|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@InProceedings{nguyen2022viheathqa, |
|
author="Nguyen, Nhung Thi-Hong |
|
and Ha, Phuong Phan-Dieu |
|
and Nguyen, Luan Thanh |
|
and Van Nguyen, Kiet |
|
and Nguyen, Ngan Luu-Thuy", |
|
title="SPBERTQA: A Two-Stage Question Answering System Based on Sentence Transformers for Medical Texts", |
|
booktitle="Knowledge Science, Engineering and Management", |
|
year="2022", |
|
publisher="Springer International Publishing", |
|
address="Cham", |
|
pages="371--382", |
|
isbn="978-3-031-10986-7" |
|
} |
|
""" |
|
_DATASETNAME = "vihealthqa" |
|
_DESCRIPTION = """\ |
|
Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer |
|
pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly |
|
selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that |
|
was automatically translated from English to Vietnamese. |
|
""" |
|
_HOMEPAGE = "https://huggingface.co/datasets/tarudesu/ViHealthQA" |
|
_LANGUAGES = ["vie"] |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_PAPER_URL = "https://link.springer.com/chapter/10.1007/978-3-031-10986-7_30" |
|
_LOCAL = False |
|
_URLS = { |
|
"vihealthqa": { |
|
"train": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/train.csv", |
|
"val": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/val.csv", |
|
"test": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/test.csv", |
|
} |
|
} |
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ViHealthQADataset(datasets.GeneratorBasedBuilder): |
|
''' |
|
This is a SeaCrowed dataloader for dataset Vietnamese Visual Question Answering (ViVQA), which consists of 10328 images and 15000 question-answer |
|
pairs in Vietnamese for evaluating Vietnamese VQA models. |
|
''' |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_qa", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"link": datasets.Value("string") |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
features["meta"] = {"link": datasets.Value("string")} |
|
else: |
|
raise ValueError(f"No schema matched for {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS["vihealthqa"] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["val"], |
|
"split": "val", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
raw_examples = pd.read_csv(filepath) |
|
|
|
for eid, exam in raw_examples.iterrows(): |
|
assert len(exam) == 4 |
|
exam_id, exam_quest, exam_answer, exam_link = exam |
|
|
|
if self.config.schema == "source": |
|
yield eid, {"id": str(exam_id), "question": exam_quest, "answer": exam_answer, "link": exam_link} |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
yield eid, { |
|
"id": str(eid), |
|
"question_id": exam_id, |
|
"document_id": str(eid), |
|
"question": exam_quest, |
|
"type": None, |
|
"choices": [], |
|
"context": exam_link, |
|
"answer": [exam_answer], |
|
"meta": { |
|
"link": exam_link, |
|
}, |
|
} |
|
|