Datasets:

Modalities:
Text
Formats:
csv
Languages:
Spanish
Libraries:
Datasets
pandas
License:

You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

COAR

Description

The COAR (Corpus of Restaurant Opinions) dataset is designed for research in the field of document-level polarity classification and is focused on the hospitality domain (tourism-hospitality). The corpus consists of 2202 opinions extracted from TripAdvisor, which are categorized on a scale of five levels of opinion intensity (1 (negative) - 5 (positive)). The number of opinions per class is as follows:

Rating 1 2 3 4 5 Total
#Opinions 565 246 188 333 870 2202

Citation

If you use the corpus in your research, please cite: Cross-Domain Sentiment Analysis Using Spanish Opinionated Words.

@inproceedings{molina2014cross,
  title={Cross-domain sentiment analysis using Spanish opinionated words},
  author={Molina-Gonz{\'a}lez, M Dolores and Mart{\'\i}nez-C{\'a}mara, Eugenio and Mart{\'\i}n-Valdivia, M Teresa and Urena-L{\'o}pez, L Alfonso},
  booktitle={Natural Language Processing and Information Systems: 19th International Conference on Applications of Natural Language to Information Systems, NLDB 2014, Montpellier, France, June 18-20, 2014. Proceedings 19},
  pages={214--219},
  year={2014},
  organization={Springer}
}

COAR

Descripción

Corpus de opiniones de restaurantes destinado a la investigación en el ámbito de la clasificación de la polaridad a nivel de documento, y se circunscribe en el dominio de alojamiento hostelero (turismo-hostelera). El corpus está formado por 2202 opiniones extraídas de TripAdvisor, las cuales están catalogadas en una escala de cinco niveles de intensidad de opinión (1 (negativo) - 5 (positivo)). El número de opiniones por clase es:

Puntuación 1 2 3 4 5 Total
#Opiniones 565 246 188 333 870 2202

Cita

Si utiliza el corpus en su investigación, por favor cite: Cross-Domain Sentiment Analysis Using Spanish Opinionated Words.

@inproceedings{molina2014cross,
  title={Cross-domain sentiment analysis using Spanish opinionated words},
  author={Molina-Gonz{\'a}lez, M Dolores and Mart{\'\i}nez-C{\'a}mara, Eugenio and Mart{\'\i}n-Valdivia, M Teresa and Urena-L{\'o}pez, L Alfonso},
  booktitle={Natural Language Processing and Information Systems: 19th International Conference on Applications of Natural Language to Information Systems, NLDB 2014, Montpellier, France, June 18-20, 2014. Proceedings 19},
  pages={214--219},
  year={2014},
  organization={Springer}
}
Downloads last month
32