Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
DOI:
import json | |
import os | |
import pyarrow as pa | |
import pyarrow.parquet as pq | |
import torch | |
from tqdm import tqdm | |
from transformers import AutoModel, AutoTokenizer | |
file_name_prefix = "msmarco_v2.1_doc_segmented_" | |
path = "/home/mltraining/msmarco_v2.1_doc_segmented/" | |
model_names = [ | |
"Snowflake/snowflake-arctic-embed-l", | |
"Snowflake/snowflake-arctic-embed-m-v1.5", | |
] | |
for model_name in model_names: | |
print(f"Running doc embeddings using {model_name}") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained( | |
model_name, | |
add_pooling_layer=False, | |
) | |
model.eval() | |
device = "cuda" | |
model = model.to(device) | |
dir_path = f"{path}{model_name.split('/')[1]}/" | |
if not os.path.exists(dir_path): | |
os.makedirs(dir_path) | |
for i in range(0, 59): | |
try: | |
filename = f"{path}{file_name_prefix}{i:02}.json" | |
filename_out = f"{dir_path}{i:02}.parquet" | |
print(f"Starting doc embeddings on {filename}") | |
data = [] | |
ids = [] | |
with open(filename, "r") as f: | |
for line in tqdm(f, desc="Processing JSONL file"): | |
j = json.loads(line) | |
doc_id = j["docid"] | |
text = j["segment"] | |
title = j["title"] | |
heading = j["headings"] | |
doc_text = "{} {}".format(title, text) | |
data.append(doc_text) | |
ids.append(doc_id) | |
print("Documents fully loaded") | |
batch_size = 512 | |
chunks = [data[i: i + batch_size] for i in range(0, len(data), batch_size)] | |
embds = [] | |
for chunk in tqdm(chunks, desc="inference"): | |
tokens = tokenizer( | |
chunk, | |
padding=True, | |
truncation=True, | |
return_tensors="pt", | |
max_length=512, | |
).to(device) | |
with torch.autocast( | |
"cuda", dtype=torch.bfloat16 | |
), torch.inference_mode(): | |
embds.append( | |
model(**tokens)[0][:, 0] | |
.cpu() | |
.to(torch.float32) | |
.detach() | |
.numpy() | |
) | |
del data, chunks | |
embds = [item for batch in embds for item in batch] | |
out_data = [] | |
for emb, doc_id in zip(embds, ids): | |
out_data.append({"doc_id": doc_id, "embedding": emb}) | |
del embds, ids | |
table = pa.Table.from_pylist(out_data) | |
del out_data | |
pq.write_table(table, filename_out) | |
except Exception: | |
pass | |