Datasets:

Languages:
Vietnamese
ArXiv:
License:
vihealthqa / vihealthqa.py
holylovenia's picture
Upload vihealthqa.py with huggingface_hub
9ec4ec7 verified
# coding=utf-8
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@InProceedings{nguyen2022viheathqa,
author="Nguyen, Nhung Thi-Hong
and Ha, Phuong Phan-Dieu
and Nguyen, Luan Thanh
and Van Nguyen, Kiet
and Nguyen, Ngan Luu-Thuy",
title="SPBERTQA: A Two-Stage Question Answering System Based on Sentence Transformers for Medical Texts",
booktitle="Knowledge Science, Engineering and Management",
year="2022",
publisher="Springer International Publishing",
address="Cham",
pages="371--382",
isbn="978-3-031-10986-7"
}
"""
_DATASETNAME = "vihealthqa"
_DESCRIPTION = """\
Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer
pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly
selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that
was automatically translated from English to Vietnamese.
"""
_HOMEPAGE = "https://huggingface.co/datasets/tarudesu/ViHealthQA"
_LANGUAGES = ["vie"]
_LICENSE = Licenses.UNKNOWN.value
_PAPER_URL = "https://link.springer.com/chapter/10.1007/978-3-031-10986-7_30"
_LOCAL = False
_URLS = {
"vihealthqa": {
"train": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/train.csv",
"val": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/val.csv",
"test": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/test.csv",
}
}
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class ViHealthQADataset(datasets.GeneratorBasedBuilder):
'''
This is a SeaCrowed dataloader for dataset Vietnamese Visual Question Answering (ViVQA), which consists of 10328 images and 15000 question-answer
pairs in Vietnamese for evaluating Vietnamese VQA models.
'''
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_qa",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_qa",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"link": datasets.Value("string")
}
)
elif self.config.schema == "seacrowd_qa":
features = schemas.qa_features
features["meta"] = {"link": datasets.Value("string")}
else:
raise ValueError(f"No schema matched for {self.config.schema}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS["vihealthqa"]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["val"],
"split": "val",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
raw_examples = pd.read_csv(filepath)
for eid, exam in raw_examples.iterrows():
assert len(exam) == 4
exam_id, exam_quest, exam_answer, exam_link = exam
if self.config.schema == "source":
yield eid, {"id": str(exam_id), "question": exam_quest, "answer": exam_answer, "link": exam_link}
elif self.config.schema == "seacrowd_qa":
yield eid, {
"id": str(eid),
"question_id": exam_id,
"document_id": str(eid),
"question": exam_quest,
"type": None,
"choices": [],
"context": exam_link,
"answer": [exam_answer],
"meta": {
"link": exam_link,
},
}