hyperedge
int64
1
49.7k
nodes
stringclasses
446 values
timestamp
float64
0
3,573B
1
[1, 2]
3,547,497,600,000
6
[11, 12, 13]
3,499,459,200,000
7
[11, 12, 13]
3,499,459,200,000
8
[14, 15]
3,193,689,600,000
9
[16, 17]
3,247,257,600,000
10
[16, 17]
3,247,257,600,000
11
[16, 17]
3,247,257,600,000
12
[18, 14, 15]
3,385,065,600,000
13
[18, 14, 15]
3,281,212,800,000
14
[18, 14, 15]
3,281,212,800,000
15
[18, 14, 15]
3,281,212,800,000
16
[18, 14, 15]
3,281,212,800,000
17
[17, 19, 15]
3,302,294,400,000
18
[16, 17]
3,247,257,600,000
19
[16, 17]
3,247,257,600,000
20
[17, 19, 15]
3,302,294,400,000
21
[16, 17]
3,317,328,000,000
22
[16, 17]
3,317,328,000,000
23
[17, 19, 15]
3,472,502,400,000
24
[18]
3,076,012,800,000
25
[18]
3,053,116,800,000
26
[18]
3,053,116,800,000
27
[18]
3,053,116,800,000
28
[20, 21]
3,093,033,600,000
29
[20, 21]
3,093,033,600,000
30
[18]
3,156,451,200,000
31
[18]
3,192,393,600,000
32
[18]
3,168,806,400,000
33
[18]
3,168,806,400,000
34
[18]
3,208,291,200,000
35
[18]
3,208,291,200,000
36
[22, 23]
3,278,793,600,000
37
[22, 23]
3,278,793,600,000
38
[22, 23]
3,278,793,600,000
39
[22, 23]
3,408,652,800,000
40
[24, 25, 26]
3,456,172,800,000
41
[24, 25, 26]
3,456,172,800,000
42
[27, 28]
3,041,107,200,000
43
[27, 28]
3,041,107,200,000
44
[29, 30]
3,043,699,200,000
45
[29, 30]
3,154,809,600,000
46
[29, 30]
3,154,809,600,000
47
[29, 30]
3,096,921,600,000
48
[18]
3,289,766,400,000
49
[32, 31]
3,284,841,600,000
50
[32, 31]
3,398,112,000,000
54
[29, 30]
3,043,699,200,000
58
[37, 38]
3,247,257,600,000
59
[29, 39]
2,974,060,800,000
60
[29, 30]
3,398,025,600,000
61
[29, 30]
3,398,025,600,000
62
[29, 30]
3,398,025,600,000
68
[48, 49, 50, 47]
3,517,084,800,000
76
[56, 57]
3,565,641,600,000
77
[56, 57]
3,565,641,600,000
78
[58, 59, 60]
3,321,043,200,000
79
[58, 59, 60]
3,321,043,200,000
80
[58, 59, 60]
3,321,043,200,000
81
[59, 60, 61]
2,981,404,800,000
82
[59, 60, 61]
2,981,404,800,000
83
[59, 60, 61]
2,981,404,800,000
84
[59, 60, 61]
2,981,404,800,000
85
[59, 60, 61]
3,050,956,800,000
86
[64, 62, 63]
3,439,756,800,000
87
[64, 62, 63]
3,520,886,400,000
88
[65, 66]
3,479,068,800,000
89
[65, 66]
3,479,068,800,000
91
[72, 73, 71]
3,510,000,000,000
92
[72, 73, 71]
3,510,000,000,000
93
[65, 66]
3,479,068,800,000
94
[65, 66]
3,479,068,800,000
95
[64, 62, 63]
3,520,886,400,000
96
[64, 62, 63]
3,520,886,400,000
97
[74, 75, 76, 77, 78, 79, 53]
3,265,401,600,000
98
[74, 75, 76, 77, 78, 79, 53]
3,265,401,600,000
99
[74, 75, 76, 77, 78, 79, 53]
3,265,401,600,000
105
[83, 84]
3,452,803,200,000
106
[83, 84]
3,452,803,200,000
107
[83, 84]
3,452,803,200,000
111
[59, 85, 86, 87]
3,194,812,800,000
112
[59, 85, 86, 87]
3,460,406,400,000
115
[59, 87]
3,247,862,400,000
117
[90, 91]
3,235,680,000,000
118
[90, 91]
3,515,875,200,000
119
[74, 75, 78]
3,312,230,400,000
120
[74, 75, 78]
3,027,196,800,000
121
[92, 93]
3,501,532,800,000
122
[94]
3,008,448,000,000
123
[94]
3,075,667,200,000
124
[94]
3,116,188,800,000
125
[94]
3,111,868,800,000
126
[96, 95]
3,243,715,200,000
127
[96, 95]
3,510,345,600,000
128
[96, 95]
3,529,094,400,000
129
[96, 95]
3,529,094,400,000
136
[27, 28]
3,102,883,200,000
137
[27, 28]
3,102,883,200,000
138
[100, 101, 102]
2,545,862,400,000
139
[100, 101, 102]
2,404,339,200,000
140
[100, 101, 102]
2,991,081,600,000

Source Paper: https://arxiv.org/abs/1802.06916

Usage

from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

dataset = CornellTemporalHyperGraphDataset(root = "./", name="NDC-classes-25", split="train")

Citation

@article{Benson-2018-simplicial,
 author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
 title = {Simplicial closure and higher-order link prediction},
 year = {2018},
 doi = {10.1073/pnas.1800683115},
 publisher = {National Academy of Sciences},
 issn = {0027-8424},
 journal = {Proceedings of the National Academy of Sciences}
}
Downloads last month
37

Collection including SauravMaheshkar/NDC-classes-25