Taylor658's picture
Update README.md
710d0ec verified
|
raw
history blame
7.07 kB
---
language:
- en
size_categories:
- 50K<n<100K
license: mit
task_categories:
- tabular-regression
tags:
- photonics
- silicon-nitride
- waveguide
- optical
- dataset
- synthetic
dataset_info:
features:
- name: waveguide_width
dtype: float
- name: waveguide_height
dtype: float
- name: cladding_material
dtype: string
- name: cladding_thickness
dtype: float
- name: deposition_method
dtype: string
- name: etch_method
dtype: string
- name: sidewall_roughness
dtype: float
- name: annealing_params
dtype: string
- name: wavelength
dtype: float
- name: polarization
dtype: string
- name: input_power
dtype: float
- name: temperature
dtype: float
- name: bend_radius
dtype: float
- name: device_length
dtype: float
- name: insertion_loss
dtype: float
- name: propagation_loss
dtype: float
- name: coupling_efficiency_input
dtype: float
- name: coupling_efficiency_output
dtype: float
- name: scattering_loss
dtype: float
- name: effective_index
dtype: float
- name: mode_confinement_factor
dtype: float
- name: batch_id
dtype: string
- name: data_source
dtype: string
- name: measurement_method
dtype: string
- name: uncertainty
dtype: float
dataset_size: 90000
dataset_version: "1.0.0"
---
# SiN Photonic Waveguide Loss & Efficiency Dataset
> **Description**
> This dataset provides **90,000 synthetic rows** of silicon nitride (Si₃N₄) photonic waveguide parameters, focusing on **waveguide loss** and **efficiency** metrics. The data is useful for modeling, simulation, or LLM fine tuning to predict and understand the relationship between fabrication/design parameters and optical performance.
## Key Highlights ✨
- **Material Focus**: Silicon Nitride (Si₃N₄)
- **Columns**: 25 structured columns capturing waveguide geometry, fabrication method, operational conditions, and measured/synthetic performance metrics
- **Size**: 90,000 rows (ideal for both training and validation splits)
- **Use Cases**:
- Straight and Bent Waveguide loss prediction
- Process control and optimization
- Photonic design parameter studies
- Synthetic data augmentation for AI/ML tasks
## Dataset Structure 🏗️
Each row corresponds to a **single waveguide configuration** or measurement instance, including:
1. **Waveguide Geometry**
- `waveguide_width` (µm)
- `waveguide_height` (nm or µm)
- `bend_radius` (µm)
- `device_length` (mm)
2. **Material & Fabrication**
- `cladding_material`
- `cladding_thickness` (µm)
- `deposition_method`
- `etch_method`
- `sidewall_roughness` (nm)
- `annealing_params`
3. **Operational Parameters**
- `wavelength` (nm)
- `polarization` (TE/TM)
- `input_power` (dBm)
- `temperature` (°C)
4. **Performance Metrics**
- `insertion_loss` (dB)
- `propagation_loss` (dB/cm)
- `coupling_efficiency_input` (%)
- `coupling_efficiency_output` (%)
- `scattering_loss` (dB/cm)
- `effective_index`
- `mode_confinement_factor` (0–1)
5. **Metadata**
- `batch_id` (fabrication batch/wafer ID)
- `data_source` (Synthetic or Measurement)
- `measurement_method` (e.g., cut-back, ring_resonance)
- `uncertainty` (± dB or %)
## Example Row
waveguide_width = 1.212
waveguide_height = 400.00
cladding_material = SiO2
cladding_thickness = 2.50
deposition_method = LPCVD
etch_method = RIE
sidewall_roughness = 2.05
annealing_params = 900C_3hr
wavelength = 1552.23
polarization = TE
input_power = 0.00
temperature = 25.00
bend_radius = 50.00
device_length = 10.00
insertion_loss = 3.50
propagation_loss = 0.300
coupling_efficiency_input = 72.00
coupling_efficiency_output = 68.00
scattering_loss = 0.15
effective_index = 1.800
mode_confinement_factor = 0.80
batch_id = BATCH_12
data_source = Synthetic
measurement_method = ring_resonance
uncertainty = 0.05
## How to Use 💡
1. **Download/Clone**
- You can download the CSV file manually or use Hugging Face’s `datasets` library:
```python
from datasets import load_dataset
dataset = load_dataset("username/SiN_Photonic_Waveguide_Loss_Efficiency")
```
2. **Loading & Exploration**
- Load into your favorite Python environment (`pandas`, `polars`, etc.) to quickly explore the data distribution:
```python
import pandas as pd
df = pd.read_csv("SiN_Photonic_Waveguide_Loss_Efficiency.csv")
print(df.head())
```
3. **Model Training**
- For tasks like waveguide loss prediction, treat the waveguide geometry/fabrication columns as input features, and the `insertion_loss` or `propagation_loss` columns as the labels or targets.
- Example ML scenario:
```python
features = df[[
"waveguide_width", "waveguide_height", "sidewall_roughness",
"wavelength", "polarization", "temperature"
]]
target = df["propagation_loss"]
# Then train a regression model, e.g., scikit-learn, XGBoost, etc.
```
4. **Synthetic Data Augmentation**
- Use this synthetic dataset to **supplement** smaller real datasets
## Caveats & Limitations ⚠️
- **Synthetic Nature**: While ranges are inspired by real-world photonic designs, actual values may differ based on specific foundries, tools, and processes.
- **Statistical Simplifications**: Not all real-world correlations or distributions (e.g., non-uniform doping profiles, advanced thermal effects) are captured.
- **Measurement Noise**: The `uncertainty` column does not fully replicate complex measurement artifacts.
## License 📄
This dataset is available under the **MIT License**. You are free to modify, distribute, and use it for commercial or non-commercial purposes—just provide attribution.
## Citation & Acknowledgments 🙌
If you use this dataset in your research or applications, please cite it as follows (example citation):
> **Author**: _https://huggingface.co/Taylor658_
> **Title**: _SiN Photonic Waveguide Loss & Efficiency (Synthetic)_
> **Year**: 2025
```bibtex
@misc{sin_waveguide_loss_efficiency_2025,
title = {SiN Photonic Waveguide Loss & Efficiency (Synthetic)},
author = {atayloraeropsace},
year = {2025},
howpublished = {\url{https://huggingface.co/datasets/username/SiN_Photonic_Waveguide_Loss_Efficiency}}
}
```
## Contributing 🧑‍💻
We welcome community contributions, ideas, and corrections:
- **Add additional columns**
---