|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
from seacrowd.utils import schemas |
|
import csv |
|
|
|
_CITATION = """\ |
|
@article{nurlaila2018classification, |
|
title={CLASSIFICATION OF CUSTOMERS EMOTION USING NA{\"I}VE BAYES CLASSIFIER (Case Study: Natasha Skin Care)}, |
|
author={Nurlaila, Afifah and Wiranto, Wiranto and Saptono, Ristu}, |
|
journal={ITSMART: Jurnal Teknologi dan Informasi}, |
|
volume={6}, |
|
number={2}, |
|
pages={92--97}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "sentiment_nathasa_review" |
|
|
|
_DESCRIPTION = """\ |
|
Customer Review (Natasha Skincare) is a customers emotion dataset, with amounted to 19,253 samples with the division for each class is 804 joy, 43 surprise, 154 anger, 61 fear, 287 sad, 167 disgust, and 17736 no-emotions. |
|
""" |
|
|
|
_HOMEPAGE = "https://jurnal.uns.ac.id/itsmart/article/viewFile/17328/15082" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://drive.google.com/uc?id=1D1pHX7CxrI-eIl2bAvIp1bWQeucyUGw0", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
class SentimentNathasaReview(datasets.GeneratorBasedBuilder): |
|
"""Customer Review (Natasha Skincare) is a customers emotion dataset, with amounted to 19,253 samples with the division for each class is 804 joy, 43 surprise, 154 anger, 61 fear, 287 sad, 167 disgust, and 17736 no-emotions.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="sentiment_nathasa_review_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="sentiment_nathasa_review source schema", |
|
schema="source", |
|
subset_id="sentiment_nathasa_review", |
|
), |
|
SEACrowdConfig( |
|
name="sentiment_nathasa_review_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="sentiment_nathasa_review Nusantara schema", |
|
schema="seacrowd_text", |
|
subset_id="sentiment_nathasa_review", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "sentiment_nathasa_review_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"usr": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(['NOEMOTION', 'SURPRISE', 'SAD', 'JOY', 'FEAR', 'DISGUST', 'ANGER']) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
data_dir = Path(dl_manager.download(_URLS[_DATASETNAME])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
if self.config.schema == "source": |
|
with open(filepath, "r") as F: |
|
csvreader = csv.reader(F) |
|
for row in csvreader: |
|
try: |
|
row_data = eval(row[0].replace(';',','))[0] |
|
except: |
|
continue |
|
if split == "train" and row_data[3] == "DATA LATIH": |
|
ex = { |
|
"id": row_data[0], |
|
"usr": row_data[1], |
|
"text": row_data[4], |
|
"label": row_data[2], |
|
} |
|
yield row_data[0], ex |
|
elif split == "test" and row_data[3] == "DATA UJI": |
|
ex = { |
|
"id": row_data[0], |
|
"usr": row_data[1], |
|
"text": row_data[4], |
|
"label": row_data[2], |
|
} |
|
yield row_data[0], ex |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
with open(filepath, "r") as F: |
|
csvreader = csv.reader(F) |
|
for row in csvreader: |
|
try: |
|
row_data = eval(row[0].replace(';',','))[0] |
|
except: |
|
continue |
|
if split == "train" and row_data[3] == "DATA LATIH": |
|
ex = { |
|
"id": row_data[0], |
|
"text": row_data[4], |
|
"label": row_data[2], |
|
} |
|
yield row_data[0], ex |
|
elif split == "test" and row_data[3] == "DATA UJI": |
|
ex = { |
|
"id": row_data[0], |
|
"text": row_data[4], |
|
"label": row_data[2], |
|
} |
|
yield row_data[0], ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|