hip_filename
stringlengths
5
84
hip_content
stringlengths
79
9.69M
cuda_filename
stringlengths
4
83
cuda_content
stringlengths
19
9.69M
fcd394853732933cc2ddcf59fa29d561f0263cb1.hip
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <iso646.h> #include <cstdio> #include <cstdint> #include <cstdlib> #include "SyncedMemory.h" #include "lab1.h" using namespace std; #define CHECK {\ auto e = hipDeviceSynchronize();\ if (e != hipSuccess) {\ printf("At " __FILE__ ":%d, %s\n", __LINE__, hipGetErrorString(e));\ abort();\ }\ } int main(int argc, char **argv) { Lab1VideoGenerator g; Lab1VideoInfo i; g.get_info(i); if (i.w == 0 | i.h == 0 | i.n_frame == 0 | i.fps_n == 0 | i.fps_d == 0) { puts("Cannot be zero"); abort(); } else if (i.w%2 != 0 | i.h%2 != 0) { puts("Only even frame size is supported"); abort(); } unsigned FRAME_SIZE = i.w*i.h*3/2; MemoryBuffer<uint8_t> frameb(FRAME_SIZE); auto frames = frameb.CreateSync(FRAME_SIZE); FILE *fp = fopen("result.y4m", "wb"); printf("start"); fprintf(fp, "YUV4MPEG2 W%d H%d F%d:%d Ip A1:1 C420\n", i.w, i.h, i.fps_n, i.fps_d); for (unsigned j = 0; j < i.n_frame; ++j) { fputs("FRAME\n", fp); g.Generate(frames.get_gpu_wo()); fwrite(frames.get_cpu_ro(), sizeof(uint8_t), FRAME_SIZE, fp); } fclose(fp); printf("end"); return 0; }
fcd394853732933cc2ddcf59fa29d561f0263cb1.cu
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include <stdio.h> #include <iso646.h> #include <cstdio> #include <cstdint> #include <cstdlib> #include "SyncedMemory.h" #include "lab1.h" using namespace std; #define CHECK {\ auto e = cudaDeviceSynchronize();\ if (e != cudaSuccess) {\ printf("At " __FILE__ ":%d, %s\n", __LINE__, cudaGetErrorString(e));\ abort();\ }\ } int main(int argc, char **argv) { Lab1VideoGenerator g; Lab1VideoInfo i; g.get_info(i); if (i.w == 0 | i.h == 0 | i.n_frame == 0 | i.fps_n == 0 | i.fps_d == 0) { puts("Cannot be zero"); abort(); } else if (i.w%2 != 0 | i.h%2 != 0) { puts("Only even frame size is supported"); abort(); } unsigned FRAME_SIZE = i.w*i.h*3/2; MemoryBuffer<uint8_t> frameb(FRAME_SIZE); auto frames = frameb.CreateSync(FRAME_SIZE); FILE *fp = fopen("result.y4m", "wb"); printf("start"); fprintf(fp, "YUV4MPEG2 W%d H%d F%d:%d Ip A1:1 C420\n", i.w, i.h, i.fps_n, i.fps_d); for (unsigned j = 0; j < i.n_frame; ++j) { fputs("FRAME\n", fp); g.Generate(frames.get_gpu_wo()); fwrite(frames.get_cpu_ro(), sizeof(uint8_t), FRAME_SIZE, fp); } fclose(fp); printf("end"); return 0; }
d654bdeca448d1a413a7cc87ccc3b4b7f18a965d.hip
// !!! This is a file automatically generated by hipify!!! /* * Discrete Cosine/Sine Transform(DCT/DST and IDCT/IDST one to four-all in one) * DCT/DST and IDCT/IDST I ---> IV * This CUDA code can handle/work with any type of the input mxArrays, * GPUarray or standard matlab CPU array as input {prhs[0] := mxGPUArray or CPU Array} * GpuArray/cpuArray output, B=Discrete_Transform(A, , type of Transform (sine or cosine), type of Transform(direct/inverse), type of DCT/DST or IDCT/IDST, dimensions). * Developed at UCL, Institute of Neurology, 12 Queen Square, WC1N 3AR, London * Wellcome Trust Centre for Neuroimaging * Part of the project SPM(http://www.fil.ion.ucl.ac.uk/spm) * Copyright 2018 * Kevin Bronik */ #include "matrix.h" #include "mex.h" #include "gpu/mxGPUArray.h" #include "CuFilesD/Discrete_Transform_kernel.cuh" #include "CuFilesD/DCT_I_Column.cu" #include "CuFilesD/DCT_I_Row.cu" #include "CuFilesD/DCT_I_Column_Inverse.cu" #include "CuFilesD/DCT_I_Row_Inverse.cu" #include "CuFilesD/DCT_II_Row.cu" #include "CuFilesD/DCT_II_Row_Inverse.cu" #include "CuFilesD/DCT_II_Column.cu" #include "CuFilesD/DCT_II_Column_Inverse.cu" #include "CuFilesD/DCT_III_Row.cu" #include "CuFilesD/DCT_III_Row_Inverse.cu" #include "CuFilesD/DCT_III_Column.cu" #include "CuFilesD/DCT_III_Column_Inverse.cu" #include "CuFilesD/DCT_IV_Row.cu" #include "CuFilesD/DCT_IV_Row_Inverse.cu" #include "CuFilesD/DCT_IV_Column.cu" #include "CuFilesD/DCT_IV_Column_Inverse.cu" #include "CuFilesD/DST_I_Column.cu" #include "CuFilesD/DST_I_Row.cu" #include "CuFilesD/DST_I_Column_Inverse.cu" #include "CuFilesD/DST_I_Row_Inverse.cu" #include "CuFilesD/DST_II_Row.cu" #include "CuFilesD/DST_II_Row_Inverse.cu" #include "CuFilesD/DST_II_Column.cu" #include "CuFilesD/DST_II_Column_Inverse.cu" #include "CuFilesD/DST_III_Row.cu" #include "CuFilesD/DST_III_Row_Inverse.cu" #include "CuFilesD/DST_III_Column.cu" #include "CuFilesD/DST_III_Column_Inverse.cu" #include "CuFilesD/DST_IV_Row.cu" #include "CuFilesD/DST_IV_Row_Inverse.cu" #include "CuFilesD/DST_IV_Column.cu" #include "CuFilesD/DST_IV_Column_Inverse.cu" //#include <math.h> #include <hip/hip_runtime.h> #include <hip/hip_runtime.h> #define DEFAULT_DIM 32 #define DELTA(i, j) ((i==j)?1:0) //#define TILE_DIM 16 unsigned int TILE_DIM=16; // DCT extern "C" void CalculateTransformDCTColumnOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseColumnOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTRowOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseRowOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTRowTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseRowTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTColumnTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseColumnTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTColumnThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseColumnThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTRowThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseRowThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTColumnFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseColumnFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTRowFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseRowFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); // DST extern "C" void CalculateTransformDSTColumnOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseColumnOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTRowOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseRowOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTRowTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseRowTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTColumnTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseColumnTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTColumnThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseColumnThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTRowThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseRowThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTColumnFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseColumnFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTRowFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseRowFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" static void mexTransD(int nlhs, mxArray *plhs[], int nrhs, mxArray const *prhs[]) { int nDevices; hipError_t errCode =hipGetDeviceCount(&nDevices); //int nDevices; //hipGetDeviceCount(&nDevices); if (errCode != hipSuccess){ printf("Error! No CUDA devices found! \n"); return; } char row[] = "row"; char column[] = "column"; char one[] = "one"; char two[] = "two"; char three[] = "three"; char four[] = "four"; char direct[] = "direct"; char inverse[] = "inverse"; char cosine[] = "cosine"; char sine[] = "sine"; char const * const InputErrMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float), and the number of input arguments must be five."; if ((nrhs!=5)) { mexErrMsgIdAndTxt("MATLAB:mexatexit:invalidInput", InputErrMsg); } char *input_buf0; input_buf0 = mxArrayToString(prhs[0]); char *input_buf1; input_buf1 = mxArrayToString(prhs[1]); char *input_buf2; input_buf2 = mxArrayToString(prhs[2]); char *input_buf3; input_buf3 = mxArrayToString(prhs[3]); char *input_buf4; input_buf4 = mxArrayToString(prhs[4]); if ((mxIsChar(prhs[0]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FIRST ARGUMENT) must be array, or gpuArray object not %s\n",input_buf0); } if (!(mxIsChar(prhs[1]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(SECOND ARGUMENT) must be of type string.\n."); } if (!(mxIsChar(prhs[2]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(THIRD ARGUMENT) must be of type string.\n."); } if (!(mxIsChar(prhs[3]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FOURTH ARGUMENT) must be of type string.\n."); } if (!(mxIsChar(prhs[4]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FIFTH ARGUMENT) must be of type string.\n."); } if ((strcmp (cosine,input_buf1) != 0) &&(strcmp (sine,input_buf1) != 0) ) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(SECOND ARGUMENT) must be 'cosine' or 'sine' not %s\n",input_buf1); } if ((strcmp (direct,input_buf2) != 0)&& (strcmp (inverse,input_buf2) != 0) ) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(THIRD ARGUMENT) must be 'direct' or 'inverse' not %s\n",input_buf2); } if ((strcmp (one,input_buf3) != 0)&& (strcmp (two,input_buf3) != 0) && (strcmp (three,input_buf3) != 0) && (strcmp (four,input_buf3) != 0)) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FOURTH ARGUMENT) must be 'one' or 'two' or 'three' or 'four' not %s\n",input_buf3); } if ((strcmp (column,input_buf4) != 0)&&(strcmp (row,input_buf4) != 0)) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FIFTH ARGUMENT) must be 'column' or 'row' not %s\n",input_buf4); } //COSINE TRANSFORM if (strcmp (cosine,input_buf1) == 0) { if (strcmp (direct,input_buf2) == 0) { if (strcmp (column,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); hipError_t error; int devID = 0; error = hipGetDevice(&devID); hipDeviceProp_t deviceProp; error = hipGetDeviceProperties(&deviceProp, devID); if (error != hipSuccess) { printf("hipGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Discrete Cosine Transform in row wise \n"); return; } char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Discrete Cosine Transform in row wise \n"); return; } mxInitGPU(); float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer =(float*) mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDCTColumnOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDCTColumnTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDCTColumnThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDCTColumnFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } if (strcmp (row,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); hipError_t error; int devID = 0; error = hipGetDevice(&devID); hipDeviceProp_t deviceProp; error = hipGetDeviceProperties(&deviceProp, devID); if (error != hipSuccess) { printf("hipGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); if (numAColumns==1) { printf("Attention, this is a column vector, please try Discrete Cosine Transform in column wise \n"); return; } numCRows = numARows; numCColumns = numAColumns; char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; float * hostA ; // The A matrix if (numAColumns==1) { printf("Attention, this is a column vector, please try Discrete Cosine Transform in column wise \n"); return; } mxInitGPU(); hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDCTRowOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDCTRowTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDCTRowThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDCTRowFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } } if (strcmp (inverse,input_buf2) == 0) { if (strcmp (column,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); hipError_t error; int devID = 0; error = hipGetDevice(&devID); hipDeviceProp_t deviceProp; error = hipGetDeviceProperties(&deviceProp, devID); if (error != hipSuccess) { printf("hipGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Inverse Discrete Cosine Transform in row wise \n"); return; } char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Inverse Discrete Cosine Transform in row wise \n"); return; } mxInitGPU(); float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDCTInverseColumnOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDCTInverseColumnTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDCTInverseColumnThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDCTInverseColumnFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } if (strcmp (row,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); hipError_t error; int devID = 0; error = hipGetDevice(&devID); hipDeviceProp_t deviceProp; error = hipGetDeviceProperties(&deviceProp, devID); if (error != hipSuccess) { printf("hipGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); if (numAColumns==1) { printf("Attention, this is a column vector, please try Inverse Discrete Cosine Transform in column wise \n"); return; } numCRows = numARows; numCColumns = numAColumns; char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) if (numAColumns==1) { printf("Attention, this is a column vector, please try Inverse Discrete Cosine Transform in column wise \n"); return; } mxInitGPU(); numCRows = numARows; numCColumns = numAColumns; float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer =(float*) mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDCTInverseRowOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDCTInverseRowTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDCTInverseRowThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDCTInverseRowFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } } } //SINE TRANSFORM if (strcmp (sine,input_buf1) == 0) { if (strcmp (direct,input_buf2) == 0) { if (strcmp (column,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); hipError_t error; int devID = 0; error = hipGetDevice(&devID); hipDeviceProp_t deviceProp; error = hipGetDeviceProperties(&deviceProp, devID); if (error != hipSuccess) { printf("hipGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Discrete Sine Transform in row wise \n"); return; } char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Discrete Sine Transform in row wise \n"); return; } mxInitGPU(); float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDSTColumnOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDSTColumnTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDSTColumnThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDSTColumnFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } if (strcmp (row,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); hipError_t error; int devID = 0; error = hipGetDevice(&devID); hipDeviceProp_t deviceProp; error = hipGetDeviceProperties(&deviceProp, devID); if (error != hipSuccess) { printf("hipGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); if (numAColumns==1) { printf("Attention, this is a column vector, please try Discrete Sine Transform in column wise \n"); return; } numCRows = numARows; numCColumns = numAColumns; char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; float * hostA ; // The A matrix if (numAColumns==1) { printf("Attention, this is a column vector, please try Discrete Sine Transform in column wise \n"); return; } mxInitGPU(); hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDSTRowOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDSTRowTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDSTRowThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDSTRowFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } } if (strcmp (inverse,input_buf2) == 0) { if (strcmp (column,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); hipError_t error; int devID = 0; error = hipGetDevice(&devID); hipDeviceProp_t deviceProp; error = hipGetDeviceProperties(&deviceProp, devID); if (error != hipSuccess) { printf("hipGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Inverse Discrete Sine Transform in row wise \n"); return; } char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Inverse Discrete Sine Transform in row wise \n"); return; } mxInitGPU(); float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDSTInverseColumnOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDSTInverseColumnTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDSTInverseColumnThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDSTInverseColumnFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } if (strcmp (row,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); hipError_t error; int devID = 0; error = hipGetDevice(&devID); hipDeviceProp_t deviceProp; error = hipGetDeviceProperties(&deviceProp, devID); if (error != hipSuccess) { printf("hipGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); if (numAColumns==1) { printf("Attention, this is a column vector, please try Inverse Discrete Sine Transform in column wise \n"); return; } numCRows = numARows; numCColumns = numAColumns; char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) if (numAColumns==1) { printf("Attention, this is a column vector, please try Inverse Discrete Sine Transform in column wise \n"); return; } mxInitGPU(); numCRows = numARows; numCColumns = numAColumns; float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer =(float*) mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDSTInverseRowOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDSTInverseRowTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDSTInverseRowThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDSTInverseRowFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } } } }
d654bdeca448d1a413a7cc87ccc3b4b7f18a965d.cu
/* * Discrete Cosine/Sine Transform(DCT/DST and IDCT/IDST one to four-all in one) * DCT/DST and IDCT/IDST I ---> IV * This CUDA code can handle/work with any type of the input mxArrays, * GPUarray or standard matlab CPU array as input {prhs[0] := mxGPUArray or CPU Array} * GpuArray/cpuArray output, B=Discrete_Transform(A, , type of Transform (sine or cosine), type of Transform(direct/inverse), type of DCT/DST or IDCT/IDST, dimensions). * Developed at UCL, Institute of Neurology, 12 Queen Square, WC1N 3AR, London * Wellcome Trust Centre for Neuroimaging * Part of the project SPM(http://www.fil.ion.ucl.ac.uk/spm) * Copyright 2018 * Kevin Bronik */ #include "matrix.h" #include "mex.h" #include "gpu/mxGPUArray.h" #include "CuFilesD/Discrete_Transform_kernel.cuh" #include "CuFilesD/DCT_I_Column.cu" #include "CuFilesD/DCT_I_Row.cu" #include "CuFilesD/DCT_I_Column_Inverse.cu" #include "CuFilesD/DCT_I_Row_Inverse.cu" #include "CuFilesD/DCT_II_Row.cu" #include "CuFilesD/DCT_II_Row_Inverse.cu" #include "CuFilesD/DCT_II_Column.cu" #include "CuFilesD/DCT_II_Column_Inverse.cu" #include "CuFilesD/DCT_III_Row.cu" #include "CuFilesD/DCT_III_Row_Inverse.cu" #include "CuFilesD/DCT_III_Column.cu" #include "CuFilesD/DCT_III_Column_Inverse.cu" #include "CuFilesD/DCT_IV_Row.cu" #include "CuFilesD/DCT_IV_Row_Inverse.cu" #include "CuFilesD/DCT_IV_Column.cu" #include "CuFilesD/DCT_IV_Column_Inverse.cu" #include "CuFilesD/DST_I_Column.cu" #include "CuFilesD/DST_I_Row.cu" #include "CuFilesD/DST_I_Column_Inverse.cu" #include "CuFilesD/DST_I_Row_Inverse.cu" #include "CuFilesD/DST_II_Row.cu" #include "CuFilesD/DST_II_Row_Inverse.cu" #include "CuFilesD/DST_II_Column.cu" #include "CuFilesD/DST_II_Column_Inverse.cu" #include "CuFilesD/DST_III_Row.cu" #include "CuFilesD/DST_III_Row_Inverse.cu" #include "CuFilesD/DST_III_Column.cu" #include "CuFilesD/DST_III_Column_Inverse.cu" #include "CuFilesD/DST_IV_Row.cu" #include "CuFilesD/DST_IV_Row_Inverse.cu" #include "CuFilesD/DST_IV_Column.cu" #include "CuFilesD/DST_IV_Column_Inverse.cu" //#include <math.h> #include <cuda.h> #include <cuda_runtime.h> #define DEFAULT_DIM 32 #define DELTA(i, j) ((i==j)?1:0) //#define TILE_DIM 16 unsigned int TILE_DIM=16; // DCT extern "C" void CalculateTransformDCTColumnOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseColumnOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTRowOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseRowOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTRowTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseRowTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTColumnTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseColumnTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTColumnThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseColumnThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTRowThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseRowThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTColumnFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseColumnFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTRowFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDCTInverseRowFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); // DST extern "C" void CalculateTransformDSTColumnOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseColumnOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTRowOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseRowOne(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTRowTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseRowTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTColumnTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseColumnTwo(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTColumnThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseColumnThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTRowThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseRowThree(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTColumnFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseColumnFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTRowFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" void CalculateTransformDSTInverseRowFour(float * A, float * C, int numARows, int numAColumns, int numCRows, int numCColumns); extern "C" static void mexTransD(int nlhs, mxArray *plhs[], int nrhs, mxArray const *prhs[]) { int nDevices; cudaError_t errCode =cudaGetDeviceCount(&nDevices); //int nDevices; //cudaGetDeviceCount(&nDevices); if (errCode != cudaSuccess){ printf("Error! No CUDA devices found! \n"); return; } char row[] = "row"; char column[] = "column"; char one[] = "one"; char two[] = "two"; char three[] = "three"; char four[] = "four"; char direct[] = "direct"; char inverse[] = "inverse"; char cosine[] = "cosine"; char sine[] = "sine"; char const * const InputErrMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float), and the number of input arguments must be five."; if ((nrhs!=5)) { mexErrMsgIdAndTxt("MATLAB:mexatexit:invalidInput", InputErrMsg); } char *input_buf0; input_buf0 = mxArrayToString(prhs[0]); char *input_buf1; input_buf1 = mxArrayToString(prhs[1]); char *input_buf2; input_buf2 = mxArrayToString(prhs[2]); char *input_buf3; input_buf3 = mxArrayToString(prhs[3]); char *input_buf4; input_buf4 = mxArrayToString(prhs[4]); if ((mxIsChar(prhs[0]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FIRST ARGUMENT) must be array, or gpuArray object not %s\n",input_buf0); } if (!(mxIsChar(prhs[1]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(SECOND ARGUMENT) must be of type string.\n."); } if (!(mxIsChar(prhs[2]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(THIRD ARGUMENT) must be of type string.\n."); } if (!(mxIsChar(prhs[3]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FOURTH ARGUMENT) must be of type string.\n."); } if (!(mxIsChar(prhs[4]))){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FIFTH ARGUMENT) must be of type string.\n."); } if ((strcmp (cosine,input_buf1) != 0) &&(strcmp (sine,input_buf1) != 0) ) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(SECOND ARGUMENT) must be 'cosine' or 'sine' not %s\n",input_buf1); } if ((strcmp (direct,input_buf2) != 0)&& (strcmp (inverse,input_buf2) != 0) ) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(THIRD ARGUMENT) must be 'direct' or 'inverse' not %s\n",input_buf2); } if ((strcmp (one,input_buf3) != 0)&& (strcmp (two,input_buf3) != 0) && (strcmp (three,input_buf3) != 0) && (strcmp (four,input_buf3) != 0)) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FOURTH ARGUMENT) must be 'one' or 'two' or 'three' or 'four' not %s\n",input_buf3); } if ((strcmp (column,input_buf4) != 0)&&(strcmp (row,input_buf4) != 0)) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Input(FIFTH ARGUMENT) must be 'column' or 'row' not %s\n",input_buf4); } //COSINE TRANSFORM if (strcmp (cosine,input_buf1) == 0) { if (strcmp (direct,input_buf2) == 0) { if (strcmp (column,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); cudaError_t error; int devID = 0; error = cudaGetDevice(&devID); cudaDeviceProp deviceProp; error = cudaGetDeviceProperties(&deviceProp, devID); if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Discrete Cosine Transform in row wise \n"); return; } char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Discrete Cosine Transform in row wise \n"); return; } mxInitGPU(); float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer =(float*) mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDCTColumnOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDCTColumnTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDCTColumnThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDCTColumnFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } if (strcmp (row,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); cudaError_t error; int devID = 0; error = cudaGetDevice(&devID); cudaDeviceProp deviceProp; error = cudaGetDeviceProperties(&deviceProp, devID); if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); if (numAColumns==1) { printf("Attention, this is a column vector, please try Discrete Cosine Transform in column wise \n"); return; } numCRows = numARows; numCColumns = numAColumns; char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; float * hostA ; // The A matrix if (numAColumns==1) { printf("Attention, this is a column vector, please try Discrete Cosine Transform in column wise \n"); return; } mxInitGPU(); hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDCTRowOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDCTRowTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDCTRowThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDCTRowFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } } if (strcmp (inverse,input_buf2) == 0) { if (strcmp (column,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); cudaError_t error; int devID = 0; error = cudaGetDevice(&devID); cudaDeviceProp deviceProp; error = cudaGetDeviceProperties(&deviceProp, devID); if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Inverse Discrete Cosine Transform in row wise \n"); return; } char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Inverse Discrete Cosine Transform in row wise \n"); return; } mxInitGPU(); float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDCTInverseColumnOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDCTInverseColumnTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDCTInverseColumnThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDCTInverseColumnFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } if (strcmp (row,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); cudaError_t error; int devID = 0; error = cudaGetDevice(&devID); cudaDeviceProp deviceProp; error = cudaGetDeviceProperties(&deviceProp, devID); if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); if (numAColumns==1) { printf("Attention, this is a column vector, please try Inverse Discrete Cosine Transform in column wise \n"); return; } numCRows = numARows; numCColumns = numAColumns; char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DCTI_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DCTII_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DCTIII_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DCTIV_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) if (numAColumns==1) { printf("Attention, this is a column vector, please try Inverse Discrete Cosine Transform in column wise \n"); return; } mxInitGPU(); numCRows = numARows; numCColumns = numAColumns; float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer =(float*) mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDCTInverseRowOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDCTInverseRowTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDCTInverseRowThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDCTInverseRowFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } } } //SINE TRANSFORM if (strcmp (sine,input_buf1) == 0) { if (strcmp (direct,input_buf2) == 0) { if (strcmp (column,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); cudaError_t error; int devID = 0; error = cudaGetDevice(&devID); cudaDeviceProp deviceProp; error = cudaGetDeviceProperties(&deviceProp, devID); if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Discrete Sine Transform in row wise \n"); return; } char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Column_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Column_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Discrete Sine Transform in row wise \n"); return; } mxInitGPU(); float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDSTColumnOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDSTColumnTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDSTColumnThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDSTColumnFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } if (strcmp (row,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); cudaError_t error; int devID = 0; error = cudaGetDevice(&devID); cudaDeviceProp deviceProp; error = cudaGetDeviceProperties(&deviceProp, devID); if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); if (numAColumns==1) { printf("Attention, this is a column vector, please try Discrete Sine Transform in column wise \n"); return; } numCRows = numARows; numCColumns = numAColumns; char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Row_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Row_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; float * hostA ; // The A matrix if (numAColumns==1) { printf("Attention, this is a column vector, please try Discrete Sine Transform in column wise \n"); return; } mxInitGPU(); hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDSTRowOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDSTRowTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDSTRowThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDSTRowFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } } if (strcmp (inverse,input_buf2) == 0) { if (strcmp (column,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); cudaError_t error; int devID = 0; error = cudaGetDevice(&devID); cudaDeviceProp deviceProp; error = cudaGetDeviceProperties(&deviceProp, devID); if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Inverse Discrete Sine Transform in row wise \n"); return; } char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Column_Inverse_Kernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Column_Inverse_Kernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) numCRows = numARows; numCColumns = numAColumns; if (numARows==1) { printf("Attention, this is a row vector, please try Inverse Discrete Sine Transform in row wise \n"); return; } mxInitGPU(); float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer = (float*)mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDSTInverseColumnOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDSTInverseColumnTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDSTInverseColumnThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDSTInverseColumnFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } if (strcmp (row,input_buf4) == 0) { if (mxIsGPUArray(prhs[0])) { mxGPUArray const *A; mxGPUArray *B; float const *d_A; float *d_B; int numARows, numAColumns, numCRows, numCColumns; mxInitGPU(); cudaError_t error; int devID = 0; error = cudaGetDevice(&devID); cudaDeviceProp deviceProp; error = cudaGetDeviceProperties(&deviceProp, devID); if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } int TILEDIM = (deviceProp.major < 2) ? 16 : 32; A = mxGPUCreateFromMxArray(prhs[0]); if(mxGPUGetComplexity(A) != mxREAL){ mxGPUDestroyGPUArray(A); mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } const mwSize *dims; dims=mxGPUGetDimensions(A); numARows = (int)dims[0]; /* gets number of rows of A */ numAColumns = (int)dims[1]; /* gets number of columns of A */ size_t pivot_dimensA[2] = {numARows,numAColumns}; mwSize NrOfDim=mxGPUGetNumberOfDimensions(A); if (numAColumns==1) { printf("Attention, this is a column vector, please try Inverse Discrete Sine Transform in column wise \n"); return; } numCRows = numARows; numCColumns = numAColumns; char const * const errId = "parallel:gpu:mexGPUExample:InvalidInput"; char const * const errMsg = "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."; if (mxGPUGetClassID(A) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt(errId, errMsg); } d_A = (float const *)(mxGPUGetDataReadOnly(A)); mxGPUDestroyGPUArray(A); B = mxGPUCreateGPUArray(NrOfDim, (mwSize*) pivot_dimensA, mxSINGLE_CLASS, mxREAL, MX_GPU_DO_NOT_INITIALIZE); d_B = (float *)(mxGPUGetData(B)); dim3 dimBlock; dim3 dimGrid; switch (TILEDIM){ case 16: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Row__InverseKernel_GPUA <16> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); case 32: TILE_DIM= TILEDIM; dimBlock.x=TILE_DIM; dimBlock.y=TILE_DIM; dimBlock.z=1; dimGrid.x = (numCColumns + dimBlock.x - 1) / dimBlock.x; dimGrid.y = (numCRows + dimBlock.y - 1) / dimBlock.y; if (strcmp (one,input_buf3) == 0) { DSTI_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { DSTII_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { DSTIII_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { DSTIV_Row__InverseKernel_GPUA <32> << <dimGrid, dimBlock >> >(d_A, d_B, numARows, numAColumns, numCRows, numCColumns); } plhs[0] = mxGPUCreateMxArrayOnGPU(B); mxGPUDestroyGPUArray(B); } } else if (!(mxIsGPUArray(prhs[0]))){ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Invalid input to MEX file, input(FIRST ARGUMENT) must be single precision (float)."); } if(mxIsComplex(prhs[0])){ mexErrMsgIdAndTxt( "MATLAB:mexatexit:invalidInput", "Incorrect input arguments!, input matrix must be real %s\n"); } int numARows = (int)mxGetM(prhs[0]); // number of rows in the matrix A int numAColumns = (int)mxGetN(prhs[0]); // number of columns in the matrix A int numCRows; // number of rows in the matrix C (you have to set this) int numCColumns; // number of columns in the matrix C (you have to set this) if (numAColumns==1) { printf("Attention, this is a column vector, please try Inverse Discrete Sine Transform in column wise \n"); return; } mxInitGPU(); numCRows = numARows; numCColumns = numAColumns; float * hostA ; // The A matrix hostA = (float *)mxGetData(prhs[0]); plhs[0] = mxCreateNumericMatrix(numCRows, numCColumns, mxSINGLE_CLASS, mxREAL); float *pointer =(float*) mxGetPr(plhs[0]); if (strcmp (one,input_buf3) == 0) { CalculateTransformDSTInverseRowOne(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (two,input_buf3) == 0) { CalculateTransformDSTInverseRowTwo(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (three,input_buf3) == 0) { CalculateTransformDSTInverseRowThree(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } if (strcmp (four,input_buf3) == 0) { CalculateTransformDSTInverseRowFour(hostA, pointer, numARows, numAColumns, numCRows, numCColumns); } } } } } }
464e3d1584f0013dfda51116d9aaaf21bd91bc13.hip
// !!! This is a file automatically generated by hipify!!! #include "lab08.cuh" #include <iostream> #include <sstream> #include <iomanip> #include <cmath> #include <fstream> #include <algorithm> #include <iterator> #include <cstdio> #include "MPI_dummy_helper.hpp" #include "dummy_helper.cuh" #include <mpi.h> #include <hip/hip_runtime.h> #include <thrust/device_vector.h> #include <thrust/extrema.h> #define GRID_SIZE 1 #define BLOCK_SIZE 4 #define GRID_SIZE_dim3 dim3(GRID_SIZE, GRID_SIZE, GRID_SIZE) #define BLOCK_SIZE_dim3 dim3(BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE) #define locate(i, j, k) block_h[(i) + (j) * block_shape[0] + (k) * block_shape[0] * block_shape[1]] #define locate_p(v, i, j, k) v[(i) + (j) * block_shape[0] + (k) * block_shape[0] * block_shape[1]] __global__ void init_array( double *v, long long count, double init_value ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long id = idx + idy * blockDim.x * gridDim.x + idz * blockDim.x * gridDim.x * blockDim.y * gridDim.y; const long long offset = gridDim.x * blockDim.x * gridDim.y * blockDim.y * gridDim.z * blockDim.z; for (long long i = id; i < count; i += offset) v[i] = init_value; } void Lab08::set_device() { int device_count; checkCudaErrors(hipGetDeviceCount(&device_count)); checkCudaErrors(hipSetDevice(rank % device_count)); } Lab08::Lab08(int argc, char **argv) { init(argc, argv); checkMPIErrors(MPI_Comm_rank(MPI_COMM_WORLD, &rank)); set_device(); // read input data if (rank == 0) rank_0_init(); else rank_non_0_init(); block_z = rank / process_grid_shape[0] / process_grid_shape[1]; block_y = rank % (process_grid_shape[0] * process_grid_shape[1]) / process_grid_shape[0]; block_x = rank % (process_grid_shape[0] * process_grid_shape[1]) % process_grid_shape[0]; sends_first = (block_x + block_y + block_z) % 2; CudaKernelChecker kernel_checker; auto block_init_routine = [&kernel_checker, this](CudaMemory<double> &v, const char* kernel_name) { v.alloc(block_shape[0] * block_shape[1] * block_shape[2]); hipLaunchKernelGGL(( init_array), dim3(GRID_SIZE_dim3), dim3(BLOCK_SIZE_dim3), 0, 0, v.get(), block_shape[0] * block_shape[1] * block_shape[2], u_0 ); kernel_checker.check(kernel_name); }; block_init_routine(block_d, "init block_d"); block_init_routine(prev_block_d, "init prev_block_d"); auto boundary_layer_init_routine = [this]( std::vector<double> &v_h, CudaMemory<double> &v_d, const bool layer_not_needed, const long long count ) { v_h.resize( layer_not_needed ? 0 : count); v_d.alloc( layer_not_needed ? 0 : count); }; boundary_layer_init_routine( left_h, left_d, block_x == 0, block_shape[1] * block_shape[2] ); boundary_layer_init_routine( right_h, right_d, block_x == process_grid_shape[0] - 1, block_shape[1] * block_shape[2] ); boundary_layer_init_routine( front_h, front_d, block_y == 0, block_shape[0] * block_shape[2] ); boundary_layer_init_routine( back_h, back_d, block_y == process_grid_shape[1] - 1, block_shape[0] * block_shape[2] ); boundary_layer_init_routine( down_h, down_d, block_z == 0, block_shape[0] * block_shape[1] ); boundary_layer_init_routine( up_h, up_d, block_z == process_grid_shape[2] - 1, block_shape[0] * block_shape[1] ); timer.start(); } void Lab08::init(int argc, char **argv) { int initialized; checkMPIErrors(MPI_Initialized( &initialized )); if (!initialized) { checkMPIErrors(MPI_Init(&argc, &argv)); } } void Lab08::finalize() { int finalized; checkMPIErrors(MPI_Finalized( &finalized )); if (!finalized) { checkMPIErrors(MPI_Barrier(MPI_COMM_WORLD)); checkMPIErrors(MPI_Finalize()); } } void Lab08::rank_0_init() { // input read_in_container(process_grid_shape); read_in_container(block_shape); std::cin >> output_name; std::cin >> eps; read_in_container(l); std::cin >> boundaries.down >> boundaries.up >> boundaries.left >> boundaries.right >> boundaries.front >> boundaries.back; std::cin >> u_0; // input done // send input data to other ranks int n_ranks = process_grid_shape[0] * process_grid_shape[1] * process_grid_shape[2]; for (int rank = 1; rank < n_ranks; ++rank) { checkMPIErrors(MPI_Send( process_grid_shape.data(), process_grid_shape.size(), MPI_LONG_LONG, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( block_shape.data(), block_shape.size(), MPI_LONG_LONG, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( output_name.data(), output_name.size(), MPI_CHAR, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( &eps, 1, MPI_DOUBLE, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( l.data(), l.size(), MPI_DOUBLE, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( reinterpret_cast<double*>(&boundaries), sizeof(boundaries) / sizeof(double), MPI_DOUBLE, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( &u_0, 1, MPI_DOUBLE, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); } } void Lab08::rank_non_0_init() { int root_rank = 0; checkMPIErrors(MPI_Recv( process_grid_shape.data(), process_grid_shape.size(), MPI_LONG_LONG, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); checkMPIErrors(MPI_Recv( block_shape.data(), block_shape.size(), MPI_LONG_LONG, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); MPI_Status status; checkMPIErrors(MPI_Probe( root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, &status )); int output_name_count; checkMPIErrors(MPI_Get_count( &status, MPI_CHAR, &output_name_count )); std::vector<char> output_name_buffer(output_name_count); checkMPIErrors(MPI_Recv( output_name_buffer.data(), output_name_buffer.size(), MPI_CHAR, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); std::copy( output_name_buffer.begin(), output_name_buffer.end(), std::back_inserter(output_name) ); checkMPIErrors(MPI_Recv( &eps, 1, MPI_DOUBLE, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); checkMPIErrors(MPI_Recv( l.data(), l.size(), MPI_DOUBLE, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); checkMPIErrors(MPI_Recv( reinterpret_cast<double*>(&boundaries), sizeof(boundaries) / sizeof(double), MPI_DOUBLE, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); checkMPIErrors(MPI_Recv( &u_0, 1, MPI_DOUBLE, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); } int Lab08::block_position_to_rank( long long block_x, long long block_y, long long block_z ) { if (block_x < 0 || block_y < 0 || block_z < 0) { return -1; } if ( block_x >= process_grid_shape[0] || block_y >= process_grid_shape[1] || block_z >= process_grid_shape[2] ) { return -1; } return block_x + block_y * process_grid_shape[0] + block_z * process_grid_shape[0] * process_grid_shape[1]; } void Lab08::send_boundary_layer( std::vector<double> &v_h, CudaMemory<double> &v_d, int destination_rank, Lab08::BoundaryLayerTag tag, std::vector<MPI_Request> &send_requests ) { if (destination_rank > -1) { v_d.memcpy( v_h.data(), hipMemcpyDeviceToHost ); MPI_Request request; checkMPIErrors(MPI_Isend( v_h.data(), v_h.size(), MPI_DOUBLE, destination_rank, static_cast<int>(tag), MPI_COMM_WORLD, &request )); send_requests.push_back(request); } } void Lab08::send_boundary_layers(std::vector<MPI_Request> &send_requests) { send_boundary_layer( left_h, left_d, block_position_to_rank(block_x - 1, block_y, block_z), BoundaryLayerTag::RIGHT, send_requests ); send_boundary_layer( right_h, right_d, block_position_to_rank(block_x + 1, block_y, block_z), BoundaryLayerTag::LEFT, send_requests ); send_boundary_layer( front_h, front_d, block_position_to_rank(block_x, block_y - 1, block_z), BoundaryLayerTag::BACK, send_requests ); send_boundary_layer( back_h, back_d, block_position_to_rank(block_x, block_y + 1, block_z), BoundaryLayerTag::FRONT, send_requests ); send_boundary_layer( down_h, down_d, block_position_to_rank(block_x, block_y, block_z - 1), BoundaryLayerTag::UP, send_requests ); send_boundary_layer( up_h, up_d, block_position_to_rank(block_x, block_y, block_z + 1), BoundaryLayerTag::DOWN, send_requests ); } void Lab08::receive_boundary_layer( std::vector<double> &v, int source_rank, BoundaryLayerTag tag, std::vector<MPI_Request> &receive_requests ) { if (source_rank > -1) { MPI_Request request; checkMPIErrors(MPI_Irecv( v.data(), v.size(), MPI_DOUBLE, source_rank, static_cast<int>(tag), MPI_COMM_WORLD, &request )); receive_requests.push_back(request); } } void Lab08::receive_boundary_layers( std::vector<double> &left_h, std::vector<double> &right_h, std::vector<double> &front_h, std::vector<double> &back_h, std::vector<double> &down_h, std::vector<double> &up_h, std::vector<MPI_Request> &receive_requests ) { receive_boundary_layer( left_h, block_position_to_rank(block_x - 1, block_y, block_z), BoundaryLayerTag::LEFT, receive_requests ); receive_boundary_layer( right_h, block_position_to_rank(block_x + 1, block_y, block_z), BoundaryLayerTag::RIGHT, receive_requests ); receive_boundary_layer( front_h, block_position_to_rank(block_x, block_y - 1, block_z), BoundaryLayerTag::FRONT, receive_requests ); receive_boundary_layer( back_h, block_position_to_rank(block_x, block_y + 1, block_z), BoundaryLayerTag::BACK, receive_requests ); receive_boundary_layer( down_h, block_position_to_rank(block_x, block_y, block_z - 1), BoundaryLayerTag::DOWN, receive_requests ); receive_boundary_layer( up_h, block_position_to_rank(block_x, block_y, block_z + 1), BoundaryLayerTag::UP, receive_requests ); } __device__ long long block_shape[3]; __global__ void copy_block_to_prev_block( double *block, double *prev_block ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long offset_x = blockDim.x * gridDim.x; const long long offset_y = blockDim.y * gridDim.y; const long long offset_z = blockDim.z * gridDim.z; for (long long k = idz; k < block_shape[2]; k += offset_z) for (long long j = idy; j < block_shape[1]; j += offset_y) for (long long i = idx; i < block_shape[0]; i += offset_x) locate_p(prev_block, i, j, k) = locate_p(block, i, j, k); } __global__ void prev_block_to_abs_difference_array( double *block, double *prev_block ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long offset_x = blockDim.x * gridDim.x; const long long offset_y = blockDim.y * gridDim.y; const long long offset_z = blockDim.z * gridDim.z; for (long long k = idz; k < block_shape[2]; k += offset_z) for (long long j = idy; j < block_shape[1]; j += offset_y) for (long long i = idx; i < block_shape[0]; i += offset_x) locate_p(prev_block, i, j, k) = fabs(locate_p(block, i, j, k) - locate_p(prev_block, i, j, k)); } __global__ void block_iter_process( double *block, double *prev_block, double *left, double *right, double *front, double *back, double *down, double *up, Lab08::Boundaries boundaries, double h_x_pow_minus_2, double h_y_pow_minus_2, double h_z_pow_minus_2, double denominator ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long offset_x = blockDim.x * gridDim.x; const long long offset_y = blockDim.y * gridDim.y; const long long offset_z = blockDim.z * gridDim.z; for (long long k = idz; k < block_shape[2]; k += offset_z) for (long long j = idy; j < block_shape[1]; j += offset_y) for (long long i = idx; i < block_shape[0]; i += offset_x) { double u_left = i == 0 ? (left == nullptr ? boundaries.left : left[ j + block_shape[1] * k]) : locate_p(prev_block, i - 1, j, k), u_right = i == block_shape[0] - 1 ? (right == nullptr ? boundaries.right : right[j + block_shape[1] * k]) : locate_p(prev_block, i + 1, j, k), u_front = j == 0 ? (front == nullptr ? boundaries.front : front[i + block_shape[0] * k]) : locate_p(prev_block, i, j - 1, k), u_back = j == block_shape[1] - 1 ? (back == nullptr ? boundaries.back : back[ i + block_shape[0] * k]) : locate_p(prev_block, i, j + 1, k), u_down = k == 0 ? (down == nullptr ? boundaries.down : down[ i + block_shape[0] * j]) : locate_p(prev_block, i, j, k - 1), u_up = k == block_shape[2] - 1 ? (up == nullptr ? boundaries.up : up[ i + block_shape[0] * j]) : locate_p(prev_block, i, j, k + 1); locate_p(block, i, j, k) = (u_left + u_right) * h_x_pow_minus_2; locate_p(block, i, j, k) += (u_front + u_back ) * h_y_pow_minus_2; locate_p(block, i, j, k) += (u_down + u_up ) * h_z_pow_minus_2; locate_p(block, i, j, k) /= denominator; } } __global__ void init_boundary_layers( double *block, double *left, double *right, double *front, double *back, double *down, double *up ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long offset_x = blockDim.x * gridDim.x; const long long offset_y = blockDim.y * gridDim.y; const long long offset_z = blockDim.z * gridDim.z; #define fill_boundary_layer(v, outer, inner, outer_start, inner_start, outer_offset, inner_offset, loc) \ { \ if (v) \ { \ for (long long i = outer_start; i < block_shape[outer]; i += outer_offset) \ for (long long j = inner_start; j < block_shape[inner]; j += inner_offset) \ v[i * block_shape[inner] + j] = loc; \ } \ } \ if (idx == 0) fill_boundary_layer(left , 2, 1, idz, idy, offset_z, offset_y, locate_p(block, 0, j, i)); if (idx == 1) fill_boundary_layer(right, 2, 1, idz, idy, offset_z, offset_y, locate_p(block, block_shape[0] - 1, j, i)); if (idy == 0) fill_boundary_layer(front, 2, 0, idz, idx, offset_z, offset_x, locate_p(block, j, 0, i)); if (idy == 1) fill_boundary_layer(back , 2, 0, idz, idx, offset_z, offset_x, locate_p(block, j, block_shape[1] - 1, i)); if (idz == 0) fill_boundary_layer(down , 1, 0, idy, idx, offset_y, offset_x, locate_p(block, j, i, 0)); if (idz == 1) fill_boundary_layer(up , 1, 0, idy, idx, offset_y, offset_x, locate_p(block, j, i, block_shape[2] - 1)); #undef fill_boundary_layer } void Lab08::copy_boundary_layers_to_device( std::vector<double> &left_h, std::vector<double> &right_h, std::vector<double> &front_h, std::vector<double> &back_h, std::vector<double> &down_h, std::vector<double> &up_h ) { auto copy_boundary_layer_to_device = []( std::vector<double> &v_h, CudaMemory<double> &v_d ) { v_d.memcpy(v_h.data(), hipMemcpyHostToDevice); }; copy_boundary_layer_to_device(left_h, left_d); copy_boundary_layer_to_device(right_h, right_d); copy_boundary_layer_to_device(front_h, front_d); copy_boundary_layer_to_device(back_h, back_d); copy_boundary_layer_to_device(down_h, down_d); copy_boundary_layer_to_device(up_h, up_d); } void Lab08::solve() { std::vector<double> left_h (block_x == 0 ? 0 : block_shape[1] * block_shape[2]), right_h(block_x == process_grid_shape[0] - 1 ? 0 : block_shape[1] * block_shape[2]), front_h(block_y == 0 ? 0 : block_shape[0] * block_shape[2]), back_h (block_y == process_grid_shape[1] - 1 ? 0 : block_shape[0] * block_shape[2]), down_h (block_z == 0 ? 0 : block_shape[0] * block_shape[1]), up_h (block_z == process_grid_shape[2] - 1 ? 0 : block_shape[0] * block_shape[1]); double n_x = block_shape[0] * process_grid_shape[0], n_y = block_shape[1] * process_grid_shape[1], n_z = block_shape[2] * process_grid_shape[2]; double h_x_pow_minus_2 = n_x * n_x / l[0] / l[0], h_y_pow_minus_2 = n_y * n_y / l[1] / l[1], h_z_pow_minus_2 = n_z * n_z / l[2] / l[2], denominator = 2 * (h_x_pow_minus_2 + h_y_pow_minus_2 + h_z_pow_minus_2); std::vector<MPI_Request> send_requests, receive_requests; checkCudaErrors(hipMemcpyToSymbol( ::block_shape, block_shape.data(), block_shape.size() * sizeof(decltype(block_shape[0])), 0, hipMemcpyHostToDevice )); thrust::device_ptr<double> abs_difference_array = thrust::device_pointer_cast(prev_block_d.get()); while (true) { CudaKernelChecker checker; hipLaunchKernelGGL(( init_boundary_layers), dim3(GRID_SIZE_dim3), dim3(BLOCK_SIZE_dim3), 0, 0, block_d.get(), left_d.get(), right_d.get(), front_d.get(), back_d.get(), down_d.get(), up_d.get() ); checker.check("init_boundary_layers"); if (sends_first) { send_boundary_layers(send_requests); checkMPIErrors(MPI_Waitall( send_requests.size(), send_requests.data(), MPI_STATUSES_IGNORE )); send_requests.clear(); receive_boundary_layers( left_h, right_h, front_h, back_h, down_h, up_h, receive_requests ); checkMPIErrors(MPI_Waitall( receive_requests.size(), receive_requests.data(), MPI_STATUSES_IGNORE )); receive_requests.clear(); } else { receive_boundary_layers( left_h, right_h, front_h, back_h, down_h, up_h, receive_requests ); checkMPIErrors(MPI_Waitall( receive_requests.size(), receive_requests.data(), MPI_STATUSES_IGNORE )); receive_requests.clear(); send_boundary_layers(send_requests); checkMPIErrors(MPI_Waitall( send_requests.size(), send_requests.data(), MPI_STATUSES_IGNORE )); send_requests.clear(); } copy_boundary_layers_to_device( left_h, right_h, front_h, back_h, down_h, up_h ); hipLaunchKernelGGL(( copy_block_to_prev_block), dim3(GRID_SIZE_dim3), dim3(BLOCK_SIZE_dim3), 0, 0, block_d.get(), prev_block_d.get() ); checker.check("copy_block_to_prev_block"); hipLaunchKernelGGL(( block_iter_process), dim3(GRID_SIZE_dim3), dim3(BLOCK_SIZE_dim3), 0, 0, block_d.get(), prev_block_d.get(), left_d.get(), right_d.get(), front_d.get(), back_d.get(), down_d.get(), up_d.get(), boundaries, h_x_pow_minus_2, h_y_pow_minus_2, h_z_pow_minus_2, denominator ); checker.check("iter process kernel"); hipLaunchKernelGGL(( prev_block_to_abs_difference_array), dim3(GRID_SIZE_dim3), dim3(BLOCK_SIZE_dim3), 0, 0, block_d.get(), prev_block_d.get() ); checker.check("prev_block_to_abs_difference_array"); double max_abs_difference = *thrust::max_element( abs_difference_array, abs_difference_array + prev_block_d.count ); double total_max_abs_difference; checkMPIErrors(MPI_Allreduce( &max_abs_difference, &total_max_abs_difference, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD )); if (total_max_abs_difference < eps) break; } } void Lab08::write_answer() { timer.stop(); if (rank == 0) timer.print_time(); MPI_File file; int delete_error = MPI_File_delete(output_name.c_str(), MPI_INFO_NULL); if (delete_error != 0 && delete_error != MPI_ERR_NO_SUCH_FILE) checkMPIErrors(delete_error); checkMPIErrors(MPI_File_open( MPI_COMM_WORLD, output_name.c_str(), MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &file )); // create type MPI_Datatype Number; const int number_chars_count = 16; // 0 . 000000 e+000 ' ' checkMPIErrors(MPI_Type_contiguous( number_chars_count, MPI_CHAR, &Number )); MPI_Datatype BlockRow; checkMPIErrors(MPI_Type_contiguous( block_shape[0], Number, &BlockRow )); MPI_Datatype BlockPlane; std::vector<int> BlockPlane_blocklengths; std::vector<int> BlockPlane_displacements; for (size_t i = 0; i < block_shape[1]; ++i) { BlockPlane_blocklengths.push_back(1); BlockPlane_displacements.push_back(i * process_grid_shape[0]); } checkMPIErrors(MPI_Type_create_hvector(block_shape[1], 1, process_grid_shape[0] * block_shape[0] * number_chars_count, BlockRow, &BlockPlane)); /* checkMPIErrors(MPI_Type_indexed( */ /* block_shape[1], */ /* BlockPlane_blocklengths.data(), */ /* BlockPlane_displacements.data(), */ /* BlockRow, */ /* &BlockPlane */ /* )); */ MPI_Datatype Block; std::vector<int> Block_blocklengths; std::vector<int> Block_displacements; for (size_t i = 0; i < block_shape[2]; ++i) { Block_blocklengths.push_back(1); Block_displacements.push_back(i * process_grid_shape[1]); } checkMPIErrors(MPI_Type_create_hvector(block_shape[2], 1, process_grid_shape[1] * block_shape[0] * number_chars_count * process_grid_shape[0] * block_shape[1], BlockPlane, &Block)); /* checkMPIErrors(MPI_Type_indexed( */ /* block_shape[2], */ /* Block_blocklengths.data(), */ /* Block_displacements.data(), */ /* BlockPlane, */ /* &Block */ /* )); */ checkMPIErrors(MPI_Type_commit(&Block)); // set view with created type MPI_Offset offset = 0; offset += block_shape[0] * number_chars_count * block_x; offset += block_shape[0] * block_shape[1] * process_grid_shape[0] * number_chars_count * block_y; offset += block_shape[0] * block_shape[1] * block_shape[2] * process_grid_shape[0] * process_grid_shape[1] * number_chars_count * block_z; checkMPIErrors(MPI_File_set_view( file, offset, MPI_CHAR, Block, "native", MPI_INFO_NULL )); // create buffer with data to write std::string buffer; size_t buffer_pos = 0; block_h.resize(block_d.count); block_d.memcpy(block_h.data(), hipMemcpyDeviceToHost); /* for (size_t i = 0; i < block_h.size(); ++i) */ /* { */ /* std::cout << i << std::endl; */ /* block_h[i] = i + block_h.size() * rank; */ /* } */ for (long long k = 0; k < block_shape[2]; ++k) for (long long j = 0; j < block_shape[1]; ++j) for (long long i = 0; i < block_shape[0]; ++i) { buffer.resize(buffer_pos + number_chars_count); sprintf(&buffer[buffer_pos], "%-16e", locate(i, j, k)); buffer_pos += number_chars_count; if (block_x == process_grid_shape[0] - 1 && i == block_shape[0] - 1) { buffer[buffer_pos - 1] = '\n'; if (j == block_shape[1] - 1 && block_y == process_grid_shape[1] - 1 && (block_z != process_grid_shape[2] - 1 || k != block_shape[2] - 1)) buffer[buffer_pos - 2] = '\n'; } } /* buffer[0] = 'R'; */ /* buffer[1] = 'a'; */ /* buffer[2] = 'n'; */ /* buffer[3] = 'k'; */ /* buffer[4] = ' '; */ /* buffer[5] = '0' + rank; */ /* if (rank == 0) { */ /* std::cout << buffer << std::endl; */ /* for (int i = 1; i < 8; i++) { */ /* MPI_Recv(&buffer[0], buffer.size(), MPI_CHAR, i, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE); */ /* std::cout << std::endl << buffer << std::endl; */ /* } */ /* } else { */ /* MPI_Send(&buffer[0], buffer.size(), MPI_CHAR, 0, 0, MPI_COMM_WORLD); */ /* } */ // write data from buffer checkMPIErrors(MPI_File_write_all( file, buffer.data(), buffer.size(), MPI_CHAR, MPI_STATUS_IGNORE )); // close file checkMPIErrors(MPI_File_close(&file)); }
464e3d1584f0013dfda51116d9aaaf21bd91bc13.cu
#include "lab08.cuh" #include <iostream> #include <sstream> #include <iomanip> #include <cmath> #include <fstream> #include <algorithm> #include <iterator> #include <cstdio> #include "MPI_dummy_helper.hpp" #include "dummy_helper.cuh" #include <mpi.h> #include <cuda_runtime.h> #include <thrust/device_vector.h> #include <thrust/extrema.h> #define GRID_SIZE 1 #define BLOCK_SIZE 4 #define GRID_SIZE_dim3 dim3(GRID_SIZE, GRID_SIZE, GRID_SIZE) #define BLOCK_SIZE_dim3 dim3(BLOCK_SIZE, BLOCK_SIZE, BLOCK_SIZE) #define locate(i, j, k) block_h[(i) + (j) * block_shape[0] + (k) * block_shape[0] * block_shape[1]] #define locate_p(v, i, j, k) v[(i) + (j) * block_shape[0] + (k) * block_shape[0] * block_shape[1]] __global__ void init_array( double *v, long long count, double init_value ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long id = idx + idy * blockDim.x * gridDim.x + idz * blockDim.x * gridDim.x * blockDim.y * gridDim.y; const long long offset = gridDim.x * blockDim.x * gridDim.y * blockDim.y * gridDim.z * blockDim.z; for (long long i = id; i < count; i += offset) v[i] = init_value; } void Lab08::set_device() { int device_count; checkCudaErrors(cudaGetDeviceCount(&device_count)); checkCudaErrors(cudaSetDevice(rank % device_count)); } Lab08::Lab08(int argc, char **argv) { init(argc, argv); checkMPIErrors(MPI_Comm_rank(MPI_COMM_WORLD, &rank)); set_device(); // read input data if (rank == 0) rank_0_init(); else rank_non_0_init(); block_z = rank / process_grid_shape[0] / process_grid_shape[1]; block_y = rank % (process_grid_shape[0] * process_grid_shape[1]) / process_grid_shape[0]; block_x = rank % (process_grid_shape[0] * process_grid_shape[1]) % process_grid_shape[0]; sends_first = (block_x + block_y + block_z) % 2; CudaKernelChecker kernel_checker; auto block_init_routine = [&kernel_checker, this](CudaMemory<double> &v, const char* kernel_name) { v.alloc(block_shape[0] * block_shape[1] * block_shape[2]); init_array<<<GRID_SIZE_dim3, BLOCK_SIZE_dim3>>>( v.get(), block_shape[0] * block_shape[1] * block_shape[2], u_0 ); kernel_checker.check(kernel_name); }; block_init_routine(block_d, "init block_d"); block_init_routine(prev_block_d, "init prev_block_d"); auto boundary_layer_init_routine = [this]( std::vector<double> &v_h, CudaMemory<double> &v_d, const bool layer_not_needed, const long long count ) { v_h.resize( layer_not_needed ? 0 : count); v_d.alloc( layer_not_needed ? 0 : count); }; boundary_layer_init_routine( left_h, left_d, block_x == 0, block_shape[1] * block_shape[2] ); boundary_layer_init_routine( right_h, right_d, block_x == process_grid_shape[0] - 1, block_shape[1] * block_shape[2] ); boundary_layer_init_routine( front_h, front_d, block_y == 0, block_shape[0] * block_shape[2] ); boundary_layer_init_routine( back_h, back_d, block_y == process_grid_shape[1] - 1, block_shape[0] * block_shape[2] ); boundary_layer_init_routine( down_h, down_d, block_z == 0, block_shape[0] * block_shape[1] ); boundary_layer_init_routine( up_h, up_d, block_z == process_grid_shape[2] - 1, block_shape[0] * block_shape[1] ); timer.start(); } void Lab08::init(int argc, char **argv) { int initialized; checkMPIErrors(MPI_Initialized( &initialized )); if (!initialized) { checkMPIErrors(MPI_Init(&argc, &argv)); } } void Lab08::finalize() { int finalized; checkMPIErrors(MPI_Finalized( &finalized )); if (!finalized) { checkMPIErrors(MPI_Barrier(MPI_COMM_WORLD)); checkMPIErrors(MPI_Finalize()); } } void Lab08::rank_0_init() { // input read_in_container(process_grid_shape); read_in_container(block_shape); std::cin >> output_name; std::cin >> eps; read_in_container(l); std::cin >> boundaries.down >> boundaries.up >> boundaries.left >> boundaries.right >> boundaries.front >> boundaries.back; std::cin >> u_0; // input done // send input data to other ranks int n_ranks = process_grid_shape[0] * process_grid_shape[1] * process_grid_shape[2]; for (int rank = 1; rank < n_ranks; ++rank) { checkMPIErrors(MPI_Send( process_grid_shape.data(), process_grid_shape.size(), MPI_LONG_LONG, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( block_shape.data(), block_shape.size(), MPI_LONG_LONG, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( output_name.data(), output_name.size(), MPI_CHAR, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( &eps, 1, MPI_DOUBLE, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( l.data(), l.size(), MPI_DOUBLE, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( reinterpret_cast<double*>(&boundaries), sizeof(boundaries) / sizeof(double), MPI_DOUBLE, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); checkMPIErrors(MPI_Send( &u_0, 1, MPI_DOUBLE, rank, SEND_ANY_TAG, MPI_COMM_WORLD )); } } void Lab08::rank_non_0_init() { int root_rank = 0; checkMPIErrors(MPI_Recv( process_grid_shape.data(), process_grid_shape.size(), MPI_LONG_LONG, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); checkMPIErrors(MPI_Recv( block_shape.data(), block_shape.size(), MPI_LONG_LONG, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); MPI_Status status; checkMPIErrors(MPI_Probe( root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, &status )); int output_name_count; checkMPIErrors(MPI_Get_count( &status, MPI_CHAR, &output_name_count )); std::vector<char> output_name_buffer(output_name_count); checkMPIErrors(MPI_Recv( output_name_buffer.data(), output_name_buffer.size(), MPI_CHAR, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); std::copy( output_name_buffer.begin(), output_name_buffer.end(), std::back_inserter(output_name) ); checkMPIErrors(MPI_Recv( &eps, 1, MPI_DOUBLE, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); checkMPIErrors(MPI_Recv( l.data(), l.size(), MPI_DOUBLE, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); checkMPIErrors(MPI_Recv( reinterpret_cast<double*>(&boundaries), sizeof(boundaries) / sizeof(double), MPI_DOUBLE, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); checkMPIErrors(MPI_Recv( &u_0, 1, MPI_DOUBLE, root_rank, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE )); } int Lab08::block_position_to_rank( long long block_x, long long block_y, long long block_z ) { if (block_x < 0 || block_y < 0 || block_z < 0) { return -1; } if ( block_x >= process_grid_shape[0] || block_y >= process_grid_shape[1] || block_z >= process_grid_shape[2] ) { return -1; } return block_x + block_y * process_grid_shape[0] + block_z * process_grid_shape[0] * process_grid_shape[1]; } void Lab08::send_boundary_layer( std::vector<double> &v_h, CudaMemory<double> &v_d, int destination_rank, Lab08::BoundaryLayerTag tag, std::vector<MPI_Request> &send_requests ) { if (destination_rank > -1) { v_d.memcpy( v_h.data(), cudaMemcpyDeviceToHost ); MPI_Request request; checkMPIErrors(MPI_Isend( v_h.data(), v_h.size(), MPI_DOUBLE, destination_rank, static_cast<int>(tag), MPI_COMM_WORLD, &request )); send_requests.push_back(request); } } void Lab08::send_boundary_layers(std::vector<MPI_Request> &send_requests) { send_boundary_layer( left_h, left_d, block_position_to_rank(block_x - 1, block_y, block_z), BoundaryLayerTag::RIGHT, send_requests ); send_boundary_layer( right_h, right_d, block_position_to_rank(block_x + 1, block_y, block_z), BoundaryLayerTag::LEFT, send_requests ); send_boundary_layer( front_h, front_d, block_position_to_rank(block_x, block_y - 1, block_z), BoundaryLayerTag::BACK, send_requests ); send_boundary_layer( back_h, back_d, block_position_to_rank(block_x, block_y + 1, block_z), BoundaryLayerTag::FRONT, send_requests ); send_boundary_layer( down_h, down_d, block_position_to_rank(block_x, block_y, block_z - 1), BoundaryLayerTag::UP, send_requests ); send_boundary_layer( up_h, up_d, block_position_to_rank(block_x, block_y, block_z + 1), BoundaryLayerTag::DOWN, send_requests ); } void Lab08::receive_boundary_layer( std::vector<double> &v, int source_rank, BoundaryLayerTag tag, std::vector<MPI_Request> &receive_requests ) { if (source_rank > -1) { MPI_Request request; checkMPIErrors(MPI_Irecv( v.data(), v.size(), MPI_DOUBLE, source_rank, static_cast<int>(tag), MPI_COMM_WORLD, &request )); receive_requests.push_back(request); } } void Lab08::receive_boundary_layers( std::vector<double> &left_h, std::vector<double> &right_h, std::vector<double> &front_h, std::vector<double> &back_h, std::vector<double> &down_h, std::vector<double> &up_h, std::vector<MPI_Request> &receive_requests ) { receive_boundary_layer( left_h, block_position_to_rank(block_x - 1, block_y, block_z), BoundaryLayerTag::LEFT, receive_requests ); receive_boundary_layer( right_h, block_position_to_rank(block_x + 1, block_y, block_z), BoundaryLayerTag::RIGHT, receive_requests ); receive_boundary_layer( front_h, block_position_to_rank(block_x, block_y - 1, block_z), BoundaryLayerTag::FRONT, receive_requests ); receive_boundary_layer( back_h, block_position_to_rank(block_x, block_y + 1, block_z), BoundaryLayerTag::BACK, receive_requests ); receive_boundary_layer( down_h, block_position_to_rank(block_x, block_y, block_z - 1), BoundaryLayerTag::DOWN, receive_requests ); receive_boundary_layer( up_h, block_position_to_rank(block_x, block_y, block_z + 1), BoundaryLayerTag::UP, receive_requests ); } __device__ long long block_shape[3]; __global__ void copy_block_to_prev_block( double *block, double *prev_block ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long offset_x = blockDim.x * gridDim.x; const long long offset_y = blockDim.y * gridDim.y; const long long offset_z = blockDim.z * gridDim.z; for (long long k = idz; k < block_shape[2]; k += offset_z) for (long long j = idy; j < block_shape[1]; j += offset_y) for (long long i = idx; i < block_shape[0]; i += offset_x) locate_p(prev_block, i, j, k) = locate_p(block, i, j, k); } __global__ void prev_block_to_abs_difference_array( double *block, double *prev_block ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long offset_x = blockDim.x * gridDim.x; const long long offset_y = blockDim.y * gridDim.y; const long long offset_z = blockDim.z * gridDim.z; for (long long k = idz; k < block_shape[2]; k += offset_z) for (long long j = idy; j < block_shape[1]; j += offset_y) for (long long i = idx; i < block_shape[0]; i += offset_x) locate_p(prev_block, i, j, k) = fabs(locate_p(block, i, j, k) - locate_p(prev_block, i, j, k)); } __global__ void block_iter_process( double *block, double *prev_block, double *left, double *right, double *front, double *back, double *down, double *up, Lab08::Boundaries boundaries, double h_x_pow_minus_2, double h_y_pow_minus_2, double h_z_pow_minus_2, double denominator ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long offset_x = blockDim.x * gridDim.x; const long long offset_y = blockDim.y * gridDim.y; const long long offset_z = blockDim.z * gridDim.z; for (long long k = idz; k < block_shape[2]; k += offset_z) for (long long j = idy; j < block_shape[1]; j += offset_y) for (long long i = idx; i < block_shape[0]; i += offset_x) { double u_left = i == 0 ? (left == nullptr ? boundaries.left : left[ j + block_shape[1] * k]) : locate_p(prev_block, i - 1, j, k), u_right = i == block_shape[0] - 1 ? (right == nullptr ? boundaries.right : right[j + block_shape[1] * k]) : locate_p(prev_block, i + 1, j, k), u_front = j == 0 ? (front == nullptr ? boundaries.front : front[i + block_shape[0] * k]) : locate_p(prev_block, i, j - 1, k), u_back = j == block_shape[1] - 1 ? (back == nullptr ? boundaries.back : back[ i + block_shape[0] * k]) : locate_p(prev_block, i, j + 1, k), u_down = k == 0 ? (down == nullptr ? boundaries.down : down[ i + block_shape[0] * j]) : locate_p(prev_block, i, j, k - 1), u_up = k == block_shape[2] - 1 ? (up == nullptr ? boundaries.up : up[ i + block_shape[0] * j]) : locate_p(prev_block, i, j, k + 1); locate_p(block, i, j, k) = (u_left + u_right) * h_x_pow_minus_2; locate_p(block, i, j, k) += (u_front + u_back ) * h_y_pow_minus_2; locate_p(block, i, j, k) += (u_down + u_up ) * h_z_pow_minus_2; locate_p(block, i, j, k) /= denominator; } } __global__ void init_boundary_layers( double *block, double *left, double *right, double *front, double *back, double *down, double *up ) { const long long idx = blockDim.x * blockIdx.x + threadIdx.x; const long long idy = blockDim.y * blockIdx.y + threadIdx.y; const long long idz = blockDim.z * blockIdx.z + threadIdx.z; const long long offset_x = blockDim.x * gridDim.x; const long long offset_y = blockDim.y * gridDim.y; const long long offset_z = blockDim.z * gridDim.z; #define fill_boundary_layer(v, outer, inner, outer_start, inner_start, outer_offset, inner_offset, loc) \ { \ if (v) \ { \ for (long long i = outer_start; i < block_shape[outer]; i += outer_offset) \ for (long long j = inner_start; j < block_shape[inner]; j += inner_offset) \ v[i * block_shape[inner] + j] = loc; \ } \ } \ if (idx == 0) fill_boundary_layer(left , 2, 1, idz, idy, offset_z, offset_y, locate_p(block, 0, j, i)); if (idx == 1) fill_boundary_layer(right, 2, 1, idz, idy, offset_z, offset_y, locate_p(block, block_shape[0] - 1, j, i)); if (idy == 0) fill_boundary_layer(front, 2, 0, idz, idx, offset_z, offset_x, locate_p(block, j, 0, i)); if (idy == 1) fill_boundary_layer(back , 2, 0, idz, idx, offset_z, offset_x, locate_p(block, j, block_shape[1] - 1, i)); if (idz == 0) fill_boundary_layer(down , 1, 0, idy, idx, offset_y, offset_x, locate_p(block, j, i, 0)); if (idz == 1) fill_boundary_layer(up , 1, 0, idy, idx, offset_y, offset_x, locate_p(block, j, i, block_shape[2] - 1)); #undef fill_boundary_layer } void Lab08::copy_boundary_layers_to_device( std::vector<double> &left_h, std::vector<double> &right_h, std::vector<double> &front_h, std::vector<double> &back_h, std::vector<double> &down_h, std::vector<double> &up_h ) { auto copy_boundary_layer_to_device = []( std::vector<double> &v_h, CudaMemory<double> &v_d ) { v_d.memcpy(v_h.data(), cudaMemcpyHostToDevice); }; copy_boundary_layer_to_device(left_h, left_d); copy_boundary_layer_to_device(right_h, right_d); copy_boundary_layer_to_device(front_h, front_d); copy_boundary_layer_to_device(back_h, back_d); copy_boundary_layer_to_device(down_h, down_d); copy_boundary_layer_to_device(up_h, up_d); } void Lab08::solve() { std::vector<double> left_h (block_x == 0 ? 0 : block_shape[1] * block_shape[2]), right_h(block_x == process_grid_shape[0] - 1 ? 0 : block_shape[1] * block_shape[2]), front_h(block_y == 0 ? 0 : block_shape[0] * block_shape[2]), back_h (block_y == process_grid_shape[1] - 1 ? 0 : block_shape[0] * block_shape[2]), down_h (block_z == 0 ? 0 : block_shape[0] * block_shape[1]), up_h (block_z == process_grid_shape[2] - 1 ? 0 : block_shape[0] * block_shape[1]); double n_x = block_shape[0] * process_grid_shape[0], n_y = block_shape[1] * process_grid_shape[1], n_z = block_shape[2] * process_grid_shape[2]; double h_x_pow_minus_2 = n_x * n_x / l[0] / l[0], h_y_pow_minus_2 = n_y * n_y / l[1] / l[1], h_z_pow_minus_2 = n_z * n_z / l[2] / l[2], denominator = 2 * (h_x_pow_minus_2 + h_y_pow_minus_2 + h_z_pow_minus_2); std::vector<MPI_Request> send_requests, receive_requests; checkCudaErrors(cudaMemcpyToSymbol( ::block_shape, block_shape.data(), block_shape.size() * sizeof(decltype(block_shape[0])), 0, cudaMemcpyHostToDevice )); thrust::device_ptr<double> abs_difference_array = thrust::device_pointer_cast(prev_block_d.get()); while (true) { CudaKernelChecker checker; init_boundary_layers<<<GRID_SIZE_dim3, BLOCK_SIZE_dim3>>>( block_d.get(), left_d.get(), right_d.get(), front_d.get(), back_d.get(), down_d.get(), up_d.get() ); checker.check("init_boundary_layers"); if (sends_first) { send_boundary_layers(send_requests); checkMPIErrors(MPI_Waitall( send_requests.size(), send_requests.data(), MPI_STATUSES_IGNORE )); send_requests.clear(); receive_boundary_layers( left_h, right_h, front_h, back_h, down_h, up_h, receive_requests ); checkMPIErrors(MPI_Waitall( receive_requests.size(), receive_requests.data(), MPI_STATUSES_IGNORE )); receive_requests.clear(); } else { receive_boundary_layers( left_h, right_h, front_h, back_h, down_h, up_h, receive_requests ); checkMPIErrors(MPI_Waitall( receive_requests.size(), receive_requests.data(), MPI_STATUSES_IGNORE )); receive_requests.clear(); send_boundary_layers(send_requests); checkMPIErrors(MPI_Waitall( send_requests.size(), send_requests.data(), MPI_STATUSES_IGNORE )); send_requests.clear(); } copy_boundary_layers_to_device( left_h, right_h, front_h, back_h, down_h, up_h ); copy_block_to_prev_block<<<GRID_SIZE_dim3, BLOCK_SIZE_dim3>>>( block_d.get(), prev_block_d.get() ); checker.check("copy_block_to_prev_block"); block_iter_process<<<GRID_SIZE_dim3, BLOCK_SIZE_dim3>>>( block_d.get(), prev_block_d.get(), left_d.get(), right_d.get(), front_d.get(), back_d.get(), down_d.get(), up_d.get(), boundaries, h_x_pow_minus_2, h_y_pow_minus_2, h_z_pow_minus_2, denominator ); checker.check("iter process kernel"); prev_block_to_abs_difference_array<<<GRID_SIZE_dim3, BLOCK_SIZE_dim3>>>( block_d.get(), prev_block_d.get() ); checker.check("prev_block_to_abs_difference_array"); double max_abs_difference = *thrust::max_element( abs_difference_array, abs_difference_array + prev_block_d.count ); double total_max_abs_difference; checkMPIErrors(MPI_Allreduce( &max_abs_difference, &total_max_abs_difference, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD )); if (total_max_abs_difference < eps) break; } } void Lab08::write_answer() { timer.stop(); if (rank == 0) timer.print_time(); MPI_File file; int delete_error = MPI_File_delete(output_name.c_str(), MPI_INFO_NULL); if (delete_error != 0 && delete_error != MPI_ERR_NO_SUCH_FILE) checkMPIErrors(delete_error); checkMPIErrors(MPI_File_open( MPI_COMM_WORLD, output_name.c_str(), MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &file )); // create type MPI_Datatype Number; const int number_chars_count = 16; // 0 . 000000 e+000 ' ' checkMPIErrors(MPI_Type_contiguous( number_chars_count, MPI_CHAR, &Number )); MPI_Datatype BlockRow; checkMPIErrors(MPI_Type_contiguous( block_shape[0], Number, &BlockRow )); MPI_Datatype BlockPlane; std::vector<int> BlockPlane_blocklengths; std::vector<int> BlockPlane_displacements; for (size_t i = 0; i < block_shape[1]; ++i) { BlockPlane_blocklengths.push_back(1); BlockPlane_displacements.push_back(i * process_grid_shape[0]); } checkMPIErrors(MPI_Type_create_hvector(block_shape[1], 1, process_grid_shape[0] * block_shape[0] * number_chars_count, BlockRow, &BlockPlane)); /* checkMPIErrors(MPI_Type_indexed( */ /* block_shape[1], */ /* BlockPlane_blocklengths.data(), */ /* BlockPlane_displacements.data(), */ /* BlockRow, */ /* &BlockPlane */ /* )); */ MPI_Datatype Block; std::vector<int> Block_blocklengths; std::vector<int> Block_displacements; for (size_t i = 0; i < block_shape[2]; ++i) { Block_blocklengths.push_back(1); Block_displacements.push_back(i * process_grid_shape[1]); } checkMPIErrors(MPI_Type_create_hvector(block_shape[2], 1, process_grid_shape[1] * block_shape[0] * number_chars_count * process_grid_shape[0] * block_shape[1], BlockPlane, &Block)); /* checkMPIErrors(MPI_Type_indexed( */ /* block_shape[2], */ /* Block_blocklengths.data(), */ /* Block_displacements.data(), */ /* BlockPlane, */ /* &Block */ /* )); */ checkMPIErrors(MPI_Type_commit(&Block)); // set view with created type MPI_Offset offset = 0; offset += block_shape[0] * number_chars_count * block_x; offset += block_shape[0] * block_shape[1] * process_grid_shape[0] * number_chars_count * block_y; offset += block_shape[0] * block_shape[1] * block_shape[2] * process_grid_shape[0] * process_grid_shape[1] * number_chars_count * block_z; checkMPIErrors(MPI_File_set_view( file, offset, MPI_CHAR, Block, "native", MPI_INFO_NULL )); // create buffer with data to write std::string buffer; size_t buffer_pos = 0; block_h.resize(block_d.count); block_d.memcpy(block_h.data(), cudaMemcpyDeviceToHost); /* for (size_t i = 0; i < block_h.size(); ++i) */ /* { */ /* std::cout << i << std::endl; */ /* block_h[i] = i + block_h.size() * rank; */ /* } */ for (long long k = 0; k < block_shape[2]; ++k) for (long long j = 0; j < block_shape[1]; ++j) for (long long i = 0; i < block_shape[0]; ++i) { buffer.resize(buffer_pos + number_chars_count); sprintf(&buffer[buffer_pos], "%-16e", locate(i, j, k)); buffer_pos += number_chars_count; if (block_x == process_grid_shape[0] - 1 && i == block_shape[0] - 1) { buffer[buffer_pos - 1] = '\n'; if (j == block_shape[1] - 1 && block_y == process_grid_shape[1] - 1 && (block_z != process_grid_shape[2] - 1 || k != block_shape[2] - 1)) buffer[buffer_pos - 2] = '\n'; } } /* buffer[0] = 'R'; */ /* buffer[1] = 'a'; */ /* buffer[2] = 'n'; */ /* buffer[3] = 'k'; */ /* buffer[4] = ' '; */ /* buffer[5] = '0' + rank; */ /* if (rank == 0) { */ /* std::cout << buffer << std::endl; */ /* for (int i = 1; i < 8; i++) { */ /* MPI_Recv(&buffer[0], buffer.size(), MPI_CHAR, i, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE); */ /* std::cout << std::endl << buffer << std::endl; */ /* } */ /* } else { */ /* MPI_Send(&buffer[0], buffer.size(), MPI_CHAR, 0, 0, MPI_COMM_WORLD); */ /* } */ // write data from buffer checkMPIErrors(MPI_File_write_all( file, buffer.data(), buffer.size(), MPI_CHAR, MPI_STATUS_IGNORE )); // close file checkMPIErrors(MPI_File_close(&file)); }
21a2390523ec5438ddf21ad9d91b04ae044ec944.hip
// !!! This is a file automatically generated by hipify!!! /* * Copyright (c) 2018-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "../test_utils.cuh" #include <gtest/gtest.h> #include <raft/core/device_mdarray.hpp> #include <raft/core/resource/cuda_stream.hpp> #include <raft/core/resource/thrust_policy.hpp> #include <raft/matrix/copy.cuh> #include <raft/random/rng.cuh> #include <raft/util/cudart_utils.hpp> #include <rmm/device_uvector.hpp> #include <thrust/copy.h> #include <thrust/device_ptr.h> #include <thrust/iterator/counting_iterator.h> namespace raft { namespace matrix { template <typename T> struct MatrixInputs { T tolerance; int n_row; int n_col; unsigned long long int seed; }; template <typename T> ::std::ostream& operator<<(::std::ostream& os, const MatrixInputs<T>& dims) { return os; } template <typename T> class MatrixTest : public ::testing::TestWithParam<MatrixInputs<T>> { public: MatrixTest() : params(::testing::TestWithParam<MatrixInputs<T>>::GetParam()), stream(resource::get_cuda_stream(handle)), in1(params.n_row * params.n_col, stream), in2(params.n_row * params.n_col, stream), in1_revr(params.n_row * params.n_col, stream) { } protected: void SetUp() override { raft::random::RngState r(params.seed); int len = params.n_row * params.n_col; uniform(handle, r, in1.data(), len, T(-1.0), T(1.0)); auto in1_view = raft::make_device_matrix_view<const T, int, col_major>( in1.data(), params.n_row, params.n_col); auto in2_view = raft::make_device_matrix_view<T, int, col_major>(in2.data(), params.n_row, params.n_col); copy<T, int>(handle, in1_view, in2_view); // copy(in1, in1_revr, params.n_row, params.n_col); // colReverse(in1_revr, params.n_row, params.n_col); rmm::device_uvector<T> outTrunc(6, stream); auto out_trunc_view = raft::make_device_matrix_view<T, int, col_major>(outTrunc.data(), 3, 2); trunc_zero_origin<T, int>(handle, in1_view, out_trunc_view); resource::sync_stream(handle, stream); } protected: raft::resources handle; hipStream_t stream; MatrixInputs<T> params; rmm::device_uvector<T> in1, in2, in1_revr; }; const std::vector<MatrixInputs<float>> inputsf2 = {{0.000001f, 4, 4, 1234ULL}}; const std::vector<MatrixInputs<double>> inputsd2 = {{0.00000001, 4, 4, 1234ULL}}; typedef MatrixTest<float> MatrixTestF; TEST_P(MatrixTestF, Result) { ASSERT_TRUE(raft::devArrMatch(in1.data(), in2.data(), params.n_row * params.n_col, raft::CompareApprox<float>(params.tolerance), stream)); } typedef MatrixTest<double> MatrixTestD; TEST_P(MatrixTestD, Result) { ASSERT_TRUE(raft::devArrMatch(in1.data(), in2.data(), params.n_row * params.n_col, raft::CompareApprox<double>(params.tolerance), stream)); } INSTANTIATE_TEST_SUITE_P(MatrixTests, MatrixTestF, ::testing::ValuesIn(inputsf2)); INSTANTIATE_TEST_SUITE_P(MatrixTests, MatrixTestD, ::testing::ValuesIn(inputsd2)); template <typename T> class MatrixCopyRowsTest : public ::testing::Test { using math_t = typename std::tuple_element<0, T>::type; using idx_t = typename std::tuple_element<1, T>::type; using idx_array_t = typename std::tuple_element<2, T>::type; protected: MatrixCopyRowsTest() : stream(resource::get_cuda_stream(handle)), input(n_cols * n_rows, resource::get_cuda_stream(handle)), indices(n_selected, resource::get_cuda_stream(handle)), output(n_cols * n_selected, resource::get_cuda_stream(handle)) { raft::update_device(indices.data(), indices_host, n_selected, stream); // Init input array thrust::counting_iterator<idx_t> first(0); thrust::device_ptr<math_t> ptr(input.data()); thrust::copy(resource::get_thrust_policy(handle), first, first + n_cols * n_rows, ptr); } void testCopyRows() { auto input_view = raft::make_device_matrix_view<const math_t, idx_array_t, col_major>( input.data(), n_rows, n_cols); auto output_view = raft::make_device_matrix_view<math_t, idx_array_t, col_major>( output.data(), n_selected, n_cols); auto indices_view = raft::make_device_vector_view<const idx_array_t, idx_array_t>(indices.data(), n_selected); raft::matrix::copy_rows(handle, input_view, output_view, indices_view); EXPECT_TRUE(raft::devArrMatchHost( output_exp_colmajor, output.data(), n_selected * n_cols, raft::Compare<math_t>(), stream)); auto input_row_view = raft::make_device_matrix_view<const math_t, idx_array_t, row_major>( input.data(), n_rows, n_cols); auto output_row_view = raft::make_device_matrix_view<math_t, idx_array_t, row_major>( output.data(), n_selected, n_cols); raft::matrix::copy_rows(handle, input_row_view, output_row_view, indices_view); EXPECT_TRUE(raft::devArrMatchHost( output_exp_rowmajor, output.data(), n_selected * n_cols, raft::Compare<math_t>(), stream)); } protected: raft::resources handle; hipStream_t stream; int n_rows = 10; int n_cols = 3; int n_selected = 5; idx_array_t indices_host[5] = {0, 3, 4, 7, 9}; math_t output_exp_colmajor[15] = {0, 3, 4, 7, 9, 10, 13, 14, 17, 19, 20, 23, 24, 27, 29}; math_t output_exp_rowmajor[15] = {0, 1, 2, 9, 10, 11, 12, 13, 14, 21, 22, 23, 27, 28, 29}; rmm::device_uvector<math_t> input; rmm::device_uvector<math_t> output; rmm::device_uvector<idx_array_t> indices; }; using TypeTuple = ::testing::Types<std::tuple<float, int, int>, std::tuple<float, int64_t, int>, std::tuple<double, int, int>, std::tuple<double, int64_t, int>>; TYPED_TEST_CASE(MatrixCopyRowsTest, TypeTuple); TYPED_TEST(MatrixCopyRowsTest, CopyRows) { this->testCopyRows(); } } // namespace matrix } // namespace raft
21a2390523ec5438ddf21ad9d91b04ae044ec944.cu
/* * Copyright (c) 2018-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "../test_utils.cuh" #include <gtest/gtest.h> #include <raft/core/device_mdarray.hpp> #include <raft/core/resource/cuda_stream.hpp> #include <raft/core/resource/thrust_policy.hpp> #include <raft/matrix/copy.cuh> #include <raft/random/rng.cuh> #include <raft/util/cudart_utils.hpp> #include <rmm/device_uvector.hpp> #include <thrust/copy.h> #include <thrust/device_ptr.h> #include <thrust/iterator/counting_iterator.h> namespace raft { namespace matrix { template <typename T> struct MatrixInputs { T tolerance; int n_row; int n_col; unsigned long long int seed; }; template <typename T> ::std::ostream& operator<<(::std::ostream& os, const MatrixInputs<T>& dims) { return os; } template <typename T> class MatrixTest : public ::testing::TestWithParam<MatrixInputs<T>> { public: MatrixTest() : params(::testing::TestWithParam<MatrixInputs<T>>::GetParam()), stream(resource::get_cuda_stream(handle)), in1(params.n_row * params.n_col, stream), in2(params.n_row * params.n_col, stream), in1_revr(params.n_row * params.n_col, stream) { } protected: void SetUp() override { raft::random::RngState r(params.seed); int len = params.n_row * params.n_col; uniform(handle, r, in1.data(), len, T(-1.0), T(1.0)); auto in1_view = raft::make_device_matrix_view<const T, int, col_major>( in1.data(), params.n_row, params.n_col); auto in2_view = raft::make_device_matrix_view<T, int, col_major>(in2.data(), params.n_row, params.n_col); copy<T, int>(handle, in1_view, in2_view); // copy(in1, in1_revr, params.n_row, params.n_col); // colReverse(in1_revr, params.n_row, params.n_col); rmm::device_uvector<T> outTrunc(6, stream); auto out_trunc_view = raft::make_device_matrix_view<T, int, col_major>(outTrunc.data(), 3, 2); trunc_zero_origin<T, int>(handle, in1_view, out_trunc_view); resource::sync_stream(handle, stream); } protected: raft::resources handle; cudaStream_t stream; MatrixInputs<T> params; rmm::device_uvector<T> in1, in2, in1_revr; }; const std::vector<MatrixInputs<float>> inputsf2 = {{0.000001f, 4, 4, 1234ULL}}; const std::vector<MatrixInputs<double>> inputsd2 = {{0.00000001, 4, 4, 1234ULL}}; typedef MatrixTest<float> MatrixTestF; TEST_P(MatrixTestF, Result) { ASSERT_TRUE(raft::devArrMatch(in1.data(), in2.data(), params.n_row * params.n_col, raft::CompareApprox<float>(params.tolerance), stream)); } typedef MatrixTest<double> MatrixTestD; TEST_P(MatrixTestD, Result) { ASSERT_TRUE(raft::devArrMatch(in1.data(), in2.data(), params.n_row * params.n_col, raft::CompareApprox<double>(params.tolerance), stream)); } INSTANTIATE_TEST_SUITE_P(MatrixTests, MatrixTestF, ::testing::ValuesIn(inputsf2)); INSTANTIATE_TEST_SUITE_P(MatrixTests, MatrixTestD, ::testing::ValuesIn(inputsd2)); template <typename T> class MatrixCopyRowsTest : public ::testing::Test { using math_t = typename std::tuple_element<0, T>::type; using idx_t = typename std::tuple_element<1, T>::type; using idx_array_t = typename std::tuple_element<2, T>::type; protected: MatrixCopyRowsTest() : stream(resource::get_cuda_stream(handle)), input(n_cols * n_rows, resource::get_cuda_stream(handle)), indices(n_selected, resource::get_cuda_stream(handle)), output(n_cols * n_selected, resource::get_cuda_stream(handle)) { raft::update_device(indices.data(), indices_host, n_selected, stream); // Init input array thrust::counting_iterator<idx_t> first(0); thrust::device_ptr<math_t> ptr(input.data()); thrust::copy(resource::get_thrust_policy(handle), first, first + n_cols * n_rows, ptr); } void testCopyRows() { auto input_view = raft::make_device_matrix_view<const math_t, idx_array_t, col_major>( input.data(), n_rows, n_cols); auto output_view = raft::make_device_matrix_view<math_t, idx_array_t, col_major>( output.data(), n_selected, n_cols); auto indices_view = raft::make_device_vector_view<const idx_array_t, idx_array_t>(indices.data(), n_selected); raft::matrix::copy_rows(handle, input_view, output_view, indices_view); EXPECT_TRUE(raft::devArrMatchHost( output_exp_colmajor, output.data(), n_selected * n_cols, raft::Compare<math_t>(), stream)); auto input_row_view = raft::make_device_matrix_view<const math_t, idx_array_t, row_major>( input.data(), n_rows, n_cols); auto output_row_view = raft::make_device_matrix_view<math_t, idx_array_t, row_major>( output.data(), n_selected, n_cols); raft::matrix::copy_rows(handle, input_row_view, output_row_view, indices_view); EXPECT_TRUE(raft::devArrMatchHost( output_exp_rowmajor, output.data(), n_selected * n_cols, raft::Compare<math_t>(), stream)); } protected: raft::resources handle; cudaStream_t stream; int n_rows = 10; int n_cols = 3; int n_selected = 5; idx_array_t indices_host[5] = {0, 3, 4, 7, 9}; math_t output_exp_colmajor[15] = {0, 3, 4, 7, 9, 10, 13, 14, 17, 19, 20, 23, 24, 27, 29}; math_t output_exp_rowmajor[15] = {0, 1, 2, 9, 10, 11, 12, 13, 14, 21, 22, 23, 27, 28, 29}; rmm::device_uvector<math_t> input; rmm::device_uvector<math_t> output; rmm::device_uvector<idx_array_t> indices; }; using TypeTuple = ::testing::Types<std::tuple<float, int, int>, std::tuple<float, int64_t, int>, std::tuple<double, int, int>, std::tuple<double, int64_t, int>>; TYPED_TEST_CASE(MatrixCopyRowsTest, TypeTuple); TYPED_TEST(MatrixCopyRowsTest, CopyRows) { this->testCopyRows(); } } // namespace matrix } // namespace raft
2b375ca1064061439fdc87fb32d664cc9434d26e.hip
"// !!! This is a file automatically generated by hipify!!!\n#include <stdio.h>\n#include <stdint.h>(...TRUNCATED)
2b375ca1064061439fdc87fb32d664cc9434d26e.cu
"#include <stdio.h>\n#include <stdint.h>\n#include <stdlib.h>\n#include <cuda_runtime.h>\n#include \(...TRUNCATED)
7585ae37db845c3d72867067b861aa6c2cf3e14f.hip
"// !!! This is a file automatically generated by hipify!!!\n#include \"hip/hip_runtime.h\"\n/* ****(...TRUNCATED)
7585ae37db845c3d72867067b861aa6c2cf3e14f.cu
"/* ******************************************************************************\n *\n *\n * This (...TRUNCATED)
c3188cd3f334ac6d986d1f375d9a8801292d5b80.hip
"// !!! This is a file automatically generated by hipify!!!\n#include \"hip/hip_runtime.h\"\n#includ(...TRUNCATED)
c3188cd3f334ac6d986d1f375d9a8801292d5b80.cu
"#include \"poisson2d.hpp\"\n#include \"timer.hpp\"\n#include <algorithm>\n#include <cmath>\n#includ(...TRUNCATED)
96bb668fecc8b0a34b7650aef53cc31e3a01ee28.hip
"// !!! This is a file automatically generated by hipify!!!\n#include <stdbool.h>\n#include <stdio.h(...TRUNCATED)
96bb668fecc8b0a34b7650aef53cc31e3a01ee28.cu
"#include <stdbool.h>\n#include <stdio.h>\n#include <string.h>\n#include <getopt.h>\n#include <curan(...TRUNCATED)
9dc24335940e31d15412f59d6fc8dc41080fd2fa.hip
"// !!! This is a file automatically generated by hipify!!!\n#include \"hip/hip_runtime.h\"\n// Home(...TRUNCATED)
9dc24335940e31d15412f59d6fc8dc41080fd2fa.cu
"// Homework 1\n// Color to Greyscale Conversion\n\n//A common way to represent color images is know(...TRUNCATED)
fdde141701ec6aef7c1c0271fc242e3b55fa093c.hip
"// !!! This is a file automatically generated by hipify!!!\n#define TORCH_ASSERT_NO_OPERATORS\n#inc(...TRUNCATED)
fdde141701ec6aef7c1c0271fc242e3b55fa093c.cu
"#define TORCH_ASSERT_NO_OPERATORS\n#include <ATen/AccumulateType.h>\n#include <ATen/Dispatch.h>\n#i(...TRUNCATED)
README.md exists but content is empty.
Downloads last month
25