Datasets:
audio
audioduration (s) 5.12
11.9
| label
class label 17
classes |
---|---|
000026029e0--64991b6eef1fe70609d48edc
|
|
000026029e0--64991b6eef1fe70609d48edc
|
|
000026029e0--64991b6eef1fe70609d48edc
|
|
000026029e0--64991b6eef1fe70609d48edc
|
|
100026029e0--64991b72e0daf97163c09c66
|
|
100026029e0--64991b72e0daf97163c09c66
|
|
100026029e0--64991b72e0daf97163c09c66
|
|
100026029e0--64991b72e0daf97163c09c66
|
|
200026029e0--64991b7fd94c0d5726dec353
|
|
200026029e0--64991b7fd94c0d5726dec353
|
|
200026029e0--64991b7fd94c0d5726dec353
|
|
200026029e0--64991b7fd94c0d5726dec353
|
|
200026029e0--64991b7fd94c0d5726dec353
|
|
300026029e0--64991b907f82d9763944eba2
|
|
300026029e0--64991b907f82d9763944eba2
|
|
300026029e0--64991b907f82d9763944eba2
|
|
300026029e0--64991b907f82d9763944eba2
|
|
400026029e0--64991bfc63d8b20f56d0e1fb
|
|
400026029e0--64991bfc63d8b20f56d0e1fb
|
|
400026029e0--64991bfc63d8b20f56d0e1fb
|
|
400026029e0--64991bfc63d8b20f56d0e1fb
|
|
500026029e0--64991c0dd94c0d5726df032a
|
|
500026029e0--64991c0dd94c0d5726df032a
|
|
500026029e0--64991c0dd94c0d5726df032a
|
|
500026029e0--64991c0dd94c0d5726df032a
|
|
600026029e0--64991c3e63d8b20f56d0eeba
|
|
600026029e0--64991c3e63d8b20f56d0eeba
|
|
600026029e0--64991c3e63d8b20f56d0eeba
|
|
600026029e0--64991c3e63d8b20f56d0eeba
|
|
700026029e0--64991c9e7f82d97639452402
|
|
700026029e0--64991c9e7f82d97639452402
|
|
700026029e0--64991c9e7f82d97639452402
|
|
700026029e0--64991c9e7f82d97639452402
|
|
800026029e0--64992031e0daf97163c20229
|
|
800026029e0--64992031e0daf97163c20229
|
|
800026029e0--64992031e0daf97163c20229
|
|
800026029e0--64992031e0daf97163c20229
|
|
900026029e0--64992044d94c0d5726dfffc7
|
|
900026029e0--64992044d94c0d5726dfffc7
|
|
900026029e0--64992044d94c0d5726dfffc7
|
|
900026029e0--64992044d94c0d5726dfffc7
|
|
1000026029e0--64992099ffab6240f9f3521f
|
|
1000026029e0--64992099ffab6240f9f3521f
|
|
1000026029e0--64992099ffab6240f9f3521f
|
|
1000026029e0--64992099ffab6240f9f3521f
|
|
1100026029e0--649920f4ffab6240f9f3677a
|
|
1100026029e0--649920f4ffab6240f9f3677a
|
|
1100026029e0--649920f4ffab6240f9f3677a
|
|
1100026029e0--649920f4ffab6240f9f3677a
|
|
1200026029e0--64992143ffab6240f9f3787a
|
|
1200026029e0--64992143ffab6240f9f3787a
|
|
1200026029e0--64992143ffab6240f9f3787a
|
|
1200026029e0--64992143ffab6240f9f3787a
|
|
1300026029e0--64992161e0daf97163c2535a
|
|
1300026029e0--64992161e0daf97163c2535a
|
|
1300026029e0--64992161e0daf97163c2535a
|
|
1300026029e0--64992161e0daf97163c2535a
|
|
1400026029e0--64992202ea5ed167d5bce5d3
|
|
1400026029e0--64992202ea5ed167d5bce5d3
|
|
1400026029e0--64992202ea5ed167d5bce5d3
|
|
1400026029e0--64992202ea5ed167d5bce5d3
|
|
1500026029e0--6499226eef1fe70609d66276
|
|
1500026029e0--6499226eef1fe70609d66276
|
|
1500026029e0--6499226eef1fe70609d66276
|
|
1500026029e0--6499226eef1fe70609d66276
|
|
1600026029e0--6499261299d64c4c5d32c8e2
|
|
1600026029e0--6499261299d64c4c5d32c8e2
|
|
1600026029e0--6499261299d64c4c5d32c8e2
|
|
1600026029e0--6499261299d64c4c5d32c8e2
|
Speech Emotion Recognition
Dataset comprises 30,000+ audio recordings featuring 4 distinct emotions: euphoria, joy, sadness, and surprise. This extensive collection is designed for research in emotion recognition, focusing on the nuances of emotional speech and the subtleties of speech signals as individuals vocally express their feelings.
By utilizing this dataset, researchers and developers can enhance their understanding of sentiment analysis and improve automatic speech processing techniques. - Get the data
Each audio clip reflects the tone, intonation, and emotional expressions of diverse speakers, including various ages, genders, and cultural backgrounds, providing a comprehensive representation of human emotions. The dataset is particularly valuable for developing and testing recognition systems and classification models aimed at detecting emotions in spoken language.
💵 Buy the Dataset: This is a limited preview of the data. To access the full dataset, please contact us at https://unidata.pro to discuss your requirements and pricing options.
Researchers can leverage this dataset to explore deep learning techniques and develop classification methods that improve the accuracy of emotion detection in real-world applications. The dataset serves as a robust foundation for advancing affective computing and enhancing speech synthesis technologies.
🌐 UniData provides high-quality datasets, content moderation, data collection and annotation for your AI/ML projects
- Downloads last month
- 28