs2 = { "tgt_lang": "eng", "output_hidden_states": True, "return_dict_in_generate": True, "output_scores": True, } self.factory_test_task(SeamlessM4Tv2Model, SeamlessM4Tv2ForSpeechToText, self.input_audio, kwargs1, kwargs2) @slow def test_speech_to_speech_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True} self.factory_test_task(SeamlessM4Tv2Model, SeamlessM4Tv2ForSpeechToSpeech, self.input_audio, kwargs1, kwargs1) @slow def test_text_to_speech_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True} self.factory_test_task(SeamlessM4Tv2Model, SeamlessM4Tv2ForTextToSpeech, self.input_text, kwargs1, kwargs1)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/dbrx/test_modeling_dbrx.py
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch DBRX model. """ import unittest from parameterized import parameterized from transformers import DbrxConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DbrxForCausalLM, DbrxModel class DbrxModelTester: def __init__( self, parent, hidden_size=32, ffn_hidden_size=32, num_attention_heads=4, kv_n_heads=4, num_hidden_layers=5, max_position_embeddings=512, type_vocab_size=16, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, use_cache=True, type_sequence_label_size=2, num_labels=3, num_choices=4, scope=None, clip_qkv=8, rope_theta=500000, attn_config_model_type="", emb_pdrop=0.0, moe_jitter_eps=0, moe_loss_weight=0.05, moe_num_experts=16, moe_top_k=4, ffn_config_model_type="", ffn_act_fn_name="gelu", initializer_range=0.02, output_router_logits=False, resid_pdrop=0.0, tie_word_embeddings=False, torch_dtype="bfloat16", vocab_size=99, is_decoder=True, pad_token_id=0, ): # Parameters unique to testing self.batch_size = batch_size self.seq_length = seq_length self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.parent = parent self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels # attn_config params self.clip_qkv = clip_qkv self.kv_n_heads = kv_n_heads self.rope_theta = rope_theta self.attn_config_model_type = attn_config_model_type # ffn_config params self.ffn_hidden_size = ffn_hidden_size self.moe_jitter_eps = moe_jitter_eps self.moe_loss_weight = moe_loss_weight self.moe_num_experts = moe_num_experts self.moe_top_k = moe_top_k self.ffn_config_model_type = ffn_config_model_type self.ffn_act_fn_name = ffn_act_fn_name # Other model params self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.vocab_size = vocab_size self.use_cache = use_cache self.initializer_range = initializer_range self.emb_pdrop = emb_pdrop self.output_router_logits = output_router_logits self.resid_pdrop = resid_pdrop self.tie_word_embeddings = tie_word_embeddings self.torch_dtype = torch_dtype self.is_decoder = is_decoder self.pad_token_id = pad_token_id # Make the dictionaries self.ffn_config = { "ffn_hidden_size": self.ffn_hidden_size, "moe_jitter_eps": self.moe_jitter_eps, "moe_loss_weight": self.moe_loss_weight, "moe_num_experts": self.moe_num_experts, "moe_top_k": self.moe_top_k, "model_type": self.ffn_config_model_type, "ffn_act_fn": {"name": self.ffn_act_fn_name}, } self.attn_config = { "clip_qkv": self.clip_qkv, "kv_n_heads": self.kv_n_heads, "model_type": self.attn_config_model_type, "rope_theta": self.rope_theta, } def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): # Behind the scenes, `DbrxConfig` maps the parameters `hidden_size`, `num_hidden_layers`, # `num_attention_heads`, `max_position_embeddings` to the parameters `d_model`, `n_layers`, # `n_heads`, `max_seq_len` respectively. We use the first group of parameters because # other tests expect every model to have these parameters with these specific names. config = DbrxConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, # mapped to `d_model` num_hidden_layers=self.num_hidden_layers, # mapped to `n_layers` num_attention_heads=self.num_attention_heads, # mapped to `n_heads` max_position_embeddings=self.max_position_embeddings, # mapped to `max_seq_len` attn_config=self.attn_config, ffn_config=self.ffn_config, resid_pdrop=self.resid_pdrop, emb_pdrop=self.emb_pdrop, use_cache=self.use_cache, initializer_range=self.initializer_range, output_router_logits=self.output_router_logits, is_decoder=self.is_decoder, pad_token_id=self.pad_token_id, ) return config # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Dbrx def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DbrxModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Dbrx def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = DbrxModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Dbrx def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = DbrxForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = DbrxForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Dbrx def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class DbrxModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (DbrxModel, DbrxForCausalLM) if is_torch_available() else () all_generative_model_classes = (DbrxForCausalLM,) if is_torch_available() else () pipeline_model_mapping = {"text-generation": DbrxForCausalLM} if is_torch_available() else {} test_headmasking = False test_pruning = False def setUp(self): self.model_tester = DbrxModelTester(self) self.config_tester = ConfigTester(self, config_class=DbrxConfig, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "eitanturok/dbrx-tiny" model = DbrxModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip("Dbrx models have weight tying disabled.") def test_tied_weights_keys(self): pass @unittest.skip("TODO @gante fix this for Llama") @parameterized.expand([(1, False), (1, True), (4, False)]) def test_new_cache_format(self, num_beams, do_sample): pass @require_torch class DbrxModelIntegrationTest(unittest.TestCase): @slow def test_tiny_model_logits(self): model = DbrxForCausalLM.from_pretrained("Rocketknight1/dbrx-tiny-random") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] vocab_size = model.vocab_size expected_shape = torch.Size((1, 6, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [ [ [-1.6300e-04, 5.0118e-04, 2.5437e-04], [2.0422e-05, 2.7210e-04, -1.5125e-04], [-1.5105e-04, 4.6879e-04, 3.3309e-04], ] ] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/upernet/test_modeling_upernet.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch UperNet framework. """ import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UperNetModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, num_stages=4, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 1, 1], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", type_sequence_label_size=10, initializer_range=0.02, out_features=["stage2", "stage3", "stage4"], num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_stages = num_stages self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.out_features = out_features self.num_labels = num_labels self.scope = scope self.num_hidden_layers = num_stages def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_backbone_config(self): return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def get_config(self): return UperNetConfig( backbone_config=self.get_backbone_config(), backbone=None, hidden_size=64, pool_scales=[1, 2, 3, 6], use_auxiliary_head=True, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=32, auxiliary_num_convs=1, auxiliary_concat_input=False, loss_ignore_index=255, num_labels=self.num_labels, ) def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels): model = UperNetForSemanticSegmentation(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UperNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as UperNet does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (UperNetForSemanticSegmentation,) if is_torch_available() else () pipeline_model_mapping = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_torchscript = False has_attentions = False def setUp(self): self.model_tester = UperNetModelTester(self) self.config_tester = ConfigTester(self, config_class=UperNetConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return def test_for_semantic_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs) @unittest.skip(reason="UperNet does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="UperNet does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="UperNet does not have a base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="UperNet does not have a base model") def test_save_load_fast_init_to_base(self): pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`") def test_multi_gpu_data_parallel_forward(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) configs_no_init.backbone_config = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="UperNet does not have tied weights") def test_tied_model_weights_key_ignore(self): pass @slow def test_model_from_pretrained(self): model_name = "openmmlab/upernet-convnext-tiny" model = UperNetForSemanticSegmentation.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of ADE20k def prepare_img(): filepath = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k", repo_type="dataset", filename="ADE_val_00000001.jpg" ) image = Image.open(filepath).convert("RGB") return image @require_torch @require_vision @slow class UperNetModelIntegrationTest(unittest.TestCase): def test_inference_swin_backbone(self): processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny") model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny").to(torch_device) image = prepare_img() inputs = processor(images=image, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4)) def test_inference_convnext_backbone(self): processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny") model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny").to(torch_device) image = prepare_img() inputs = processor(images=image, return_tensors="pt").to(torch_device) with torch.no_grad(): outputs = model(**inputs) expected_shape = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/videomae/test_modeling_videomae.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch VideoMAE model. """ import copy import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) if is_vision_available(): from transformers import VideoMAEImageProcessor class VideoMAEModelTester: def __init__( self, parent, batch_size=13, image_size=10, num_channels=3, patch_size=2, tubelet_size=2, num_frames=2, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, mask_ratio=0.9, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.patch_size = patch_size self.tubelet_size = tubelet_size self.num_frames = num_frames self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.mask_ratio = mask_ratio self.scope = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame self.num_patches_per_frame = (image_size // patch_size) ** 2 self.seq_length = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos self.num_masks = int(mask_ratio * self.seq_length) def prepare_config_and_inputs(self): pixel_values = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, decoder_hidden_size=self.hidden_size, decoder_intermediate_size=self.intermediate_size, decoder_num_attention_heads=self.num_attention_heads, decoder_num_hidden_layers=self.num_hidden_layers, ) def create_and_check_model(self, config, pixel_values, labels): model = VideoMAEModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_pretraining(self, config, pixel_values, labels): model = VideoMAEForPreTraining(config) model.to(torch_device) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch mask = torch.ones((self.num_masks,)) mask = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) bool_masked_pos = mask.expand(self.batch_size, -1).bool() result = model(pixel_values, bool_masked_pos) # model only returns predictions for masked patches num_masked_patches = mask.sum().item() decoder_num_labels = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class VideoMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as VideoMAE does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = VideoMAEModelTester(self) self.config_tester = ConfigTester(self, config_class=VideoMAEConfig, has_text_modality=False, hidden_size=37) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch mask = torch.ones((self.model_tester.num_masks,)) mask = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) bool_masked_pos = mask.expand(self.model_tester.batch_size, -1).bool() inputs_dict["bool_masked_pos"] = bool_masked_pos.to(torch_device) if return_labels: if model_class in [ *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING), ]: inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "MCG-NJU/videomae-base" model = VideoMAEModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_attention_outputs(self): if not self.has_attentions: pass else: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks seq_len = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(hidden_states), expected_num_layers) num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks seq_length = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # We will verify our results on a video of eating spaghetti # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] def prepare_video(): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) video = np.load(file) return list(video) @require_torch @require_vision class VideoMAEModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def test_inference_for_video_classification(self): model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to( torch_device ) image_processor = self.default_image_processor video = prepare_video() inputs = image_processor(video, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 400)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.3669, -0.0688, -0.2421]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_for_pretraining(self): model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short").to(torch_device) image_processor = self.default_image_processor video = prepare_video() inputs = image_processor(video, return_tensors="pt").to(torch_device) # add boolean mask, indicating which patches to mask local_path = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt") inputs["bool_masked_pos"] = torch.load(local_path) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]], device=torch_device ) self.assertEqual(outputs.logits.shape, expected_shape) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) expected_loss = torch.tensor([0.5142], device=torch_device) self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short", norm_pix_loss=False).to( torch_device ) with torch.no_grad(): outputs = model(**inputs) expected_loss = torch.tensor(torch.tensor([0.6469]), device=torch_device) self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/videomae/test_image_processing_videomae.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VideoMAEImageProcessor class VideoMAEImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, num_frames=10, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], crop_size=None, ): size = size if size is not None else {"shortest_edge": 18} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.num_frames = num_frames self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.crop_size = crop_size def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_frames, self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_video_inputs( batch_size=self.batch_size, num_frames=self.num_frames, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class VideoMAEImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = VideoMAEImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = VideoMAEImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 18}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL videos video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], Image.Image) # Test not batched input encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos) self.assertEqual( tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape) ) def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], np.ndarray) # Test not batched input encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos) self.assertEqual( tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape) ) def test_call_numpy_4_channels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors self.image_processor_tester.num_channels = 4 video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], np.ndarray) # Test not batched input encoded_videos = image_processing( video_inputs[0], return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first" ).pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = image_processing( video_inputs, return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first" ).pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos) self.assertEqual( tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape) ) self.image_processor_tester.num_channels = 3 def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], torch.Tensor) # Test not batched input encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos) self.assertEqual( tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape) )
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/segformer/test_modeling_segformer.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch SegFormer model. """ import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SegformerConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_attention_heads")) self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) class SegformerModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, num_encoder_blocks=4, depths=[1, 1, 1, 1], sr_ratios=[8, 4, 2, 1], hidden_sizes=[8, 8, 16, 16], downsampling_rates=[1, 4, 8, 16], num_attention_heads=[1, 1, 2, 2], is_training=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.sr_ratios = sr_ratios self.depths = depths self.hidden_sizes = hidden_sizes self.downsampling_rates = downsampling_rates self.num_attention_heads = num_attention_heads self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return SegformerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = SegformerModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def create_and_check_for_image_segmentation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = SegformerForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) result = model(pixel_values, labels=labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss, 0.0) def create_and_check_for_binary_image_segmentation(self, config, pixel_values, labels): config.num_labels = 1 model = SegformerForSemanticSegmentation(config=config) model.to(torch_device) model.eval() labels = torch.randint(0, 1, (self.batch_size, self.image_size, self.image_size)).to(torch_device) result = model(pixel_values, labels=labels) self.parent.assertGreater(result.loss, 0.0) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SegformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) fx_compatible = True test_head_masking = False test_pruning = False test_resize_embeddings = False def setUp(self): self.model_tester = SegformerModelTester(self) self.config_tester = SegformerConfigTester(self, config_class=SegformerConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_binary_image_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*config_and_inputs) def test_for_image_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs) @unittest.skip("SegFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods") def test_model_common_attributes(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = sum(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) expected_seq_len = (self.model_tester.image_size // 32) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_encoder_blocks self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class.__name__ in MODEL_MAPPING_NAMES.values(): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @slow def test_model_from_pretrained(self): model_name = "nvidia/segformer-b0-finetuned-ade-512-512" model = SegformerModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch class SegformerModelIntegrationTest(unittest.TestCase): @slow def test_inference_image_segmentation_ade(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( torch_device ) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) expected_shape = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_image_segmentation_city(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(torch_device) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) expected_shape = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-1)) @slow def test_post_processing_semantic_segmentation(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( torch_device ) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="pt") pixel_values = encoded_inputs.pixel_values.to(torch_device) with torch.no_grad(): outputs = model(pixel_values) outputs.logits = outputs.logits.detach().cpu() segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)]) expected_shape = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape, expected_shape) segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs) expected_shape = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape, expected_shape)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/segformer/test_image_processing_segformer.py
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SegformerImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], do_reduce_labels=False, ): size = size if size is not None else {"height": 30, "width": 30} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_reduce_labels = do_reduce_labels def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def expected_output_image_shape(self, images): return self.num_channels, self.size["height"], self.size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) def prepare_semantic_single_inputs(): dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") image = Image.open(dataset[0]["file"]) map = Image.open(dataset[1]["file"]) return image, map def prepare_semantic_batch_inputs(): dataset = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") image1 = Image.open(dataset[0]["file"]) map1 = Image.open(dataset[1]["file"]) image2 = Image.open(dataset[2]["file"]) map2 = Image.open(dataset[3]["file"]) return [image1, image2], [map1, map2] @require_torch @require_vision class SegformerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = SegformerImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = SegformerImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_reduce_labels")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 30, "width": 30}) self.assertEqual(image_processor.do_reduce_labels, False) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, reduce_labels=True) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) self.assertEqual(image_processor.do_reduce_labels, True) def test_call_segmentation_maps(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) maps = [] for image in image_inputs: self.assertIsInstance(image, torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input encoding = image_processing(image_inputs[0], maps[0], return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 1, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test batched encoding = image_processing(image_inputs, maps, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test not batched input (PIL images) image, segmentation_map = prepare_semantic_single_inputs() encoding = image_processing(image, segmentation_map, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 1, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) # Test batched input (PIL images) images, segmentation_maps = prepare_semantic_batch_inputs() encoding = image_processing(images, segmentation_maps, return_tensors="pt") self.assertEqual( encoding["pixel_values"].shape, ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual( encoding["labels"].shape, ( 2, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertEqual(encoding["labels"].dtype, torch.long) self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255) def test_reduce_labels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 image, map = prepare_semantic_single_inputs() encoding = image_processing(image, map, return_tensors="pt") self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 150) image_processing.do_reduce_labels = True encoding = image_processing(image, map, return_tensors="pt") self.assertTrue(encoding["labels"].min().item() >= 0) self.assertTrue(encoding["labels"].max().item() <= 255)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/segformer/test_modeling_tf_segformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow SegFormer model. """ from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import SegformerConfig from transformers.file_utils import is_tf_available, is_vision_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFSegformerForImageClassification, TFSegformerForSemanticSegmentation, TFSegformerModel if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class TFSegformerConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_attention_heads")) self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) class TFSegformerModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, num_encoder_blocks=4, depths=[1, 1, 1, 1], sr_ratios=[8, 4, 2, 1], hidden_sizes=[8, 8, 16, 16], downsampling_rates=[1, 4, 8, 16], num_attention_heads=[1, 1, 2, 2], is_training=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.sr_ratios = sr_ratios self.depths = depths self.hidden_sizes = hidden_sizes self.downsampling_rates = downsampling_rates self.num_attention_heads = num_attention_heads self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return SegformerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = TFSegformerModel(config=config) result = model(pixel_values, training=False) expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def create_and_check_for_image_segmentation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = TFSegformerForSemanticSegmentation(config) result = model(pixel_values, training=False) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) result = model(pixel_values, labels=labels, training=False) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict def prepare_config_and_inputs_for_keras_fit(self, for_segmentation: bool = False): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, seg_labels = config_and_inputs if for_segmentation: inputs_dict = {"pixel_values": pixel_values, "labels": seg_labels} else: inputs_dict = {"pixel_values": pixel_values, "labels": tf.zeros((self.batch_size))} return config, inputs_dict @require_tf class TFSegformerModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFSegformerModel, TFSegformerForImageClassification, TFSegformerForSemanticSegmentation) if is_tf_available() else () ) pipeline_model_mapping = ( {"feature-extraction": TFSegformerModel, "image-classification": TFSegformerForImageClassification} if is_tf_available() else {} ) test_head_masking = False test_onnx = False test_pruning = False test_resize_embeddings = False def setUp(self): self.model_tester = TFSegformerModelTester(self) self.config_tester = TFSegformerConfigTester(self, config_class=SegformerConfig, has_text_modality=False) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip("SegFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = sum(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) expected_seq_len = (self.model_tester.image_size // 32) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_encoder_blocks self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(tuple_object, dict_object)), msg=( "Tuple and dict output are not equal. Difference:" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) if self.has_attentions: tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) # todo: incorporate label support for semantic segmentation in `test_modeling_tf_common.py`. @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) def test_dataset_conversion(self): super().test_dataset_conversion() def check_keras_fit_results(self, val_loss1, val_loss2, atol=2e-1, rtol=2e-1): self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol)) @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) @slow def test_keras_fit(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Since `TFSegformerModel` cannot operate with the default `fit()` method. if model_class.__name__ != "TFSegformerModel": model = model_class(config) if getattr(model, "hf_compute_loss", None): super().test_keras_fit() def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def apply(model): for_segmentation = True if model_class.__name__ == "TFSegformerForSemanticSegmentation" else False # The number of elements in the loss should be the same as the number of elements in the label _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit( for_segmentation=for_segmentation ) added_label = prepared_for_class[sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]] loss_size = tf.size(added_label) # Test that model correctly compute the loss with kwargs possible_input_names = {"input_ids", "pixel_values", "input_features"} input_name = possible_input_names.intersection(set(prepared_for_class)).pop() model_input = prepared_for_class.pop(input_name) loss = model(model_input, **prepared_for_class)[0] if model_class.__name__ == "TFSegformerForSemanticSegmentation": # Semantic segmentation loss is computed similarly as # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210. self.assertEqual(loss.shape, (1,)) else: self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a dict _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit( for_segmentation=for_segmentation ) loss = model(**prepared_for_class)[0] if model_class.__name__ == "TFSegformerForSemanticSegmentation": self.assertEqual(loss.shape, (1,)) else: self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a tuple label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: input_name} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] if model_class.__name__ == "TFSegformerForSemanticSegmentation": self.assertEqual(loss.shape, (1,)) else: self.assertEqual(loss.shape, [loss_size]) for model_class in self.all_model_classes: # Since `TFSegformerModel` won't have labels against which we # could compute loss. if model_class.__name__ != "TFSegformerModel": model = model_class(config) apply(model) def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None): # We override with a slightly higher tol value, as semseg models tend to diverge a bit more super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes) @slow def test_model_from_pretrained(self): model_name = "nvidia/segformer-b0-finetuned-ade-512-512" model = TFSegformerModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf class TFSegformerModelIntegrationTest(unittest.TestCase): @slow def test_inference_image_segmentation_ade(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="tf") pixel_values = encoded_inputs.pixel_values outputs = model(pixel_values, training=False) expected_shape = tf.TensorShape((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) tf.debugging.assert_near(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-4) @slow def test_inference_image_segmentation_city(self): # only resize + normalize image_processor = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=False, align=False, do_random_crop=False ) model = TFSegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ) image = prepare_img() encoded_inputs = image_processor(images=image, return_tensors="tf") pixel_values = encoded_inputs.pixel_values outputs = model(pixel_values, training=False) expected_shape = tf.TensorShape((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) tf.debugging.assert_near(outputs.logits[0, :3, :3, :3], expected_slice, atol=1e-1)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/nezha/test_modeling_nezha.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) class NezhaModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=128, max_relative_position=32, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): """ Returns a tiny configuration by default. """ return NezhaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = NezhaModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = NezhaForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = NezhaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = NezhaForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class NezhaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = NezhaModelTester(self) self.config_tester = ConfigTester(self, config_class=NezhaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "sijunhe/nezha-cn-base" model = NezhaModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow @require_torch_gpu def test_torchscript_device_change(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return config.torchscript = True model = model_class(config=config) inputs_dict = self._prepare_for_class(inputs_dict, model_class) traced_model = torch.jit.trace( model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(traced_model, os.path.join(tmp, "bert.pt")) loaded = torch.jit.load(os.path.join(tmp, "bert.pt"), map_location=torch_device) loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device)) @require_torch class NezhaModelIntegrationTest(unittest.TestCase): @slow def test_inference_nezha_model(self): model = NezhaModel.from_pretrained("sijunhe/nezha-cn-base") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 6, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) @slow def test_inference_nezha_masked_lm(self): model = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 6, 21128)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/data2vec/test_modeling_data2vec_audio.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Data2VecAudio model. """ import math import unittest import numpy as np from datasets import load_dataset from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask from transformers import Data2VecAudioConfig, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_soundfile, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Data2VecAudioForAudioFrameClassification, Data2VecAudioForCTC, Data2VecAudioForSequenceClassification, Data2VecAudioForXVector, Data2VecAudioModel, Wav2Vec2Processor, ) from transformers.models.data2vec.modeling_data2vec_audio import _compute_mask_indices class Data2VecAudioModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=16, feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, mask_time_prob=0.5, mask_time_length=2, vocab_size=32, num_adapter_layers=1, adapter_stride=2, tdnn_dim=(32, 32), tdnn_kernel=(5, 3), tdnn_dilation=(1, 2), xvector_output_dim=32, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.num_adapter_layers = num_adapter_layers self.adapter_stride = adapter_stride self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.scope = scope self.tdnn_dim = tdnn_dim self.tdnn_kernel = tdnn_kernel self.tdnn_dilation = tdnn_dilation self.xvector_output_dim = xvector_output_dim output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1 def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_values, attention_mask def get_config(self): return Data2VecAudioConfig( hidden_size=self.hidden_size, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, mask_time_prob=self.mask_time_prob, mask_time_length=self.mask_time_length, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, num_adapter_layers=self.num_adapter_layers, adapter_stride=self.adapter_stride, tdnn_dim=self.tdnn_dim, tdnn_kernel=self.tdnn_kernel, tdnn_dilation=self.tdnn_dilation, xvector_output_dim=self.xvector_output_dim, ) def create_and_check_model(self, config, input_values, attention_mask): model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter(self, config, input_values, attention_mask): config.add_adapter = True model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size) ) def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask): config.add_adapter = True config.output_hidden_size = 8 model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size), ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = Data2VecAudioModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = Data2VecAudioForCTC(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() self.parent.assertTrue(isinstance(sum_loss, float)) self.parent.assertTrue(isinstance(mean_loss, float)) def check_seq_classifier_loss(self, config, input_values, *args): model = Data2VecAudioForSequenceClassification(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() unmasked_loss = model(input_values, labels=labels).loss.item() self.parent.assertTrue(isinstance(masked_loss, float)) self.parent.assertTrue(isinstance(unmasked_loss, float)) self.parent.assertTrue(masked_loss != unmasked_loss) def check_ctc_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Data2VecAudioForCTC(config=config) model.to(torch_device) model.train() # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 if max_length_labels[i] < labels.shape[-1]: # it's important that we make sure that target lengths are at least # one shorter than logit lengths to prevent -inf labels[i, max_length_labels[i] - 1 :] = -100 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_seq_classifier_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Data2VecAudioForSequenceClassification(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_xvector_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = Data2VecAudioForXVector(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_labels_out_of_vocab(self, config, input_values, *args): model = Data2VecAudioForCTC(config) model.to(torch_device) model.train() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) with self.parent.assertRaises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_torch class Data2VecAudioModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( Data2VecAudioForCTC, Data2VecAudioModel, Data2VecAudioForSequenceClassification, Data2VecAudioForAudioFrameClassification, Data2VecAudioForXVector, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "audio-classification": Data2VecAudioForSequenceClassification, "automatic-speech-recognition": Data2VecAudioForCTC, "feature-extraction": Data2VecAudioModel, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False def setUp(self): self.model_tester = Data2VecAudioModelTester(self) self.config_tester = ConfigTester(self, config_class=Data2VecAudioConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_adapter(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter(*config_and_inputs) def test_model_with_adapter_proj_dim(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_seq_classifier_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_seq_classifier_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_training(*config_and_inputs) def test_xvector_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_xvector_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # Data2VecAudio has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # Data2VecAudio cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # Data2VecAudio has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_flax_to_pt(self): pass @is_pt_flax_cross_test # non-robust architecture does not exist in Flax def test_equivalence_pt_to_flax(self): pass def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "codevectors") and module.codevectors is not None: module.codevectors.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) def test_mask_feature_prob_ctc(self): model = Data2VecAudioForCTC.from_pretrained( "hf-internal-testing/tiny-random-data2vec-seq-class", mask_feature_prob=0.2, mask_feature_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 1498, 32)) def test_mask_time_prob_ctc(self): model = Data2VecAudioForCTC.from_pretrained( "facebook/data2vec-audio-base-960h", mask_time_prob=0.2, mask_time_length=2 ) model.to(torch_device).train() processor = Wav2Vec2Processor.from_pretrained( "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True ) batch_duration_in_seconds = [1, 3, 2, 6] input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds] batch = processor( input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt" ) logits = model( input_values=batch["input_values"].to(torch_device), attention_mask=batch["attention_mask"].to(torch_device), ).logits self.assertEqual(logits.shape, (4, 299, 32)) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = Data2VecAudioModel.from_pretrained("facebook/data2vec-audio-base") self.assertIsNotNone(model) @require_torch class Data2VecAudioUtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)]) def test_compute_mask_indices_low_prob(self): # with these settings num_masked_spans=0.5, which means probabilistic rounding # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in # the other 5 out of 10, cases num_masked_spans=1 n_trials = 100 batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 count_dimensions_masked = 0 count_dimensions_not_masked = 0 for _ in range(n_trials): mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) num_masks = torch.sum(mask).item() if num_masks > 0: count_dimensions_masked += 1 else: count_dimensions_not_masked += 1 # as we test for at least 10 masked dimension and at least # 10 non-masked dimension, this test could fail with probability: # P(100 coin flips, at most 9 heads) = 1.66e-18 self.assertGreater(count_dimensions_masked, int(n_trials * 0.1)) self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1)) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) def test_compute_mask_indices_attn_mask_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) attention_mask[:2, sequence_length // 2 :] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask ) mask = torch.from_numpy(mask).to(torch_device) for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0) def test_compute_mask_indices_short_audio(self): batch_size = 4 sequence_length = 100 mask_prob = 0.05 mask_length = 10 attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device) # force one example to be heavily padded attention_mask[0, 5:] = 0 mask = _compute_mask_indices( (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2 ) # make sure that non-padded examples cannot be padded self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any()) @require_torch @require_soundfile @slow class Data2VecAudioModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _load_superb(self, task, num_samples): ds = load_dataset("anton-l/superb_dummy", task, split="test") return ds[:num_samples] def test_inference_ctc_normal(self): model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h") model.to(torch_device) processor = Wav2Vec2Processor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", do_lower_case=True) input_speech = self._load_datasamples(1) input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) def test_inference_ctc_batched(self): model = Data2VecAudioForCTC.from_pretrained("facebook/data2vec-audio-base-960h").to(torch_device) processor = Wav2Vec2Processor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", do_lower_case=True) input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around" " him with thousands of spectators were trivialities not worth thinking about", "his instant of panic was followed by a small sharp blow high on his chest", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/data2vec/test_modeling_data2vec_text.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Data2VecAudio model. """ import unittest from tests.test_modeling_common import floats_tensor, ids_tensor, random_attention_mask from transformers import Data2VecTextConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Data2VecTextForCausalLM, Data2VecTextForMaskedLM, Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering, Data2VecTextForSequenceClassification, Data2VecTextForTokenClassification, Data2VecTextModel, ) from transformers.models.data2vec.modeling_data2vec_text import ( Data2VecTextForTextEmbeddings, create_position_ids_from_input_ids, ) class Data2VecTextModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return Data2VecTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = Data2VecTextModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = Data2VecTextModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = Data2VecTextForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = Data2VecTextForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = Data2VecTextForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = Data2VecTextForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = Data2VecTextForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = Data2VecTextForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class Data2VecTextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( Data2VecTextForCausalLM, Data2VecTextForMaskedLM, Data2VecTextModel, Data2VecTextForSequenceClassification, Data2VecTextForTokenClassification, Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (Data2VecTextForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": Data2VecTextModel, "fill-mask": Data2VecTextForMaskedLM, "question-answering": Data2VecTextForQuestionAnswering, "text-classification": Data2VecTextForSequenceClassification, "text-generation": Data2VecTextForCausalLM, "token-classification": Data2VecTextForTokenClassification, "zero-shot": Data2VecTextForSequenceClassification, } if is_torch_available() else {} ) model_split_percents = [0.5, 0.9] def setUp(self): self.model_tester = Data2VecTextModelTester(self) self.config_tester = ConfigTester(self, config_class=Data2VecTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() config_and_inputs[0].position_embedding_type = "relative_key" self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "facebook/data2vec-text-base" model = Data2VecTextModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is Data2VecTextForTextEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = Data2VecTextForTextEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is Data2VecTextForTextEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = Data2VecTextForTextEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @require_torch class Data2VecTextModelIntegrationTest(TestCasePlus): @slow def test_inference_masked_lm(self): model = Data2VecTextForMaskedLM.from_pretrained("facebook/data2vec-text-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 50265)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor([[[0.2328, 0.0000, 1.1710], [2.2525, 0.0000, 1.9937], [2.1280, 0.0000, 1.8691]]]) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_no_head(self): model = Data2VecTextModel.from_pretrained("facebook/data2vec-text-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[0.1998, -0.0379, 0.0024], [-0.0971, -0.2214, -0.1798], [-0.0789, -0.2400, -0.1898]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/data2vec/test_modeling_tf_data2vec_vision.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow Data2VecVision model. """ from __future__ import annotations import collections.abc import inspect import unittest import numpy as np from transformers import Data2VecVisionConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation, TFData2VecVisionModel, ) from transformers.modeling_tf_utils import keras if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class TFData2VecVisionModelTester: def __init__( self, parent, vocab_size=100, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, out_indices=[0, 1, 2, 3], ): self.parent = parent self.vocab_size = 100 self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.out_indices = out_indices self.num_labels = num_labels def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return Data2VecVisionConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = TFData2VecVisionModel(config=config) result = model(pixel_values, training=False) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = ( self.image_size if isinstance(self.image_size, collections.abc.Iterable) else (self.image_size, self.image_size) ) patch_size = ( self.patch_size if isinstance(self.image_size, collections.abc.Iterable) else (self.patch_size, self.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.type_sequence_label_size model = TFData2VecVisionForImageClassification(config) result = model(pixel_values, labels=labels, training=False) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = TFData2VecVisionForSemanticSegmentation(config) result = model(pixel_values, training=False) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) result = model(pixel_values, labels=pixel_labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict def prepare_config_and_inputs_for_keras_fit(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, _, _ = config_and_inputs inputs_dict = {"pixel_values": pixel_values, "labels": tf.zeros((self.batch_size))} return config, inputs_dict @require_tf class TFData2VecVisionModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Data2VecVision does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (TFData2VecVisionModel, TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation) if is_tf_available() else () ) pipeline_model_mapping = ( {"feature-extraction": TFData2VecVisionModel, "image-classification": TFData2VecVisionForImageClassification} if is_tf_available() else {} ) test_pruning = False test_onnx = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = TFData2VecVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=Data2VecVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Data2VecVision does not use inputs_embeds") def test_inputs_embeds(self): # Data2VecVision does not use inputs_embeds pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, keras.layers.Layer)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # in Data2VecVision, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) patch_size = ( self.model_tester.patch_size if isinstance(self.model_tester.patch_size, collections.abc.Iterable) else (self.model_tester.patch_size, self.model_tester.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_len = num_patches + 1 encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Data2VecVision has a different seq_length image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) patch_size = ( self.model_tester.patch_size if isinstance(self.model_tester.patch_size, collections.abc.Iterable) else (self.model_tester.patch_size, self.model_tester.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_length = num_patches + 1 self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # Overriding this method since the base method won't be compatible with Data2VecVision. @slow def test_keras_fit(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Since `TFData2VecVisionModel` cannot operate with the default `fit()` method. if model_class.__name__ != "TFData2VecVisionModel": model = model_class(config) if getattr(model, "hf_compute_loss", None): # Test that model correctly compute the loss with kwargs _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit() label_names = {"labels"} self.assertGreater(len(label_names), 0, msg="No matching label names found!") labels = {key: val for key, val in prepared_for_class.items() if key in label_names} inputs_minus_labels = { key: val for key, val in prepared_for_class.items() if key not in label_names } self.assertGreater(len(inputs_minus_labels), 0) model.compile(optimizer=keras.optimizers.SGD(0.0), run_eagerly=True) # Make sure the model fits without crashing regardless of where we pass the labels history1 = model.fit( prepared_for_class, validation_data=prepared_for_class, steps_per_epoch=1, validation_steps=1, shuffle=False, ) val_loss1 = history1.history["val_loss"][0] history2 = model.fit( inputs_minus_labels, labels, validation_data=(inputs_minus_labels, labels), steps_per_epoch=1, validation_steps=1, shuffle=False, ) val_loss2 = history2.history["val_loss"][0] self.assertTrue(np.allclose(val_loss1, val_loss2, atol=1e-2, rtol=1e-3)) def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None): # We override with a slightly higher tol value, as semseg models tend to diverge a bit more super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes) # Overriding this method since the base method won't be compatible with Data2VecVision. def test_loss_computation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Since `TFData2VecVisionModel` won't have labels against which we # could compute loss. if model_class.__name__ != "TFData2VecVisionModel": model = model_class(config) if getattr(model, "hf_compute_loss", None): # The number of elements in the loss should be the same as the number of elements in the label _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit() added_label = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0] ] loss_size = tf.size(added_label) # Test that model correctly compute the loss with kwargs possible_input_names = {"input_ids", "pixel_values", "input_features"} input_name = possible_input_names.intersection(set(prepared_for_class)).pop() model_input = prepared_for_class.pop(input_name) loss = model(model_input, **prepared_for_class)[0] self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a dict _, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit() loss = model(**prepared_for_class)[0] self.assertEqual(loss.shape, [loss_size]) # Test that model correctly compute the loss with a tuple label_keys = prepared_for_class.keys() - inputs_dict.keys() signature = inspect.signature(model.call).parameters signature_names = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple tuple_index_mapping = {0: input_name} for label_key in label_keys: label_key_index = signature_names.index(label_key) tuple_index_mapping[label_key_index] = label_key sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple list_input = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: list_input[index] = prepared_for_class[value] tuple_input = tuple(list_input) # Send to model loss = model(tuple_input[:-1])[0] self.assertEqual(loss.shape, [loss_size]) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "facebook/data2vec-vision-base-ft1k" model = TFData2VecVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class TFData2VecVisionModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( BeitImageProcessor.from_pretrained("facebook/data2vec-vision-base-ft1k") if is_vision_available() else None ) @slow def test_inference_image_classification_head_imagenet_1k(self): model = TFData2VecVisionForImageClassification.from_pretrained("facebook/data2vec-vision-base-ft1k") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # forward pass outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = tf.convert_to_tensor([1, 1000]) self.assertEqual(logits.shape, expected_shape) expected_slice = tf.convert_to_tensor([0.3277, -0.1395, 0.0911]) tf.debugging.assert_near(logits[0, :3], expected_slice, atol=1e-4) expected_top2 = [model.config.label2id[i] for i in ["remote control, remote", "tabby, tabby cat"]] self.assertEqual(tf.nn.top_k(outputs.logits[0], 2).indices.numpy().tolist(), expected_top2)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/data2vec/test_modeling_data2vec_vision.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Data2VecVision model. """ import unittest from transformers import Data2VecVisionConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( Data2VecVisionForImageClassification, Data2VecVisionForSemanticSegmentation, Data2VecVisionModel, ) from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class Data2VecVisionModelTester: def __init__( self, parent, vocab_size=100, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, out_indices=[0, 1, 2, 3], ): self.parent = parent self.vocab_size = 100 self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope self.out_indices = out_indices self.num_labels = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return Data2VecVisionConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = Data2VecVisionModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) num_patches = (self.image_size // self.patch_size) ** 2 self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.type_sequence_label_size model = Data2VecVisionForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = Data2VecVisionForSemanticSegmentation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) result = model(pixel_values, labels=pixel_labels) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class Data2VecVisionModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Data2VecVision does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (Data2VecVisionModel, Data2VecVisionForImageClassification, Data2VecVisionForSemanticSegmentation) if is_torch_available() else () ) pipeline_model_mapping = ( { "image-feature-extraction": Data2VecVisionModel, "image-classification": Data2VecVisionForImageClassification, "image-segmentation": Data2VecVisionForSemanticSegmentation, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Data2VecVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=Data2VecVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() def test_inputs_embeds(self): # Data2VecVision does not use inputs_embeds pass @require_torch_multi_gpu @unittest.skip( reason="Data2VecVision has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def test_multi_gpu_data_parallel_forward(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_segmentation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs) def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class.__name__ in MODEL_MAPPING_NAMES.values(): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return config.use_cache = False config.return_dict = True for model_class in self.all_model_classes: if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing: continue # TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING # this can then be incorporated into _prepare_for_class in test_modeling_common.py elif model_class.__name__ == "Data2VecVisionForSemanticSegmentation": batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape inputs_dict["labels"] = torch.zeros( [self.model_tester.batch_size, height, width], device=torch_device ).long() model = model_class(config) model.gradient_checkpointing_enable() model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None): # We override with a slightly higher tol value, as semseg models tend to diverge a bit more super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "facebook/data2vec-vision-base-ft1k" model = Data2VecVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class Data2VecVisionModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( BeitImageProcessor.from_pretrained("facebook/data2vec-vision-base-ft1k") if is_vision_available() else None ) @slow def test_inference_image_classification_head_imagenet_1k(self): model = Data2VecVisionForImageClassification.from_pretrained("facebook/data2vec-vision-base-ft1k").to( torch_device ) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(logits.shape, expected_shape) expected_slice = torch.tensor([0.3277, -0.1395, 0.0911]).to(torch_device) self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4)) expected_top2 = [model.config.label2id[i] for i in ["remote control, remote", "tabby, tabby cat"]] self.assertEqual(logits[0].topk(2).indices.cpu().tolist(), expected_top2)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/vit_mae/test_modeling_vit_mae.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ViTMAE model. """ import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class ViTMAEModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, mask_ratio=0.6, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.mask_ratio = mask_ratio self.scope = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, decoder_hidden_size=self.hidden_size, decoder_intermediate_size=self.intermediate_size, decoder_num_attention_heads=self.num_attention_heads, decoder_num_hidden_layers=self.num_hidden_layers, ) def create_and_check_model(self, config, pixel_values, labels): model = ViTMAEModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_pretraining(self, config, pixel_values, labels): model = ViTMAEForPreTraining(config) model.to(torch_device) model.eval() result = model(pixel_values) num_patches = (self.image_size // self.patch_size) ** 2 expected_num_channels = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) # test greyscale images config.num_channels = 1 model = ViTMAEForPreTraining(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) expected_num_channels = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class ViTMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () pipeline_model_mapping = {"image-feature-extraction": ViTMAEModel} if is_torch_available() else {} test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = ViTMAEModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTMAEConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) # overwrite from common since ViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict): # make masks reproducible np.random.seed(2) num_patches = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) pt_noise = torch.from_numpy(noise) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument pt_inputs_dict["noise"] = pt_noise super().check_pt_tf_models(tf_model, pt_model, pt_inputs_dict) def test_save_load(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) out_2 = outputs[0].cpu().numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) model.to(torch_device) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): after_outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # Make sure we don't have nans out_1 = after_outputs[0].cpu().numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def test_determinism(self): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""") def test_model_outputs_equivalence(self): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass") def test_batching_equivalence(self): pass @slow def test_model_from_pretrained(self): model_name = "google/vit-base-patch16-224" model = ViTMAEModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViTMAEModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base") if is_vision_available() else None @slow def test_inference_for_pretraining(self): # make random mask reproducible across the PT and TF model np.random.seed(2) model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) vit_mae_config = ViTMAEConfig() num_patches = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) noise = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): outputs = model(**inputs, noise=torch.from_numpy(noise).to(device=torch_device)) # verify the logits expected_shape = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice.to(torch_device), atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/vit_mae/test_modeling_tf_vit_mae.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow ViTMAE model. """ from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel from transformers.modeling_tf_utils import keras if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class TFViTMAEModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, mask_ratio=0.6, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.mask_ratio = mask_ratio self.scope = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def create_and_check_model(self, config, pixel_values, labels): model = TFViTMAEModel(config=config) result = model(pixel_values, training=False) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_pretraining(self, config, pixel_values, labels): model = TFViTMAEForPreTraining(config) result = model(pixel_values, training=False) # expected sequence length = num_patches num_patches = (self.image_size // self.patch_size) ** 2 expected_num_channels = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) # test greyscale images config.num_channels = 1 model = TFViTMAEForPreTraining(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values, training=False) expected_num_channels = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, pixel_values, labels) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFViTMAEModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () pipeline_model_mapping = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} test_pruning = False test_onnx = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = TFViTMAEModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTMAEConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, keras.layers.Layer)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def test_keyword_and_dict_args(self): # make the mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs, noise=noise) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) outputs_keywords = model(**inputs_keywords, noise=noise) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def test_numpy_arrays_inputs(self): # make the mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) def prepare_numpy_arrays(inputs_dict): inputs_np_dict = {} for k, v in inputs_dict.items(): if tf.is_tensor(v): inputs_np_dict[k] = v.numpy() else: inputs_np_dict[k] = np.array(k) return inputs_np_dict for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) inputs_np = prepare_numpy_arrays(inputs) output_for_dict_input = model(inputs_np, noise=noise) output_for_kw_input = model(**inputs_np, noise=noise) self.assert_outputs_same(output_for_dict_input, output_for_kw_input) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict): # make masks reproducible np.random.seed(2) num_patches = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) tf_noise = tf.constant(noise) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument tf_inputs_dict["noise"] = tf_noise super().check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def test_keras_save_load(self): # make mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_main_layer_classes = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(module) if module_member_name.endswith("MainLayer") # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")] for module_member in (getattr(module, module_member_name),) if isinstance(module_member, type) and keras.layers.Layer in module_member.__bases__ and getattr(module_member, "_keras_serializable", False) } num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) noise = tf.convert_to_tensor(noise) inputs_dict.update({"noise": noise}) for main_layer_class in tf_main_layer_classes: main_layer = main_layer_class(config) symbolic_inputs = { name: keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() } model = keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs)) outputs = model(inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "keras_model.h5") model.save(filepath) model = keras.models.load_model(filepath, custom_objects={main_layer_class.__name__: main_layer_class}) assert isinstance(model, keras.Model) after_outputs = model(inputs_dict) self.assert_outputs_same(after_outputs, outputs) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test @slow def test_save_load(self): # make mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: model = model_class(config) model_input = self._prepare_for_class(inputs_dict, model_class) outputs = model(model_input, noise=noise) if model_class.__name__ == "TFViTMAEModel": out_2 = outputs.last_hidden_state.numpy() out_2[np.isnan(out_2)] = 0 else: out_2 = outputs.logits.numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=False) model = model_class.from_pretrained(tmpdirname) after_outputs = model(model_input, noise=noise) if model_class.__name__ == "TFViTMAEModel": out_1 = after_outputs["last_hidden_state"].numpy() out_1[np.isnan(out_1)] = 0 else: out_1 = after_outputs["logits"].numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def test_save_load_config(self): # make mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: model = model_class(config) model_inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(model_inputs, noise=noise) model_config = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(model_config) new_model = model_class.from_config(model.get_config()) # make sure it also accepts a normal config _ = model_class.from_config(model.config) _ = new_model(model_inputs) # Build model new_model.set_weights(model.get_weights()) after_outputs = new_model(model_inputs, noise=noise) self.assert_outputs_same(after_outputs, outputs) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def test_determinism(self): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""") def test_model_outputs_equivalence(self): pass @slow def test_model_from_pretrained(self): model = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224") self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class TFViTMAEModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base") if is_vision_available() else None @slow def test_inference_for_pretraining(self): # make random mask reproducible across the PT and TF model np.random.seed(2) model = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) vit_mae_config = ViTMAEConfig() num_patches = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) noise = np.random.uniform(size=(1, num_patches)) # forward pass outputs = model(**inputs, noise=noise) # verify the logits expected_shape = tf.convert_to_tensor([1, 196, 768]) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/biogpt/test_tokenization_biogpt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import require_sacremoses, slow from ...test_tokenization_common import TokenizerTesterMixin @require_sacremoses class BioGptTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "microsoft/biogpt" tokenizer_class = BioGptTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.merges_file, "w") as fp: fp.write("\n".join(merges)) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): """Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt""" tokenizer = BioGptTokenizer(self.vocab_file, self.merges_file) text = "lower" bpe_tokens = ["low", "er</w>"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + ["<unk>"] input_bpe_tokens = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_2)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/biogpt/test_modeling_biogpt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch BioGPT model. """ import math import unittest from transformers import BioGptConfig, is_sacremoses_available, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) class BioGptModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return BioGptConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BioGptModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = BioGptForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_biogpt_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = BioGptModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_biogpt_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = BioGptModel(config=config).to(torch_device).eval() attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False ): model = BioGptForCausalLM(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def create_and_check_biogpt_weight_initialization(self, config, *args): model = BioGptModel(config) model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) def create_and_check_biogpt_for_token_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): config.num_labels = self.num_labels model = BioGptForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class BioGptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) all_generative_model_classes = (BioGptForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() and is_sacremoses_available() else {} ) test_pruning = False def setUp(self): self.model_tester = BioGptModelTester(self) self.config_tester = ConfigTester(self, config_class=BioGptConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_biogpt_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*config_and_inputs) def test_biogpt_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) def test_biogpt_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*config_and_inputs) def test_biogpt_weight_initialization(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*config_and_inputs) def test_biogpt_token_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*config_and_inputs) @slow def test_batch_generation(self): model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(torch_device) tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") tokenizer.padding_side = "left" # Define PAD Token = EOS Token = 50256 tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I", ] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) outputs = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) @slow def test_model_from_pretrained(self): model_name = "microsoft/biogpt" model = BioGptModel.from_pretrained(model_name) self.assertIsNotNone(model) # Copied from tests.models.opt.test_modeling_opt.OPTModelTest.test_opt_sequence_classification_model with OPT->BioGpt,opt->biogpt,prepare_config_and_inputs->prepare_config_and_inputs_for_common def test_biogpt_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = BioGptForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.opt.test_modeling_opt.OPTModelTest.test_opt_sequence_classification_model_for_multi_label with OPT->BioGpt,opt->biogpt,prepare_config_and_inputs->prepare_config_and_inputs_for_common def test_biogpt_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = BioGptForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("The `input_embeds` when fed don't produce the same results.") def test_beam_sample_generate(self): pass @require_torch class BioGptModelIntegrationTest(unittest.TestCase): @slow def test_inference_lm_head_model(self): model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") input_ids = torch.tensor([[2, 4805, 9, 656, 21]]) output = model(input_ids)[0] vocab_size = 42384 expected_shape = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_biogpt_generation(self): tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(torch_device) torch.manual_seed(0) tokenized = tokenizer("COVID-19 is", return_tensors="pt").to(torch_device) output_ids = model.generate( **tokenized, min_length=100, max_length=1024, num_beams=5, early_stopping=True, ) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) EXPECTED_OUTPUT_STR = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/imagegpt/test_image_processing_imagegpt.py
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class ImageGPTImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, ): size = size if size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize def prepare_image_processor_dict(self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } def expected_output_image_shape(self, images): return (self.size["height"] * self.size["width"],) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class ImageGPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ImageGPTImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ImageGPTImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "clusters")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_normalize")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) def test_image_processor_to_json_string(self): image_processor = self.image_processing_class(**self.image_processor_dict) obj = json.loads(image_processor.to_json_string()) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(value, obj[key])) else: self.assertEqual(obj[key], value) def test_image_processor_to_json_file(self): image_processor_first = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "image_processor.json") image_processor_first.to_json_file(json_file_path) image_processor_second = self.image_processing_class.from_json_file(json_file_path).to_dict() image_processor_first = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(value, image_processor_second[key])) else: self.assertEqual(image_processor_first[key], value) def test_image_processor_from_and_save_pretrained(self): image_processor_first = self.image_processing_class(**self.image_processor_dict) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(tmpdirname) image_processor_second = self.image_processing_class.from_pretrained(tmpdirname).to_dict() image_processor_first = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(value, image_processor_second[key])) else: self.assertEqual(image_processor_first[key], value) @unittest.skip("ImageGPT requires clusters at initialization") def test_init_without_params(self): pass # Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) ) # Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images) self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape) ) @unittest.skip("ImageGPT assumes clusters for 3 channels") def test_call_numpy_4_channels(self): pass # Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape)) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids self.assertEqual( tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape), ) def prepare_images(): # we use revision="refs/pr/1" until the PR is merged # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1 dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1") image1 = dataset[4]["image"] image2 = dataset[5]["image"] images = [image1, image2] return images @require_vision @require_torch class ImageGPTImageProcessorIntegrationTest(unittest.TestCase): @slow def test_image(self): image_processing = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") images = prepare_images() # test non-batched encoding = image_processing(images[0], return_tensors="pt") self.assertIsInstance(encoding.input_ids, torch.LongTensor) self.assertEqual(encoding.input_ids.shape, (1, 1024)) expected_slice = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist(), expected_slice) # test batched encoding = image_processing(images, return_tensors="pt") self.assertIsInstance(encoding.input_ids, torch.LongTensor) self.assertEqual(encoding.input_ids.shape, (2, 1024)) expected_slice = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist(), expected_slice)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/imagegpt/test_modeling_imagegpt.py
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import inspect import os import tempfile import unittest from transformers import ImageGPTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel, ) if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class ImageGPTModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = None def get_large_model_config(self): return ImageGPTConfig.from_pretrained("imagegpt") def prepare_config_and_inputs( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): pixel_values = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config( gradient_checkpointing=gradient_checkpointing, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def get_config( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): return ImageGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_inner=self.intermediate_size, activation_function=self.hidden_act, resid_pdrop=self.hidden_dropout_prob, attn_pdrop=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, use_cache=True, gradient_checkpointing=gradient_checkpointing, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 513 config.max_position_embeddings = 1024 return config def prepare_config_and_inputs_for_decoder(self): ( config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, pixel_values, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_imagegpt_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args): model = ImageGPTModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values, token_type_ids=token_type_ids, head_mask=head_mask) result = model(pixel_values, token_type_ids=token_type_ids) result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_lm_head_model(self, config, pixel_values, input_mask, head_mask, token_type_ids, *args): model = ImageGPTForCausalImageModeling(config) model.to(torch_device) model.eval() labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) result = model(pixel_values, token_type_ids=token_type_ids, labels=labels) self.parent.assertEqual(result.loss.shape, ()) # ImageGPTForCausalImageModeling doens't have tied input- and output embeddings self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size - 1)) def create_and_check_imagegpt_for_image_classification( self, config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels model = ImageGPTForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class ImageGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel) if is_torch_available() else () ) all_generative_model_classes = (ImageGPTForCausalImageModeling,) if is_torch_available() else () pipeline_model_mapping = ( {"image-feature-extraction": ImageGPTModel, "image-classification": ImageGPTForImageClassification} if is_torch_available() else {} ) test_missing_keys = False input_name = "pixel_values" # as ImageGPTForImageClassification isn't included in any auto mapping, we add labels here def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "ImageGPTForImageClassification": inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict # we overwrite the _check_scores method of GenerationTesterMixin, as ImageGPTForCausalImageModeling doesn't have tied input- and output embeddings def _check_scores(self, batch_size, scores, length, config): expected_shape = (batch_size, config.vocab_size - 1) self.assertIsInstance(scores, tuple) self.assertEqual(len(scores), length) self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores)) def setUp(self): self.model_tester = ImageGPTModelTester(self) self.config_tester = ConfigTester(self, config_class=ImageGPTConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_imagegpt_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_imagegpt_model(*config_and_inputs) def test_imagegpt_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_imagegpt_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_imagegpt_for_image_classification(*config_and_inputs) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @slow def test_model_from_pretrained(self): model_name = "openai/imagegpt-small" model = ImageGPTModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_ids"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_resize_tokens_embeddings(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_resize_embeddings_untied(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["pixel_values"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) pixel_values = inputs["pixel_values"] del inputs["pixel_values"] wte = model.get_input_embeddings() inputs["inputs_embeds"] = wte(pixel_values) with torch.no_grad(): model(**inputs)[0] # override because ImageGPT main input name is `pixel_values` # NOTE: in latest transformers this is deprecated, `input_ids` should be used. TODO def test_inputs_embeds_matches_input_ids(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) with torch.no_grad(): out_ids = model(**inputs)[0] pixel_values = inputs["pixel_values"] del inputs["pixel_values"] wte = model.get_input_embeddings() inputs["inputs_embeds"] = wte(pixel_values) with torch.no_grad(): out_embeds = model(**inputs)[0] self.assertTrue(torch.allclose(out_embeds, out_ids)) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) try: pixel_values = inputs["pixel_values"] traced_model = torch.jit.trace(model, pixel_values) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): if layer_name in loaded_model_state_dict: p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ImageGPTModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") if is_vision_available() else None @slow def test_inference_causal_lm_head(self): model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1024, 512)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor( [[2.3445, 2.6889, 2.7313], [1.0530, 1.2416, 0.5699], [0.2205, 0.7749, 0.3953]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4))
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/mvp/test_tokenization_mvp.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class TestTokenizationMvp(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "RUCAIBox/mvp" tokenizer_class = MvpTokenizer rust_tokenizer_class = MvpTokenizerFast test_rust_tokenizer = True from_pretrained_filter = filter_roberta_detectors # from_pretrained_kwargs = {'add_prefix_space': True} def setUp(self): super().setUp() vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): return "lower newer", "lower newer" @cached_property def default_tokenizer(self): return MvpTokenizer.from_pretrained("RUCAIBox/mvp") @cached_property def default_tokenizer_fast(self): return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp") @require_torch def test_prepare_batch(self): src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer(src_text, max_length=len(expected_src_tokens), padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) self.assertEqual((2, 9), batch.input_ids.shape) self.assertEqual((2, 9), batch.attention_mask.shape) result = batch.input_ids.tolist()[0] self.assertListEqual(expected_src_tokens, result) # Test that special tokens are reset @require_torch def test_prepare_batch_empty_target_text(self): src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer(src_text, padding=True, return_tensors="pt") # check if input_ids are returned and no labels self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertNotIn("labels", batch) self.assertNotIn("decoder_attention_mask", batch) @require_torch def test_tokenizer_as_target_length(self): tgt_text = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: targets = tokenizer(text_target=tgt_text, max_length=32, padding="max_length", return_tensors="pt") self.assertEqual(32, targets["input_ids"].shape[1]) @require_torch def test_prepare_batch_not_longer_than_maxlen(self): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: batch = tokenizer( ["I am a small frog" * 1024, "I am a small frog"], padding=True, truncation=True, return_tensors="pt" ) self.assertIsInstance(batch, BatchEncoding) self.assertEqual(batch.input_ids.shape, (2, 1024)) @require_torch def test_special_tokens(self): src_text = ["A long paragraph for summarization."] tgt_text = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") input_ids = inputs["input_ids"] labels = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]), sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"]) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/mvp/test_modeling_mvp.py
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MVP model. """ import copy import tempfile import unittest import timeout_decorator # noqa from transformers import MvpConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpTokenizer, ) from transformers.models.mvp.modeling_mvp import MvpDecoder, MvpEncoder, shift_tokens_right def prepare_mvp_inputs_dict( config, input_ids, decoder_input_ids=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class MvpModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_mvp_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return MvpConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def get_pipeline_config(self): config = self.get_config() config.max_position_embeddings = 100 config.vocab_size = 300 return config def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = MvpModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = MvpModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = MvpEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = MvpDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class MvpHeadTests(unittest.TestCase): vocab_size = 99 def _get_config_and_data(self): input_ids = torch.tensor( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=torch.long, device=torch_device, ) batch_size = input_ids.shape[0] config = MvpConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def test_sequence_classification_forward(self): config, input_ids, batch_size = self._get_config_and_data() labels = _long_tensor([2] * batch_size).to(torch_device) config.num_labels = 3 model = MvpForSequenceClassification(config) model.to(torch_device) outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=labels) expected_shape = torch.Size((batch_size, config.num_labels)) self.assertEqual(outputs["logits"].shape, expected_shape) self.assertIsInstance(outputs["loss"].item(), float) def test_question_answering_forward(self): config, input_ids, batch_size = self._get_config_and_data() sequence_labels = ids_tensor([batch_size], 2).to(torch_device) model = MvpForQuestionAnswering(config) model.to(torch_device) outputs = model( input_ids=input_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.assertEqual(outputs["start_logits"].shape, input_ids.shape) self.assertEqual(outputs["end_logits"].shape, input_ids.shape) self.assertIsInstance(outputs["loss"].item(), float) @timeout_decorator.timeout(1) def test_lm_forward(self): config, input_ids, batch_size = self._get_config_and_data() lm_labels = ids_tensor([batch_size, input_ids.shape[1]], self.vocab_size).to(torch_device) lm_model = MvpForConditionalGeneration(config) lm_model.to(torch_device) outputs = lm_model(input_ids=input_ids, labels=lm_labels) expected_shape = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) self.assertIsInstance(outputs["loss"].item(), float) def test_lm_uneven_forward(self): config = MvpConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lm_model = MvpForConditionalGeneration(config).to(torch_device) context = torch.tensor( [[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], device=torch_device, dtype=torch.long ) summary = torch.tensor([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], device=torch_device, dtype=torch.long) outputs = lm_model(input_ids=context, decoder_input_ids=summary, labels=summary) expected_shape = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) def test_generate_beam_search(self): input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], device=torch_device, dtype=torch.long) config = MvpConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) lm_model = MvpForConditionalGeneration(config).to(torch_device) lm_model.eval() max_length = 5 generated_ids = lm_model.generate( input_ids.clone(), do_sample=True, num_return_sequences=1, num_beams=2, no_repeat_ngram_size=3, max_length=max_length, ) self.assertEqual(generated_ids.shape, (input_ids.shape[0], max_length)) def test_shift_tokens_right(self): input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long) shifted = shift_tokens_right(input_ids, 1, 2) n_pad_before = input_ids.eq(1).float().sum() n_pad_after = shifted.eq(1).float().sum() self.assertEqual(shifted.shape, input_ids.shape) self.assertEqual(n_pad_after, n_pad_before - 1) self.assertTrue(torch.eq(shifted[:, 0], 2).all()) @slow def test_tokenization(self): tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") examples = [" Hello world", " DomDramg"] # need leading spaces for equality fairseq_results = [ torch.tensor([0, 20920, 232, 2]), torch.tensor([0, 11349, 495, 4040, 571, 2]), ] for ex, desired_result in zip(examples, fairseq_results): mvp_toks = tokenizer.encode(ex, return_tensors="pt").squeeze() assert_tensors_close(desired_result.long(), mvp_toks, prefix=ex) @require_torch_fp16 def test_generate_fp16(self): config, input_ids, batch_size = self._get_config_and_data() attention_mask = input_ids.ne(1).to(torch_device) model = MvpForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_dummy_inputs(self): config, *_ = self._get_config_and_data() model = MvpForConditionalGeneration(config).eval().to(torch_device) model(**model.dummy_inputs) def test_resize_tokens_embeddings_more(self): config, input_ids, _ = self._get_config_and_data() def _get_embs(m): return (m.get_input_embeddings().weight.data.clone(), m.get_output_embeddings().weight.data.clone()) model = MvpForConditionalGeneration(config).eval().to(torch_device) input, output = _get_embs(model) self.assertTrue(torch.eq(input, output).all()) new_vocab_size = 45 model.resize_token_embeddings(new_vocab_size) input_new, output_new = _get_embs(model) self.assertEqual(input_new.shape, (new_vocab_size, config.d_model)) self.assertEqual(output_new.shape, (new_vocab_size, config.d_model)) self.assertTrue(torch.eq(input_new, output_new).all()) @require_torch class MvpModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (MvpModel, MvpForConditionalGeneration, MvpForSequenceClassification, MvpForQuestionAnswering) if is_torch_available() else () ) all_generative_model_classes = (MvpForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": MvpForConditionalGeneration, "feature-extraction": MvpModel, "fill-mask": MvpForConditionalGeneration, "question-answering": MvpForQuestionAnswering, "summarization": MvpForConditionalGeneration, "text-classification": MvpForSequenceClassification, "text-generation": MvpForCausalLM, "text2text-generation": MvpForConditionalGeneration, "translation": MvpForConditionalGeneration, "zero-shot": MvpForSequenceClassification, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = False test_pruning = False test_missing_keys = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = MvpModelTester(self) self.config_tester = ConfigTester(self, config_class=MvpConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) # MvpForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MvpModel, MvpForConditionalGeneration, MvpForQuestionAnswering): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = MvpForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) @require_torch @require_sentencepiece @require_tokenizers class MvpModelIntegrationTests(unittest.TestCase): @cached_property def default_tokenizer(self): return MvpTokenizer.from_pretrained("RUCAIBox/mvp") @slow def test_inference_no_head(self): model = MvpModel.from_pretrained("RUCAIBox/mvp").to(torch_device) input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = input_ids.ne(model.config.pad_token_id) with torch.no_grad(): output = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state expected_shape = torch.Size((1, 11, 1024)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[0.3461, 0.3624, 0.2689], [0.3461, 0.3624, 0.2689], [-0.1562, 1.1637, -0.3784]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3)) @slow def test_summarization_inference(self): model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp").to(torch_device) tok = self.default_tokenizer PGE_ARTICLE = """ Listen to local radio broadcasts for advertisements that reference casinos in your area.\nIf none are in your area, listen to national radio broadcasts for advertisements of casinos in other areas.\nNote the location that is mentioned in each advertisement that involves a casino.\nIf no locations are mentioned, note any additional contact information, such as a website or phone number. Use that information to find out where the casinos are.;\n,\n\nIf you learn about more than 1 casino on the radio, use the Internet to search the distance between your location and each casino. Sites such as maps.google.com or mapquest.com will help you in this search.'""" # fmt: skip EXPECTED_SUMMARY = "Listen to the radio.\nUse the Internet." dct = tok.batch_encode_plus( [PGE_ARTICLE], return_tensors="pt", ).to(torch_device) hypotheses_batch = model.generate(**dct) decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True) self.assertEqual(EXPECTED_SUMMARY, decoded[0]) class MvpStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = MvpConfig( vocab_size=self.vocab_size, d_model=self.d_model, encoder_layers=self.decoder_layers, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, attention_mask, lm_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.decoder_seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = MvpDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = MvpDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class MvpStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (MvpDecoder, MvpForCausalLM) if is_torch_available() else () all_generative_model_classes = (MvpForCausalLM,) if is_torch_available() else () fx_comptatible = True test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = MvpStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=MvpConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/xglm/test_modeling_flax_xglm.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import transformers from transformers import XGLMConfig, XGLMTokenizer, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, require_sentencepiece, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp import numpy as np from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.xglm.modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel if is_torch_available(): import torch @require_flax class FlaxXGLMModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, d_model=32, num_hidden_layers=2, num_attention_heads=4, ffn_dim=37, activation_function="gelu", activation_dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = d_model self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.ffn_dim = ffn_dim self.activation_function = activation_function self.activation_dropout = activation_dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = None self.bos_token_id = 0 self.eos_token_id = 2 self.pad_token_id = 1 def prepare_config_and_inputs(self): input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length], self.vocab_size), 3, self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, ) return (config, input_ids, input_mask) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def prepare_config_and_inputs_for_decoder(self): config, input_ids, attention_mask = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4") position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], attention_mask=attention_mask, past_key_values=outputs_cache.past_key_values, position_ids=position_ids, ) outputs = model(input_ids) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask): max_decoder_length = 20 model = model_class_name(config) attention_mask_cache = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))], axis=-1, ) past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) position_ids = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) ) outputs_cache = model( input_ids[:, :-1], attention_mask=attention_mask_cache, past_key_values=past_key_values, position_ids=position_ids, ) position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model( input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=attention_mask_cache, position_ids=position_ids, ) outputs = model(input_ids, attention_mask=attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_sentencepiece @require_flax class FlaxXGLMModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): all_model_classes = (FlaxXGLMModel, FlaxXGLMForCausalLM) if is_flax_available() else () all_generative_model_classes = (FlaxXGLMForCausalLM,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxXGLMModelTester(self) def test_use_cache_forward(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask) def test_use_cache_forward_with_attn_mask(self): for model_class_name in self.all_model_classes: config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( model_class_name, config, input_ids, attention_mask ) @slow def test_batch_generation(self): tokenizer = XGLMTokenizer.from_pretrained("XGLM", padding_side="left") inputs = tokenizer(["Hello this is a long string", "Hey"], return_tensors="np", padding=True, truncation=True) model = FlaxXGLMForCausalLM.from_pretrained("facebook/xglm-564M") model.config.num_beams = 1 model.config.do_sample = False jit_generate = jax.jit(model.generate) output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True) expected_string = [ "Hello this is a long string of questions, but I'm not sure if I'm", "Hey, I'm a newbie to the forum and I'", ] self.assertListEqual(output_string, expected_string) # overwrite from common since `attention_mask` in combination # with `causal_mask` behaves slighly differently @is_pt_flax_cross_test def test_equivalence_pt_to_flax(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) batch_size, seq_length = pt_inputs["input_ids"].shape rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): pt_inputs["attention_mask"][batch_idx, :start_index] = 0 pt_inputs["attention_mask"][batch_idx, start_index:] = 1 prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0 prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1 pt_model = pt_model_class(config).eval() # Flax models don't use the `use_cache` option and cache is not returned as a default. # So we disable `use_cache` here for PyTorch model. pt_model.config.use_cache = False fx_model = model_class(config, dtype=jnp.float32) fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) fx_model.params = fx_state with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs, pt_outputs): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True) fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple() self.assertEqual( len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs): self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4e-2) # overwrite from common since `attention_mask` in combination # with `causal_mask` behaves slighly differently @is_pt_flax_cross_test def test_equivalence_flax_to_pt(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning pt_model_class = getattr(transformers, pt_model_class_name) pt_model = pt_model_class(config).eval() pt_model.config.use_cache = False fx_model = model_class(config, dtype=jnp.float32) pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) batch_size, seq_length = pt_inputs["input_ids"].shape rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): pt_inputs["attention_mask"][batch_idx, :start_index] = 0 pt_inputs["attention_mask"][batch_idx, start_index:] = 1 prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0 prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).to_tuple() fx_outputs = fx_model(**prepared_inputs_dict).to_tuple() self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs, pt_outputs): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(tmpdirname) pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True) with torch.no_grad(): pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() self.assertEqual( len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded): self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("facebook/xglm-564M") outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs)
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/xglm/test_tokenization_xglm.py
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class XGLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "facebook/xglm-564M" tokenizer_class = XGLMTokenizer rust_tokenizer_class = XGLMTokenizerFast test_rust_tokenizer = True test_sentencepiece = True def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = XGLMTokenizer(SAMPLE_VOCAB, keep_accents=True) tokenizer.save_pretrained(self.tmpdirname) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<pad>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<s>") self.assertEqual(vocab_keys[1], "<pad>") self.assertEqual(len(vocab_keys), 1_008) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 1_008) def test_full_tokenizer(self): tokenizer = XGLMTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual( ids, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) @cached_property def big_tokenizer(self): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def test_picklable_without_disk(self): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SAMPLE_VOCAB, f.name) tokenizer = XGLMTokenizer(f.name, keep_accents=True) pickled_tokenizer = pickle.dumps(tokenizer) pickle.loads(pickled_tokenizer) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) @slow def test_tokenization_base_easy_symbols(self): symbols = "Hello World!" original_tokenizer_encodings = [2, 31227, 4447, 35] self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @slow def test_tokenization_base_hard_symbols(self): symbols = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) original_tokenizer_encodings = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: skip self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) @slow def test_tokenizer_integration(self): # fmt: off expected_encoding = { 'input_ids': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="facebook/xglm-564M", padding=False, )
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/xglm/test_modeling_xglm.py
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import gc import math import unittest from transformers import XGLMConfig, is_torch_available from transformers.testing_utils import ( require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import XGLMForCausalLM, XGLMModel, XGLMTokenizer class XGLMModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, d_model=32, num_hidden_layers=2, num_attention_heads=4, ffn_dim=37, activation_function="gelu", activation_dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = d_model self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.ffn_dim = ffn_dim self.activation_function = activation_function self.activation_dropout = activation_dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = None self.bos_token_id = 0 self.eos_token_id = 2 self.pad_token_id = 1 def get_large_model_config(self): return XGLMConfig.from_pretrained("facebook/xglm-564M") def prepare_config_and_inputs( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config(gradient_checkpointing=gradient_checkpointing) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, ) def get_config( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, gradient_checkpointing=gradient_checkpointing, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_xglm_model(self, config, input_ids, input_mask, head_mask, *args): model = XGLMModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, head_mask=head_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.num_hidden_layers) def create_and_check_xglm_model_past(self, config, input_ids, input_mask, head_mask, *args): model = XGLMModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_xglm_model_attention_mask_past(self, config, input_ids, input_mask, head_mask, *args): model = XGLMModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.zeros((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_xglm_model_past_large_inputs(self, config, input_ids, input_mask, head_mask, *args): model = XGLMModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, attention_mask=input_mask, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=1) # append to next input_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past)[ "last_hidden_state" ] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, *args): model = XGLMForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, head_mask, *args, gradient_checkpointing=False ): model = XGLMForCausalLM(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def create_and_check_xglm_weight_initialization(self, config, *args): model = XGLMModel(config) model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class XGLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (XGLMModel, XGLMForCausalLM) if is_torch_available() else () all_generative_model_classes = (XGLMForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": XGLMModel, "text-generation": XGLMForCausalLM} if is_torch_available() else {} ) fx_compatible = True test_missing_keys = False test_pruning = False def setUp(self): self.model_tester = XGLMModelTester(self) self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_xglm_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xglm_model(*config_and_inputs) def test_xglm_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xglm_model_past(*config_and_inputs) def test_xglm_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xglm_model_attention_mask_past(*config_and_inputs) def test_xglm_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xglm_model_past_large_inputs(*config_and_inputs) def test_xglm_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_xglm_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) def test_xglm_weight_initialization(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xglm_weight_initialization(*config_and_inputs) @slow def test_model_from_pretrained(self): model_name = "facebook/xglm-564M" model = XGLMModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.") def test_model_parallelism(self): super().test_model_parallelism() @require_torch class XGLMModelLanguageGenerationTest(unittest.TestCase): def tearDown(self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _test_lm_generate_xglm_helper( self, gradient_checkpointing=False, verify_outputs=True, ): model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M") if gradient_checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(torch_device) input_ids = torch.tensor([[2, 268, 9865]], dtype=torch.long, device=torch_device) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: skip output_ids = model.generate(input_ids, do_sample=False, num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].tolist(), expected_output_ids) @slow def test_batch_generation(self): model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M") model.to(torch_device) tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") tokenizer.padding_side = "left" # use different length sentences to test batching sentences = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) outputs = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), max_new_tokens=12 ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate(input_ids=inputs_non_padded, max_new_tokens=12) inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_new_tokens=12) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) @slow def test_lm_generate_xglm(self): self._test_lm_generate_xglm_helper() @slow def test_lm_generate_xglm_with_gradient_checkpointing(self): self._test_lm_generate_xglm_helper(gradient_checkpointing=True) @slow def test_xglm_sample(self): tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M") torch.manual_seed(0) tokenized = tokenizer("Today is a nice day and", return_tensors="pt") input_ids = tokenized.input_ids output_ids = model.generate(input_ids, do_sample=True, num_beams=1) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) EXPECTED_OUTPUT_STRS = [ # TODO: remove this once we move to torch 2.0 # torch 1.13.1 + cu116 "Today is a nice day and the sun is shining. A nice day with warm rainy", # torch 2.0 + cu117 "Today is a nice day and the water is still cold. We just stopped off for some fresh", ] self.assertIn(output_str, EXPECTED_OUTPUT_STRS) @slow def test_xglm_sample_max_time(self): tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") model = XGLMForCausalLM.from_pretrained("facebook/xglm-564M") model.to(torch_device) torch.manual_seed(0) tokenized = tokenizer("Today is a nice day and", return_tensors="pt") input_ids = tokenized.input_ids.to(torch_device) MAX_TIME = 0.15 start = datetime.datetime.now() model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME)) self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME)) start = datetime.datetime.now() model.generate(input_ids, do_sample=False, max_time=None, max_length=256) duration = datetime.datetime.now() - start self.assertGreater(duration, datetime.timedelta(seconds=1.25 * MAX_TIME)) @require_torch_accelerator @require_torch_fp16 def test_batched_nan_fp16(self): model_name = "facebook/xglm-564M" tokenizer = XGLMTokenizer.from_pretrained(model_name, use_fast=False, padding_side="left") model = XGLMForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).to(torch_device) model = model.eval() batch = tokenizer(["Who are you?", "Joe Biden is the president of"], padding=True, return_tensors="pt") input_ids = batch["input_ids"].to(torch_device) attention_mask = batch["attention_mask"].to(torch_device) with torch.no_grad(): outputs = model(input_ids, attention_mask=attention_mask) self.assertFalse( torch.isnan(outputs.logits[0]).any().item() ) # the first logits could contain NaNs if it fails
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/xglm/test_modeling_tf_xglm.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class TFXGLMModelTester: config_cls = XGLMConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, d_model=32, num_hidden_layers=2, num_attention_heads=4, ffn_dim=37, activation_function="gelu", activation_dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = d_model self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.ffn_dim = ffn_dim self.activation_function = activation_function self.activation_dropout = activation_dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = None self.bos_token_id = 0 self.eos_token_id = 2 self.pad_token_id = 1 def get_large_model_config(self): return XGLMConfig.from_pretrained("facebook/xglm-564M") def prepare_config_and_inputs(self): input_ids = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size), clip_value_min=0, clip_value_max=3 ) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() head_mask = floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, ) def get_config(self): return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=True, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class TFXGLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () all_generative_model_classes = (TFXGLMForCausalLM,) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) test_onnx = False test_missing_keys = False test_pruning = False def setUp(self): self.model_tester = TFXGLMModelTester(self) self.config_tester = ConfigTester(self, config_class=XGLMConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() @slow def test_model_from_pretrained(self): model_name = "facebook/xglm-564M" model = TFXGLMModel.from_pretrained(model_name) self.assertIsNotNone(model) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.") def test_resize_token_embeddings(self): super().test_resize_token_embeddings() @require_tf class TFXGLMModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_xglm(self, verify_outputs=True): model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") input_ids = tf.convert_to_tensor([[2, 268, 9865]], dtype=tf.int32) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other expected_output_ids = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: skip output_ids = model.generate(input_ids, do_sample=False, num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids) @slow def test_xglm_sample(self): tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") tf.random.set_seed(0) tokenized = tokenizer("Today is a nice day and", return_tensors="tf") input_ids = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0"): output_ids = model.generate(input_ids, do_sample=True, seed=[7, 0]) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) EXPECTED_OUTPUT_STR = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(output_str, EXPECTED_OUTPUT_STR) @slow def test_batch_generation(self): model = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-564M") tokenizer.padding_side = "left" # use different length sentences to test batching sentences = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] inputs = tokenizer(sentences, return_tensors="tf", padding=True) input_ids = inputs["input_ids"] outputs = model.generate(input_ids=input_ids, attention_mask=inputs["attention_mask"], max_new_tokens=12) inputs_non_padded = tokenizer(sentences[0], return_tensors="tf").input_ids output_non_padded = model.generate(input_ids=inputs_non_padded, max_new_tokens=12) inputs_padded = tokenizer(sentences[1], return_tensors="tf").input_ids output_padded = model.generate(input_ids=inputs_padded, max_new_tokens=12) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
0
mavonic_private_repos/transformers/tests/models
mavonic_private_repos/transformers/tests/models/speecht5/test_tokenization_speecht5.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the SpeechT5 tokenizers.""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speecht5 import SpeechT5Tokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class SpeechT5TokenizerTest(TokenizerTesterMixin, unittest.TestCase): from_pretrained_id = "microsoft/speecht5_asr" tokenizer_class = SpeechT5Tokenizer test_rust_tokenizer = False test_sentencepiece = True def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = SpeechT5Tokenizer(SAMPLE_VOCAB) mask_token = AddedToken("<mask>", lstrip=True, rstrip=False) tokenizer.mask_token = mask_token tokenizer.add_special_tokens({"mask_token": mask_token}) tokenizer.add_tokens(["<ctc_blank>"]) tokenizer.save_pretrained(self.tmpdirname) def get_input_output_texts(self, tokenizer): input_text = "this is a test" output_text = "this is a test" return input_text, output_text def get_numeric_input_output_texts(self): input_text = "I have $123.45 and owe €59.78. My balance is -₴876.90 and have 73% stocks in my company which equals to ₦72649201" output_text = "I have one hundred and twenty three point four five dollars and owe fifty nine point seven eight euros. My balance is minus eight hundred and seventy six point nine zero ukrainian hryvnia and have seventy three percent stocks in my company which equals to seventy two million six hundred and forty nine thousand two hundred and one nigerian naira" return input_text, output_text def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5): input_text, output_text = self.get_input_output_texts(tokenizer) ids = tokenizer.encode(output_text, add_special_tokens=False) text = tokenizer.decode(ids, clean_up_tokenization_spaces=False) return text, ids def test_tokenizer_normalization(self): tokenizer = self.get_tokenizer(normalize=True) input_text, expected_text = self.get_numeric_input_output_texts() input_ids = tokenizer.encode(input_text) output_text = tokenizer.decode(input_ids, skip_special_tokens=True) self.assertEqual(output_text, expected_text) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<pad>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<s>") self.assertEqual(vocab_keys[1], "<pad>") self.assertEqual(vocab_keys[-4], "œ") self.assertEqual(vocab_keys[-2], "<mask>") self.assertEqual(vocab_keys[-1], "<ctc_blank>") self.assertEqual(len(vocab_keys), 81) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 79) def test_add_tokens_tokenizer(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1) new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) tokens = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False ) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1) self.assertGreater(tokens[-3], tokens[-4]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-3], tokenizer.pad_token_id) def test_pickle_subword_regularization_tokenizer(self): pass def test_subword_regularization_tokenizer(self): pass def test_full_tokenizer(self): tokenizer = self.get_tokenizer(normalize=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't']) # fmt: skip self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual(tokens,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, 'n', 'i', 'n', 'e', 't', 'y', SPIECE_UNDERLINE, 't', 'w', 'o', SPIECE_UNDERLINE, 't', 'h', 'o', 'u', 's', 'a', 'n', 'd', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) # fmt: skip ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual(ids, [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 9, 10, 9, 5, 6, 22, 4, 6, 20, 8, 4, 6, 11, 8, 16, 12, 7, 9, 14, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26]) # fmt: skip back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual(back_tokens,[SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, 'n', 'i', 'n', 'e', 't', 'y', SPIECE_UNDERLINE, 't', 'w', 'o', SPIECE_UNDERLINE, 't', 'h', 'o', 'u', 's', 'a', 'n', 'd', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) # fmt: skip @slow def test_tokenizer_integration(self): # Use custom sequence because this tokenizer does not handle numbers. sequences = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off expected_encoding = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="microsoft/speecht5_asr", revision="c5ef64c71905caeccde0e4462ef3f9077224c524", sequences=sequences, ) def test_encode_decode(self): tokenizer = SpeechT5Tokenizer.from_pretrained("microsoft/speecht5_tts") tokens = tokenizer.tokenize("a = b") self.assertEqual(tokens, ["▁", "a", "▁", "=", "▁", "b"]) # the `'='` is unknown. ids = tokenizer.convert_tokens_to_ids(tokens) self.assertEqual(ids, [4, 7, 4, 3, 4, 25]) # let's make sure decoding with the special unknown tokens preserves spaces ids = tokenizer.encode("a = b") self.assertEqual(tokenizer.decode(ids), "a <unk> b</s>")
0