Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code: DatasetGenerationError Exception: ArrowNotImplementedError Message: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field. Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 620, in write_table self._build_writer(inferred_schema=pa_table.schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 441, in _build_writer self.pa_writer = self._WRITER_CLASS(self.stream, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__ self.writer = _parquet.ParquetWriter( File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__ File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1886, in _prepare_split_single num_examples, num_bytes = writer.finalize() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 639, in finalize self._build_writer(self.schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 441, in _build_writer self.pa_writer = self._WRITER_CLASS(self.stream, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 1010, in __init__ self.writer = _parquet.ParquetWriter( File "pyarrow/_parquet.pyx", line 2157, in pyarrow._parquet.ParquetWriter.__cinit__ File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Cannot write struct type '_format_kwargs' with no child field to Parquet. Consider adding a dummy child field. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1415, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 991, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1897, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
_data_files
list | _fingerprint
string | _format_columns
null | _format_kwargs
dict | _format_type
null | _output_all_columns
bool | _split
string |
---|---|---|---|---|---|---|
[
{
"filename": "data-00000-of-00001.arrow"
}
] | d2fc1d41241662f4 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1ca1dbd6feade49e | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a57e3d2a6697450c | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 370564e782888602 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0cba933f1ec66c47 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 47410490f493b0b7 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 635b953dc832bc9e | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 7a0573f7895828fd | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 05f0afe06287a8b9 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 2d9ded26fe15bb3c | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | e10dce7c57fff5fc | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 7bc143a19c8bd672 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 3424eaae5899aff5 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | dd03b08af7c741f0 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | bd447d9c0c07937c | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 4d38c5065f2835c9 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c82904d5f9145546 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | e015db97c386531f | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | cd59e05abe2e2770 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 82582bd1acafe54e | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | d6e8cdf69a975c6c | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b8d9aee3cb51e8ec | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 89c86d7962eb5349 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 448fb22e5b6e9437 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 8a31d772034e594d | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | bf4bc44c5506137d | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1830808a496b05b0 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b4f39ee806d37dba | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 092569f1a5fa5da7 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 81598779003040cd | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a5ee4f2288dd68c2 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a7ae048fa408e55b | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | f6b05008ee32a1c2 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a7811243097d0b37 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | adf62e125bcdf43c | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 6e04477dd131570a | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | d9428d77a54a3417 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0f97141fa83dcd69 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 195d9c76b61ad1ba | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0091bff4ab775848 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b40b8669ae8c0151 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | dbb24d351cefd93c | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 46dc20e77af7f3d7 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a0b9e81c75a569c2 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 5b746cb7f74951c4 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 06e92baf7ca98aac | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 81859e77ec5ac46a | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 802ee8413a54c0f2 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | d1060591a18c7e3d | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | db61d6cfb7c0cff2 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 92d4299278128179 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 4ea67ff9618a5289 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a50a612541420e61 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b4029290e293b141 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | bf55d5cb95c9b42f | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1e31571054a97e22 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 693a7e4cd6ec3838 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1364c5834ea64d66 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c110ff94fd2eb144 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1e285c7a2539b822 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | cf6db5d7af95eb5c | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b78dcdafd965a8b0 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | e0f299d9072b0173 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | df3745cff471f422 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c8e447b01b7a7204 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 43535714e59fc054 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 74ec277fc31deed5 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 2cabb1cc2de5e7b2 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 2e8a31c303f94634 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 40b9640a4fbad092 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | bf4bc44c5506137d | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1830808a496b05b0 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b4f39ee806d37dba | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c8e5c971afce1800 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 850515dece29d5e2 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 4ba04be56fe66a01 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a7ae048fa408e55b | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 9a721ad0ec555b3c | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 221afc785d259124 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a7405808010f1f49 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | cebe0fcf6bb111a0 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 63cc5f8d1aa4dbd6 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 7417beef362cfdfd | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 593b72533491febc | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 0091bff4ab775848 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | b40b8669ae8c0151 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1952d80db9c5dade | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 46dc20e77af7f3d7 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 14a7894843aaa133 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 2e32fc88b0bafc44 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | c5f321c5d0a30c6a | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 96eb72fc74d65f61 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 1934cf17de150b07 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 497f8b996e0685d1 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 6c991446da772fc8 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | bbab5bb125261aba | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 42866f8d5638b798 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | 20e23af0abaddcc6 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | e0c605c1d4751255 | null | {} | null | false | train |
[
{
"filename": "data-00000-of-00001.arrow"
}
] | a1b5694c0b0e19bc | null | {} | null | false | train |
End of preview.
TSFM-ScalingLaws-Dataset
This is the dataset for the paper Towards Neural Scaling Laws for Time Series Foundation Models.
Code: https://github.com/Qingrenn/TSFM-ScalingLaws
Well-trained models: https://huggingface.co/PeacefulData/TSFM-ScalingLaws-Checkpoints
Dataset Summary
Domain | Transport | Climate | Energy | Cloud | Health | Sales | Web | Total |
---|---|---|---|---|---|---|---|---|
Datasets | 8 | 2 | 14 | 3 | 9 | 1 | 2 | 39 |
Time Points | 4.82B | 4.73B | 4.76B | 2.15B | 232M | 140M | 40M | 16.8B |
Proportion | 28.52% | 28.06% | 28.21% | 12.76% | 1.38% | 0.83% | 0.24% | 100% |
Dataset Details
Dataset | Domain | Timepoint | SequenceNum | Proportion |
---|---|---|---|---|
cmip6_1850 | Climate | 1435238400 | 196608 | 0.085 |
cmip6_1855 | Climate | 1435238400 | 196608 | 0.085 |
era5_1990 | Climate | 930349056 | 106496 | 0.055 |
era5_1989 | Climate | 930349056 | 106496 | 0.055 |
azure_vm_traces_2017 | Cloud | 885522908 | 159472 | 0.052 |
alibaba_cluster_trace_2018 | Cloud | 190385060 | 116818 | 0.011 |
borg_cluster_data_2011 | Cloud | 1075105708 | 286772 | 0.063 |
PEMS07 | Energy | 24921792 | 883 | 0.0014 |
elf | Energy | 21792 | 1 | 1.29e-06 |
bdg-2_panther | Energy | 919800 | 105 | 5.45e-05 |
buildings_900k | Energy | 4718473097 | 538577 | 0.27 |
solar_power | Energy | 7397222 | 1 | 0.00043 |
gfc17_load | Energy | 140352 | 8 | 8.32e-06 |
gfc14_load | Energy | 17520 | 1 | 1.039-06 |
bdg-2_bear | Energy | 1482312 | 91 | 8.79e-05 |
bdg-2_fox | Energy | 2324568 | 135 | 0.00013 |
elecdemand | Energy | 17520 | 1 | 1.039e-06 |
covid19_energy | Energy | 31912 | 1 | 1.89e-06 |
spain | Energy | 35064 | 1 | 2.079e-06 |
australian_electricity_demand | Energy | 1153584 | 5 | 6.84e-05 |
pdb | Energy | 17520 | 1 | 1.039e-06 |
sceaux | Energy | 34223 | 1 | 2.029e-06 |
AtrialFibrillation | Health | 38400 | 60 | 2.27e-06 |
SelfRegulationSCP2 | Health | 3064320 | 2660 | 0.00018 |
SelfRegulationSCP1 | Health | 3015936 | 3366 | 0.00017 |
IEEEPPG | Health | 15480000 | 15480 | 0.00091 |
TDBrain | Health | 73299996 | 28644 | 0.0043 |
BIDMC32HR | Health | 63592000 | 15898 | 0.0037 |
PigCVP | Health | 624000 | 312 | 3.7009e-05 |
PigArtPressure | Health | 624000 | 312 | 3.7009e-05 |
MotorImagery | Health | 72576000 | 24192 | 0.0043 |
favorita_sales | Sales | 139179538 | 111840 | 0.0082 |
largest_2019 | Transport | 904032000 | 8600 | 0.053 |
largest_2021 | Transport | 898565760 | 8548 | 0.053 |
PEMS04 | Transport | 15649632 | 921 | 0.00092 |
largest_2020 | Transport | 902397888 | 8561 | 0.053 |
largest_2017 | Transport | 861563520 | 8196 | 0.051 |
PEMS_BAY | Transport | 16941600 | 325 | 0.0010 |
traffic_weekly | Transport | 82752 | 862 | 4.90e-06 |
Q-TRAFFIC | Transport | 264386688 | 45148 | 0.015 |
largest_2018 | Transport | 885951360 | 8428 | 0.052 |
LOOP_SEATTLE | Transport | 33953760 | 323 | 0.0020 |
PEMS08 | Transport | 9106560 | 510 | 0.00054 |
kaggle_web_traffic_weekly | Web | 16537182 | 145063 | 0.00098 |
wiki-rolling_nips | Web | 40619100 | 47675 | 0.0024 |
- Downloads last month
- 4,744