kor_sent
stringlengths
1
5.4k
βŒ€
eng_sent
stringlengths
1
17.5k
βŒ€
source
stringclasses
4 values
similarity
float64
0.12
1
βŒ€
from
stringclasses
5 values
__index_level_0__
float64
0
1.78M
βŒ€
병원츑이 μ²˜μŒμ— 이걸 λ°œκ²¬ν–ˆμ„ λ•Œ 이런 사싀을 λ¬΄μ‹œν•˜κ³  이 μœ„μ— μž”λ””λ₯Ό λ‹€μ‹œ κΉ”μ•˜μŠ΅λ‹ˆλ‹€.
Now, when the hospital saw this originally, they tried to lay turf back over it, ignore it.
IWSLT2017
null
null
null
ν•˜μ§€λ§Œ μ–Όλ§ˆ 후에, 이 길이 μ€‘μš”ν•œ μš”κ΅¬μ‚¬ν•­μž„μ„ μ•Œκ²Œ λ˜μ—ˆμ£ . 병원츑은 ν™˜μžλ“€κ³Ό 회의λ₯Ό κ°€μ‘Œκ³  κ·Έ 후에 이 곳에 λ„λ‘œλ₯Ό λ§Œλ“€μ—ˆμŠ΅λ‹ˆλ‹€.
But after a while, they realized it was an important need they were meeting for their patients, so they paved it.
IWSLT2017
null
null
null
μš°λ¦¬κ°€ ν•  일은 이런 ν¬λ§κ²½λ‘œκ°€ λ“œλŸ¬λ‚˜λ©΄ κ·Έκ±Έ 포μž₯ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
And I think our job is often to pave these emerging desire paths.
IWSLT2017
null
null
null
런던 λΆλΆ€μ˜ μ‚¬λ‘€λ‘œ λ‹€μ‹œ λŒμ•„κ°€λ³΄λ©΄ 이 ν¬λ§κ²½λ‘œκ°€ 늘 이 μžλ¦¬λŠ” μ•„λ‹ˆμ—ˆμ–΄μš”.
If we look back at the one in North London again, that desire path hasn't always been there.
IWSLT2017
null
null
null
κ·Έ μ΄μœ λŠ” 좕ꡬ κ²½κΈ°κ°€ μžˆλŠ” λ‚ μ—λŠ” μ‚¬λžŒλ“€μ€ 였λ₯Έμͺ½ μ•„λž˜μ˜ μ§€ν•˜μ²  μ—­μ—μ„œ μ•„μŠ€λ‚  클럽 κ²½κΈ°μž₯으둜 μ΄λ™ν–ˆμŠ΅λ‹ˆλ‹€.
The reason it sprung up is people were traveling to the mighty Arsenal Football Club stadium on game days, from the Underground station you see on the bottom right.
IWSLT2017
null
null
null
κ·Έ ν¬λ§κ²½λ‘œκ°€ λ³΄μ΄μ‹œμ£ .
So you see the desire path.
IWSLT2017
null
null
null
λͺ‡ λ…„ μ „μœΌλ‘œ 거슬러 μ˜¬λΌκ°€ κ²½κΈ°μž₯을 짓고 μžˆμ„ λ•ŒλŠ” 이 ν¬λ§κ²½λ‘œλŠ” μ—†μ—ˆμŠ΅λ‹ˆλ‹€.
If we just wind the clock back a few years, when the stadium was being constructed, there is no desire path.
IWSLT2017
null
null
null
μš°λ¦¬κ°€ ν•΄μ•Ό ν•  일은 이런 ν¬λ§κ²½λ‘œκ°€ λ“œλŸ¬λ‚˜λŠ” κ±Έ μ°Ύμ•„λ‚΄κ³  μ λ‹Ήν•œ μœ„μΉ˜μ— κ·Έ 길을 λ§Œλ“€μ–΄ μ£ΌλŠ” κ²ƒμž…λ‹ˆλ‹€. λˆ„κ΅°κ°€κ°€ 이곳에 ν•œ κ²ƒμ²˜λŸΌμš”.
So our job is to watch for these desire paths emerging, and, where appropriate, pave them, as someone did here.
IWSLT2017
null
null
null
λˆ„κ΅°κ°€ μ—¬κΈ° μž₯애물을 λ‘μ—ˆκ³  μ‚¬λžŒλ“€μ€ μ•„λž˜λ‘œ λŒμ•„κ°€κΈ° μ‹œμž‘ν•˜μž κ·Έ 길을 포μž₯λ„λ‘œλ‘œ λ§Œλ“€μ—ˆμ£ .
Someone installed a barrier, people started walking across and round the bottom as you see, and they paved it.
IWSLT2017
null
null
null
그런데 이것도 λ†€λΌμš΄ κ΅ν›ˆμ„ μ€€λ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€. μ‹€μ œλ‘œ 세상은 λŠμž„μ—†μ΄ λ³€ν™”ν•œλ‹€λŠ” κ±°μ˜ˆμš”.
But I think this is a wonderful reminder as well, that, actually, the world is in flux.
IWSLT2017
null
null
null
κ³„μ†ν•΄μ„œ λ°”λ€Œκ³  μžˆμ–΄μš”. 이 μ‚¬μ§„μ˜ μœ„μͺ½μ„ λ³΄μ‹œλ©΄ 또 λ‹€λ₯Έ ν¬λ§κ²½λ‘œκ°€ λ§Œλ“€μ–΄μ§€κ³  μžˆκ±°λ“ μš”.
It's constantly changing, because if you look at the top of this image, there's another desire path forming.
IWSLT2017
null
null
null
이듀 세가지 일화가 μΌκΉ¨μ›Œ μ£ΌλŠ” 것은 μ‚¬λžŒλ“€μ˜ μ‹€μ œ μš”κ΅¬μ— 따라 λ””μžμΈν•΄μ•Ό ν•œλ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
So these three desire paths remind me we need to design for real human needs.
IWSLT2017
null
null
null
μ†ŒλΉ„μžμ˜ μš”κ΅¬λ₯Ό κ³΅κ°ν•˜λŠ” 것이 μ‚¬μ—…μ„±κ³΅μ˜ κ°€μž₯ 큰 척도가 λœλ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€.
I think empathy for what your customers want is probably the biggest leading indicator of business success.
IWSLT2017
null
null
null
μ‹€μ œ μš”κ΅¬μ— 따라 λ””μžμΈν•˜κ³  λ§ˆμ°°μ„ μ΅œμ†Œν™”ν•˜λŠ” λ””μžμΈμ„ ν•˜μ„Έμš”. λ§ˆμ°°μ„ μ΅œμ†Œν™”ν•˜λŠ” λ””μžμΈμ„ μ œκ³΅ν•˜μ§€ λͺ»ν•˜λ©΄ λˆ„κ΅°κ°€, λ•Œλ‘œλŠ” μ†ŒλΉ„μžκ°€ κ·Έ 일을 ν•  것이기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
Design for real needs and design them in low friction, because if you don't offer them in low friction, someone else will, often the customer.
IWSLT2017
null
null
null
두 번째둜, λŒ€μ€‘μ˜ μ‹€μ œ μš”κ΅¬λ₯Ό νŒŒμ•…ν•˜λŠ” κ°€μž₯ 쒋은 방법은 μ„œλΉ„μŠ€λ₯Ό 일단 μ œκ³΅ν•΄λ³΄λŠ” κ²ƒμž…λ‹ˆλ‹€.
Secondly, often the best way to learn what people really want is to launch your service.
IWSLT2017
null
null
null
해닡이 μ±…μƒλ¨Έλ¦¬μ—μ„œ λ‚˜μ˜€λŠ” 것은 μ•„λ‹ˆκ±°λ“ μš”.
The answer is rarely inside the building.
IWSLT2017
null
null
null
λ°–μœΌλ‘œ λ‚˜κ°€μ„œ μ‚¬λžŒλ“€μ΄ μ§„μ§œ μ›ν•˜λŠ” 것을 눈으둜 ν™•μΈν•˜μ„Έμš”.
Get out there and see what people really want.
IWSLT2017
null
null
null
그리고 λ§ˆμ§€λ§‰μœΌλ‘œ, κΈ°μˆ μ— νž˜μž…μ–΄μ„œ 세상은 μˆœμ‹κ°„μ— λ†€λΌμš΄ λ³€ν™”λ₯Ό λ³΄μž…λ‹ˆλ‹€.
And finally, in part because of technology, the world is incredibly flux at the moment.
IWSLT2017
null
null
null
κ³„μ†ν•΄μ„œ λ³€ν™”ν•˜κ³  μžˆμ–΄μš”.
It's changing constantly.
IWSLT2017
null
null
null
이런 ν¬λ§κ²½λ‘œλŠ” 끝없이 λΉ λ₯΄κ²Œ λ‚˜νƒ€λ‚˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
These desire paths are going to spring up faster than ever.
IWSLT2017
null
null
null
우리의 역할은 κ·Έ 쀑 μ λ‹Ήν•œ 것을 κ³ λ₯΄κ³  κ·Έ 길에 포μž₯을 μ”Œμ›Œμ£ΌλŠ” κ²ƒμž…λ‹ˆλ‹€.
Our job is to pick the appropriate ones and pave over them.
IWSLT2017
null
null
null
κ²½μ²­ν•΄ μ£Όμ…”μ„œ κ°μ‚¬ν•©λ‹ˆλ‹€.
Thank you very much.
IWSLT2017
null
null
null
μ €λŠ” κ΅¬κΈ€μ—μ„œ 기계지λŠ₯νŒ€μ„ 이끌고 μžˆμŠ΅λ‹ˆλ‹€. λ‹€λ₯΄κ²Œ ν‘œν˜„ν•˜λ©΄, 컴퓨터와 μž₯치λ₯Ό κ³΅ν•™μ μœΌλ‘œ ν›ˆλ ¨μ‹œμΌœ λ‡Œκ°€ ν•˜λŠ” 일을 ν•  수 있게 ν•©λ‹ˆλ‹€.
So, I lead a team at Google that works on machine intelligence; in other words, the engineering discipline of making computers and devices able to do some of the things that brains do.
IWSLT2017
null
null
null
그리고 이 일을 ν•˜λ©΄μ„œ μ €ν¬λŠ” μ‹€μ œ λ‡Œμ™€ 신경과학에 관심을 λ‘κ²Œ λ˜μ—ˆμŠ΅λ‹ˆλ‹€. 특히 관심 μžˆλŠ” 뢀뢄은 우리의 λ‡Œκ°€ ν•˜λŠ” 일 쀑에 아직 컴퓨터보닀 훨씬 λ›°μ–΄λ‚œ 뢀뢄에 λŒ€ν•œ κ²ƒμž…λ‹ˆλ‹€.
And this makes us interested in real brains and neuroscience as well, and especially interested in the things that our brains do that are still far superior to the performance of computers.
IWSLT2017
null
null
null
μ—­μ‚¬μ μœΌλ‘œ 이런 λΆ€λΆ„ 쀑에 ν•˜λ‚˜λ‘œ 인식이 언급돼 μ™”μŠ΅λ‹ˆλ‹€. 세상에 μ‘΄μž¬ν•˜λŠ” μ†Œλ¦¬λ‚˜ 이미지λ₯Ό 과정을 톡해 λ§ˆμŒμ†μ— κ°œλ…ν™”μ‹œν‚€λŠ” κ²ƒμž…λ‹ˆλ‹€.
Historically, one of those areas has been perception, the process by which things out there in the world -- sounds and images -- can turn into concepts in the mind.
IWSLT2017
null
null
null
이것은 우리 λ‡Œμ— ν•„μˆ˜μ μΈ κΈ°λŠ₯이고 컴퓨터에도 κ½€ μœ μš©ν•©λ‹ˆλ‹€.
This is essential for our own brains, and it's also pretty useful on a computer.
IWSLT2017
null
null
null
기계 인식 μ•Œκ³ λ¦¬μ¦˜μ˜ 예둜 저희 νŒ€μ—μ„œ ν•œ 일은 ꡬ글 ν¬ν† μŠ€μ— 올린 사진을 뭐가 μ°ν˜”λƒμ— 따라 검색이 κ°€λŠ₯ν•˜κ²Œ ν•œ 것이죠.
The machine perception algorithms, for example, that our team makes, are what enable your pictures on Google Photos to become searchable, based on what's in them.
IWSLT2017
null
null
null
μΈμ‹μ˜ λ°˜λŒ€λ§μ€ μ°½μ˜μ„±μž…λ‹ˆλ‹€. κ°œλ…μ„ 세상에 μ‘΄μž¬ν•˜λŠ” κ²ƒμœΌλ‘œ λ°”κΎΈλŠ” κ²ƒμž…λ‹ˆλ‹€.
The flip side of perception is creativity: turning a concept into something out there into the world.
IWSLT2017
null
null
null
μ§€λ‚œ λͺ‡ λ…„ λ™μ•ˆ 기계 인식에 λŒ€ν•΄ 저희가 ν•΄μ˜¨ 일듀은 λœ»λ°–μ—λ„ κΈ°κ³„μ˜ 창의λ ₯κ³Ό 기계 μ˜ˆμˆ μ„ μ—°κ²°ν–ˆμŠ΅λ‹ˆλ‹€.
So over the past year, our work on machine perception has also unexpectedly connected with the world of machine creativity and machine art.
IWSLT2017
null
null
null
μ €λŠ” λ―ΈμΌˆλž€μ €λ‘œκ°€ 인식과 μ°½μ˜μ„± κ°„μ˜ 이쀑 관계λ₯Ό κΏ°λš«μ–΄ λ³΄μ•˜λ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€.
I think Michelangelo had a penetrating insight into to this dual relationship between perception and creativity.
IWSLT2017
null
null
null
이것은 그의 유λͺ…ν•œ μΈμš©κ΅¬μž…λ‹ˆλ‹€. "λͺ¨λ“  λŒλ©μ΄λŠ” κ·Έ μ•ˆμ— 쑰각상을 가지고 있고 그것을 λ°œκ²¬ν•˜λŠ” 것이 μ‘°κ°κ°€μ˜ 과업이닀."
This is a famous quote of his: "Every block of stone has a statue inside of it, and the job of the sculptor is to discover it."
IWSLT2017
null
null
null
κ·Έλž˜μ„œ μ €λŠ” λ―ΈμΌˆλž€μ €λ‘œμ˜ 생각은 μš°λ¦¬λŠ” μΈμ‹ν•˜λŠ” κ²ƒμœΌλ‘œ μ°½μ‘°ν•˜κ³  κ·Έ 인식 μžμ²΄κ°€ μƒμƒν•˜λŠ” ν–‰μœ„μ΄λ©° μ°½μ˜μ„±μ΄λΌ μ—¬κΉλ‹ˆλ‹€.
So I think that what Michelangelo was getting at is that we create by perceiving, and that perception itself is an act of imagination and is the stuff of creativity.
IWSLT2017
null
null
null
μƒκ°ν•˜κ³  μΈμ‹ν•˜κ³  μƒμƒν•˜λŠ” 기관은 λ¬Όλ‘  λ‡Œμž…λ‹ˆλ‹€.
The organ that does all the thinking and perceiving and imagining, of course, is the brain.
IWSLT2017
null
null
null
그리고 μ €λŠ” κ°„λž΅ν•˜κ²Œ λ‡Œμ— λŒ€ν•œ μ—°κ΅¬μ˜ 역사에 λŒ€ν•΄μ„œ μ΄μ•ΌκΈ°ν•˜κ³  μ‹ΆμŠ΅λ‹ˆλ‹€.
And I'd like to begin with a brief bit of history about what we know about brains.
IWSLT2017
null
null
null
μ™œλƒν•˜λ©΄ 심μž₯μ΄λ‚˜ μž₯κ³Ό 달리 보기만 ν•΄μ„  λ‡Œμ— λŒ€ν•΄ 이야기할 게 μ—†κΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€. κ²‰μœΌλ‘œ 보기에 말이죠.
Because unlike, say, the heart or the intestines, you really can't say very much about a brain by just looking at it, at least with the naked eye.
IWSLT2017
null
null
null
초기 ν•΄λΆ€ν•™μžλ“€μ€ λ‡Œλ₯Ό 보고 ν‘œλ©΄μƒμ˜ ꡬ쑰에 μ˜¨κ°– κΈ°λ°œν•œ 이름을 λΆ™μ˜€μŠ΅λ‹ˆλ‹€. ν•΄λ§ˆκ°™μ΄ 말이죠, λœ»μ€ "μž‘μ€ μƒˆμš°"μž…λ‹ˆλ‹€.
The early anatomists who looked at brains gave the superficial structures of this thing all kinds of fanciful names, like hippocampus, meaning "little shrimp."
IWSLT2017
null
null
null
ν•˜μ§€λ§Œ λ¬Όλ‘  이런 이름듀이 μ‹€μ œλ‘œ λ¬΄μŠ¨μΌμ„ ν•˜λŠ”μ§€ 말해 μ£Όμ§€λŠ” μ•ŠμŠ΅λ‹ˆλ‹€.
But of course that sort of thing doesn't tell us very much about what's actually going on inside.
IWSLT2017
null
null
null
제 생각에 졜초둜 λ‡Œμ—μ„œ 무슨 일이 μΌμ–΄λ‚˜λŠ”μ§€μ— λŒ€ν•΄ 큰 κ³΅ν—Œμ„ ν•œ μ‚¬λžŒμ€ 슀페인의 μœ„λŒ€ν•œ μ‹ κ²½ ν•΄λΆ€ν•™μžμΈ μ‚°ν‹°μ•„κ³  라λͺ¬ 이 μΉ΄ν• μž…λ‹ˆλ‹€. 19세기에 ν˜„λ―Έκ²½ κ΄€μ°°κ³Ό νŠΉμˆ˜ν•œ 착색을 μ΄μš©ν•΄ μ„ νƒμ μœΌλ‘œ 각각의 λ‡Œμ„Έν¬λ₯Ό μ±„μš°κ±°λ‚˜ 높은 λŒ€λΉ„λ₯Ό λ§Œλ“€μ–΄ λ‚΄ ν˜•νƒœν•™μ μΈ 이해λ₯Ό ν•  수 있게 ν•œ μ‚¬λžŒμž…λ‹ˆλ‹€.
The first person who, I think, really developed some kind of insight into what was going on in the brain was the great Spanish neuroanatomist, Santiago RamΓ³n y Cajal, in the 19th century, who used microscopy and special stains that could selectively fill in or render in very high contrast the individual cells in the brain, in order to start to understand their morphologies.
IWSLT2017
null
null
null
이것듀은 κ·Έκ°€ μ‹ κ²½ μ„Έν¬λ‘œ λ§Œλ“  κ·Έλ¦Όλ“€μž…λ‹ˆλ‹€. 19세기에 말이죠.
And these are the kinds of drawings that he made of neurons in the 19th century.
IWSLT2017
null
null
null
이것은 μƒˆμ˜ λ‡Œ κ·Έλ¦Όμž…λ‹ˆλ‹€.
This is from a bird brain.
IWSLT2017
null
null
null
그리고 ꡉμž₯히 λ‹€μ–‘ν•œ 세포λ₯Ό λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€. 심지어 세포이둠도 μ•Œλ €μ§„ 지 μ–Όλ§ˆ μ•ˆ 된 λ•Œμ˜€μŠ΅λ‹ˆλ‹€.
And you see this incredible variety of different sorts of cells, even the cellular theory itself was quite new at this point.
IWSLT2017
null
null
null
그리고 이 κ΅¬μ‘°λŠ” μˆ˜μ§€μƒλΆ€λ₯Ό 가지고 μžˆλŠ” μ„Έν¬λ“€μ˜ κ°€μ§€λŠ” μ•„μ£Ό λ©€λ¦¬κΉŒμ§€ 뻗을 수 μžˆλŠ”λ° λ‹Ήμ‹œ 맀우 μƒˆλ‘œμ› μŠ΅λ‹ˆλ‹€.
And these structures, these cells that have these arborizations, these branches that can go very, very long distances -- this was very novel at the time.
IWSLT2017
null
null
null
이 κ΅¬μ‘°λŠ” 전선을 μ—°μƒμ‹œν‚΅λ‹ˆλ‹€.
They're reminiscent, of course, of wires.
IWSLT2017
null
null
null
μ „μ„ κ³Ό μ „κΈ°μ˜ 혁λͺ…이 μΌμ–΄λ‚˜λ˜ 19μ„ΈκΈ° μ‚¬λžŒλ“€μ€ λ‹Ήμ—°νžˆ κ·Έλ ‡κ²Œ λ³Ό 수 μžˆμ—ˆμ„ κ²ƒμž…λ‹ˆλ‹€.
That might have been obvious to some people in the 19th century; the revolutions of wiring and electricity were just getting underway.
IWSLT2017
null
null
null
ν•˜μ§€λ§Œ μ—¬λŸ¬ 가지 λ©΄μ—μ„œ 이런 라λͺ¬ 이 μΉ΄ν• μ˜ 쑰직학적 그림은 μ˜€λŠ˜λ‚ μ—λ„ 졜고둜 μ—¬κ²¨μ§‘λ‹ˆλ‹€.
But in many ways, these microanatomical drawings of RamΓ³n y Cajal's, like this one, they're still in some ways unsurpassed.
IWSLT2017
null
null
null
μš°λ¦¬λŠ” μ§€λ‚œ ν•œ μ„ΈκΈ° λ™μ•ˆ 라λͺ¬ 이 카할이 μ‹œμž‘ν•œ 일을 끝내렀고 λ…Έλ ₯ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
We're still more than a century later, trying to finish the job that RamΓ³n y Cajal started.
IWSLT2017
null
null
null
이것듀은 λ§‰μŠ€ν”Œλž‘ν¬ μ‹ κ²½κ³Όν•™ μ—°κ΅¬μ†Œ ν˜‘λ ₯μžλ“€μ˜ 기초 λ°μ΄νƒ€μž…λ‹ˆλ‹€.
These are raw data from our collaborators at the Max Planck Institute of Neuroscience.
IWSLT2017
null
null
null
그리고 저희 ν˜‘λ ₯μžλ“€μ΄ ν•œ 것은 λ‡Œμ„Έν¬μ˜ μž‘μ€ 뢀뢄을 μ‘°λͺ…ν•œ 것 μž…λ‹ˆλ‹€.
And what our collaborators have done is to image little pieces of brain tissue.
IWSLT2017
null
null
null
이 μƒ˜ν”Œμ˜ 전체 ν¬κΈ°λŠ” λŒ€λž΅ 1 μž…λ°© 밀리미터이고 결과물의 μ•„μ£Ό μž‘μ€ 뢀뢄을 보고 계신 κ²ƒμž…λ‹ˆλ‹€.
The entire sample here is about one cubic millimeter in size, and I'm showing you a very, very small piece of it here.
IWSLT2017
null
null
null
μ™Όμͺ½μ— μžˆλŠ” λ°”λŠ” 1미크둠 μž…λ‹ˆλ‹€.
That bar on the left is about one micron.
IWSLT2017
null
null
null
보고 계신 κ΅¬μ‘°λŠ” λ―Έν† μ½˜λ“œλ¦¬μ•„μž…λ‹ˆλ‹€. μ΄λŠ” λ°•ν…Œλ¦¬μ•„λ§ŒνΌ μž‘μŠ΅λ‹ˆλ‹€.
The structures you see are mitochondria that are the size of bacteria.
IWSLT2017
null
null
null
이것은 μ•„μ£Ό μž‘μ€ 쑰직으둜 자λ₯Έ 연속적인 λ‹¨λ©΄μž…λ‹ˆλ‹€.
And these are consecutive slices through this very, very tiny block of tissue.
IWSLT2017
null
null
null
비ꡐλ₯Ό ν•˜μžλ©΄ 머리카락의 평균 지름은 100 λ―Έν¬λ‘ μž…λ‹ˆλ‹€.
Just for comparison's sake, the diameter of an average strand of hair is about 100 microns.
IWSLT2017
null
null
null
저희가 보고 μžˆλŠ” 것은 머리카락 ν•œ κ°€λ‹₯보닀 훨씬 μž‘μ€ κ²ƒμž…λ‹ˆλ‹€.
So we're looking at something much, much smaller than a single strand of hair.
IWSLT2017
null
null
null
그리고 이런 μ „μžν˜„λ―Έκ²½μœΌλ‘œ λ‚˜λˆˆ 일련의 μ‘°κ°λ“€λ‘œ 신경세포λ₯Ό 3D둜 μ΄λ ‡κ²Œ 볡원할 수 μžˆμŠ΅λ‹ˆλ‹€.
And from these kinds of serial electron microscopy slices, one can start to make reconstructions in 3D of neurons that look like these.
IWSLT2017
null
null
null
이것은 라λͺ¬ 이 μΉ΄ν• μ˜ 방식과 μ–΄λŠ 정도 κ°™μŠ΅λ‹ˆλ‹€.
So these are sort of in the same style as RamΓ³n y Cajal.
IWSLT2017
null
null
null
일뢀 μ‹ κ²½μ„Έν¬λ§Œ λΉ„μΆ”μ—ˆμ£ . 그렇지 μ•ŠμœΌλ©΄ 아무것도 ꡬ뢄할 수 없을 κ²ƒμž…λ‹ˆλ‹€.
Only a few neurons lit up, because otherwise we wouldn't be able to see anything here.
IWSLT2017
null
null
null
사진 κ°€λ“νžˆ 신경세포끼리 μ„œλ‘œ μ—°κ²°λœ ꡬ쑰만 보일 κ²ƒμž…λ‹ˆλ‹€.
It would be so crowded, so full of structure, of wiring all connecting one neuron to another.
IWSLT2017
null
null
null
라λͺ¬ 이 카할은 μ‹œλŒ€λ₯Ό μ•žμ„œλ‚˜κ°”κ³  κ·Έν›„ μˆ˜μ‹­ λ…„ λ™μ•ˆ λ‡Œμ˜ 이해에 λŒ€ν•œ μ—°κ΅¬λŠ” μ„œμ„œνžˆ λ°œμ „ν–ˆμŠ΅λ‹ˆλ‹€.
So RamΓ³n y Cajal was a little bit ahead of his time, and progress on understanding the brain proceeded slowly over the next few decades.
IWSLT2017
null
null
null
κ·ΈλŸ¬λ‚˜ μš°λ¦¬λŠ” 신경세포가 μ „κΈ°λ₯Ό μ΄μš©ν•˜λŠ” 것을 μ•Œμ•„λƒˆκ³  제2μ°¨ μ„Έκ³„λŒ€μ „ λ•Œ λ°œμ „ν•œ 기술둜 μ‹€μ œλ‘œ 신경세포에 μ „κΈ° μ‹€ν—˜μ„ ν•  수 있게 되고 신경세포λ₯Ό 더 이해할 수 μžˆμ—ˆμŠ΅λ‹ˆλ‹€.
But we knew that neurons used electricity, and by World War II, our technology was advanced enough to start doing real electrical experiments on live neurons to better understand how they worked.
IWSLT2017
null
null
null
컴퓨터가 발λͺ…λœ 것도 λ°”λ‘œ μ΄λ•ŒμΈλ° λ‡Œλ₯Ό λͺ¨λΈλ‘œ ν•œ μ•„μ΄λ””μ–΄μ˜€μ£ . μ•¨λŸ° νŠœλ§μ€ "지λŠ₯ν˜• 기계" 라고 λΆˆλ €μŠ΅λ‹ˆλ‹€. 컴퓨터 κ³΅ν•™μ˜ 아버지 쀑에 ν•œ λͺ…이죠.
This was the very same time when computers were being invented, very much based on the idea of modeling the brain -- of "intelligent machinery," as Alan Turing called it, one of the fathers of computer science.
IWSLT2017
null
null
null
μ›Œλ Œ λ§₯μ»¬λ‘œνμ™€ μ›”ν„° ν”ΌμΈ λŠ” μ–΄λŠλ‚  라λͺ¬ 이 μΉ΄ν• μ˜ μ‹œκ° ν”Όμ§ˆ 그림을 λ³΄μ•˜μŠ΅λ‹ˆλ‹€. μ§€κΈˆ 보고 계신 그림말이죠.
Warren McCulloch and Walter Pitts looked at RamΓ³n y Cajal's drawing of visual cortex, which I'm showing here.
IWSLT2017
null
null
null
이것은 λˆˆμ„ 톡해 λ“€μ–΄μ˜¨ 이미지λ₯Ό μ²˜λ¦¬ν•˜λŠ” ν”Όμ§ˆμž…λ‹ˆλ‹€.
This is the cortex that processes imagery that comes from the eye.
IWSLT2017
null
null
null
그리고 그듀에겐 이 그림은 마치 νšŒλ‘œλ„μ²˜λŸΌ λ³΄μ˜€μŠ΅λ‹ˆλ‹€.
And for them, this looked like a circuit diagram.
IWSLT2017
null
null
null
λ§₯μ»¬λ‘œνμ™€ ν”ΌμΈ μ˜ νšŒλ‘œλ„μ—λŠ” λ§Žμ€ 세뢀사항이 μžˆμ§€λ§Œ μ •ν™•ν•˜μ§€λŠ” μ•ŠμŠ΅λ‹ˆλ‹€.
So there are a lot of details in McCulloch and Pitts's circuit diagram that are not quite right.
IWSLT2017
null
null
null
ν•˜μ§€λ§Œ κΈ°λ³Έ 아이디어인 μ‹œκ° ν”Όμ§ˆμ˜ 원리가 일련의 계산 μš”μ†Œλ₯Ό μ—°μ†μ μœΌλ‘œ ν•˜λ‚˜μ—μ„œ λ‹€μŒμœΌλ‘œ 정보λ₯Ό λ„˜κΈ΄λ‹€λŠ” 것은 근본적으둜 λ§žμŠ΅λ‹ˆλ‹€.
But this basic idea that visual cortex works like a series of computational elements that pass information one to the next in a cascade, is essentially correct.
IWSLT2017
null
null
null
쑰금 더 이야기해 λ³΄κ² μŠ΅λ‹ˆλ‹€. μ‹œκ° 정보λ₯Ό μ²˜λ¦¬ν•˜λŠ” λͺ¨λΈμ΄ ν•΄μ•Ό ν•˜λŠ” 일에 λŒ€ν•΄μ„œ 말이죠.
Let's talk for a moment about what a model for processing visual information would need to do.
IWSLT2017
null
null
null
인식이 기본적으둜 ν•˜λŠ” 일은 이런 이미지λ₯Ό 보고 μ΄λ ‡κ²Œ λ§ν•˜λŠ” 것 μž…λ‹ˆλ‹€. "이것은 μƒˆμž…λ‹ˆλ‹€" μš°λ¦¬μ—κ²ŒλŠ” 맀우 μ‰¬μš΄ μΌμž…λ‹ˆλ‹€.
The basic task of perception is to take an image like this one and say, "That's a bird," which is a very simple thing for us to do with our brains.
IWSLT2017
null
null
null
ν•˜μ§€λ§Œ μ—¬λŸ¬λΆ„ λͺ¨λ‘κ°€ μ•„μ…”μ•Ό ν•˜λŠ” 것이 λͺ‡ λ…„ μ „κΉŒμ§€ μ»΄ν“¨ν„°λ‘œλŠ” 이런 것이 λΆˆκ°€λŠ₯ν–ˆμŠ΅λ‹ˆλ‹€.
But you should all understand that for a computer, this was pretty much impossible just a few years ago.
IWSLT2017
null
null
null
고전적인 μ»΄ν“¨νŒ… νŒ¨λŸ¬λ‹€μž„μ€ 이런 일을 μ‰½κ²Œ ν•  수 μžˆλŠ” 것이 μ•„λ‹™λ‹ˆλ‹€.
The classical computing paradigm is not one in which this task is easy to do.
IWSLT2017
null
null
null
κ·Έλž˜μ„œ ν”½μ…€λ“€ κ°„μ˜ 관계와 λ§Œλ“€μ–΄μ§„ 이미지와 "μƒˆ"λΌλŠ” λ‹¨μ–΄μ˜ κ΄€κ³„λŠ” 근본적으둜 신경세포듀이 μ„œλ‘œ μ—°κ²°λ˜μ–΄ 신경망을 κ΅¬μΆ•ν•˜κ³  μžˆλŠ” κ²ƒμž…λ‹ˆλ‹€. μ œκ°€ κ·Έλ¦° λ„ν‘œμ²˜λŸΌμš”.
So what's going on between the pixels, between the image of the bird and the word "bird," is essentially a set of neurons connected to each other in a neural network, as I'm diagramming here.
IWSLT2017
null
null
null
이 신경망은 μ‹œκ°ν”Όμ§ˆ λ‚΄λΆ€μ˜ 생물학적인 κ²ƒμ΄λ‚˜ μ˜€λŠ˜λ‚ μ—λŠ” 우리의 기술둜 컴퓨터λ₯Ό 톡해 신경망을 그릴 수 μžˆμŠ΅λ‹ˆλ‹€.
This neural network could be biological, inside our visual cortices, or, nowadays, we start to have the capability to model such neural networks on the computer.
IWSLT2017
null
null
null
그리고 이것이 μ‹€μ œ λͺ¨λΈμž…λ‹ˆλ‹€.
And I'll show you what that actually looks like.
IWSLT2017
null
null
null
픽셀이 μ‹ κ²½μ„Έν¬μ˜ 첫 번째 μΈ΅μž…λ‹ˆλ‹€. 그리고 이것은 μ‹€μ œλ‘œ 눈으둜 λ³΄λŠ” κ³Όμ •μœΌλ‘œ 보면 픽셀이 망막인 κ²ƒμž…λ‹ˆλ‹€.
So the pixels you can think about as a first layer of neurons, and that's, in fact, how it works in the eye -- that's the neurons in the retina.
IWSLT2017
null
null
null
그리고 이 μžκ·Ήμ„ μ‹ κ²½μ„Έν¬μ˜ ν•œ μΈ΅μ—μ„œ λ‹€μŒ 측으둜 μ „λ‹¬ν•©λ‹ˆλ‹€. μ΄λŠ” 각각 λ‹€λ₯Έ λ†λ„μ˜ μ‹œλƒ…μŠ€λ‘œ λͺ¨λ‘ μ—°κ²°λ˜μ–΄μžˆμŠ΅λ‹ˆλ‹€.
And those feed forward into one layer after another layer, after another layer of neurons, all connected by synapses of different weights.
IWSLT2017
null
null
null
이 λ„€νŠΈμ›Œν¬μ˜ λ™μž‘μ€ λͺ¨λ“  μ‹œλƒ…μŠ€μ˜ 강도에 μ˜ν•΄ κ΅¬λΆ„λ©λ‹ˆλ‹€.
The behavior of this network is characterized by the strengths of all of those synapses.
IWSLT2017
null
null
null
μ΄κ²ƒμœΌλ‘œ λ„€νŠΈμ›Œν¬ λ‚΄μ—μ„œ κ³„μ‚°λ˜λŠ” 것을 νŠΉμ§•μ§“μŠ΅λ‹ˆλ‹€.
Those characterize the computational properties of this network.
IWSLT2017
null
null
null
그리고 λ§ˆμ§€λ§‰μ— μ‹ κ²½ 세포 ν•˜λ‚˜ λ˜λŠ” ν•œ 무리가 반짝이며 "μƒˆ"라고 λ§ν•©λ‹ˆλ‹€.
And at the end of the day, you have a neuron or a small group of neurons that light up, saying, "bird."
IWSLT2017
null
null
null
이제 μ œκ°€ 이 세가지λ₯Ό μž…λ ₯된 ν”½μ…€, μ‹ κ²½λ§μ˜ μ‹œλ„΅μŠ€ 그리고 결과물인 μƒˆλ₯Ό μ„Έ λ³€μˆ˜ x, w, y라고 ν•˜κ² μŠ΅λ‹ˆλ‹€.
Now I'm going to represent those three things -- the input pixels and the synapses in the neural network, and bird, the output -- by three variables: x, w and y.
IWSLT2017
null
null
null
픽셀이 백만 κ°œλŠ” μžˆμ„ν…Œλ‹ˆ xλŠ” μ΄λ―Έμ§€μ˜ 백만 개의 ν”½μ…€μž…λ‹ˆλ‹€.
There are maybe a million or so x's -- a million pixels in that image.
IWSLT2017
null
null
null
그리고 wλŠ” μˆ˜μ‹­μ–΅ ν˜Ήμ€ 수쑰 κ°œκ°€ μžˆμŠ΅λ‹ˆλ‹€. μ΄λŠ” μ‹ κ²½λ§μ˜ λͺ¨λ“  μ‹œλƒ…μŠ€μ˜ 농도λ₯Ό λ§ν•©λ‹ˆλ‹€.
There are billions or trillions of w's, which represent the weights of all these synapses in the neural network.
IWSLT2017
null
null
null
그리고 적은 수의 yκ°€ μžˆμŠ΅λ‹ˆλ‹€. μ‹ κ²½λ§μ˜ 결과물둜써 말이죠.
And there's a very small number of y's, of outputs that that network has.
IWSLT2017
null
null
null
"Bird"λŠ” λ„€ κΈ€μžλΏμ΄μž–μ•„μš”.
"Bird" is only four letters, right?
IWSLT2017
null
null
null
그러면 이것을 κ°„λ‹¨ν•œ 곡식이라고 ν•΄λ΄…μ‹œλ‹€. x "x" w = y.
So let's pretend that this is just a simple formula, x "x" w = y.
IWSLT2017
null
null
null
μ €λŠ” κ³±ν•˜κΈ°λ₯Ό ν°λ”°μ˜΄ν‘œ μ•ˆμ— λ„£μ—ˆμŠ΅λ‹ˆλ‹€. μ‹€μ œλ‘œ μ €κΈ°μ„œ μΌμ–΄λ‚˜λŠ” 일은 맀우 λ³΅μž‘ν•œ 일련의 μˆ˜ν•™μ μΈ 과정이기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
I'm putting the times in scare quotes because what's really going on there, of course, is a very complicated series of mathematical operations.
IWSLT2017
null
null
null
이것은 ν•œ κ³΅μ‹μž…λ‹ˆλ‹€.
That's one equation.
IWSLT2017
null
null
null
μ„Έ 개의 λ³€μˆ˜κ°€ μžˆμŠ΅λ‹ˆλ‹€.
There are three variables.
IWSLT2017
null
null
null
그리고 μš°λ¦¬κ°€ μ•Œκ³  μžˆλŠ” 것이 ν•œ κ³΅μ‹μ—μ„œ 두 개의 λ³€μˆ˜λ₯Ό μ•Œλ©΄ 남은 ν•œ 개λ₯Ό μ•Œ 수 μžˆλ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
And we all know that if you have one equation, you can solve one variable by knowing the other two things.
IWSLT2017
null
null
null
κ·Έλž˜μ„œ μΆ”λ‘ ν•΄μ•Ό ν•˜λŠ” μƒˆμ˜ 사진을 보고 μƒˆλ₯Ό κ΅¬λΆ„ν•˜λŠ” 곡식은 λ°”λ‘œ μ΄κ²ƒμž…λ‹ˆλ‹€. 이 κ²½μš°λŠ” yλŠ” μ•Œλ €μ§€μ§€ μ•Šκ³  w와 xλŠ” μ•Œλ €μ§„ 경우이죠
So the problem of inference, that is, figuring out that the picture of a bird is a bird, is this one: it's where y is the unknown and w and x are known.
IWSLT2017
null
null
null
신경망과 픽셀이 λ¬΄μ—‡μΈμ§€λŠ” μ•Œκ³  μžˆμŠ΅λ‹ˆλ‹€.
You know the neural network, you know the pixels.
IWSLT2017
null
null
null
λ³΄μ‹œλ‹€μ‹œν”Ό 사싀 μƒλŒ€μ μœΌλ‘œ κ°„λ‹¨ν•œ λ¬Έμ œμž…λ‹ˆλ‹€
As you can see, that's actually a relatively straightforward problem.
IWSLT2017
null
null
null
2 κ³±ν•˜κΈ° 3을 ν•˜λ©΄ λλ‚˜λŠ” κ±°μ£ 
You multiply two times three and you're done.
IWSLT2017
null
null
null
μ—¬λŸ¬λΆ„κ»˜ μ΅œκ·Όμ— λ§Œλ“  인곡 신경망이 μ •ν™•νžˆ 이것을 ν•˜λŠ” 것을 λ³΄μ—¬λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€
I'll show you an artificial neural network that we've built recently, doing exactly that.
IWSLT2017
null
null
null
이것은 νœ΄λŒ€μ „ν™”μ—μ„œ μ‹€μ‹œκ°„μœΌλ‘œ λŒμ•„κ°€λŠ” κ²ƒμž…λ‹ˆλ‹€. 그리고 λ¬Όλ‘  νœ΄λŒ€μ „ν™”μ—μ„œ μ΄ˆλ‹Ή μˆ˜μ‹­μ–΅ 수쑰 개의 λ™μž‘μ„ ν•œλ‹€λŠ” 것 μžμ²΄λ§ŒμœΌλ‘œλ„ λ†€λΌμš΄ μΌμž…λ‹ˆλ‹€
This is running in real time on a mobile phone, and that's, of course, amazing in its own right, that mobile phones can do so many billions and trillions of operations per second.
IWSLT2017
null
null
null
μ—¬λŸ¬λΆ„μ΄ 보고 μžˆλŠ” 것은 νœ΄λŒ€μ „ν™”κ°€ λ‹€λ₯Έ μƒˆ 사진을 보고 β€œλ„€, 이것은 μƒˆμž…λ‹ˆλ‹€.” ν•˜κ³  λλ‚˜λŠ” 것이 μ•„λ‹ˆλΌ λ„€νŠΈμ›Œν¬ μ •λ³΄λ‘œ μ’…κΉŒμ§€ λΆ„λ₯˜ν•˜λŠ” λͺ¨μŠ΅μž…λ‹ˆλ‹€.
What you're looking at is a phone looking at one after another picture of a bird, and actually not only saying, "Yes, it's a bird," but identifying the species of bird with a network of this sort.
IWSLT2017
null
null
null
사진을 보면 x와 wλŠ” λ°ν˜€μ Έ 있고 yλŠ” λ°ν˜€μ§€μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.
So in that picture, the x and the w are known, and the y is the unknown.
IWSLT2017
null
null
null
μ§€κΈˆ λͺΉμ‹œ μ–΄λ €μš΄ 뢀뢄을 얼버무리고 μ§€λ‚˜κ°€κ³  μžˆλŠ”λ° 그것은 μš°λ¦¬κ°€ μ–΄λ–»κ²Œ wλ₯Ό λ°ν˜€λƒˆμœΌλ©° λ‡Œκ°€ μ–΄λ–»κ²Œ 그런 일을 ν•˜λ©°
I'm glossing over the very difficult part, of course, which is how on earth do we figure out the w, the brain that can do such a thing?
IWSLT2017
null
null
null
μ–΄λ–»κ²Œ 이런 λͺ¨λΈμ„ λ°°μšΈκΉŒμž…λ‹ˆλ‹€.
How would we ever learn such a model?
IWSLT2017
null
null
null
wλ₯Ό 배우고 ν•΄κ²°ν•˜λŠ” 과정을 κ°„λ‹¨ν•œ κ³΅μ‹μœΌλ‘œ λ§Œλ“€μ–΄ 숫자λ₯Ό λŒ€μž…ν•΄λ³΄λ©΄ μ •ν™•νžˆ μ•Œ 수 μžˆμŠ΅λ‹ˆλ‹€. 6=2 x w라고 ν•˜λ©΄ 양변을 2둜 λ‚˜λˆ„λ©΄ λλ‚©λ‹ˆλ‹€.
So this process of learning, of solving for w, if we were doing this with the simple equation in which we think about these as numbers, we know exactly how to do that: 6 = 2 x w, well, we divide by two and we're done.
IWSLT2017
null
null
null
λ¬Έμ œμ μ€ 이 μ—°μ‚°μ—μ„œ
The problem is with this operator.
IWSLT2017
null
null
null