Datasets:

Modalities:
Text
Formats:
csv
Libraries:
Datasets
pandas
License:
Number
int64
1
1M
English
stringlengths
3
73
French
stringlengths
2
73
Spanish
stringlengths
3
69
Tamazight
stringlengths
2
70
1
one
un
uno
ⵢⴰⵏ
2
two
deux
dos
ⵙⵉⵏ
3
three
trois
tres
ⴽⵕⴰⴹ
4
four
quatre
cuatro
ⴽⴽⵓⵥ
5
five
cinq
cinco
ⵙⵎⵎⵓⵙ
6
six
six
seis
ⵚⴹⵉⵚ
7
seven
sept
siete
ⵙⴰ
8
eight
huit
ocho
ⵜⴰⵎ
9
nine
neuf
nueve
ⵜⵥⴰ
10
ten
dix
diez
ⵎⵔⴰⵡ
11
eleven
onze
once
ⵢⴰⵏ ⴷ ⵎⵔⴰⵡ
12
twelve
douze
doce
ⵙⵉⵏ ⴷ ⵎⵔⴰⵡ
13
thirteen
treize
trece
ⴽⵕⴰⴹ ⴷ ⵎⵔⴰⵡ
14
fourteen
quatorze
catorce
ⴽⴽⵓⵥ ⴷ ⵎⵔⴰⵡ
15
fifteen
quinze
quince
ⵙⵎⵎⵓⵙ ⴷ ⵎⵔⴰⵡ
16
sixteen
seize
dieciséis
ⵚⴹⵉⵚ ⴷ ⵎⵔⴰⵡ
17
seventeen
dix-sept
diecisiete
ⵙⴰ ⴷ ⵎⵔⴰⵡ
18
eighteen
dix-huit
dieciocho
ⵜⴰⵎ ⴷ ⵎⵔⴰⵡ
19
nineteen
dix-neuf
diecinueve
ⵜⵥⴰ ⴷ ⵎⵔⴰⵡ
20
twenty
vingt
veinte
ⵙⵉⵎⵔⴰⵡ
21
twenty-one
vingt et un
veintiuno
ⵙⵉⵎⵔⴰⵡ ⴷ ⵢⴰⵏ
22
twenty-two
vingt-deux
veintidós
ⵙⵉⵎⵔⴰⵡ ⴷ ⵙⵉⵏ
23
twenty-three
vingt-trois
veintitrés
ⵙⵉⵎⵔⴰⵡ ⴷ ⴽⵕⴰⴹ
24
twenty-four
vingt-quatre
veinticuatro
ⵙⵉⵎⵔⴰⵡ ⴷ ⴽⴽⵓⵥ
25
twenty-five
vingt-cinq
veinticinco
ⵙⵉⵎⵔⴰⵡ ⴷ ⵙⵎⵎⵓⵙ
26
twenty-six
vingt-six
veintiséis
ⵙⵉⵎⵔⴰⵡ ⴷ ⵚⴹⵉⵚ
27
twenty-seven
vingt-sept
veintisiete
ⵙⵉⵎⵔⴰⵡ ⴷ ⵙⴰ
28
twenty-eight
vingt-huit
veintiocho
ⵙⵉⵎⵔⴰⵡ ⴷ ⵜⴰⵎ
29
twenty-nine
vingt-neuf
veintinueve
ⵙⵉⵎⵔⴰⵡ ⴷ ⵜⵥⴰ
30
thirty
trente
treinta
ⴽⵕⴰⵎⵔⴰⵡ
31
thirty-one
trente et un
treinta y uno
ⴽⵕⴰⵎⵔⴰⵡ ⴷ ⵢⴰⵏ
32
thirty-two
trente-deux
treinta y dos
ⴽⵕⴰⵎⵔⴰⵡ ⴷ ⵙⵉⵏ
33
thirty-three
trente-trois
treinta y tres
ⴽⵕⴰⵎⵔⴰⵡ ⴷ ⴽⵕⴰⴹ
34
thirty-four
trente-quatre
treinta y cuatro
ⴽⵕⴰⵎⵔⴰⵡ ⴷ ⴽⴽⵓⵥ
35
thirty-five
trente-cinq
treinta y cinco
ⴽⵕⴰⵎⵔⴰⵡ ⴷ ⵙⵎⵎⵓⵙ
36
thirty-six
trente-six
treinta y seis
ⴽⵕⴰⵎⵔⴰⵡ ⴷ ⵚⴹⵉⵚ
37
thirty-seven
trente-sept
treinta y siete
ⴽⵕⴰⵎⵔⴰⵡ ⴷ ⵙⴰ
38
thirty-eight
trente-huit
treinta y ocho
ⴽⵕⴰⵎⵔⴰⵡ ⴷ ⵜⴰⵎ
39
thirty-nine
trente-neuf
treinta y nueve
ⴽⵕⴰⵎⵔⴰⵡ ⴷ ⵜⵥⴰ
40
forty
quarante
cuarenta
ⴽⴽⵓⵥⵎⵔⴰⵡ
41
forty-one
quarante et un
cuarenta y uno
ⴽⴽⵓⵥⵎⵔⴰⵡ ⴷ ⵢⴰⵏ
42
forty-two
quarante-deux
cuarenta y dos
ⴽⴽⵓⵥⵎⵔⴰⵡ ⴷ ⵙⵉⵏ
43
forty-three
quarante-trois
cuarenta y tres
ⴽⴽⵓⵥⵎⵔⴰⵡ ⴷ ⴽⵕⴰⴹ
44
forty-four
quarante-quatre
cuarenta y cuatro
ⴽⴽⵓⵥⵎⵔⴰⵡ ⴷ ⴽⴽⵓⵥ
45
forty-five
quarante-cinq
cuarenta y cinco
ⴽⴽⵓⵥⵎⵔⴰⵡ ⴷ ⵙⵎⵎⵓⵙ
46
forty-six
quarante-six
cuarenta y seis
ⴽⴽⵓⵥⵎⵔⴰⵡ ⴷ ⵚⴹⵉⵚ
47
forty-seven
quarante-sept
cuarenta y siete
ⴽⴽⵓⵥⵎⵔⴰⵡ ⴷ ⵙⴰ
48
forty-eight
quarante-huit
cuarenta y ocho
ⴽⴽⵓⵥⵎⵔⴰⵡ ⴷ ⵜⴰⵎ
49
forty-nine
quarante-neuf
cuarenta y nueve
ⴽⴽⵓⵥⵎⵔⴰⵡ ⴷ ⵜⵥⴰ
50
fifty
cinquante
cincuenta
ⵙⵎⵎⵓⵎⵔⴰⵡ
51
fifty-one
cinquante et un
cincuenta y uno
ⵙⵎⵎⵓⵎⵔⴰⵡ ⴷ ⵢⴰⵏ
52
fifty-two
cinquante-deux
cincuenta y dos
ⵙⵎⵎⵓⵎⵔⴰⵡ ⴷ ⵙⵉⵏ
53
fifty-three
cinquante-trois
cincuenta y tres
ⵙⵎⵎⵓⵎⵔⴰⵡ ⴷ ⴽⵕⴰⴹ
54
fifty-four
cinquante-quatre
cincuenta y cuatro
ⵙⵎⵎⵓⵎⵔⴰⵡ ⴷ ⴽⴽⵓⵥ
55
fifty-five
cinquante-cinq
cincuenta y cinco
ⵙⵎⵎⵓⵎⵔⴰⵡ ⴷ ⵙⵎⵎⵓⵙ
56
fifty-six
cinquante-six
cincuenta y seis
ⵙⵎⵎⵓⵎⵔⴰⵡ ⴷ ⵚⴹⵉⵚ
57
fifty-seven
cinquante-sept
cincuenta y siete
ⵙⵎⵎⵓⵎⵔⴰⵡ ⴷ ⵙⴰ
58
fifty-eight
cinquante-huit
cincuenta y ocho
ⵙⵎⵎⵓⵎⵔⴰⵡ ⴷ ⵜⴰⵎ
59
fifty-nine
cinquante-neuf
cincuenta y nueve
ⵙⵎⵎⵓⵎⵔⴰⵡ ⴷ ⵜⵥⴰ
60
sixty
soixante
sesenta
ⵚⴹⵉⵎⵔⴰⵡ
61
sixty-one
soixante et un
sesenta y uno
ⵚⴹⵉⵎⵔⴰⵡ ⴷ ⵢⴰⵏ
62
sixty-two
soixante-deux
sesenta y dos
ⵚⴹⵉⵎⵔⴰⵡ ⴷ ⵙⵉⵏ
63
sixty-three
soixante-trois
sesenta y tres
ⵚⴹⵉⵎⵔⴰⵡ ⴷ ⴽⵕⴰⴹ
64
sixty-four
soixante-quatre
sesenta y cuatro
ⵚⴹⵉⵎⵔⴰⵡ ⴷ ⴽⴽⵓⵥ
65
sixty-five
soixante-cinq
sesenta y cinco
ⵚⴹⵉⵎⵔⴰⵡ ⴷ ⵙⵎⵎⵓⵙ
66
sixty-six
soixante-six
sesenta y seis
ⵚⴹⵉⵎⵔⴰⵡ ⴷ ⵚⴹⵉⵚ
67
sixty-seven
soixante-sept
sesenta y siete
ⵚⴹⵉⵎⵔⴰⵡ ⴷ ⵙⴰ
68
sixty-eight
soixante-huit
sesenta y ocho
ⵚⴹⵉⵎⵔⴰⵡ ⴷ ⵜⴰⵎ
69
sixty-nine
soixante-neuf
sesenta y nueve
ⵚⴹⵉⵎⵔⴰⵡ ⴷ ⵜⵥⴰ
70
seventy
soixante-dix
setenta
ⵙⴰⵎⵔⴰⵡ
71
seventy-one
soixante et onze
setenta y uno
ⵙⴰⵎⵔⴰⵡ ⴷ ⵢⴰⵏ
72
seventy-two
soixante-douze
setenta y dos
ⵙⴰⵎⵔⴰⵡ ⴷ ⵙⵉⵏ
73
seventy-three
soixante-treize
setenta y tres
ⵙⴰⵎⵔⴰⵡ ⴷ ⴽⵕⴰⴹ
74
seventy-four
soixante-quatorze
setenta y cuatro
ⵙⴰⵎⵔⴰⵡ ⴷ ⴽⴽⵓⵥ
75
seventy-five
soixante-quinze
setenta y cinco
ⵙⴰⵎⵔⴰⵡ ⴷ ⵙⵎⵎⵓⵙ
76
seventy-six
soixante-seize
setenta y seis
ⵙⴰⵎⵔⴰⵡ ⴷ ⵚⴹⵉⵚ
77
seventy-seven
soixante-dix-sept
setenta y siete
ⵙⴰⵎⵔⴰⵡ ⴷ ⵙⴰ
78
seventy-eight
soixante-dix-huit
setenta y ocho
ⵙⴰⵎⵔⴰⵡ ⴷ ⵜⴰⵎ
79
seventy-nine
soixante-dix-neuf
setenta y nueve
ⵙⴰⵎⵔⴰⵡ ⴷ ⵜⵥⴰ
80
eighty
quatre-vingts
ochenta
ⵜⴰⵎⵎⵔⴰⵡ
81
eighty-one
quatre-vingt-un
ochenta y uno
ⵜⴰⵎⵎⵔⴰⵡ ⴷ ⵢⴰⵏ
82
eighty-two
quatre-vingt-deux
ochenta y dos
ⵜⴰⵎⵎⵔⴰⵡ ⴷ ⵙⵉⵏ
83
eighty-three
quatre-vingt-trois
ochenta y tres
ⵜⴰⵎⵎⵔⴰⵡ ⴷ ⴽⵕⴰⴹ
84
eighty-four
quatre-vingt-quatre
ochenta y cuatro
ⵜⴰⵎⵎⵔⴰⵡ ⴷ ⴽⴽⵓⵥ
85
eighty-five
quatre-vingt-cinq
ochenta y cinco
ⵜⴰⵎⵎⵔⴰⵡ ⴷ ⵙⵎⵎⵓⵙ
86
eighty-six
quatre-vingt-six
ochenta y seis
ⵜⴰⵎⵎⵔⴰⵡ ⴷ ⵚⴹⵉⵚ
87
eighty-seven
quatre-vingt-sept
ochenta y siete
ⵜⴰⵎⵎⵔⴰⵡ ⴷ ⵙⴰ
88
eighty-eight
quatre-vingt-huit
ochenta y ocho
ⵜⴰⵎⵎⵔⴰⵡ ⴷ ⵜⴰⵎ
89
eighty-nine
quatre-vingt-neuf
ochenta y nueve
ⵜⴰⵎⵎⵔⴰⵡ ⴷ ⵜⵥⴰ
90
ninety
quatre-vingt-dix
noventa
ⵜⵥⴰⵎⵔⴰⵡ
91
ninety-one
quatre-vingt-onze
noventa y uno
ⵜⵥⴰⵎⵔⴰⵡ ⴷ ⵢⴰⵏ
92
ninety-two
quatre-vingt-douze
noventa y dos
ⵜⵥⴰⵎⵔⴰⵡ ⴷ ⵙⵉⵏ
93
ninety-three
quatre-vingt-treize
noventa y tres
ⵜⵥⴰⵎⵔⴰⵡ ⴷ ⴽⵕⴰⴹ
94
ninety-four
quatre-vingt-quatorze
noventa y cuatro
ⵜⵥⴰⵎⵔⴰⵡ ⴷ ⴽⴽⵓⵥ
95
ninety-five
quatre-vingt-quinze
noventa y cinco
ⵜⵥⴰⵎⵔⴰⵡ ⴷ ⵙⵎⵎⵓⵙ
96
ninety-six
quatre-vingt-seize
noventa y seis
ⵜⵥⴰⵎⵔⴰⵡ ⴷ ⵚⴹⵉⵚ
97
ninety-seven
quatre-vingt-dix-sept
noventa y siete
ⵜⵥⴰⵎⵔⴰⵡ ⴷ ⵙⴰ
98
ninety-eight
quatre-vingt-dix-huit
noventa y ocho
ⵜⵥⴰⵎⵔⴰⵡ ⴷ ⵜⴰⵎ
99
ninety-nine
quatre-vingt-dix-neuf
noventa y nueve
ⵜⵥⴰⵎⵔⴰⵡ ⴷ ⵜⵥⴰ
100
one hundred
cent
cien
ⵜⵉⵎⵉⴹⵉ

Tamazight Numbers Dataset

Dataset Description

This dataset contains numbers from 1 to 1,000,000 translated into:

  • English.
  • French.
  • Spanish.
  • Tamazight (Berber).

The dataset is designed to assist researchers and developers in building machine learning models for understanding and converting numbers into words in multiple languages.

Dataset Structure

The dataset contains the following columns:

Column Description Example
Number The numeric representation 1
English English translation of the number one
French French translation of the number un
Spanish Spanish translation of the number uno
Tamazight Tamazight translation of the number ⵢⴰⵏ

How to Use the Dataset

This dataset can be used to train machine learning models for:

  • Converting numbers to words.
  • Translating between languages.
  • Understanding linguistic structures of numbers.

Example:

import pandas as pd

# Load the dataset
df = pd.read_csv("Numbers: Multilingual -  Tamazight (1 to 1M).tsv", sep="\t")

# Display the first 5 rows
print(df.head())
Downloads last month
27