repo_name
stringlengths
6
96
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
762
753k
license
stringclasses
15 values
pascalgutjahr/Praktikum-1
Schwingung/phaselinear.py
1
1829
import numpy as np import uncertainties.unumpy as unp from uncertainties.unumpy import (nominal_values as noms, std_devs as stds) import matplotlib.pyplot as plt import matplotlib as mpl from scipy.optimize import curve_fit plt.rcParams['figure.figsize'] = (12, 8) plt.rcParams['font.size'] = 13 plt.rcParams['lines.linewidth'] = 1 csfont = {'fontname': 'Times New Roman'} # lineare Darstellung fre, t = np.genfromtxt('tables/phase.txt', unpack=True, skip_header=2) fre *= 1000 t /= 1e6 phirad = 2 * np.pi * fre * t #Theoriekurve L = 3.53 * (10**-3) C = 5.015 * (10**-9) w = fre * 2 * np.pi R = 271.6 # fre = np.linspace(np.log(15),np.log(20)) phi = np.arctan((w * R * C)/(1 - (L * C * (w**2)))) # bis zur Resonanz plotten #plt.plot(fre/1000, phi, 'b-', label='Theoriekurve') # plt.plot(fre/1000, -phi, 'b-', label='Theoriekurve') fre_theo = np.linspace(15000, 37500, 100) phi_theo = np.arctan((2*np.pi*fre_theo * R * C)/(1 - (L * C * ((2*np.pi*fre_theo)**2)))) fre_theo2 = np.linspace(38000, 55000, 100) phi_theo2 = np.arctan((2*np.pi*fre_theo2 * R * C)/(1 - (L * C * ((2*np.pi*fre_theo2)**2))))+np.pi plt.plot(fre_theo/1000, phi_theo, 'b-', label='Theoriekurve') plt.plot(fre_theo2/1000, phi_theo2, 'b-') plt.plot(fre/1000, phirad, 'rx', label='Messwerte') plt.plot((32.196, 32.196), (0.5, 2.5), 'g--', label='untere/obere Grenzfrequenz') plt.plot((44.442, 44.442), (0.5, 2.5), 'g--') plt.plot((36.822, 36.822), (0.5, 2.5), 'k--', label='Resonanzfrequenz') # plt.xlim(30, 45) plt.yticks(np.arange(0, np.pi, np.pi/4), ['$0$','$\mathrm{\pi}/4$','$\mathrm{\pi}/2$', '$3\mathrm{\pi}/4$']) # plt.ylim(min(phirad)-5, max(phirad)+5) plt.xlabel(r'$\mathrm{\nu} \,/\, \mathrm{kHz}$') plt.ylabel(r'$\mathrm{\varphi}$') plt.legend(loc='lower right') plt.grid() plt.tight_layout() plt.savefig('Bilder/phaselinear.pdf') plt.show()
mit
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tseries/tdi.py
7
32620
""" implement the TimedeltaIndex """ from datetime import timedelta import numpy as np from pandas.types.common import (_TD_DTYPE, is_integer, is_float, is_bool_dtype, is_list_like, is_scalar, is_integer_dtype, is_object_dtype, is_timedelta64_dtype, is_timedelta64_ns_dtype, _ensure_int64) from pandas.types.missing import isnull from pandas.types.generic import ABCSeries from pandas.core.common import _maybe_box, _values_from_object from pandas.core.index import Index, Int64Index import pandas.compat as compat from pandas.compat import u from pandas.tseries.frequencies import to_offset from pandas.core.base import _shared_docs from pandas.core.nanops import _checked_add_with_arr from pandas.indexes.base import _index_shared_docs import pandas.core.common as com import pandas.types.concat as _concat from pandas.util.decorators import Appender, Substitution from pandas.tseries.base import TimelikeOps, DatetimeIndexOpsMixin from pandas.tseries.timedeltas import (to_timedelta, _coerce_scalar_to_timedelta_type) from pandas.tseries.offsets import Tick, DateOffset import pandas.lib as lib import pandas.tslib as tslib import pandas._join as _join import pandas.index as _index Timedelta = tslib.Timedelta def _td_index_cmp(opname, nat_result=False): """ Wrap comparison operations to convert timedelta-like to timedelta64 """ def wrapper(self, other): msg = "cannot compare a TimedeltaIndex with type {0}" func = getattr(super(TimedeltaIndex, self), opname) if _is_convertible_to_td(other) or other is tslib.NaT: try: other = _to_m8(other) except ValueError: # failed to parse as timedelta raise TypeError(msg.format(type(other))) result = func(other) if isnull(other): result.fill(nat_result) else: if not is_list_like(other): raise TypeError(msg.format(type(other))) other = TimedeltaIndex(other).values result = func(other) result = _values_from_object(result) if isinstance(other, Index): o_mask = other.values.view('i8') == tslib.iNaT else: o_mask = other.view('i8') == tslib.iNaT if o_mask.any(): result[o_mask] = nat_result if self.hasnans: result[self._isnan] = nat_result # support of bool dtype indexers if is_bool_dtype(result): return result return Index(result) return wrapper class TimedeltaIndex(DatetimeIndexOpsMixin, TimelikeOps, Int64Index): """ Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta objects Parameters ---------- data : array-like (1-dimensional), optional Optional timedelta-like data to construct index with unit: unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional which is an integer/float number freq: a frequency for the index, optional copy : bool Make a copy of input ndarray start : starting value, timedelta-like, optional If data is None, start is used as the start point in generating regular timedelta data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, timedelta-like, optional If periods is none, generated index will extend to first conforming time on or just past end argument closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) name : object Name to be stored in the index Notes ----- To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ _typ = 'timedeltaindex' _join_precedence = 10 def _join_i8_wrapper(joinf, **kwargs): return DatetimeIndexOpsMixin._join_i8_wrapper( joinf, dtype='m8[ns]', **kwargs) _inner_indexer = _join_i8_wrapper(_join.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_join.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_join.left_join_indexer_int64) _left_indexer_unique = _join_i8_wrapper( _join.left_join_indexer_unique_int64, with_indexers=False) _arrmap = None _datetimelike_ops = ['days', 'seconds', 'microseconds', 'nanoseconds', 'freq', 'components'] __eq__ = _td_index_cmp('__eq__') __ne__ = _td_index_cmp('__ne__', nat_result=True) __lt__ = _td_index_cmp('__lt__') __gt__ = _td_index_cmp('__gt__') __le__ = _td_index_cmp('__le__') __ge__ = _td_index_cmp('__ge__') _engine_type = _index.TimedeltaEngine _comparables = ['name', 'freq'] _attributes = ['name', 'freq'] _is_numeric_dtype = True _infer_as_myclass = True freq = None def __new__(cls, data=None, unit=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, closed=None, verify_integrity=True, **kwargs): if isinstance(data, TimedeltaIndex) and freq is None and name is None: if copy: return data.copy() else: return data._shallow_copy() freq_infer = False if not isinstance(freq, DateOffset): # if a passed freq is None, don't infer automatically if freq != 'infer': freq = to_offset(freq) else: freq_infer = True freq = None if periods is not None: if is_float(periods): periods = int(periods) elif not is_integer(periods): raise ValueError('Periods must be a number, got %s' % str(periods)) if data is None and freq is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, freq, closed=closed) if unit is not None: data = to_timedelta(data, unit=unit, box=False) if not isinstance(data, (np.ndarray, Index, ABCSeries)): if is_scalar(data): raise ValueError('TimedeltaIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) # convert if not already if getattr(data, 'dtype', None) != _TD_DTYPE: data = to_timedelta(data, unit=unit, box=False) elif copy: data = np.array(data, copy=True) # check that we are matching freqs if verify_integrity and len(data) > 0: if freq is not None and not freq_infer: index = cls._simple_new(data, name=name) inferred = index.inferred_freq if inferred != freq.freqstr: on_freq = cls._generate( index[0], None, len(index), name, freq) if not np.array_equal(index.asi8, on_freq.asi8): raise ValueError('Inferred frequency {0} from passed ' 'timedeltas does not conform to ' 'passed frequency {1}' .format(inferred, freq.freqstr)) index.freq = freq return index if freq_infer: index = cls._simple_new(data, name=name) inferred = index.inferred_freq if inferred: index.freq = to_offset(inferred) return index return cls._simple_new(data, name=name, freq=freq) @classmethod def _generate(cls, start, end, periods, name, offset, closed=None): if com._count_not_none(start, end, periods) != 2: raise ValueError('Must specify two of start, end, or periods') if start is not None: start = Timedelta(start) if end is not None: end = Timedelta(end) left_closed = False right_closed = False if start is None and end is None: if closed is not None: raise ValueError("Closed has to be None if not both of start" "and end are defined") if closed is None: left_closed = True right_closed = True elif closed == "left": left_closed = True elif closed == "right": right_closed = True else: raise ValueError("Closed has to be either 'left', 'right' or None") index = _generate_regular_range(start, end, periods, offset) index = cls._simple_new(index, name=name, freq=offset) if not left_closed: index = index[1:] if not right_closed: index = index[:-1] return index @property def _box_func(self): return lambda x: Timedelta(x, unit='ns') @classmethod def _simple_new(cls, values, name=None, freq=None, **kwargs): if not getattr(values, 'dtype', None): values = np.array(values, copy=False) if values.dtype == np.object_: values = tslib.array_to_timedelta64(values) if values.dtype != _TD_DTYPE: values = _ensure_int64(values).view(_TD_DTYPE) result = object.__new__(cls) result._data = values result.name = name result.freq = freq result._reset_identity() return result @property def _formatter_func(self): from pandas.formats.format import _get_format_timedelta64 return _get_format_timedelta64(self, box=True) def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): super(TimedeltaIndex, self).__setstate__(state) else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def _maybe_update_attributes(self, attrs): """ Update Index attributes (e.g. freq) depending on op """ freq = attrs.get('freq', None) if freq is not None: # no need to infer if freq is None attrs['freq'] = 'infer' return attrs def _add_delta(self, delta): if isinstance(delta, (Tick, timedelta, np.timedelta64)): new_values = self._add_delta_td(delta) name = self.name elif isinstance(delta, TimedeltaIndex): new_values = self._add_delta_tdi(delta) # update name when delta is index name = com._maybe_match_name(self, delta) else: raise ValueError("cannot add the type {0} to a TimedeltaIndex" .format(type(delta))) result = TimedeltaIndex(new_values, freq='infer', name=name) return result def _evaluate_with_timedelta_like(self, other, op, opstr): # allow division by a timedelta if opstr in ['__div__', '__truediv__']: if _is_convertible_to_td(other): other = Timedelta(other) if isnull(other): raise NotImplementedError( "division by pd.NaT not implemented") i8 = self.asi8 result = i8 / float(other.value) result = self._maybe_mask_results(result, convert='float64') return Index(result, name=self.name, copy=False) return NotImplemented def _add_datelike(self, other): # adding a timedeltaindex to a datetimelike from pandas import Timestamp, DatetimeIndex if other is tslib.NaT: result = self._nat_new(box=False) else: other = Timestamp(other) i8 = self.asi8 result = _checked_add_with_arr(i8, other.value) result = self._maybe_mask_results(result, fill_value=tslib.iNaT) return DatetimeIndex(result, name=self.name, copy=False) def _sub_datelike(self, other): from pandas import DatetimeIndex if other is tslib.NaT: result = self._nat_new(box=False) else: raise TypeError("cannot subtract a datelike from a TimedeltaIndex") return DatetimeIndex(result, name=self.name, copy=False) def _format_native_types(self, na_rep=u('NaT'), date_format=None, **kwargs): from pandas.formats.format import Timedelta64Formatter return Timedelta64Formatter(values=self, nat_rep=na_rep, justify='all').get_result() def _get_field(self, m): values = self.asi8 hasnans = self.hasnans if hasnans: result = np.empty(len(self), dtype='float64') mask = self._isnan imask = ~mask result.flat[imask] = np.array( [getattr(Timedelta(val), m) for val in values[imask]]) result[mask] = np.nan else: result = np.array([getattr(Timedelta(val), m) for val in values], dtype='int64') return result @property def days(self): """ Number of days for each element. """ return self._get_field('days') @property def seconds(self): """ Number of seconds (>= 0 and less than 1 day) for each element. """ return self._get_field('seconds') @property def microseconds(self): """ Number of microseconds (>= 0 and less than 1 second) for each element. """ return self._get_field('microseconds') @property def nanoseconds(self): """ Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. """ return self._get_field('nanoseconds') @property def components(self): """ Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas. Returns ------- a DataFrame """ from pandas import DataFrame columns = ['days', 'hours', 'minutes', 'seconds', 'milliseconds', 'microseconds', 'nanoseconds'] hasnans = self.hasnans if hasnans: def f(x): if isnull(x): return [np.nan] * len(columns) return x.components else: def f(x): return x.components result = DataFrame([f(x) for x in self]) result.columns = columns if not hasnans: result = result.astype('int64') return result def total_seconds(self): """ Total duration of each element expressed in seconds. .. versionadded:: 0.17.0 """ return self._maybe_mask_results(1e-9 * self.asi8) def to_pytimedelta(self): """ Return TimedeltaIndex as object ndarray of datetime.timedelta objects Returns ------- datetimes : ndarray """ return tslib.ints_to_pytimedelta(self.asi8) @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): dtype = np.dtype(dtype) if is_object_dtype(dtype): return self.asobject elif is_timedelta64_ns_dtype(dtype): if copy is True: return self.copy() return self elif is_timedelta64_dtype(dtype): # return an index (essentially this is division) result = self.values.astype(dtype, copy=copy) if self.hasnans: return Index(self._maybe_mask_results(result, convert='float64'), name=self.name) return Index(result.astype('i8'), name=self.name) elif is_integer_dtype(dtype): return Index(self.values.astype('i8', copy=copy), dtype='i8', name=self.name) raise ValueError('Cannot cast TimedeltaIndex to dtype %s' % dtype) def union(self, other): """ Specialized union for TimedeltaIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters ---------- other : TimedeltaIndex or array-like Returns ------- y : Index or TimedeltaIndex """ self._assert_can_do_setop(other) if not isinstance(other, TimedeltaIndex): try: other = TimedeltaIndex(other) except (TypeError, ValueError): pass this, other = self, other if this._can_fast_union(other): return this._fast_union(other) else: result = Index.union(this, other) if isinstance(result, TimedeltaIndex): if result.freq is None: result.freq = to_offset(result.inferred_freq) return result def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ if _is_convertible_to_index(other): try: other = TimedeltaIndex(other) except (TypeError, ValueError): pass return Index.join(self, other, how=how, level=level, return_indexers=return_indexers) def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None if (isinstance(other, TimedeltaIndex) and self.freq == other.freq and self._can_fast_union(other)): joined = self._shallow_copy(joined, name=name) return joined else: return self._simple_new(joined, name) def _can_fast_union(self, other): if not isinstance(other, TimedeltaIndex): return False freq = self.freq if freq is None or freq != other.freq: return False if not self.is_monotonic or not other.is_monotonic: return False if len(self) == 0 or len(other) == 0: return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self right_start = right[0] left_end = left[-1] # Only need to "adjoin", not overlap return (right_start == left_end + freq) or right_start in left def _fast_union(self, other): if len(other) == 0: return self.view(type(self)) if len(self) == 0: return other.view(type(self)) # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_end = left[-1] right_end = right[-1] # concatenate if left_end < right_end: loc = right.searchsorted(left_end, side='right') right_chunk = right.values[loc:] dates = _concat._concat_compat((left.values, right_chunk)) return self._shallow_copy(dates) else: return left def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None return self._simple_new(result, name=name, freq=None) def intersection(self, other): """ Specialized intersection for TimedeltaIndex objects. May be much faster than Index.intersection Parameters ---------- other : TimedeltaIndex or array-like Returns ------- y : Index or TimedeltaIndex """ self._assert_can_do_setop(other) if not isinstance(other, TimedeltaIndex): try: other = TimedeltaIndex(other) except (TypeError, ValueError): pass result = Index.intersection(self, other) return result if len(self) == 0: return self if len(other) == 0: return other # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self end = min(left[-1], right[-1]) start = right[0] if end < start: return type(self)(data=[]) else: lslice = slice(*left.slice_locs(start, end)) left_chunk = left.values[lslice] return self._shallow_copy(left_chunk) def _possibly_promote(self, other): if other.inferred_type == 'timedelta': other = TimedeltaIndex(other) return self, other def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ if _is_convertible_to_td(key): key = Timedelta(key) return self.get_value_maybe_box(series, key) try: return _maybe_box(self, Index.get_value(self, series, key), series, key) except KeyError: try: loc = self._get_string_slice(key) return series[loc] except (TypeError, ValueError, KeyError): pass try: return self.get_value_maybe_box(series, key) except (TypeError, ValueError, KeyError): raise KeyError(key) def get_value_maybe_box(self, series, key): if not isinstance(key, Timedelta): key = Timedelta(key) values = self._engine.get_value(_values_from_object(series), key) return _maybe_box(self, values, series, key) def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label Returns ------- loc : int """ if isnull(key): key = tslib.NaT if tolerance is not None: # try converting tolerance now, so errors don't get swallowed by # the try/except clauses below tolerance = self._convert_tolerance(tolerance) if _is_convertible_to_td(key): key = Timedelta(key) return Index.get_loc(self, key, method, tolerance) try: return Index.get_loc(self, key, method, tolerance) except (KeyError, ValueError, TypeError): try: return self._get_string_slice(key) except (TypeError, KeyError, ValueError): pass try: stamp = Timedelta(key) return Index.get_loc(self, stamp, method, tolerance) except (KeyError, ValueError): raise KeyError(key) def _maybe_cast_slice_bound(self, label, side, kind): """ If label is a string, cast it to timedelta according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object """ assert kind in ['ix', 'loc', 'getitem', None] if isinstance(label, compat.string_types): parsed = _coerce_scalar_to_timedelta_type(label, box=True) lbound = parsed.round(parsed.resolution) if side == 'left': return lbound else: return (lbound + to_offset(parsed.resolution) - Timedelta(1, 'ns')) elif is_integer(label) or is_float(label): self._invalid_indexer('slice', label) return label def _get_string_slice(self, key, use_lhs=True, use_rhs=True): freq = getattr(self, 'freqstr', getattr(self, 'inferred_freq', None)) if is_integer(key) or is_float(key) or key is tslib.NaT: self._invalid_indexer('slice', key) loc = self._partial_td_slice(key, freq, use_lhs=use_lhs, use_rhs=use_rhs) return loc def _partial_td_slice(self, key, freq, use_lhs=True, use_rhs=True): # given a key, try to figure out a location for a partial slice if not isinstance(key, compat.string_types): return key raise NotImplementedError # TODO(wesm): dead code # parsed = _coerce_scalar_to_timedelta_type(key, box=True) # is_monotonic = self.is_monotonic # # figure out the resolution of the passed td # # and round to it # # t1 = parsed.round(reso) # t2 = t1 + to_offset(parsed.resolution) - Timedelta(1, 'ns') # stamps = self.asi8 # if is_monotonic: # # we are out of range # if (len(stamps) and ((use_lhs and t1.value < stamps[0] and # t2.value < stamps[0]) or # ((use_rhs and t1.value > stamps[-1] and # t2.value > stamps[-1])))): # raise KeyError # # a monotonic (sorted) series can be sliced # left = (stamps.searchsorted(t1.value, side='left') # if use_lhs else None) # right = (stamps.searchsorted(t2.value, side='right') # if use_rhs else None) # return slice(left, right) # lhs_mask = (stamps >= t1.value) if use_lhs else True # rhs_mask = (stamps <= t2.value) if use_rhs else True # # try to find a the dates # return (lhs_mask & rhs_mask).nonzero()[0] @Substitution(klass='TimedeltaIndex', value='key') @Appender(_shared_docs['searchsorted']) def searchsorted(self, key, side='left', sorter=None): if isinstance(key, (np.ndarray, Index)): key = np.array(key, dtype=_TD_DTYPE, copy=False) else: key = _to_m8(key) return self.values.searchsorted(key, side=side, sorter=sorter) def is_type_compatible(self, typ): return typ == self.inferred_type or typ == 'timedelta' @property def inferred_type(self): return 'timedelta64' @property def dtype(self): return _TD_DTYPE @property def is_all_dates(self): return True def insert(self, loc, item): """ Make new Index inserting new item at location Parameters ---------- loc : int item : object if not either a Python datetime or a numpy integer-like, returned Index dtype will be object rather than datetime. Returns ------- new_index : Index """ # try to convert if possible if _is_convertible_to_td(item): try: item = Timedelta(item) except: pass freq = None if isinstance(item, (Timedelta, tslib.NaTType)): # check freq can be preserved on edge cases if self.freq is not None: if ((loc == 0 or loc == -len(self)) and item + self.freq == self[0]): freq = self.freq elif (loc == len(self)) and item - self.freq == self[-1]: freq = self.freq item = _to_m8(item) try: new_tds = np.concatenate((self[:loc].asi8, [item.view(np.int64)], self[loc:].asi8)) return TimedeltaIndex(new_tds, name=self.name, freq=freq) except (AttributeError, TypeError): # fall back to object index if isinstance(item, compat.string_types): return self.asobject.insert(loc, item) raise TypeError( "cannot insert TimedeltaIndex with incompatible label") def delete(self, loc): """ Make a new DatetimeIndex with passed location(s) deleted. Parameters ---------- loc: int, slice or array of ints Indicate which sub-arrays to remove. Returns ------- new_index : TimedeltaIndex """ new_tds = np.delete(self.asi8, loc) freq = 'infer' if is_integer(loc): if loc in (0, -len(self), -1, len(self) - 1): freq = self.freq else: if is_list_like(loc): loc = lib.maybe_indices_to_slice( _ensure_int64(np.array(loc)), len(self)) if isinstance(loc, slice) and loc.step in (1, None): if (loc.start in (0, None) or loc.stop in (len(self), None)): freq = self.freq return TimedeltaIndex(new_tds, name=self.name, freq=freq) TimedeltaIndex._add_numeric_methods() TimedeltaIndex._add_logical_methods_disabled() TimedeltaIndex._add_datetimelike_methods() def _is_convertible_to_index(other): """ return a boolean whether I can attempt conversion to a TimedeltaIndex """ if isinstance(other, TimedeltaIndex): return True elif (len(other) > 0 and other.inferred_type not in ('floating', 'mixed-integer', 'integer', 'mixed-integer-float', 'mixed')): return True return False def _is_convertible_to_td(key): return isinstance(key, (DateOffset, timedelta, Timedelta, np.timedelta64, compat.string_types)) def _to_m8(key): """ Timedelta-like => dt64 """ if not isinstance(key, Timedelta): # this also converts strings key = Timedelta(key) # return an type that can be compared return np.int64(key.value).view(_TD_DTYPE) def _generate_regular_range(start, end, periods, offset): stride = offset.nanos if periods is None: b = Timedelta(start).value e = Timedelta(end).value e += stride - e % stride elif start is not None: b = Timedelta(start).value e = b + periods * stride elif end is not None: e = Timedelta(end).value + stride b = e - periods * stride else: raise ValueError("at least 'start' or 'end' should be specified " "if a 'period' is given.") data = np.arange(b, e, stride, dtype=np.int64) data = TimedeltaIndex._simple_new(data, None) return data def timedelta_range(start=None, end=None, periods=None, freq='D', name=None, closed=None): """ Return a fixed frequency timedelta index, with day as the default frequency Parameters ---------- start : string or timedelta-like, default None Left bound for generating dates end : string or datetime-like, default None Right bound for generating dates periods : integer or None, default None If None, must specify start and end freq : string or DateOffset, default 'D' (calendar daily) Frequency strings can have multiples, e.g. '5H' name : str, default None Name of the resulting index closed : string or None, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None) Returns ------- rng : TimedeltaIndex Notes ----- 2 of start, end, or periods must be specified. To learn more about the frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. """ return TimedeltaIndex(start=start, end=end, periods=periods, freq=freq, name=name, closed=closed)
gpl-3.0
vinhqdang/my_mooc
coursera/advanced_machine_learning_spec/4_nlp/natural-language-processing-master/project/dialogue_manager.py
1
3010
import os from sklearn.metrics.pairwise import pairwise_distances_argmin from chatterbot import ChatBot from utils import * class ThreadRanker(object): def __init__(self, paths): self.word_embeddings, self.embeddings_dim = load_embeddings(paths['WORD_EMBEDDINGS']) self.thread_embeddings_folder = paths['THREAD_EMBEDDINGS_FOLDER'] def __load_embeddings_by_tag(self, tag_name): embeddings_path = os.path.join(self.thread_embeddings_folder, tag_name + ".pkl") thread_ids, thread_embeddings = unpickle_file(embeddings_path) return thread_ids, thread_embeddings def get_best_thread(self, question, tag_name): """ Returns id of the most similar thread for the question. The search is performed across the threads with a given tag. """ thread_ids, thread_embeddings = self.__load_embeddings_by_tag(tag_name) # HINT: you have already implemented a similar routine in the 3rd assignment. question_vec = #### YOUR CODE HERE #### best_thread = #### YOUR CODE HERE #### return thread_ids[best_thread] class DialogueManager(object): def __init__(self, paths): print("Loading resources...") # Intent recognition: self.intent_recognizer = unpickle_file(paths['INTENT_RECOGNIZER']) self.tfidf_vectorizer = unpickle_file(paths['TFIDF_VECTORIZER']) self.ANSWER_TEMPLATE = 'I think its about %s\n This thread might help you: https://stackoverflow.com/questions/%s' # Goal-oriented part: self.tag_classifier = unpickle_file(paths['TAG_CLASSIFIER']) self.thread_ranker = ThreadRanker(paths) def create_chitchat_bot(self): """Initializes self.chitchat_bot with some conversational model.""" # Hint: you might want to create and train chatterbot.ChatBot here. ######################## #### YOUR CODE HERE #### ######################## def generate_answer(self, question): """Combines stackoverflow and chitchat parts using intent recognition.""" # Recognize intent of the question using `intent_recognizer`. # Don't forget to prepare question and calculate features for the question. prepared_question = #### YOUR CODE HERE #### features = #### YOUR CODE HERE #### intent = #### YOUR CODE HERE #### # Chit-chat part: if intent == 'dialogue': # Pass question to chitchat_bot to generate a response. response = #### YOUR CODE HERE #### return response # Goal-oriented part: else: # Pass features to tag_clasifier to get predictions. tag = #### YOUR CODE HERE #### # Pass prepared_question to thread_ranker to get predictions. thread_id = #### YOUR CODE HERE #### return self.ANSWER_TEMPLATE % (tag, thread_id)
mit
czhengsci/veidt
veidt/metrics.py
1
1250
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import six from sklearn.metrics import mean_squared_error, mean_absolute_error from veidt.utils.general_utils import deserialize_veidt_object from veidt.utils.general_utils import serialize_veidt_object def binary_accuracy(y_true, y_pred): return np.mean(np.array(y_true).ravel() == np.array(y_pred).ravel()) mse = MSE = mean_squared_error mae = MAE = mean_absolute_error def serialize(metric): return serialize_veidt_object(metric) def deserialize(config): return deserialize_veidt_object(config, module_objects=globals(), printable_module_name='metric function') def get(identifier): if isinstance(identifier, dict): config = {'class_name': identifier['class_name'], 'config': identifier['config']} return deserialize(config) elif isinstance(identifier, six.string_types): return deserialize(str(identifier)) elif callable(identifier): return identifier else: raise ValueError('Could not interpret ' 'metric function identifier:', identifier)
bsd-3-clause
pepper-johnson/Erudition
Thesis/Processing/Pipeline/reddit_slim_comments.py
1
1815
import json import datetime import pandas as pd # *********** # Methods: # *********** def get_config(config_file): assert type(config_file) == str with open(config_file) as f: config = json.load(f) return config # ******** # Main: # - purpose: take all reddit comment files that were produced by the bot and slim/sort them. # prepare comments for edge processing. # ******** config = get_config('reddit_slim_comments.json') directory = config['directory'] subreddit = config['subreddit'] r = config['range'] print() print("configurations:") print("config", str(config)) print() print("Starting at", str(datetime.datetime.now())) print() all_comments = [ ] for index in range(r[0], r[1]+1): file = subreddit + '_comments_' + str(index) + '.csv' df = pd.read_csv(directory + file, index_col='index', header=0, low_memory=False) df['name'] = df['name'].astype(str) df['link_id'] = df['link_id'].astype(str) df['body'] = df['body'].astype(str) df['author'] = df['author'].fillna('[deleted]').astype(str) comments = [ { 'commentId' : row['name'], 'postId' : row['link_id'], 'body' : row['body'], 'score' : row['score'], 'author' : row['author'], 'created_utc' : row['created_utc'] } for index, row in df.iterrows() ] for comment in comments: all_comments.append(comment) print('finished adding file:', file, 'at', str(datetime.datetime.now())) print('moving to dataframe at', str(datetime.datetime.now())) df_comments = pd.DataFrame(all_comments).set_index('commentId').sort_values(['postId', 'created_utc']) df_comments.to_csv(directory + r'slim_sorted_comments.csv', header=True) print("Completed at", str(datetime.datetime.now()))
apache-2.0
henrykironde/scikit-learn
examples/svm/plot_svm_kernels.py
329
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
Myasuka/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
276
3790
# Authors: Lars Buitinck <[email protected]> # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
yavalvas/yav_com
build/matplotlib/doc/mpl_examples/pylab_examples/fill_between_demo.py
6
2116
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np x = np.arange(0.0, 2, 0.01) y1 = np.sin(2*np.pi*x) y2 = 1.2*np.sin(4*np.pi*x) fig, (ax1, ax2, ax3) = plt.subplots(3,1, sharex=True) ax1.fill_between(x, 0, y1) ax1.set_ylabel('between y1 and 0') ax2.fill_between(x, y1, 1) ax2.set_ylabel('between y1 and 1') ax3.fill_between(x, y1, y2) ax3.set_ylabel('between y1 and y2') ax3.set_xlabel('x') # now fill between y1 and y2 where a logical condition is met. Note # this is different than calling # fill_between(x[where], y1[where],y2[where] # because of edge effects over multiple contiguous regions. fig, (ax, ax1) = plt.subplots(2, 1, sharex=True) ax.plot(x, y1, x, y2, color='black') ax.fill_between(x, y1, y2, where=y2>=y1, facecolor='green', interpolate=True) ax.fill_between(x, y1, y2, where=y2<=y1, facecolor='red', interpolate=True) ax.set_title('fill between where') # Test support for masked arrays. y2 = np.ma.masked_greater(y2, 1.0) ax1.plot(x, y1, x, y2, color='black') ax1.fill_between(x, y1, y2, where=y2>=y1, facecolor='green', interpolate=True) ax1.fill_between(x, y1, y2, where=y2<=y1, facecolor='red', interpolate=True) ax1.set_title('Now regions with y2>1 are masked') # This example illustrates a problem; because of the data # gridding, there are undesired unfilled triangles at the crossover # points. A brute-force solution would be to interpolate all # arrays to a very fine grid before plotting. # show how to use transforms to create axes spans where a certain condition is satisfied fig, ax = plt.subplots() y = np.sin(4*np.pi*x) ax.plot(x, y, color='black') # use the data coordinates for the x-axis and the axes coordinates for the y-axis import matplotlib.transforms as mtransforms trans = mtransforms.blended_transform_factory(ax.transData, ax.transAxes) theta = 0.9 ax.axhline(theta, color='green', lw=2, alpha=0.5) ax.axhline(-theta, color='red', lw=2, alpha=0.5) ax.fill_between(x, 0, 1, where=y>theta, facecolor='green', alpha=0.5, transform=trans) ax.fill_between(x, 0, 1, where=y<-theta, facecolor='red', alpha=0.5, transform=trans) plt.show()
mit
equialgo/scikit-learn
examples/ensemble/plot_adaboost_multiclass.py
354
4124
""" ===================================== Multi-class AdaBoosted Decision Trees ===================================== This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a weight of one in the SAMME.R algorithm and therefore are not shown. .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause from sklearn.externals.six.moves import zip import matplotlib.pyplot as plt from sklearn.datasets import make_gaussian_quantiles from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, n_classes=3, random_state=1) n_split = 3000 X_train, X_test = X[:n_split], X[n_split:] y_train, y_test = y[:n_split], y[n_split:] bdt_real = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1) bdt_discrete = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1.5, algorithm="SAMME") bdt_real.fit(X_train, y_train) bdt_discrete.fit(X_train, y_train) real_test_errors = [] discrete_test_errors = [] for real_test_predict, discrete_train_predict in zip( bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): real_test_errors.append( 1. - accuracy_score(real_test_predict, y_test)) discrete_test_errors.append( 1. - accuracy_score(discrete_train_predict, y_test)) n_trees_discrete = len(bdt_discrete) n_trees_real = len(bdt_real) # Boosting might terminate early, but the following arrays are always # n_estimators long. We crop them to the actual number of trees here: discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] plt.figure(figsize=(15, 5)) plt.subplot(131) plt.plot(range(1, n_trees_discrete + 1), discrete_test_errors, c='black', label='SAMME') plt.plot(range(1, n_trees_real + 1), real_test_errors, c='black', linestyle='dashed', label='SAMME.R') plt.legend() plt.ylim(0.18, 0.62) plt.ylabel('Test Error') plt.xlabel('Number of Trees') plt.subplot(132) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors, "b", label='SAMME', alpha=.5) plt.plot(range(1, n_trees_real + 1), real_estimator_errors, "r", label='SAMME.R', alpha=.5) plt.legend() plt.ylabel('Error') plt.xlabel('Number of Trees') plt.ylim((.2, max(real_estimator_errors.max(), discrete_estimator_errors.max()) * 1.2)) plt.xlim((-20, len(bdt_discrete) + 20)) plt.subplot(133) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights, "b", label='SAMME') plt.legend() plt.ylabel('Weight') plt.xlabel('Number of Trees') plt.ylim((0, discrete_estimator_weights.max() * 1.2)) plt.xlim((-20, n_trees_discrete + 20)) # prevent overlapping y-axis labels plt.subplots_adjust(wspace=0.25) plt.show()
bsd-3-clause
jjx02230808/project0223
examples/manifold/plot_mds.py
45
2731
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <[email protected]> # Licence: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) s = 100 plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0, label='True Position') plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS') plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS') plt.legend(scatterpoints=1, loc='best', shadow=False) similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
muneebalam/scrapenhl2
scrapenhl2/scrape/schedules.py
1
15634
""" This module contains methods related to season schedules. """ import arrow import datetime import functools import json import os.path import urllib.request import feather import pandas as pd import scrapenhl2.scrape.general_helpers as helpers import scrapenhl2.scrape.organization as organization import scrapenhl2.scrape.team_info as team_info def _get_current_season(): """ Runs at import only. Sets current season as today's year minus 1, or today's year if it's September or later :return: int, current season """ date = arrow.now() season = date.year - 1 if date.month >= 9: season += 1 return season def get_current_season(): """ Returns the current season. :return: The current season variable (generated at import from _get_current_season) """ return _CURRENT_SEASON def get_season_schedule_filename(season): """ Gets the filename for the season's schedule file :param season: int, the season :return: str, /scrape/data/other/[season]_schedule.feather """ return os.path.join(organization.get_other_data_folder(), '{0:d}_schedule.feather'.format(season)) def get_season_schedule(season): """ Gets the the season's schedule file from memory. :param season: int, the season :return: dataframe (originally from /scrape/data/other/[season]_schedule.feather) """ return _SCHEDULES[season] def get_team_schedule(season=None, team=None, startdate=None, enddate=None): """ Gets the schedule for given team in given season. Or if startdate and enddate are specified, searches between those dates. If season and startdate (and/or enddate) are specified, searches that season between those dates. :param season: int, the season :param team: int or str, the team :param startdate: str, YYYY-MM-DD :param enddate: str, YYYY-MM-DD :return: dataframe """ # TODO handle case when only team and startdate, or only team and enddate, are given if season is not None: df = get_season_schedule(season).query('Status != "Scheduled"') if startdate is not None: df = df.query('Date >= "{0:s}"'.format(startdate)) if enddate is not None: df = df.query('Date <= "{0:s}"'.format(enddate)) tid = team_info.team_as_id(team) return df[(df.Home == tid) | (df.Road == tid)] if startdate is not None and enddate is not None: dflst = [] startseason = helpers.infer_season_from_date(startdate) endseason = helpers.infer_season_from_date(enddate) for season in range(startseason, endseason + 1): df = get_team_schedule(season, team) \ .query('Status != "Scheduled"') \ .assign(Season=season) if season == startseason: df = df.query('Date >= "{0:s}"'.format(startdate)) if season == endseason: df = df.query('Date <= "{0:s}"'.format(enddate)) dflst.append(df) df = pd.concat(dflst) return df def get_team_games(season=None, team=None, startdate=None, enddate=None): """ Returns list of games played by team in season. Just calls get_team_schedule with the provided arguments, returning the series of games from that dataframe. :param season: int, the season :param team: int or str, the team :param startdate: str or None :param enddate: str or None :return: series of games """ return get_team_schedule(season, team, startdate, enddate).Game def _get_season_schedule(season): """ Gets the the season's schedule file. Stored as a feather file for fast read/write :param season: int, the season :return: dataframe from /scrape/data/other/[season]_schedule.feather """ return feather.read_dataframe(get_season_schedule_filename(season)) def write_season_schedule(df, season, force_overwrite): """ A helper method that writes the season schedule file to disk (in feather format for fast read/write) :param df: the season schedule datafraome :param season: the season :param force_overwrite: bool. If True, overwrites entire file. If False, only redoes when not Final previously. :return: Nothing """ if force_overwrite: # Easy--just write it feather.write_dataframe(df, get_season_schedule_filename(season)) else: # Only write new games/previously unfinished games olddf = get_season_schedule(season) olddf = olddf.query('Status != "Final"') # TODO: Maybe in the future set status for games partially scraped as "partial" or something game_diff = set(df.Game).difference(olddf.Game) where_diff = df.Key.isin(game_diff) newdf = pd.concat(olddf, df[where_diff], ignore_index=True) feather.write_dataframe(newdf, get_season_schedule_filename(season)) schedule_setup() def clear_caches(): """ Clears caches for methods in this module. :return: """ get_game_data_from_schedule.cache_clear() @functools.lru_cache(maxsize=1024, typed=False) def get_game_data_from_schedule(season, game): """ This is a helper method that uses the schedule file to isolate information for current game (e.g. teams involved, coaches, venue, score, etc.) :param season: int, the season :param game: int, the game :return: dict of game data """ schedule_item = get_season_schedule(season).query('Game == {0:d}'.format(game)).to_dict(orient='series') # The output format of above was {colname: np.array[vals]}. Change to {colname: val} schedule_item = {k: v.values[0] for k, v in schedule_item.items()} return schedule_item def get_game_date(season, game): """ Returns the date of this game :param season: int, the game :param game: int, the season :return: str """ return get_game_data_from_schedule(season, game)['Date'] def get_home_team(season, game, returntype='id'): """ Returns the home team from this game :param season: int, the game :param game: int, the season :param returntype: str, 'id' or 'name' :return: float or str, depending on returntype """ home = get_game_data_from_schedule(season, game)['Home'] if returntype.lower() == 'id': return team_info.team_as_id(home) else: return team_info.team_as_str(home) def get_road_team(season, game, returntype='id'): """ Returns the road team from this game :param season: int, the game :param game: int, the season :param returntype: str, 'id' or 'name' :return: float or str, depending on returntype """ road = get_game_data_from_schedule(season, game)['Road'] if returntype.lower() == 'id': return team_info.team_as_id(road) else: return team_info.team_as_str(road) def get_home_score(season, game): """ Returns the home score from this game :param season: int, the season :param game: int, the game :return: int, the score """ return int(get_game_data_from_schedule(season, game)['HomeScore']) def get_road_score(season, game): """ Returns the road score from this game :param season: int, the season :param game: int, the game :return: int, the score """ return int(get_game_data_from_schedule(season, game)['RoadScore']) def get_game_status(season, game): """ Returns the status of this game (e.g. Final, In Progress) :param season: int, the season :param game: int, the game :return: int, the score """ return get_game_data_from_schedule(season, game)['Status'] def get_game_result(season, game): """ Returns the result of this game for home team (e.g. W, SOL) :param season: int, the season :param game: int, the game :return: int, the score """ return get_game_data_from_schedule(season, game)['Result'] def get_season_schedule_url(season): """ Gets the url for a page containing all of this season's games (Sep 1 to Jun 26) from NHL API. :param season: int, the season :return: str, https://statsapi.web.nhl.com/api/v1/schedule?startDate=[season]-09-01&endDate=[season+1]-06-25 """ return 'https://statsapi.web.nhl.com/api/v1/schedule?startDate=' \ '{0:d}-09-01&endDate={1:d}-06-25'.format(season, season + 1) def get_teams_in_season(season): """ Returns all teams that have a game in the schedule for this season :param season: int, the season :return: set of team IDs """ sch = get_season_schedule(season) allteams = set(sch.Road).union(sch.Home) return set(allteams) def check_valid_game(season, game): """ Checks if gameid in season schedule. :param season: int, season :param game: int, game :return: bool """ try: get_game_status(season, game) return True except IndexError: return False def schedule_setup(): """ Reads current season and schedules into memory. :return: nothing """ clear_caches() global _SCHEDULES, _CURRENT_SEASON _CURRENT_SEASON = _get_current_season() for season in range(2005, get_current_season() + 1): if not os.path.exists(get_season_schedule_filename(season)): generate_season_schedule_file(season) # season schedule # There is a potential issue here for current season. # For current season, we'll update this as we go along. # But original creation first time you start up in a new season is automatic, here. # When we autoupdate season date, we need to make sure to re-access this file and add in new entries _SCHEDULES = {season: _get_season_schedule(season) for season in range(2005, _CURRENT_SEASON + 1)} def generate_season_schedule_file(season, force_overwrite=True): """ Reads season schedule from NHL API and writes to file. The output contains the following columns: - Season: int, the season - Date: str, the dates - Game: int, the game id - Type: str, the game type (for preseason vs regular season, etc) - Status: str, e.g. Final - Road: int, the road team ID - RoadScore: int, number of road team goals - RoadCoach str, 'N/A' when this function is run (edited later with road coach name) - Home: int, the home team ID - HomeScore: int, number of home team goals - HomeCoach: str, 'N/A' when this function is run (edited later with home coach name) - Venue: str, the name of the arena - Result: str, 'N/A' when this function is run (edited accordingly later from PoV of home team: W, OTW, SOL, etc) - PBPStatus: str, 'Not scraped' when this function is run (edited accordingly later) - TOIStatus: str, 'Not scraped' when this function is run (edited accordingly later) :param season: int, the season :param force_overwrite: bool. If True, generates entire file from scratch. If False, only redoes when not Final previously. :return: Nothing """ page = helpers.try_url_n_times(get_season_schedule_url(season)) page2 = json.loads(page) df = _create_schedule_dataframe_from_json(page2) df.loc[:, 'Season'] = season # Last step: we fill in some info from the pbp. If current schedule already exists, fill in that info. df = _fill_in_schedule_from_pbp(df, season) write_season_schedule(df, season, force_overwrite) clear_caches() def _create_schedule_dataframe_from_json(jsondict): """ Reads game, game type, status, visitor ID, home ID, visitor score, and home score for each game in this dict :param jsondict: a dictionary formed from season schedule json :return: pandas dataframe """ dates = [] games = [] gametypes = [] statuses = [] vids = [] vscores = [] hids = [] hscores = [] venues = [] for datejson in jsondict['dates']: try: date = datejson.get('date', None) for gamejson in datejson['games']: game = int(str(helpers.try_to_access_dict(gamejson, 'gamePk'))[-5:]) gametype = helpers.try_to_access_dict(gamejson, 'gameType') status = helpers.try_to_access_dict(gamejson, 'status', 'detailedState') vid = helpers.try_to_access_dict(gamejson, 'teams', 'away', 'team', 'id') vscore = int(helpers.try_to_access_dict(gamejson, 'teams', 'away', 'score')) hid = helpers.try_to_access_dict(gamejson, 'teams', 'home', 'team', 'id') hscore = int(helpers.try_to_access_dict(gamejson, 'teams', 'home', 'score')) venue = helpers.try_to_access_dict(gamejson, 'venue', 'name') dates.append(date) games.append(game) gametypes.append(gametype) statuses.append(status) vids.append(vid) vscores.append(vscore) hids.append(hid) hscores.append(hscore) venues.append(venue) except KeyError: pass df = pd.DataFrame({'Date': dates, 'Game': games, 'Type': gametypes, 'Status': statuses, 'Road': vids, 'RoadScore': vscores, 'Home': hids, 'HomeScore': hscores, 'Venue': venues}).sort_values('Game') return df def _fill_in_schedule_from_pbp(df, season): """ Fills in columns for coaches, result, pbp status, and toi status as N/A, not scraped, etc. Use methods prefixed with update_schedule to actually fill in with correct values. :param df: dataframe, season schedule dataframe as created by _create_schedule_dataframe_from_json :param season: int, the season :return: df, with coaches, result, and status filled in """ if os.path.exists(get_season_schedule_filename(season)): # only final games--this way pbp status and toistatus will be ok. cur_season = get_season_schedule(season).query('Status == "Final"') cur_season = cur_season[['Season', 'Game', 'HomeCoach', 'RoadCoach', 'Result', 'PBPStatus', 'TOIStatus']] df = df.merge(cur_season, how='left', on=['Season', 'Game']) # Fill in NAs df.loc[:, 'Season'] = df.Season.fillna(season) df.loc[:, 'HomeCoach'] = df.HomeCoach.fillna('N/A') df.loc[:, 'RoadCoach'] = df.RoadCoach.fillna('N/A') df.loc[:, 'Result'] = df.Result.fillna('N/A') df.loc[:, 'PBPStatus'] = df.PBPStatus.fillna('Not scraped') df.loc[:, 'TOIStatus'] = df.TOIStatus.fillna('Not scraped') else: df.loc[:, 'HomeCoach'] = 'N/A' # Tried to set this to None earlier, but Arrow couldn't handle it, so 'N/A' df.loc[:, 'RoadCoach'] = 'N/A' df.loc[:, 'Result'] = 'N/A' df.loc[:, 'PBPStatus'] = 'Not scraped' df.loc[:, 'TOIStatus'] = 'Not scraped' return df def attach_game_dates_to_dateframe(df): """ Takes dataframe with Season and Game columns and adds a Date column (for that game) :param df: dataframe :return: dataframe with one more column """ dflst = [] for season in df.Season.unique(): temp = df.query("Season == {0:d}".format(int(season))) \ .merge(get_season_schedule(season)[['Game', 'Date']], how='left', on='Game') dflst.append(temp) df2 = pd.concat(dflst) return df2 _CURRENT_SEASON = None _SCHEDULES = None schedule_setup()
mit
Odingod/mne-python
mne/io/fiff/tests/test_raw.py
1
38869
from __future__ import print_function # Author: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # # License: BSD (3-clause) import os import os.path as op import glob from copy import deepcopy import warnings import itertools as itt import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose, assert_equal) from nose.tools import assert_true, assert_raises, assert_not_equal from mne.datasets import testing from mne.io.constants import FIFF from mne.io import Raw, concatenate_raws, read_raw_fif from mne.io.tests.test_raw import _test_concat from mne import (concatenate_events, find_events, equalize_channels, compute_proj_raw, pick_types, pick_channels) from mne.utils import (_TempDir, requires_pandas, slow_test, requires_mne, run_subprocess, run_tests_if_main) from mne.externals.six.moves import zip, cPickle as pickle from mne.io.proc_history import _get_sss_rank from mne.io.pick import _picks_by_type warnings.simplefilter('always') # enable b/c these tests throw warnings data_dir = op.join(testing.data_path(download=False), 'MEG', 'sample') fif_fname = op.join(data_dir, 'sample_audvis_trunc_raw.fif') base_dir = op.join(op.dirname(__file__), '..', '..', 'tests', 'data') test_fif_fname = op.join(base_dir, 'test_raw.fif') test_fif_gz_fname = op.join(base_dir, 'test_raw.fif.gz') ctf_fname = op.join(base_dir, 'test_ctf_raw.fif') ctf_comp_fname = op.join(base_dir, 'test_ctf_comp_raw.fif') fif_bad_marked_fname = op.join(base_dir, 'test_withbads_raw.fif') bad_file_works = op.join(base_dir, 'test_bads.txt') bad_file_wrong = op.join(base_dir, 'test_wrong_bads.txt') hp_fname = op.join(base_dir, 'test_chpi_raw_hp.txt') hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif') @slow_test def test_concat(): """Test RawFIF concatenation""" _test_concat(read_raw_fif, test_fif_fname) @testing.requires_testing_data def test_hash_raw(): """Test hashing raw objects """ raw = read_raw_fif(fif_fname) assert_raises(RuntimeError, raw.__hash__) raw = Raw(fif_fname).crop(0, 0.5, False) raw.preload_data() raw_2 = Raw(fif_fname).crop(0, 0.5, False) raw_2.preload_data() assert_equal(hash(raw), hash(raw_2)) # do NOT use assert_equal here, failing output is terrible assert_equal(pickle.dumps(raw), pickle.dumps(raw_2)) raw_2._data[0, 0] -= 1 assert_not_equal(hash(raw), hash(raw_2)) @testing.requires_testing_data def test_subject_info(): """Test reading subject information """ tempdir = _TempDir() raw = Raw(fif_fname).crop(0, 1, False) assert_true(raw.info['subject_info'] is None) # fake some subject data keys = ['id', 'his_id', 'last_name', 'first_name', 'birthday', 'sex', 'hand'] vals = [1, 'foobar', 'bar', 'foo', (1901, 2, 3), 0, 1] subject_info = dict() for key, val in zip(keys, vals): subject_info[key] = val raw.info['subject_info'] = subject_info out_fname = op.join(tempdir, 'test_subj_info_raw.fif') raw.save(out_fname, overwrite=True) raw_read = Raw(out_fname) for key in keys: assert_equal(subject_info[key], raw_read.info['subject_info'][key]) raw_read.anonymize() assert_true(raw_read.info.get('subject_info') is None) out_fname_anon = op.join(tempdir, 'test_subj_info_anon_raw.fif') raw_read.save(out_fname_anon, overwrite=True) raw_read = Raw(out_fname_anon) assert_true(raw_read.info.get('subject_info') is None) @testing.requires_testing_data def test_copy_append(): """Test raw copying and appending combinations """ raw = Raw(fif_fname, preload=True).copy() raw_full = Raw(fif_fname) raw_full.append(raw) data = raw_full[:, :][0] assert_equal(data.shape[1], 2 * raw._data.shape[1]) @slow_test @testing.requires_testing_data def test_rank_estimation(): """Test raw rank estimation """ iter_tests = itt.product( [fif_fname, hp_fif_fname], # sss ['norm', dict(mag=1e11, grad=1e9, eeg=1e5)] ) for fname, scalings in iter_tests: raw = Raw(fname) (_, picks_meg), (_, picks_eeg) = _picks_by_type(raw.info, meg_combined=True) n_meg = len(picks_meg) n_eeg = len(picks_eeg) raw = Raw(fname, preload=True) if 'proc_history' not in raw.info: expected_rank = n_meg + n_eeg else: mf = raw.info['proc_history'][0]['max_info'] expected_rank = _get_sss_rank(mf) + n_eeg assert_array_equal(raw.estimate_rank(scalings=scalings), expected_rank) assert_array_equal(raw.estimate_rank(picks=picks_eeg, scalings=scalings), n_eeg) raw = Raw(fname, preload=False) if 'sss' in fname: tstart, tstop = 0., 30. raw.add_proj(compute_proj_raw(raw)) raw.apply_proj() else: tstart, tstop = 10., 20. raw.apply_proj() n_proj = len(raw.info['projs']) assert_array_equal(raw.estimate_rank(tstart=tstart, tstop=tstop, scalings=scalings), expected_rank - (1 if 'sss' in fname else n_proj)) @testing.requires_testing_data def test_output_formats(): """Test saving and loading raw data using multiple formats """ tempdir = _TempDir() formats = ['short', 'int', 'single', 'double'] tols = [1e-4, 1e-7, 1e-7, 1e-15] # let's fake a raw file with different formats raw = Raw(test_fif_fname).crop(0, 1, copy=False) temp_file = op.join(tempdir, 'raw.fif') for ii, (fmt, tol) in enumerate(zip(formats, tols)): # Let's test the overwriting error throwing while we're at it if ii > 0: assert_raises(IOError, raw.save, temp_file, fmt=fmt) raw.save(temp_file, fmt=fmt, overwrite=True) raw2 = Raw(temp_file) raw2_data = raw2[:, :][0] assert_allclose(raw2_data, raw[:, :][0], rtol=tol, atol=1e-25) assert_equal(raw2.orig_format, fmt) def _compare_combo(raw, new, times, n_times): for ti in times: # let's do a subset of points for speed orig = raw[:, ti % n_times][0] # these are almost_equals because of possible dtype differences assert_allclose(orig, new[:, ti][0]) @slow_test @testing.requires_testing_data def test_multiple_files(): """Test loading multiple files simultaneously """ # split file tempdir = _TempDir() raw = Raw(fif_fname).crop(0, 10, False) raw.preload_data() raw.preload_data() # test no operation split_size = 3. # in seconds sfreq = raw.info['sfreq'] nsamp = (raw.last_samp - raw.first_samp) tmins = np.round(np.arange(0., nsamp, split_size * sfreq)) tmaxs = np.concatenate((tmins[1:] - 1, [nsamp])) tmaxs /= sfreq tmins /= sfreq assert_equal(raw.n_times, len(raw.times)) # going in reverse order so the last fname is the first file (need later) raws = [None] * len(tmins) for ri in range(len(tmins) - 1, -1, -1): fname = op.join(tempdir, 'test_raw_split-%d_raw.fif' % ri) raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri]) raws[ri] = Raw(fname) events = [find_events(r, stim_channel='STI 014') for r in raws] last_samps = [r.last_samp for r in raws] first_samps = [r.first_samp for r in raws] # test concatenation of split file assert_raises(ValueError, concatenate_raws, raws, True, events[1:]) all_raw_1, events1 = concatenate_raws(raws, preload=False, events_list=events) assert_equal(raw.first_samp, all_raw_1.first_samp) assert_equal(raw.last_samp, all_raw_1.last_samp) assert_allclose(raw[:, :][0], all_raw_1[:, :][0]) raws[0] = Raw(fname) all_raw_2 = concatenate_raws(raws, preload=True) assert_allclose(raw[:, :][0], all_raw_2[:, :][0]) # test proper event treatment for split files events2 = concatenate_events(events, first_samps, last_samps) events3 = find_events(all_raw_2, stim_channel='STI 014') assert_array_equal(events1, events2) assert_array_equal(events1, events3) # test various methods of combining files raw = Raw(fif_fname, preload=True) n_times = raw.n_times # make sure that all our data match times = list(range(0, 2 * n_times, 999)) # add potentially problematic points times.extend([n_times - 1, n_times, 2 * n_times - 1]) raw_combo0 = Raw([fif_fname, fif_fname], preload=True) _compare_combo(raw, raw_combo0, times, n_times) raw_combo = Raw([fif_fname, fif_fname], preload=False) _compare_combo(raw, raw_combo, times, n_times) raw_combo = Raw([fif_fname, fif_fname], preload='memmap8.dat') _compare_combo(raw, raw_combo, times, n_times) assert_raises(ValueError, Raw, [fif_fname, ctf_fname]) assert_raises(ValueError, Raw, [fif_fname, fif_bad_marked_fname]) assert_equal(raw[:, :][0].shape[1] * 2, raw_combo0[:, :][0].shape[1]) assert_equal(raw_combo0[:, :][0].shape[1], raw_combo0.n_times) # with all data preloaded, result should be preloaded raw_combo = Raw(fif_fname, preload=True) raw_combo.append(Raw(fif_fname, preload=True)) assert_true(raw_combo.preload is True) assert_equal(raw_combo.n_times, raw_combo._data.shape[1]) _compare_combo(raw, raw_combo, times, n_times) # with any data not preloaded, don't set result as preloaded raw_combo = concatenate_raws([Raw(fif_fname, preload=True), Raw(fif_fname, preload=False)]) assert_true(raw_combo.preload is False) assert_array_equal(find_events(raw_combo, stim_channel='STI 014'), find_events(raw_combo0, stim_channel='STI 014')) _compare_combo(raw, raw_combo, times, n_times) # user should be able to force data to be preloaded upon concat raw_combo = concatenate_raws([Raw(fif_fname, preload=False), Raw(fif_fname, preload=True)], preload=True) assert_true(raw_combo.preload is True) _compare_combo(raw, raw_combo, times, n_times) raw_combo = concatenate_raws([Raw(fif_fname, preload=False), Raw(fif_fname, preload=True)], preload='memmap3.dat') _compare_combo(raw, raw_combo, times, n_times) raw_combo = concatenate_raws([Raw(fif_fname, preload=True), Raw(fif_fname, preload=True)], preload='memmap4.dat') _compare_combo(raw, raw_combo, times, n_times) raw_combo = concatenate_raws([Raw(fif_fname, preload=False), Raw(fif_fname, preload=False)], preload='memmap5.dat') _compare_combo(raw, raw_combo, times, n_times) # verify that combining raws with different projectors throws an exception raw.add_proj([], remove_existing=True) assert_raises(ValueError, raw.append, Raw(fif_fname, preload=True)) # now test event treatment for concatenated raw files events = [find_events(raw, stim_channel='STI 014'), find_events(raw, stim_channel='STI 014')] last_samps = [raw.last_samp, raw.last_samp] first_samps = [raw.first_samp, raw.first_samp] events = concatenate_events(events, first_samps, last_samps) events2 = find_events(raw_combo0, stim_channel='STI 014') assert_array_equal(events, events2) # check out the len method assert_equal(len(raw), raw.n_times) assert_equal(len(raw), raw.last_samp - raw.first_samp + 1) @testing.requires_testing_data def test_split_files(): """Test writing and reading of split raw files """ tempdir = _TempDir() raw_1 = Raw(fif_fname, preload=True) split_fname = op.join(tempdir, 'split_raw.fif') raw_1.save(split_fname, buffer_size_sec=1.0, split_size='10MB') raw_2 = Raw(split_fname) data_1, times_1 = raw_1[:, :] data_2, times_2 = raw_2[:, :] assert_array_equal(data_1, data_2) assert_array_equal(times_1, times_2) # test the case where the silly user specifies the split files fnames = [split_fname] fnames.extend(sorted(glob.glob(op.join(tempdir, 'split_raw-*.fif')))) with warnings.catch_warnings(record=True): warnings.simplefilter('always') raw_2 = Raw(fnames) data_2, times_2 = raw_2[:, :] assert_array_equal(data_1, data_2) assert_array_equal(times_1, times_2) def test_load_bad_channels(): """Test reading/writing of bad channels """ tempdir = _TempDir() # Load correctly marked file (manually done in mne_process_raw) raw_marked = Raw(fif_bad_marked_fname) correct_bads = raw_marked.info['bads'] raw = Raw(test_fif_fname) # Make sure it starts clean assert_array_equal(raw.info['bads'], []) # Test normal case raw.load_bad_channels(bad_file_works) # Write it out, read it in, and check raw.save(op.join(tempdir, 'foo_raw.fif')) raw_new = Raw(op.join(tempdir, 'foo_raw.fif')) assert_equal(correct_bads, raw_new.info['bads']) # Reset it raw.info['bads'] = [] # Test bad case assert_raises(ValueError, raw.load_bad_channels, bad_file_wrong) # Test forcing the bad case with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') raw.load_bad_channels(bad_file_wrong, force=True) n_found = sum(['1 bad channel' in str(ww.message) for ww in w]) assert_equal(n_found, 1) # there could be other irrelevant errors # write it out, read it in, and check raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True) raw_new = Raw(op.join(tempdir, 'foo_raw.fif')) assert_equal(correct_bads, raw_new.info['bads']) # Check that bad channels are cleared raw.load_bad_channels(None) raw.save(op.join(tempdir, 'foo_raw.fif'), overwrite=True) raw_new = Raw(op.join(tempdir, 'foo_raw.fif')) assert_equal([], raw_new.info['bads']) @slow_test @testing.requires_testing_data def test_io_raw(): """Test IO for raw data (Neuromag + CTF + gz) """ tempdir = _TempDir() # test unicode io for chars in [b'\xc3\xa4\xc3\xb6\xc3\xa9', b'a']: with Raw(fif_fname) as r: assert_true('Raw' in repr(r)) desc1 = r.info['description'] = chars.decode('utf-8') temp_file = op.join(tempdir, 'raw.fif') r.save(temp_file, overwrite=True) with Raw(temp_file) as r2: desc2 = r2.info['description'] assert_equal(desc1, desc2) # Let's construct a simple test for IO first raw = Raw(fif_fname).crop(0, 3.5, False) raw.preload_data() # put in some data that we know the values of data = np.random.randn(raw._data.shape[0], raw._data.shape[1]) raw._data[:, :] = data # save it somewhere fname = op.join(tempdir, 'test_copy_raw.fif') raw.save(fname, buffer_size_sec=1.0) # read it in, make sure the whole thing matches raw = Raw(fname) assert_allclose(data, raw[:, :][0], rtol=1e-6, atol=1e-20) # let's read portions across the 1-sec tag boundary, too inds = raw.time_as_index([1.75, 2.25]) sl = slice(inds[0], inds[1]) assert_allclose(data[:, sl], raw[:, sl][0], rtol=1e-6, atol=1e-20) # now let's do some real I/O fnames_in = [fif_fname, test_fif_gz_fname, ctf_fname] fnames_out = ['raw.fif', 'raw.fif.gz', 'raw.fif'] for fname_in, fname_out in zip(fnames_in, fnames_out): fname_out = op.join(tempdir, fname_out) raw = Raw(fname_in) nchan = raw.info['nchan'] ch_names = raw.info['ch_names'] meg_channels_idx = [k for k in range(nchan) if ch_names[k][0] == 'M'] n_channels = 100 meg_channels_idx = meg_channels_idx[:n_channels] start, stop = raw.time_as_index([0, 5]) data, times = raw[meg_channels_idx, start:(stop + 1)] meg_ch_names = [ch_names[k] for k in meg_channels_idx] # Set up pick list: MEG + STI 014 - bad channels include = ['STI 014'] include += meg_ch_names picks = pick_types(raw.info, meg=True, eeg=False, stim=True, misc=True, ref_meg=True, include=include, exclude='bads') # Writing with drop_small_buffer True raw.save(fname_out, picks, tmin=0, tmax=4, buffer_size_sec=3, drop_small_buffer=True, overwrite=True) raw2 = Raw(fname_out) sel = pick_channels(raw2.ch_names, meg_ch_names) data2, times2 = raw2[sel, :] assert_true(times2.max() <= 3) # Writing raw.save(fname_out, picks, tmin=0, tmax=5, overwrite=True) if fname_in == fif_fname or fname_in == fif_fname + '.gz': assert_equal(len(raw.info['dig']), 146) raw2 = Raw(fname_out) sel = pick_channels(raw2.ch_names, meg_ch_names) data2, times2 = raw2[sel, :] assert_allclose(data, data2, rtol=1e-6, atol=1e-20) assert_allclose(times, times2) assert_allclose(raw.info['sfreq'], raw2.info['sfreq'], rtol=1e-5) # check transformations for trans in ['dev_head_t', 'dev_ctf_t', 'ctf_head_t']: if raw.info[trans] is None: assert_true(raw2.info[trans] is None) else: assert_array_equal(raw.info[trans]['trans'], raw2.info[trans]['trans']) # check transformation 'from' and 'to' if trans.startswith('dev'): from_id = FIFF.FIFFV_COORD_DEVICE else: from_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD if trans[4:8] == 'head': to_id = FIFF.FIFFV_COORD_HEAD else: to_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD for raw_ in [raw, raw2]: assert_equal(raw_.info[trans]['from'], from_id) assert_equal(raw_.info[trans]['to'], to_id) if fname_in == fif_fname or fname_in == fif_fname + '.gz': assert_allclose(raw.info['dig'][0]['r'], raw2.info['dig'][0]['r']) # test warnings on bad filenames with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") raw_badname = op.join(tempdir, 'test-bad-name.fif.gz') raw.save(raw_badname) Raw(raw_badname) assert_true(len(w) > 0) # len(w) should be 2 but Travis sometimes has more @testing.requires_testing_data def test_io_complex(): """Test IO with complex data types """ tempdir = _TempDir() dtypes = [np.complex64, np.complex128] raw = Raw(fif_fname, preload=True) picks = np.arange(5) start, stop = raw.time_as_index([0, 5]) data_orig, _ = raw[picks, start:stop] for di, dtype in enumerate(dtypes): imag_rand = np.array(1j * np.random.randn(data_orig.shape[0], data_orig.shape[1]), dtype) raw_cp = raw.copy() raw_cp._data = np.array(raw_cp._data, dtype) raw_cp._data[picks, start:stop] += imag_rand # this should throw an error because it's complex with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') raw_cp.save(op.join(tempdir, 'raw.fif'), picks, tmin=0, tmax=5, overwrite=True) # warning gets thrown on every instance b/c simplifilter('always') assert_equal(len(w), 1) raw2 = Raw(op.join(tempdir, 'raw.fif')) raw2_data, _ = raw2[picks, :] n_samp = raw2_data.shape[1] assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp]) # with preloading raw2 = Raw(op.join(tempdir, 'raw.fif'), preload=True) raw2_data, _ = raw2[picks, :] n_samp = raw2_data.shape[1] assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp]) @testing.requires_testing_data def test_getitem(): """Test getitem/indexing of Raw """ for preload in [False, True, 'memmap.dat']: raw = Raw(fif_fname, preload=preload) data, times = raw[0, :] data1, times1 = raw[0] assert_array_equal(data, data1) assert_array_equal(times, times1) data, times = raw[0:2, :] data1, times1 = raw[0:2] assert_array_equal(data, data1) assert_array_equal(times, times1) data1, times1 = raw[[0, 1]] assert_array_equal(data, data1) assert_array_equal(times, times1) @testing.requires_testing_data def test_proj(): """Test SSP proj operations """ tempdir = _TempDir() for proj in [True, False]: raw = Raw(fif_fname, preload=False, proj=proj) assert_true(all(p['active'] == proj for p in raw.info['projs'])) data, times = raw[0:2, :] data1, times1 = raw[0:2] assert_array_equal(data, data1) assert_array_equal(times, times1) # test adding / deleting proj if proj: assert_raises(ValueError, raw.add_proj, [], {'remove_existing': True}) assert_raises(ValueError, raw.del_proj, 0) else: projs = deepcopy(raw.info['projs']) n_proj = len(raw.info['projs']) raw.del_proj(0) assert_equal(len(raw.info['projs']), n_proj - 1) raw.add_proj(projs, remove_existing=False) assert_equal(len(raw.info['projs']), 2 * n_proj - 1) raw.add_proj(projs, remove_existing=True) assert_equal(len(raw.info['projs']), n_proj) # test apply_proj() with and without preload for preload in [True, False]: raw = Raw(fif_fname, preload=preload, proj=False) data, times = raw[:, 0:2] raw.apply_proj() data_proj_1 = np.dot(raw._projector, data) # load the file again without proj raw = Raw(fif_fname, preload=preload, proj=False) # write the file with proj. activated, make sure proj has been applied raw.save(op.join(tempdir, 'raw.fif'), proj=True, overwrite=True) raw2 = Raw(op.join(tempdir, 'raw.fif'), proj=False) data_proj_2, _ = raw2[:, 0:2] assert_allclose(data_proj_1, data_proj_2) assert_true(all(p['active'] for p in raw2.info['projs'])) # read orig file with proj. active raw2 = Raw(fif_fname, preload=preload, proj=True) data_proj_2, _ = raw2[:, 0:2] assert_allclose(data_proj_1, data_proj_2) assert_true(all(p['active'] for p in raw2.info['projs'])) # test that apply_proj works raw.apply_proj() data_proj_2, _ = raw[:, 0:2] assert_allclose(data_proj_1, data_proj_2) assert_allclose(data_proj_2, np.dot(raw._projector, data_proj_2)) tempdir = _TempDir() out_fname = op.join(tempdir, 'test_raw.fif') raw = read_raw_fif(test_fif_fname, preload=True).crop(0, 0.002, copy=False) raw.pick_types(meg=False, eeg=True) raw.info['projs'] = [raw.info['projs'][-1]] raw._data.fill(0) raw._data[-1] = 1. raw.save(out_fname) raw = read_raw_fif(out_fname, proj=True, preload=False) assert_allclose(raw[:, :][0][:1], raw[0, :][0]) @testing.requires_testing_data def test_preload_modify(): """Test preloading and modifying data """ tempdir = _TempDir() for preload in [False, True, 'memmap.dat']: raw = Raw(fif_fname, preload=preload) nsamp = raw.last_samp - raw.first_samp + 1 picks = pick_types(raw.info, meg='grad', exclude='bads') data = np.random.randn(len(picks), nsamp // 2) try: raw[picks, :nsamp // 2] = data except RuntimeError as err: if not preload: continue else: raise err tmp_fname = op.join(tempdir, 'raw.fif') raw.save(tmp_fname, overwrite=True) raw_new = Raw(tmp_fname) data_new, _ = raw_new[picks, :nsamp / 2] assert_allclose(data, data_new) @slow_test @testing.requires_testing_data def test_filter(): """Test filtering (FIR and IIR) and Raw.apply_function interface """ raw = Raw(fif_fname).crop(0, 7, False) raw.preload_data() sig_dec = 11 sig_dec_notch = 12 sig_dec_notch_fit = 12 picks_meg = pick_types(raw.info, meg=True, exclude='bads') picks = picks_meg[:4] raw_lp = raw.copy() raw_lp.filter(0., 4.0 - 0.25, picks=picks, n_jobs=2) raw_hp = raw.copy() raw_hp.filter(8.0 + 0.25, None, picks=picks, n_jobs=2) raw_bp = raw.copy() raw_bp.filter(4.0 + 0.25, 8.0 - 0.25, picks=picks) raw_bs = raw.copy() raw_bs.filter(8.0 + 0.25, 4.0 - 0.25, picks=picks, n_jobs=2) data, _ = raw[picks, :] lp_data, _ = raw_lp[picks, :] hp_data, _ = raw_hp[picks, :] bp_data, _ = raw_bp[picks, :] bs_data, _ = raw_bs[picks, :] assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec) assert_array_almost_equal(data, bp_data + bs_data, sig_dec) raw_lp_iir = raw.copy() raw_lp_iir.filter(0., 4.0, picks=picks, n_jobs=2, method='iir') raw_hp_iir = raw.copy() raw_hp_iir.filter(8.0, None, picks=picks, n_jobs=2, method='iir') raw_bp_iir = raw.copy() raw_bp_iir.filter(4.0, 8.0, picks=picks, method='iir') lp_data_iir, _ = raw_lp_iir[picks, :] hp_data_iir, _ = raw_hp_iir[picks, :] bp_data_iir, _ = raw_bp_iir[picks, :] summation = lp_data_iir + hp_data_iir + bp_data_iir assert_array_almost_equal(data[:, 100:-100], summation[:, 100:-100], sig_dec) # make sure we didn't touch other channels data, _ = raw[picks_meg[4:], :] bp_data, _ = raw_bp[picks_meg[4:], :] assert_array_equal(data, bp_data) bp_data_iir, _ = raw_bp_iir[picks_meg[4:], :] assert_array_equal(data, bp_data_iir) # do a very simple check on line filtering raw_bs = raw.copy() with warnings.catch_warnings(record=True): warnings.simplefilter('always') raw_bs.filter(60.0 + 0.5, 60.0 - 0.5, picks=picks, n_jobs=2) data_bs, _ = raw_bs[picks, :] raw_notch = raw.copy() raw_notch.notch_filter(60.0, picks=picks, n_jobs=2, method='fft') data_notch, _ = raw_notch[picks, :] assert_array_almost_equal(data_bs, data_notch, sig_dec_notch) # now use the sinusoidal fitting raw_notch = raw.copy() raw_notch.notch_filter(None, picks=picks, n_jobs=2, method='spectrum_fit') data_notch, _ = raw_notch[picks, :] data, _ = raw[picks, :] assert_array_almost_equal(data, data_notch, sig_dec_notch_fit) @testing.requires_testing_data def test_crop(): """Test cropping raw files """ # split a concatenated file to test a difficult case raw = Raw([fif_fname, fif_fname], preload=False) split_size = 10. # in seconds sfreq = raw.info['sfreq'] nsamp = (raw.last_samp - raw.first_samp + 1) # do an annoying case (off-by-one splitting) tmins = np.r_[1., np.round(np.arange(0., nsamp - 1, split_size * sfreq))] tmins = np.sort(tmins) tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1])) tmaxs /= sfreq tmins /= sfreq raws = [None] * len(tmins) for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)): raws[ri] = raw.crop(tmin, tmax, True) all_raw_2 = concatenate_raws(raws, preload=False) assert_equal(raw.first_samp, all_raw_2.first_samp) assert_equal(raw.last_samp, all_raw_2.last_samp) assert_array_equal(raw[:, :][0], all_raw_2[:, :][0]) tmins = np.round(np.arange(0., nsamp - 1, split_size * sfreq)) tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1])) tmaxs /= sfreq tmins /= sfreq # going in revere order so the last fname is the first file (need it later) raws = [None] * len(tmins) for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)): raws[ri] = raw.copy() raws[ri].crop(tmin, tmax, False) # test concatenation of split file all_raw_1 = concatenate_raws(raws, preload=False) all_raw_2 = raw.crop(0, None, True) for ar in [all_raw_1, all_raw_2]: assert_equal(raw.first_samp, ar.first_samp) assert_equal(raw.last_samp, ar.last_samp) assert_array_equal(raw[:, :][0], ar[:, :][0]) @testing.requires_testing_data def test_resample(): """Test resample (with I/O and multiple files) """ tempdir = _TempDir() raw = Raw(fif_fname).crop(0, 3, False) raw.preload_data() raw_resamp = raw.copy() sfreq = raw.info['sfreq'] # test parallel on upsample raw_resamp.resample(sfreq * 2, n_jobs=2) assert_equal(raw_resamp.n_times, len(raw_resamp.times)) raw_resamp.save(op.join(tempdir, 'raw_resamp-raw.fif')) raw_resamp = Raw(op.join(tempdir, 'raw_resamp-raw.fif'), preload=True) assert_equal(sfreq, raw_resamp.info['sfreq'] / 2) assert_equal(raw.n_times, raw_resamp.n_times / 2) assert_equal(raw_resamp._data.shape[1], raw_resamp.n_times) assert_equal(raw._data.shape[0], raw_resamp._data.shape[0]) # test non-parallel on downsample raw_resamp.resample(sfreq, n_jobs=1) assert_equal(raw_resamp.info['sfreq'], sfreq) assert_equal(raw._data.shape, raw_resamp._data.shape) assert_equal(raw.first_samp, raw_resamp.first_samp) assert_equal(raw.last_samp, raw.last_samp) # upsampling then downsampling doubles resampling error, but this still # works (hooray). Note that the stim channels had to be sub-sampled # without filtering to be accurately preserved # note we have to treat MEG and EEG+STIM channels differently (tols) assert_allclose(raw._data[:306, 200:-200], raw_resamp._data[:306, 200:-200], rtol=1e-2, atol=1e-12) assert_allclose(raw._data[306:, 200:-200], raw_resamp._data[306:, 200:-200], rtol=1e-2, atol=1e-7) # now check multiple file support w/resampling, as order of operations # (concat, resample) should not affect our data raw1 = raw.copy() raw2 = raw.copy() raw3 = raw.copy() raw4 = raw.copy() raw1 = concatenate_raws([raw1, raw2]) raw1.resample(10) raw3.resample(10) raw4.resample(10) raw3 = concatenate_raws([raw3, raw4]) assert_array_equal(raw1._data, raw3._data) assert_array_equal(raw1._first_samps, raw3._first_samps) assert_array_equal(raw1._last_samps, raw3._last_samps) assert_array_equal(raw1._raw_lengths, raw3._raw_lengths) assert_equal(raw1.first_samp, raw3.first_samp) assert_equal(raw1.last_samp, raw3.last_samp) assert_equal(raw1.info['sfreq'], raw3.info['sfreq']) @testing.requires_testing_data def test_hilbert(): """Test computation of analytic signal using hilbert """ raw = Raw(fif_fname, preload=True) picks_meg = pick_types(raw.info, meg=True, exclude='bads') picks = picks_meg[:4] raw2 = raw.copy() raw.apply_hilbert(picks) raw2.apply_hilbert(picks, envelope=True, n_jobs=2) env = np.abs(raw._data[picks, :]) assert_allclose(env, raw2._data[picks, :], rtol=1e-2, atol=1e-13) @testing.requires_testing_data def test_raw_copy(): """Test Raw copy """ raw = Raw(fif_fname, preload=True) data, _ = raw[:, :] copied = raw.copy() copied_data, _ = copied[:, :] assert_array_equal(data, copied_data) assert_equal(sorted(raw.__dict__.keys()), sorted(copied.__dict__.keys())) raw = Raw(fif_fname, preload=False) data, _ = raw[:, :] copied = raw.copy() copied_data, _ = copied[:, :] assert_array_equal(data, copied_data) assert_equal(sorted(raw.__dict__.keys()), sorted(copied.__dict__.keys())) @requires_pandas def test_to_data_frame(): """Test raw Pandas exporter""" raw = Raw(test_fif_fname, preload=True) _, times = raw[0, :10] df = raw.to_data_frame() assert_true((df.columns == raw.ch_names).all()) assert_array_equal(np.round(times * 1e3), df.index.values[:10]) df = raw.to_data_frame(index=None) assert_true('time' in df.index.names) assert_array_equal(df.values[:, 0], raw._data[0] * 1e13) assert_array_equal(df.values[:, 2], raw._data[2] * 1e15) @testing.requires_testing_data def test_raw_index_as_time(): """ Test index as time conversion""" raw = Raw(fif_fname, preload=True) t0 = raw.index_as_time([0], True)[0] t1 = raw.index_as_time([100], False)[0] t2 = raw.index_as_time([100], True)[0] assert_equal(t2 - t1, t0) # ensure we can go back and forth t3 = raw.index_as_time(raw.time_as_index([0], True), True) assert_array_almost_equal(t3, [0.0], 2) t3 = raw.index_as_time(raw.time_as_index(raw.info['sfreq'], True), True) assert_array_almost_equal(t3, [raw.info['sfreq']], 2) t3 = raw.index_as_time(raw.time_as_index(raw.info['sfreq'], False), False) assert_array_almost_equal(t3, [raw.info['sfreq']], 2) i0 = raw.time_as_index(raw.index_as_time([0], True), True) assert_equal(i0[0], 0) i1 = raw.time_as_index(raw.index_as_time([100], True), True) assert_equal(i1[0], 100) # Have to add small amount of time because we truncate via int casting i1 = raw.time_as_index(raw.index_as_time([100.0001], False), False) assert_equal(i1[0], 100) @testing.requires_testing_data def test_raw_time_as_index(): """ Test time as index conversion""" raw = Raw(fif_fname, preload=True) first_samp = raw.time_as_index([0], True)[0] assert_equal(raw.first_samp, -first_samp) @testing.requires_testing_data def test_save(): """ Test saving raw""" tempdir = _TempDir() raw = Raw(fif_fname, preload=False) # can't write over file being read assert_raises(ValueError, raw.save, fif_fname) raw = Raw(fif_fname, preload=True) # can't overwrite file without overwrite=True assert_raises(IOError, raw.save, fif_fname) # test abspath support new_fname = op.join(op.abspath(op.curdir), 'break-raw.fif') raw.save(op.join(tempdir, new_fname), overwrite=True) new_raw = Raw(op.join(tempdir, new_fname), preload=False) assert_raises(ValueError, new_raw.save, new_fname) # make sure we can overwrite the file we loaded when preload=True new_raw = Raw(op.join(tempdir, new_fname), preload=True) new_raw.save(op.join(tempdir, new_fname), overwrite=True) os.remove(new_fname) @testing.requires_testing_data def test_with_statement(): """ Test with statement """ for preload in [True, False]: with Raw(fif_fname, preload=preload) as raw_: print(raw_) def test_compensation_raw(): """Test Raw compensation """ tempdir = _TempDir() raw1 = Raw(ctf_comp_fname, compensation=None) assert_true(raw1.comp is None) data1, times1 = raw1[:, :] raw2 = Raw(ctf_comp_fname, compensation=3) data2, times2 = raw2[:, :] assert_true(raw2.comp is None) # unchanged (data come with grade 3) assert_array_equal(times1, times2) assert_array_equal(data1, data2) raw3 = Raw(ctf_comp_fname, compensation=1) data3, times3 = raw3[:, :] assert_true(raw3.comp is not None) assert_array_equal(times1, times3) # make sure it's different with a different compensation: assert_true(np.mean(np.abs(data1 - data3)) > 1e-12) assert_raises(ValueError, Raw, ctf_comp_fname, compensation=33) # Try IO with compensation temp_file = op.join(tempdir, 'raw.fif') raw1.save(temp_file, overwrite=True) raw4 = Raw(temp_file) data4, times4 = raw4[:, :] assert_array_equal(times1, times4) assert_array_equal(data1, data4) # Now save the file that has modified compensation # and make sure we can the same data as input ie. compensation # is undone raw3.save(temp_file, overwrite=True) raw5 = Raw(temp_file) data5, times5 = raw5[:, :] assert_array_equal(times1, times5) assert_allclose(data1, data5, rtol=1e-12, atol=1e-22) @requires_mne def test_compensation_raw_mne(): """Test Raw compensation by comparing with MNE """ tempdir = _TempDir() def compensate_mne(fname, grad): tmp_fname = op.join(tempdir, 'mne_ctf_test_raw.fif') cmd = ['mne_process_raw', '--raw', fname, '--save', tmp_fname, '--grad', str(grad), '--projoff', '--filteroff'] run_subprocess(cmd) return Raw(tmp_fname, preload=True) for grad in [0, 2, 3]: raw_py = Raw(ctf_comp_fname, preload=True, compensation=grad) raw_c = compensate_mne(ctf_comp_fname, grad) assert_allclose(raw_py._data, raw_c._data, rtol=1e-6, atol=1e-17) @testing.requires_testing_data def test_drop_channels_mixin(): """Test channels-dropping functionality """ raw = Raw(fif_fname, preload=True) drop_ch = raw.ch_names[:3] ch_names = raw.ch_names[3:] ch_names_orig = raw.ch_names dummy = raw.drop_channels(drop_ch, copy=True) assert_equal(ch_names, dummy.ch_names) assert_equal(ch_names_orig, raw.ch_names) assert_equal(len(ch_names_orig), raw._data.shape[0]) raw.drop_channels(drop_ch) assert_equal(ch_names, raw.ch_names) assert_equal(len(ch_names), len(raw._cals)) assert_equal(len(ch_names), raw._data.shape[0]) @testing.requires_testing_data def test_pick_channels_mixin(): """Test channel-picking functionality """ # preload is True raw = Raw(fif_fname, preload=True) ch_names = raw.ch_names[:3] ch_names_orig = raw.ch_names dummy = raw.pick_channels(ch_names, copy=True) # copy is True assert_equal(ch_names, dummy.ch_names) assert_equal(ch_names_orig, raw.ch_names) assert_equal(len(ch_names_orig), raw._data.shape[0]) raw.pick_channels(ch_names, copy=False) # copy is False assert_equal(ch_names, raw.ch_names) assert_equal(len(ch_names), len(raw._cals)) assert_equal(len(ch_names), raw._data.shape[0]) raw = Raw(fif_fname, preload=False) assert_raises(RuntimeError, raw.pick_channels, ch_names) assert_raises(RuntimeError, raw.drop_channels, ch_names) @testing.requires_testing_data def test_equalize_channels(): """Test equalization of channels """ raw1 = Raw(fif_fname, preload=True) raw2 = raw1.copy() ch_names = raw1.ch_names[2:] raw1.drop_channels(raw1.ch_names[:1]) raw2.drop_channels(raw2.ch_names[1:2]) my_comparison = [raw1, raw2] equalize_channels(my_comparison) for e in my_comparison: assert_equal(ch_names, e.ch_names) run_tests_if_main()
bsd-3-clause
HolgerPeters/scikit-learn
sklearn/__check_build/__init__.py
345
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
apdavison/elephant
elephant/current_source_density_src/icsd.py
9
35175
# -*- coding: utf-8 -*- ''' py-iCSD toolbox! Translation of the core functionality of the CSDplotter MATLAB package to python. The methods were originally developed by Klas H. Pettersen, as described in: Klas H. Pettersen, Anna Devor, Istvan Ulbert, Anders M. Dale, Gaute T. Einevoll, Current-source density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities, Journal of Neuroscience Methods, Volume 154, Issues 1-2, 30 June 2006, Pages 116-133, ISSN 0165-0270, http://dx.doi.org/10.1016/j.jneumeth.2005.12.005. (http://www.sciencedirect.com/science/article/pii/S0165027005004541) The method themselves are implemented as callable subclasses of the base CSD class object, which sets some common attributes, and a basic function for calculating the iCSD, and a generic spatial filter implementation. The raw- and filtered CSD estimates are returned as Quantity arrays. Requires pylab environment to work, i.e numpy+scipy+matplotlib, with the addition of quantities (http://pythonhosted.org/quantities) and neo (https://pythonhosted.org/neo)- Original implementation from CSDplotter-0.1.1 (http://software.incf.org/software/csdplotter) by Klas. H. Pettersen 2005. Written by: - [email protected], 2010, - [email protected], 2015-2016 ''' import numpy as np import scipy.integrate as si import scipy.signal as ss import quantities as pq class CSD(object): '''Base iCSD class''' def __init__(self, lfp, f_type='gaussian', f_order=(3, 1)): '''Initialize parent class iCSD Parameters ---------- lfp : np.ndarray * quantity.Quantity LFP signal of shape (# channels, # time steps) f_type : str type of spatial filter, must be a scipy.signal filter design method f_order : list settings for spatial filter, arg passed to filter design function ''' self.name = 'CSD estimate parent class' self.lfp = lfp self.f_matrix = np.eye(lfp.shape[0]) * pq.m**3 / pq.S self.f_type = f_type self.f_order = f_order def get_csd(self, ): ''' Perform the CSD estimate from the LFP and forward matrix F, i.e as CSD=F**-1*LFP Arguments --------- Returns ------- csd : np.ndarray * quantity.Quantity Array with the csd estimate ''' csd = np.linalg.solve(self.f_matrix, self.lfp) return csd * (self.f_matrix.units**-1 * self.lfp.units).simplified def filter_csd(self, csd, filterfunction='convolve'): ''' Spatial filtering of the CSD estimate, using an N-point filter Arguments --------- csd : np.ndarrray * quantity.Quantity Array with the csd estimate filterfunction : str 'filtfilt' or 'convolve'. Apply spatial filter using scipy.signal.filtfilt or scipy.signal.convolve. ''' if self.f_type == 'gaussian': try: assert(len(self.f_order) == 2) except AssertionError as ae: raise ae('filter order f_order must be a tuple of length 2') else: try: assert(self.f_order > 0 and isinstance(self.f_order, int)) except AssertionError as ae: raise ae('Filter order must be int > 0!') try: assert(filterfunction in ['filtfilt', 'convolve']) except AssertionError as ae: raise ae("{} not equal to 'filtfilt' or \ 'convolve'".format(filterfunction)) if self.f_type == 'boxcar': num = ss.boxcar(self.f_order) denom = np.array([num.sum()]) elif self.f_type == 'hamming': num = ss.hamming(self.f_order) denom = np.array([num.sum()]) elif self.f_type == 'triangular': num = ss.triang(self.f_order) denom = np.array([num.sum()]) elif self.f_type == 'gaussian': num = ss.gaussian(self.f_order[0], self.f_order[1]) denom = np.array([num.sum()]) elif self.f_type == 'identity': num = np.array([1.]) denom = np.array([1.]) else: print('%s Wrong filter type!' % self.f_type) raise num_string = '[ ' for i in num: num_string = num_string + '%.3f ' % i num_string = num_string + ']' denom_string = '[ ' for i in denom: denom_string = denom_string + '%.3f ' % i denom_string = denom_string + ']' print(('discrete filter coefficients: \nb = {}, \ \na = {}'.format(num_string, denom_string))) if filterfunction == 'filtfilt': return ss.filtfilt(num, denom, csd, axis=0) * csd.units elif filterfunction == 'convolve': csdf = csd / csd.units for i in range(csdf.shape[1]): csdf[:, i] = ss.convolve(csdf[:, i], num / denom.sum(), 'same') return csdf * csd.units class StandardCSD(CSD): ''' Standard CSD method with and without Vaknin electrodes ''' def __init__(self, lfp, coord_electrode, **kwargs): ''' Initialize standard CSD method class with & without Vaknin electrodes. Parameters ---------- lfp : np.ndarray * quantity.Quantity LFP signal of shape (# channels, # time steps) in units of V coord_electrode : np.ndarray * quantity.Quantity depth of evenly spaced electrode contact points of shape (# contacts, ) in units of m, must be monotonously increasing sigma : float * quantity.Quantity conductivity of tissue in units of S/m or 1/(ohm*m) Defaults to 0.3 S/m vaknin_el : bool flag for using method of Vaknin to endpoint electrodes Defaults to True f_type : str type of spatial filter, must be a scipy.signal filter design method Defaults to 'gaussian' f_order : list settings for spatial filter, arg passed to filter design function Defaults to (3,1) for the gaussian ''' self.parameters(**kwargs) CSD.__init__(self, lfp, self.f_type, self.f_order) diff_diff_coord = np.diff(np.diff(coord_electrode)).magnitude zeros_ddc = np.zeros_like(diff_diff_coord) try: assert(np.all(np.isclose(diff_diff_coord, zeros_ddc, atol=1e-12))) except AssertionError as ae: print('coord_electrode not monotonously varying') raise ae if self.vaknin_el: # extend lfps array by duplicating potential at endpoint contacts if lfp.ndim == 1: self.lfp = np.empty((lfp.shape[0] + 2, )) * lfp.units else: self.lfp = np.empty((lfp.shape[0] + 2, lfp.shape[1])) * lfp.units self.lfp[0, ] = lfp[0, ] self.lfp[1:-1, ] = lfp self.lfp[-1, ] = lfp[-1, ] else: self.lfp = lfp self.name = 'Standard CSD method' self.coord_electrode = coord_electrode self.f_inv_matrix = self.get_f_inv_matrix() def parameters(self, **kwargs): '''Defining the default values of the method passed as kwargs Parameters ---------- **kwargs Same as those passed to initialize the Class ''' self.sigma = kwargs.pop('sigma', 0.3 * pq.S / pq.m) self.vaknin_el = kwargs.pop('vaknin_el', True) self.f_type = kwargs.pop('f_type', 'gaussian') self.f_order = kwargs.pop('f_order', (3, 1)) if kwargs: raise TypeError('Invalid keyword arguments:', kwargs.keys()) def get_f_inv_matrix(self): '''Calculate the inverse F-matrix for the standard CSD method''' h_val = abs(np.diff(self.coord_electrode)[0]) f_inv = -np.eye(self.lfp.shape[0]) # Inner matrix elements is just the discrete laplacian coefficients for j in range(1, f_inv.shape[0] - 1): f_inv[j, j - 1: j + 2] = np.array([1., -2., 1.]) return f_inv * -self.sigma / h_val def get_csd(self): ''' Perform the iCSD calculation, i.e: iCSD=F_inv*LFP Returns ------- csd : np.ndarray * quantity.Quantity Array with the csd estimate ''' csd = np.dot(self.f_inv_matrix, self.lfp)[1:-1, ] # `np.dot()` does not return correct units, so the units of `csd` must # be assigned manually csd_units = (self.f_inv_matrix.units * self.lfp.units).simplified csd = csd.magnitude * csd_units return csd class DeltaiCSD(CSD): ''' delta-iCSD method ''' def __init__(self, lfp, coord_electrode, **kwargs): ''' Initialize the delta-iCSD method class object Parameters ---------- lfp : np.ndarray * quantity.Quantity LFP signal of shape (# channels, # time steps) in units of V coord_electrode : np.ndarray * quantity.Quantity depth of evenly spaced electrode contact points of shape (# contacts, ) in units of m diam : float * quantity.Quantity diamater of the assumed circular planar current sources centered at each contact Defaults to 500E-6 meters sigma : float * quantity.Quantity conductivity of tissue in units of S/m or 1/(ohm*m) Defaults to 0.3 S / m sigma_top : float * quantity.Quantity conductivity on top of tissue in units of S/m or 1/(ohm*m) Defaults to 0.3 S / m f_type : str type of spatial filter, must be a scipy.signal filter design method Defaults to 'gaussian' f_order : list settings for spatial filter, arg passed to filter design function Defaults to (3,1) for gaussian ''' self.parameters(**kwargs) CSD.__init__(self, lfp, self.f_type, self.f_order) try: # Should the class not take care of this?! assert(self.diam.units == coord_electrode.units) except AssertionError as ae: print('units of coord_electrode ({}) and diam ({}) differ' .format(coord_electrode.units, self.diam.units)) raise ae try: assert(np.all(np.diff(coord_electrode) > 0)) except AssertionError as ae: print('values of coord_electrode not continously increasing') raise ae try: assert(self.diam.size == 1 or self.diam.size == coord_electrode.size) if self.diam.size == coord_electrode.size: assert(np.all(self.diam > 0 * self.diam.units)) else: assert(self.diam > 0 * self.diam.units) except AssertionError as ae: print('diam must be positive scalar or of same shape \ as coord_electrode') raise ae if self.diam.size == 1: self.diam = np.ones(coord_electrode.size) * self.diam self.name = 'delta-iCSD method' self.coord_electrode = coord_electrode # initialize F- and iCSD-matrices self.f_matrix = np.empty((self.coord_electrode.size, self.coord_electrode.size)) self.f_matrix = self.get_f_matrix() def parameters(self, **kwargs): '''Defining the default values of the method passed as kwargs Parameters ---------- **kwargs Same as those passed to initialize the Class ''' self.diam = kwargs.pop('diam', 500E-6 * pq.m) self.sigma = kwargs.pop('sigma', 0.3 * pq.S / pq.m) self.sigma_top = kwargs.pop('sigma_top', 0.3 * pq.S / pq.m) self.f_type = kwargs.pop('f_type', 'gaussian') self.f_order = kwargs.pop('f_order', (3, 1)) if kwargs: raise TypeError('Invalid keyword arguments:', kwargs.keys()) def get_f_matrix(self): '''Calculate the F-matrix''' f_matrix = np.empty((self.coord_electrode.size, self.coord_electrode.size)) * self.coord_electrode.units for j in range(self.coord_electrode.size): for i in range(self.coord_electrode.size): f_matrix[j, i] = ((np.sqrt((self.coord_electrode[j] - self.coord_electrode[i])**2 + (self.diam[j] / 2)**2) - abs(self.coord_electrode[j] - self.coord_electrode[i])) + (self.sigma - self.sigma_top) / (self.sigma + self.sigma_top) * (np.sqrt((self.coord_electrode[j] + self.coord_electrode[i])**2 + (self.diam[j] / 2)**2)- abs(self.coord_electrode[j] + self.coord_electrode[i]))) f_matrix /= (2 * self.sigma) return f_matrix class StepiCSD(CSD): '''step-iCSD method''' def __init__(self, lfp, coord_electrode, **kwargs): ''' Initializing step-iCSD method class object Parameters ---------- lfp : np.ndarray * quantity.Quantity LFP signal of shape (# channels, # time steps) in units of V coord_electrode : np.ndarray * quantity.Quantity depth of evenly spaced electrode contact points of shape (# contacts, ) in units of m diam : float or np.ndarray * quantity.Quantity diameter(s) of the assumed circular planar current sources centered at each contact Defaults to 500E-6 meters h : float or np.ndarray * quantity.Quantity assumed thickness of the source cylinders at all or each contact Defaults to np.ones(15) * 100E-6 * pq.m sigma : float * quantity.Quantity conductivity of tissue in units of S/m or 1/(ohm*m) Defaults to 0.3 S / m sigma_top : float * quantity.Quantity conductivity on top of tissue in units of S/m or 1/(ohm*m) Defaults to 0.3 S / m tol : float tolerance of numerical integration Defaults 1e-6 f_type : str type of spatial filter, must be a scipy.signal filter design method Defaults to 'gaussian' f_order : list settings for spatial filter, arg passed to filter design function Defaults to (3,1) for the gaussian ''' self.parameters(**kwargs) CSD.__init__(self, lfp, self.f_type, self.f_order) try: # Should the class not take care of this? assert(self.diam.units == coord_electrode.units) except AssertionError as ae: print('units of coord_electrode ({}) and diam ({}) differ' .format(coord_electrode.units, self.diam.units)) raise ae try: assert(np.all(np.diff(coord_electrode) > 0)) except AssertionError as ae: print('values of coord_electrode not continously increasing') raise ae try: assert(self.diam.size == 1 or self.diam.size == coord_electrode.size) if self.diam.size == coord_electrode.size: assert(np.all(self.diam > 0 * self.diam.units)) else: assert(self.diam > 0 * self.diam.units) except AssertionError as ae: print('diam must be positive scalar or of same shape \ as coord_electrode') raise ae if self.diam.size == 1: self.diam = np.ones(coord_electrode.size) * self.diam try: assert(self.h.size == 1 or self.h.size == coord_electrode.size) if self.h.size == coord_electrode.size: assert(np.all(self.h > 0 * self.h.units)) except AssertionError as ae: print('h must be scalar or of same shape as coord_electrode') raise ae if self.h.size == 1: self.h = np.ones(coord_electrode.size) * self.h self.name = 'step-iCSD method' self.coord_electrode = coord_electrode # compute forward-solution matrix self.f_matrix = self.get_f_matrix() def parameters(self, **kwargs): '''Defining the default values of the method passed as kwargs Parameters ---------- **kwargs Same as those passed to initialize the Class ''' self.diam = kwargs.pop('diam', 500E-6 * pq.m) self.h = kwargs.pop('h', np.ones(23) * 100E-6 * pq.m) self.sigma = kwargs.pop('sigma', 0.3 * pq.S / pq.m) self.sigma_top = kwargs.pop('sigma_top', 0.3 * pq.S / pq.m) self.tol = kwargs.pop('tol', 1e-6) self.f_type = kwargs.pop('f_type', 'gaussian') self.f_order = kwargs.pop('f_order', (3, 1)) if kwargs: raise TypeError('Invalid keyword arguments:', kwargs.keys()) def get_f_matrix(self): '''Calculate F-matrix for step iCSD method''' el_len = self.coord_electrode.size f_matrix = np.zeros((el_len, el_len)) for j in range(el_len): for i in range(el_len): lower_int = self.coord_electrode[i] - self.h[j] / 2 if lower_int < 0: lower_int = self.h[j].units upper_int = self.coord_electrode[i] + self.h[j] / 2 # components of f_matrix object f_cyl0 = si.quad(self._f_cylinder, a=lower_int, b=upper_int, args=(float(self.coord_electrode[j]), float(self.diam[j]), float(self.sigma)), epsabs=self.tol)[0] f_cyl1 = si.quad(self._f_cylinder, a=lower_int, b=upper_int, args=(-float(self.coord_electrode[j]), float(self.diam[j]), float(self.sigma)), epsabs=self.tol)[0] # method of images coefficient mom = (self.sigma - self.sigma_top) / (self.sigma + self.sigma_top) f_matrix[j, i] = f_cyl0 + mom * f_cyl1 # assume si.quad trash the units return f_matrix * self.h.units**2 / self.sigma.units def _f_cylinder(self, zeta, z_val, diam, sigma): '''function used by class method''' f_cyl = 1. / (2. * sigma) * \ (np.sqrt((diam / 2)**2 + ((z_val - zeta))**2) - abs(z_val - zeta)) return f_cyl class SplineiCSD(CSD): '''spline iCSD method''' def __init__(self, lfp, coord_electrode, **kwargs): ''' Initializing spline-iCSD method class object Parameters ---------- lfp : np.ndarray * quantity.Quantity LFP signal of shape (# channels, # time steps) in units of V coord_electrode : np.ndarray * quantity.Quantity depth of evenly spaced electrode contact points of shape (# contacts, ) in units of m diam : float * quantity.Quantity diamater of the assumed circular planar current sources centered at each contact Defaults to 500E-6 meters sigma : float * quantity.Quantity conductivity of tissue in units of S/m or 1/(ohm*m) Defaults to 0.3 S / m sigma_top : float * quantity.Quantity conductivity on top of tissue in units of S/m or 1/(ohm*m) Defaults to 0.3 S / m tol : float tolerance of numerical integration Defaults 1e-6 f_type : str type of spatial filter, must be a scipy.signal filter design method Defaults to 'gaussian' f_order : list settings for spatial filter, arg passed to filter design function Defaults to (3,1) for the gaussian num_steps : int number of data points for the spatially upsampled LFP/CSD data Defaults to 200 ''' self.parameters(**kwargs) CSD.__init__(self, lfp, self.f_type, self.f_order) try: # Should the class not take care of this?! assert(self.diam.units == coord_electrode.units) except AssertionError as ae: print('units of coord_electrode ({}) and diam ({}) differ' .format(coord_electrode.units, self.diam.units)) raise try: assert(np.all(np.diff(coord_electrode) > 0)) except AssertionError as ae: print('values of coord_electrode not continously increasing') raise ae try: assert(self.diam.size == 1 or self.diam.size == coord_electrode.size) if self.diam.size == coord_electrode.size: assert(np.all(self.diam > 0 * self.diam.units)) except AssertionError as ae: print('diam must be scalar or of same shape as coord_electrode') raise ae if self.diam.size == 1: self.diam = np.ones(coord_electrode.size) * self.diam self.name = 'spline-iCSD method' self.coord_electrode = coord_electrode # compute stuff self.f_matrix = self.get_f_matrix() def parameters(self, **kwargs): '''Defining the default values of the method passed as kwargs Parameters ---------- **kwargs Same as those passed to initialize the Class ''' self.diam = kwargs.pop('diam', 500E-6 * pq.m) self.sigma = kwargs.pop('sigma', 0.3 * pq.S / pq.m) self.sigma_top = kwargs.pop('sigma_top', 0.3 * pq.S / pq.m) self.tol = kwargs.pop('tol', 1e-6) self.num_steps = kwargs.pop('num_steps', 200) self.f_type = kwargs.pop('f_type', 'gaussian') self.f_order = kwargs.pop('f_order', (3, 1)) if kwargs: raise TypeError('Invalid keyword arguments:', kwargs.keys()) def get_f_matrix(self): '''Calculate the F-matrix for cubic spline iCSD method''' el_len = self.coord_electrode.size z_js = np.zeros(el_len + 1) z_js[:-1] = np.array(self.coord_electrode) z_js[-1] = z_js[-2] + float(np.diff(self.coord_electrode).mean()) # Define integration matrixes f_mat0 = np.zeros((el_len, el_len + 1)) f_mat1 = np.zeros((el_len, el_len + 1)) f_mat2 = np.zeros((el_len, el_len + 1)) f_mat3 = np.zeros((el_len, el_len + 1)) # Calc. elements for j in range(el_len): for i in range(el_len): f_mat0[j, i] = si.quad(self._f_mat0, a=z_js[i], b=z_js[i + 1], args=(z_js[j + 1], float(self.sigma), float(self.diam[j])), epsabs=self.tol)[0] f_mat1[j, i] = si.quad(self._f_mat1, a=z_js[i], b=z_js[i + 1], args=(z_js[j + 1], z_js[i], float(self.sigma), float(self.diam[j])), epsabs=self.tol)[0] f_mat2[j, i] = si.quad(self._f_mat2, a=z_js[i], b=z_js[i + 1], args=(z_js[j + 1], z_js[i], float(self.sigma), float(self.diam[j])), epsabs=self.tol)[0] f_mat3[j, i] = si.quad(self._f_mat3, a=z_js[i], b=z_js[i + 1], args=(z_js[j + 1], z_js[i], float(self.sigma), float(self.diam[j])), epsabs=self.tol)[0] # image technique if conductivity not constant: if self.sigma != self.sigma_top: f_mat0[j, i] = f_mat0[j, i] + (self.sigma-self.sigma_top) / \ (self.sigma + self.sigma_top) * \ si.quad(self._f_mat0, a=z_js[i], b=z_js[i+1], \ args=(-z_js[j+1], float(self.sigma), float(self.diam[j])), \ epsabs=self.tol)[0] f_mat1[j, i] = f_mat1[j, i] + (self.sigma-self.sigma_top) / \ (self.sigma + self.sigma_top) * \ si.quad(self._f_mat1, a=z_js[i], b=z_js[i+1], \ args=(-z_js[j+1], z_js[i], float(self.sigma), float(self.diam[j])), epsabs=self.tol)[0] f_mat2[j, i] = f_mat2[j, i] + (self.sigma-self.sigma_top) / \ (self.sigma + self.sigma_top) * \ si.quad(self._f_mat2, a=z_js[i], b=z_js[i+1], \ args=(-z_js[j+1], z_js[i], float(self.sigma), float(self.diam[j])), epsabs=self.tol)[0] f_mat3[j, i] = f_mat3[j, i] + (self.sigma-self.sigma_top) / \ (self.sigma + self.sigma_top) * \ si.quad(self._f_mat3, a=z_js[i], b=z_js[i+1], \ args=(-z_js[j+1], z_js[i], float(self.sigma), float(self.diam[j])), epsabs=self.tol)[0] e_mat0, e_mat1, e_mat2, e_mat3 = self._calc_e_matrices() # Calculate the F-matrix f_matrix = np.eye(el_len + 2) f_matrix[1:-1, :] = np.dot(f_mat0, e_mat0) + \ np.dot(f_mat1, e_mat1) + \ np.dot(f_mat2, e_mat2) + \ np.dot(f_mat3, e_mat3) return f_matrix * self.coord_electrode.units**2 / self.sigma.units def get_csd(self): ''' Calculate the iCSD using the spline iCSD method Returns ------- csd : np.ndarray * quantity.Quantity Array with csd estimate ''' e_mat = self._calc_e_matrices() el_len = self.coord_electrode.size # padding the lfp with zeros on top/bottom if self.lfp.ndim == 1: cs_lfp = np.r_[[0], np.asarray(self.lfp), [0]].reshape(1, -1).T csd = np.zeros(self.num_steps) else: cs_lfp = np.vstack((np.zeros(self.lfp.shape[1]), np.asarray(self.lfp), np.zeros(self.lfp.shape[1]))) csd = np.zeros((self.num_steps, self.lfp.shape[1])) cs_lfp *= self.lfp.units # CSD coefficients csd_coeff = np.linalg.solve(self.f_matrix, cs_lfp) # The cubic spline polynomial coefficients a_mat0 = np.dot(e_mat[0], csd_coeff) a_mat1 = np.dot(e_mat[1], csd_coeff) a_mat2 = np.dot(e_mat[2], csd_coeff) a_mat3 = np.dot(e_mat[3], csd_coeff) # Extend electrode coordinates in both end by min contact interdistance h = np.diff(self.coord_electrode).min() z_js = np.zeros(el_len + 2) z_js[0] = self.coord_electrode[0] - h z_js[1: -1] = self.coord_electrode z_js[-1] = self.coord_electrode[-1] + h # create high res spatial grid out_zs = np.linspace(z_js[1], z_js[-2], self.num_steps) # Calculate iCSD estimate on grid from polynomial coefficients. i = 0 for j in range(self.num_steps): if out_zs[j] >= z_js[i + 1]: i += 1 csd[j, ] = a_mat0[i, :] + a_mat1[i, :] * \ (out_zs[j] - z_js[i]) + \ a_mat2[i, :] * (out_zs[j] - z_js[i])**2 + \ a_mat3[i, :] * (out_zs[j] - z_js[i])**3 csd_unit = (self.f_matrix.units**-1 * self.lfp.units).simplified return csd * csd_unit def _f_mat0(self, zeta, z_val, sigma, diam): '''0'th order potential function''' return 1. / (2. * sigma) * \ (np.sqrt((diam / 2)**2 + ((z_val - zeta))**2) - abs(z_val - zeta)) def _f_mat1(self, zeta, z_val, zi_val, sigma, diam): '''1'th order potential function''' return (zeta - zi_val) * self._f_mat0(zeta, z_val, sigma, diam) def _f_mat2(self, zeta, z_val, zi_val, sigma, diam): '''2'nd order potential function''' return (zeta - zi_val)**2 * self._f_mat0(zeta, z_val, sigma, diam) def _f_mat3(self, zeta, z_val, zi_val, sigma, diam): '''3'rd order potential function''' return (zeta - zi_val)**3 * self._f_mat0(zeta, z_val, sigma, diam) def _calc_k_matrix(self): '''Calculate the K-matrix used by to calculate E-matrices''' el_len = self.coord_electrode.size h = float(np.diff(self.coord_electrode).min()) c_jm1 = np.eye(el_len + 2, k=0) / h c_jm1[0, 0] = 0 c_j0 = np.eye(el_len + 2) / h c_j0[-1, -1] = 0 c_jall = c_j0 c_jall[0, 0] = 1 c_jall[-1, -1] = 1 tjp1 = np.eye(el_len + 2, k=1) tjm1 = np.eye(el_len + 2, k=-1) tj0 = np.eye(el_len + 2) tj0[0, 0] = 0 tj0[-1, -1] = 0 # Defining K-matrix used to calculate e_mat1-3 return np.dot(np.linalg.inv(np.dot(c_jm1, tjm1) + 2 * np.dot(c_jm1, tj0) + 2 * c_jall + np.dot(c_j0, tjp1)), 3 * (np.dot(np.dot(c_jm1, c_jm1), tj0) - np.dot(np.dot(c_jm1, c_jm1), tjm1) + np.dot(np.dot(c_j0, c_j0), tjp1) - np.dot(np.dot(c_j0, c_j0), tj0))) def _calc_e_matrices(self): '''Calculate the E-matrices used by cubic spline iCSD method''' el_len = self.coord_electrode.size # expanding electrode grid h = float(np.diff(self.coord_electrode).min()) # Define transformation matrices c_mat3 = np.eye(el_len + 1) / h # Get K-matrix k_matrix = self._calc_k_matrix() # Define matrixes for C to A transformation: tja = np.eye(el_len + 2)[:-1, ] tjp1a = np.eye(el_len + 2, k=1)[:-1, ] # Define spline coefficients e_mat0 = tja e_mat1 = np.dot(tja, k_matrix) e_mat2 = 3 * np.dot(c_mat3**2, (tjp1a - tja)) - \ np.dot(np.dot(c_mat3, (tjp1a + 2 * tja)), k_matrix) e_mat3 = 2 * np.dot(c_mat3**3, (tja - tjp1a)) + \ np.dot(np.dot(c_mat3**2, (tjp1a + tja)), k_matrix) return e_mat0, e_mat1, e_mat2, e_mat3 if __name__ == '__main__': from scipy.io import loadmat import matplotlib.pyplot as plt #loading test data test_data = loadmat('test_data.mat') #prepare lfp data for use, by changing the units to SI and append quantities, #along with electrode geometry, conductivities and assumed source geometry lfp_data = test_data['pot1'] * 1E-6 * pq.V # [uV] -> [V] z_data = np.linspace(100E-6, 2300E-6, 23) * pq.m # [m] diam = 500E-6 * pq.m # [m] h = 100E-6 * pq.m # [m] sigma = 0.3 * pq.S / pq.m # [S/m] or [1/(ohm*m)] sigma_top = 0.3 * pq.S / pq.m # [S/m] or [1/(ohm*m)] # Input dictionaries for each method delta_input = { 'lfp' : lfp_data, 'coord_electrode' : z_data, 'diam' : diam, # source diameter 'sigma' : sigma, # extracellular conductivity 'sigma_top' : sigma, # conductivity on top of cortex 'f_type' : 'gaussian', # gaussian filter 'f_order' : (3, 1), # 3-point filter, sigma = 1. } step_input = { 'lfp' : lfp_data, 'coord_electrode' : z_data, 'diam' : diam, 'h' : h, # source thickness 'sigma' : sigma, 'sigma_top' : sigma, 'tol' : 1E-12, # Tolerance in numerical integration 'f_type' : 'gaussian', 'f_order' : (3, 1), } spline_input = { 'lfp' : lfp_data, 'coord_electrode' : z_data, 'diam' : diam, 'sigma' : sigma, 'sigma_top' : sigma, 'num_steps' : 201, # Spatial CSD upsampling to N steps 'tol' : 1E-12, 'f_type' : 'gaussian', 'f_order' : (20, 5), } std_input = { 'lfp' : lfp_data, 'coord_electrode' : z_data, 'sigma' : sigma, 'f_type' : 'gaussian', 'f_order' : (3, 1), } #Create the different CSD-method class instances. We use the class methods #get_csd() and filter_csd() below to get the raw and spatially filtered #versions of the current-source density estimates. csd_dict = dict( delta_icsd = DeltaiCSD(**delta_input), step_icsd = StepiCSD(**step_input), spline_icsd = SplineiCSD(**spline_input), std_csd = StandardCSD(**std_input), ) #plot for method, csd_obj in list(csd_dict.items()): fig, axes = plt.subplots(3,1, figsize=(8,8)) #plot LFP signal ax = axes[0] im = ax.imshow(np.array(lfp_data), origin='upper', vmin=-abs(lfp_data).max(), \ vmax=abs(lfp_data).max(), cmap='jet_r', interpolation='nearest') ax.axis(ax.axis('tight')) cb = plt.colorbar(im, ax=ax) cb.set_label('LFP (%s)' % lfp_data.dimensionality.string) ax.set_xticklabels([]) ax.set_title('LFP') ax.set_ylabel('ch #') #plot raw csd estimate csd = csd_obj.get_csd() ax = axes[1] im = ax.imshow(np.array(csd), origin='upper', vmin=-abs(csd).max(), \ vmax=abs(csd).max(), cmap='jet_r', interpolation='nearest') ax.axis(ax.axis('tight')) ax.set_title(csd_obj.name) cb = plt.colorbar(im, ax=ax) cb.set_label('CSD (%s)' % csd.dimensionality.string) ax.set_xticklabels([]) ax.set_ylabel('ch #') #plot spatially filtered csd estimate ax = axes[2] csd = csd_obj.filter_csd(csd) im = ax.imshow(np.array(csd), origin='upper', vmin=-abs(csd).max(), \ vmax=abs(csd).max(), cmap='jet_r', interpolation='nearest') ax.axis(ax.axis('tight')) ax.set_title(csd_obj.name + ', filtered') cb = plt.colorbar(im, ax=ax) cb.set_label('CSD (%s)' % csd.dimensionality.string) ax.set_ylabel('ch #') ax.set_xlabel('timestep') plt.show()
bsd-3-clause
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/doc/make.py
1
7453
#!/usr/bin/env python from __future__ import print_function import fileinput import glob import os import shutil import sys ### Begin compatibility block for pre-v2.6: ### # # ignore_patterns and copytree funtions are copies of what is included # in shutil.copytree of python v2.6 and later. # ### When compatibility is no-longer needed, this block ### can be replaced with: ### ### from shutil import ignore_patterns, copytree ### ### or the "shutil." qualifier can be prepended to the function ### names where they are used. try: WindowsError except NameError: WindowsError = None def ignore_patterns(*patterns): """Function that can be used as copytree() ignore parameter. Patterns is a sequence of glob-style patterns that are used to exclude files""" import fnmatch def _ignore_patterns(path, names): ignored_names = [] for pattern in patterns: ignored_names.extend(fnmatch.filter(names, pattern)) return set(ignored_names) return _ignore_patterns def copytree(src, dst, symlinks=False, ignore=None): """Recursively copy a directory tree using copy2(). The destination directory must not already exist. If exception(s) occur, an Error is raised with a list of reasons. If the optional symlinks flag is true, symbolic links in the source tree result in symbolic links in the destination tree; if it is false, the contents of the files pointed to by symbolic links are copied. The optional ignore argument is a callable. If given, it is called with the `src` parameter, which is the directory being visited by copytree(), and `names` which is the list of `src` contents, as returned by os.listdir(): callable(src, names) -> ignored_names Since copytree() is called recursively, the callable will be called once for each directory that is copied. It returns a list of names relative to the `src` directory that should not be copied. XXX Consider this example code rather than the ultimate tool. """ from shutil import copy2, Error, copystat names = os.listdir(src) if ignore is not None: ignored_names = ignore(src, names) else: ignored_names = set() os.makedirs(dst) errors = [] for name in names: if name in ignored_names: continue srcname = os.path.join(src, name) dstname = os.path.join(dst, name) try: if symlinks and os.path.islink(srcname): linkto = os.readlink(srcname) os.symlink(linkto, dstname) elif os.path.isdir(srcname): copytree(srcname, dstname, symlinks, ignore) else: # Will raise a SpecialFileError for unsupported file types copy2(srcname, dstname) # catch the Error from the recursive copytree so that we can # continue with other files except Error, err: errors.extend(err.args[0]) except EnvironmentError, why: errors.append((srcname, dstname, str(why))) try: copystat(src, dst) except OSError, why: if WindowsError is not None and isinstance(why, WindowsError): # Copying file access times may fail on Windows pass else: errors.extend((src, dst, str(why))) if errors: raise Error, errors ### End compatibility block for pre-v2.6 ### def copy_if_out_of_date(original, derived): if (not os.path.exists(derived) or os.stat(derived).st_mtime < os.stat(original).st_mtime): shutil.copyfile(original, derived) def check_build(): build_dirs = ['build', 'build/doctrees', 'build/html', 'build/latex', 'build/texinfo', '_static', '_templates'] for d in build_dirs: try: os.mkdir(d) except OSError: pass def doctest(): os.system('sphinx-build -b doctest -d build/doctrees . build/doctest') def linkcheck(): os.system('sphinx-build -b linkcheck -d build/doctrees . build/linkcheck') def html(): check_build() copy_if_out_of_date('../lib/matplotlib/mpl-data/matplotlibrc', '_static/matplotlibrc') if small_docs: options = "-D plot_formats=\"[('png', 80)]\"" else: options = '' if os.system('sphinx-build %s -b html -d build/doctrees . build/html' % options): raise SystemExit("Building HTML failed.") figures_dest_path = 'build/html/pyplots' if os.path.exists(figures_dest_path): shutil.rmtree(figures_dest_path) copytree( 'pyplots', figures_dest_path, ignore=ignore_patterns("*.pyc")) # Clean out PDF files from the _images directory for filename in glob.glob('build/html/_images/*.pdf'): os.remove(filename) shutil.copy('../CHANGELOG', 'build/html/_static/CHANGELOG') def latex(): check_build() #figs() if sys.platform != 'win32': # LaTeX format. if os.system('sphinx-build -b latex -d build/doctrees . build/latex'): raise SystemExit("Building LaTeX failed.") # Produce pdf. os.chdir('build/latex') # Call the makefile produced by sphinx... if os.system('make'): raise SystemExit("Rendering LaTeX failed.") os.chdir('../..') else: print('latex build has not been tested on windows') def texinfo(): check_build() #figs() if sys.platform != 'win32': # Texinfo format. if os.system( 'sphinx-build -b texinfo -d build/doctrees . build/texinfo'): raise SystemExit("Building Texinfo failed.") # Produce info file. os.chdir('build/texinfo') # Call the makefile produced by sphinx... if os.system('make'): raise SystemExit("Rendering Texinfo failed.") os.chdir('../..') else: print('texinfo build has not been tested on windows') def clean(): shutil.rmtree("build", ignore_errors=True) shutil.rmtree("examples", ignore_errors=True) for pattern in ['mpl_examples/api/*.png', 'mpl_examples/pylab_examples/*.png', 'mpl_examples/pylab_examples/*.pdf', 'mpl_examples/units/*.png', 'pyplots/tex_demo.png', '_static/matplotlibrc', '_templates/gallery.html', 'users/installing.rst']: for filename in glob.glob(pattern): if os.path.exists(filename): os.remove(filename) def all(): #figs() html() latex() funcd = { 'html' : html, 'latex' : latex, 'texinfo' : texinfo, 'clean' : clean, 'all' : all, 'doctest' : doctest, 'linkcheck': linkcheck, } small_docs = False # Change directory to the one containing this file current_dir = os.getcwd() os.chdir(os.path.dirname(os.path.join(current_dir, __file__))) copy_if_out_of_date('../INSTALL', 'users/installing.rst') if len(sys.argv)>1: if '--small' in sys.argv[1:]: small_docs = True sys.argv.remove('--small') for arg in sys.argv[1:]: func = funcd.get(arg) if func is None: raise SystemExit('Do not know how to handle %s; valid args are %s'%( arg, funcd.keys())) func() else: small_docs = False all() os.chdir(current_dir)
mit
jasonleaster/Machine_Learning
SAMME/tester.py
1
1351
""" Programmer : EOF Date : 2015.11.22 File : tester.py File Description: This file is used to test the adaboost which is a classical automatic classifier. """ import numpy import matplotlib.pyplot as pyplot from samme import SAMME Original_Data = numpy.array([ ['teenager', 'no', 'no', 0.0], ['teenager', 'no', 'no', 1.0], ['teenager', 'yes', 'no', 1.0], ['teenager', 'yes', 'yes', 0.0], ['teenager', 'no', 'no', 0.0], ['senior citizen', 'no', 'no', 0.0], ['senior citizen', 'no', 'no', 1.0], ['senior citizen', 'yes', 'yes', 1.0], ['senior citizen', 'no', 'yes', 2.0], ['senior citizen', 'no', 'yes', 2.0], ['old pepple', 'no', 'yes', 2.0], ['old pepple', 'no', 'yes', 1.0], ['old pepple', 'yes', 'no', 1.0], ['old pepple', 'yes', 'no', 2.0], ['old pepple', 'no', 'no', 0.0], ]).transpose() Tag = numpy.array([ [-1], [-1], [+1], [+1], [-1], [-1], [-1], [+1], [+1], [+1], [+1], [+1], [+1], [+1], [-1], ]).transpose() Tag = Tag.flatten() discrete = [ True for i in range(Original_Data.shape[0])] a = SAMME(Original_Data, Tag, discrete) a.train() print a.prediction(a._Mat)
gpl-2.0
rolando/theusual-kaggle-seeclickfix-ensemble
Bryan/ensembles.py
2
19613
""" Classes and functions for working with base models and ensembles. """ __author__ = 'bgregory' __email__ = '[email protected]' __date__ = '11-23-2013' #Internal modules import utils #Start logger to record all info, warnings, and errors to Logs/logfile.log log = utils.start_logging(__name__) import ml_metrics import data_io import features import train #External modules import numpy as np import pandas as pd from sklearn import (metrics, cross_validation, linear_model, ensemble, tree, preprocessing, svm, neighbors, gaussian_process, naive_bayes, neural_network, pipeline, lda) ######################################################################################## class Model(object): """Base class for all models: stand-alone independent models, base models, and ensemble models. Parameters ---------- model_name: string, required Descriptive name of model for use in logging and output estimator_class: string, required SKLearn estimator class for model fitting and training features: dictionary, required Features of the model. Key is feature name, value is a dictionary with 'train' and 'test' arrays. Ex.- model.features['foo_feature']['train'] will return an array with the values in training set for foo_feature target: string, optional (default = global_target from settings file) Target variable (column name) for this model segment: string, optional (default = none) Segment of data for this model to use estimator_params: dictionary, optional (default=none, which passes to SKLearn defaults for that estimator) Parameters of the estimator class postprocess_scalar: float, optional (default=0) Scalar to apply to all predictions after model predicting, useful for calibrating predictions Attributes ---------- """ def __init__(self, model_name, target, segment, estimator_class, estimator_params, features, postprocess_scalar): self.model_name = model_name self.target = target self.segment = segment self.estimator_class = estimator_class self.estimator_set(estimator_class, estimator_params) self.features_set(features) self.postprocess_scalar = round(np.float32(postprocess_scalar), 4) def estimator_set(self, estimator_class, estimator_params): self.estimator = eval(estimator_class)() for param in estimator_params: #Convert any boolean parameters from string to bool if estimator_params[param] == 'true': estimator_params[param] = True elif estimator_params[param] == 'false': estimator_params[param] = False #Convert any numerical parameters from the required JSON string type elif '.' in estimator_params[param]: try: estimator_params[param] = float(estimator_params[param]) except: pass else: try: estimator_params[param] = int(estimator_params[param]) except: pass setattr(self.estimator, param, estimator_params[param]) def features_set(self, features): """Initialize dictionary of features where keys are the feature names and values are an empty list for storing the training and testing array/matrix""" self.features = dict((feature,['','']) for feature in features) def features_create(self,dfTrn,dfTest): #Vectorize each text, categorical, or boolean feature into a train and test matrix stored in self.features features.vectors(dfTrn, dfTest, self.features) #Transform or scale any numerical features and create feature vector features.numerical(dfTrn, dfTest, self.features) def predict(self,dfTrn,dfTest): #Create feature vectors self.features_create(dfTrn,dfTest) #Make predictions mtxTrn, mtxTest, mtxTrnTarget, mtxTestTarget = train.combine_features(self, dfTrn, dfTest) train.predict(mtxTrn,mtxTrnTarget.ravel(),mtxTest,dfTest,self) #Store predictions in dataframe as class attribute self.dfPredictions = dfTest.ix[:,['id',self.target]] ######################################################################################## class EnsembleAvg (object): """Loads already calculated predictions from individual models in the form of CSV files, then applies average weights to each individual model to create an ensemble model. If predictions are for a cross-validation, then true target values can be loaded and the ensemble can be scored using given weights or using optimally derived weights. Attributes: df_models = List containing each individual model's predictions id = unique ID for each record targets = List containing the target (or targets) for the predictions df_true = Pandas DataFrame containing the true values for the predictions, only required if performing CV """ def __init__(self, targets, id): self.sub_models = [] self.sub_models_segment = [] self.targets = targets self.id = id def load_models_csv(self,filepath, model_no = None): """ Load predictions from an individual sub model into a dataframe stored in the sub_models list, if no model_no is given then load data into next available index. Valid source is a CSV file. """ try: if model_no == None: model_no = len(self.sub_models) self.sub_models.append(data_io.load_flatfile_to_df(filepath, delimiter='')) else: self.sub_models[model_no]=data_io.load_flatfile_to_df(filepath, delimiter='') utils.info('Model loaded into index %s' % str(model_no)) except IndexError: raise Exception('Model number does not exist. Model number given, %s, is out of index range.' % str(model_no)) def load_true_df(self,df): """ Load true target values (ground truth) into a dataframe attribute from an in-memory dataframe object. """ if type(df) != pd.core.frame.DataFrame: raise Exception('Object passed, %s, is not a Dataframe. Object passed is of type %s' % (df, type(df))) elif self.id not in df.columns: raise Exception('Dataframe passed, %s, does not contain unique ID field: %s' % (df, self.id)) elif not all(x in df.columns for x in self.targets): raise Exception('Dataframe passed, %s, does not contain all target variables: %s' % (df, self.targets)) else: self.df_true = df.copy() utils.info('True value for target variables successfully loaded into self.df_true') def load_df_true_segment(self,df): """ For segmented data. Load true target values (ground truth) into a dataframe attribute from an in-memory dataframe object. """ if type(df) != pd.core.frame.DataFrame: raise Exception('Object passed, %s, is not a Dataframe. Object passed is of type %s' % (df, type(df))) elif self.id not in df.columns: raise Exception('Dataframe passed, %s, does not contain unique ID field: %s' % (df, self.id)) elif not all(x in df.columns for x in self.targets): raise Exception('Dataframe passed, %s, does not contain all target variables: %s' % (df, self.targets)) else: self.df_true_segment = df.copy() utils.info('True value for target variables successfully loaded into self.df_true_segment') def sort_dataframes(self,sortcolumn): """ Sort all data frame attributes of class by a given column for ease of comparison. """ try: for i in range(len(self.sub_models)): self.sub_models[i] = self.sub_models[i].sort(sortcolumn) if 'df_true' in dir(self): self.df_true = self.df_true.sort(sortcolumn) if 'df_true_segment' in dir(self): self.df_true_segment = self.df_true_segment.sort(sortcolumn) except KeyError: raise Exception('Sort failed. Column %s not found in all dataframes.' % (sortcolumn)) def transform_targets_log(self): """ Apply natural log transformation to all targets (both predictions and true values) """ for target in self.targets: if 'df_true' in dir(self): self.df_true[target] = np.log(self.df_true[target] + 1) if 'df_true_segment' in dir(self): self.df_true_segment[target] = np.log(self.df_true_segment[target] + 1) for i in range(len(self.sub_models)): self.sub_models[i][target] = np.log(self.sub_models[i][target] + 1) for i in range(len(self.sub_models_segment)): self.sub_models_segment[i][target] = np.log(self.sub_models_segment[i][target] + 1) def transform_targets_exp(self): """ Apply exp transformation (inverse of natural log transformation) to all targets (both predictions and true values) """ for target in self.targets: if 'df_true' in dir(self): self.df_true[target] = np.exp(self.df_true[target])-1 if 'df_true_segment' in dir(self): self.df_true_segment[target] = np.exp(self.df_true_segment[target])-1 if 'df_ensemble' in dir(self): self.df_ensemble[target] = np.exp(self.df_ensemble[target])-1 if 'df_ensemble_segment' in dir(self): self.df_ensemble_segment[target] = np.exp(self.df_ensemble_segment[target])-1 for i in range(len(self.sub_models)): self.sub_models[i][target] = np.exp(self.sub_models[i][target])-1 for i in range(len(self.sub_models_segment)): self.sub_models_segment[i][target] = np.exp(self.sub_models_segment[i][target]) -1 def score_rmsle(self,df,df_true): """ Calculate CV score of predictions in given dataframe using RMSLE metric. Score individually for each target and total for targets. Must have df_true loaded prior to running. """ all_true = [] all_preds = [] target_scores = [] #Transform predictions back to normal space for scoring self.transform_targets_exp() for target in self.targets: all_true.append(df_true[target].tolist()) all_preds.append(df[target].tolist()) target_score = ml_metrics.rmsle(df_true[target], df[target]) target_scores.append(target_score) utils.info('RMSLE score for %s: %f' % (target,target_score)) utils.info('Total RMSLE score: %f' % (ml_metrics.rmsle(all_true, all_preds))) #Transform predictions to log space again for averaging self.transform_targets_log() def create_ensemble(self,sub_model_indexes, weights): """ Create ensemble from the given sub models using average weights. Sub_model_indexes is a list of indexes to use for the sub_models list. Weights is a list of dictionaries with given averages for each target, its ordering must correspond to the order of sub_model_indexes. Ex. - >>> weights = [{'target1':.5,'target2':.5},{'target1':.25,'target2':.75}] """ if len(sub_model_indexes) != len(weights): raise Exception('Ensemble failed. Number of sub models, %d, is not equal to number of weights, %d.') \ % (len(sub_model_indexes), len(weights)) else: #Create new data frame ensemble self.df_ensemble = self.sub_models[0].copy() for target in self.targets: self.df_ensemble[target] = 0 for submodel in sub_model_indexes: for idx in self.df_ensemble.index: self.df_ensemble[target][idx] += self.sub_models[submodel][target] * weights[submodel][target] def create_ensemble_segment(self,sub_model_indexes, weights): """ Create ensemble for a certain segment, from the given sub models using average weights. Sub_model_indexes is a list of indexes to use for the sub_models list. Weights is a list of dictionaries with given averages for each target, its ordering must correspond to the order of sub_model_indexes. Ex. - >>> weights = [{'target1':.5,'target2':.5},{'target1':.25,'target2':.75}] """ if len(sub_model_indexes) != len(weights): raise Exception('Ensemble failed. Number of sub models, %d, is not equal to number of weights, %d.') \ % (len(sub_model_indexes), len(weights)) else: #Create new data frame ensemble self.df_ensemble_segment = self.sub_models_segment[0].copy() for target in self.targets: self.df_ensemble_segment[target] = 0 for submodel in sub_model_indexes: self.df_ensemble_segment[target] += self.sub_models_segment[submodel][target] * weights[submodel][target] def calc_weights(self,sub_model_indexes, step_size): """ Calculate optimal weights to use in averaged ensemble using the given sub-models and given score metric """ for target in self.targets: while diff < 0: score ############################################################################################################### """ #---Ensemble Averaging----# reload(ensembles);ensemble_CV = ensembles.EnsembleAvg(targets=targets,id='id') ensemble_CV.load_models_csv(filepath='Submits/BryanModel-Updated-CV.csv') ensemble_CV.load_models_csv(filepath='Submits/ridge_38_cv.csv') ensemble_CV.load_models_csv(filepath='Submits/weak_geo_cv.csv') #Parse segments ensemble_CV.sub_models_segment.append\ (ensemble_CV.sub_models[0][ensemble_CV.sub_models[0]['Segment'] == 'Richmond'].reset_index()) ensemble_CV.sub_models_segment.append\ (ensemble_CV.sub_models[1][ensemble_CV.sub_models[1]['Segment'] == 'Richmond'].reset_index()) ensemble_CV.sub_models_segment.append\ (ensemble_CV.sub_models[2][ensemble_CV.sub_models[2]['Segment'] == 'Richmond'].reset_index()) dfSegTestCV = dfTestCV.merge(ensemble_CV.sub_models_segment[0].ix[:,['id']],on='id',how='inner') #set targets ensemble_CV.targets=['num_views'] #Transform CV targets back to normal for target in ensemble_CV.targets: dfSegTestCV[target]=np.exp(dfSegTestCV[target])-1 #Load groundtruth values for CV ensemble_CV.load_df_true_segment(dfSegTestCV) #Sort all dataframes by ID for easy comparison ensemble_CV.sort_dataframes('id') #Transform predictions to log space for averaging ensemble_CV.transform_targets_log() #Set weights #Remote_API: weights = [{'num_views':.16,'num_votes':.3,'num_comments':.9},{'num_views':.84,'num_votes':.7,'num_comments':.1}] #Richmond: weights = [{'num_views':.7,'num_votes':.45,'num_comments':.7},{'num_views':.3,'num_votes':.55,'num_comments':.3},{'num_views':.4'}] #Oakland weights = [{'num_views':.2,'num_votes':.1,'num_comments':.7},{'num_views':.8,'num_votes':.9,'num_comments':.3}] weights = [{'num_views':.2,'num_votes':.1,'num_comments':.6},{'num_views':.8,'num_votes':.9,'num_comments':.4}] #Create ensemble average #ensemble_CV.create_ensemble([0,1],weights) ensemble_CV.create_ensemble_segment([0,1,2],weights) #Score the ensemble #ensemble_CV.score_rmsle(ensemble_CV.sub_models_segment[0], df_true=ensemble_CV.df_true_segment) ensemble_CV.score_rmsle(ensemble_CV.df_ensemble_segment, df_true=ensemble_CV.df_true_segment) #---Use regressor to find ideal weights for ensemble---# for target_label in ensemble_CV.targets: clf.fit_intercept=False train = np.hstack((ensemble_CV.sub_models_segment[0].ix[:,[target_label]].as_matrix(), ensemble_CV.sub_models_segment[1].ix[:,[target_label]].as_matrix(), ensemble_CV.sub_models_segment[2].ix[:,[target_label]].as_matrix())) target = ensemble_CV.df_true_segment.ix[:,[target_label]].as_matrix() clf.fit(train,target) try: for i in range(len(ensemble_CV.sub_models_segment)): weights[i][target_label]=clf.coef_[i] except: for i in range(len(ensemble_CV.sub_models_segment)): weights[i][target_label]=clf.coef_[0][i] utils.info(clf.coef_) #-----------Test Ensemble--------# reload(ensembles);ensemble_CV = ensembles.EnsembleAvg(targets=['num_views'],id='id') ensemble_test.load_models_csv(filepath='Submits/BryanModel-Updated.csv') ensemble_test.load_models_csv(filepath='Submits/ridge_38_test.csv') ensemble_test.load_models_csv(filepath='Submits/weak_geo_svr_.75.csv') #Parse segments ensemble_test.sub_models_segment.append\ (ensemble_test.sub_models[0][ensemble_CV.sub_models[0]['Segment'] == 'Richmond'].reset_index()) ensemble_test.sub_models_segment.append\ (ensemble_test.sub_models[1][ensemble_CV.sub_models[1]['Segment'] == 'Richmond'].reset_index()) ensemble_test.sub_models_segment.append\ (ensemble_test.sub_models[2][ensemble_CV.sub_models[2]['Segment'] == 'Richmond'].reset_index()) dfSegTestCV = dfTestCV.merge(ensemble_CV.sub_models_segment[0].ix[:,['id']],on='id',how='inner') #Transform CV targets back to normal for target in ensemble_CV.targets: dfSegTestCV[target]=np.exp(dfSegTestCV[target])-1 #Load groundtruth values for CV ensemble_CV.load_df_true_segment(dfSegTestCV) #Sort all dataframes by ID for easy comparison ensemble_CV.sort_dataframes('id') #Transform predictions to log space for averaging ensemble_CV.transform_targets_log() #Set weights #Remote_API: weights = [{'num_views':.16,'num_votes':.3,'num_comments':.9},{'num_views':.84,'num_votes':.7,'num_comments':.1}] #Richmond: weights = [{'num_views':.7,'num_votes':.45,'num_comments':.7},{'num_views':.3,'num_votes':.55,'num_comments':.3},{'num_views':.4'}] #Oakland weights = [{'num_views':.2,'num_votes':.1,'num_comments':.7},{'num_views':.8,'num_votes':.9,'num_comments':.3}] weights = [{'num_views':.2,'num_votes':.1,'num_comments':.6},{'num_views':.8,'num_votes':.9,'num_comments':.4}] #Create ensemble average #ensemble_CV.create_ensemble([0,1],weights) ensemble_CV.create_ensemble_segment([0,1,2],weights) #Score the ensemble #ensemble_CV.score_rmsle(ensemble_CV.sub_models_segment[0], df_true=ensemble_CV.df_true_segment) ensemble_CV.score_rmsle(ensemble_CV.df_ensemble_segment, df_true=ensemble_CV.df_true_segment) #Clean off outliers #Views dfTrn = dfTrn[dfTrn.num_views_orig < 3] #dfTest = dfTest[dfTest.num_views_orig < 3] """
bsd-3-clause
dandanvidi/effective-capacity
scripts/gauge.py
3
3523
# -*- coding: utf-8 -*- """ Created on Wed Jun 22 13:58:55 2016 @author: dan """ import os, sys import matplotlib from matplotlib import cm from matplotlib import pyplot as plt import numpy as np from matplotlib.patches import Circle, Wedge, Rectangle def degree_range(n): start = np.linspace(0,180,n+1, endpoint=True)[0:-1] end = np.linspace(0,180,n+1, endpoint=True)[1::] mid_points = start + ((end-start)/2.) return np.c_[start, end], mid_points def rot_text(ang): rotation = np.degrees(np.radians(ang) * np.pi / np.pi - np.radians(90)) return rotation def gauge(N=5, labels=None, colors='jet_r', cat=1, top_title='', title='', fname='./meter.png'): """ some sanity checks first """ if not labels: labels = ['']*N if cat > N: raise Exception("\n\nThe category ({}) is greated than the length\nof the labels ({})".format(cat, N)) """ if colors is a string, we assume it's a matplotlib colormap and we discretize in N discrete colors """ if isinstance(colors, str): cmap = cm.get_cmap(colors) cmap = cmap(np.linspace(0,1,N)) colors = cmap[::-1,:].tolist() if isinstance(colors, list): if len(colors) == N: colors = colors[::-1] else: raise Exception("\n\nnumber of colors {} not equal to number of categories{}\n".format(len(colors), N)) """ begins the plotting """ fig, ax = plt.subplots() ang_range, mid_points = degree_range(N) labels = labels[::-1] """ plots the sectors and the arcs """ patches = [] for ang, c in zip(ang_range, colors): # sectors # patches.append(Wedge((0.,0.), .4, *ang, facecolor='w', lw=2)) # arcs patches.append(Wedge((0.,0.), .4, *ang, width=0.10, facecolor=c, lw=1, alpha=1)) [ax.add_patch(p) for p in patches] """ set the labels (e.g. 'LOW','MEDIUM',...) """ for mid, lab in zip(mid_points, labels): ax.text(0.35 * np.cos(np.radians(mid)), 0.35 * np.sin(np.radians(mid)), lab, \ horizontalalignment='center', verticalalignment='center', fontsize=25, \ fontweight='bold', rotation = rot_text(mid)) """ set the bottom banner and the title """ r = Rectangle((-0.45,-0.),0.9,0.001, facecolor='w', lw=2) ax.add_patch(r) # ax.line() ax.text(0, -0.08, title, horizontalalignment='center', \ verticalalignment='center', fontsize=22, fontweight='bold') """ plots the arrow now """ pos = mid_points[np.abs(cat*N - N)] ax.arrow(0, 0, 0.225 * np.cos(np.radians(pos)), 0.225 * np.sin(np.radians(pos)), \ width=0.02, head_width=0.05, head_length=0.1, fc='k', ec='k') # ax.plot([0, 0.015], [0.225* np.cos(np.radians(pos)),0.225 * np.sin(np.radians(pos))], c='g', lw=2) # ax.plot([0, -0.015], [0.225,0], c='k', lw=2) ax.add_patch(Circle((0, 0), radius=0.02, facecolor='k')) ax.add_patch(Circle((0, 0), radius=0.01, facecolor='w', zorder=11)) """ removes frame and ticks, and makes axis equal and tight """ ax.set_frame_on(False) ax.axes.set_xticks([]) ax.axes.set_yticks([]) ax.axis('equal') ax.set_title(top_title, fontsize=25) plt.tight_layout() fig.savefig(fname) if __name__ == '__main__': N = 30 gauge(N=N, colors='viridis', cat=0.68, title=r'', fname='gauge.svg')
mit
ezekielsilverstein/JPL
Sloan_List_Script.py
1
15678
#Numerical Python import numpy as np #Pylab Plotting import pylab import matplotlib.pyplot as plt #INTERNET #Selenium Internet Browsing from selenium import webdriver from selenium.webdriver.common.keys import Keys import os from decimal import * import time import csv #Internet import urllib2 print "Start up complete" #call time upon starting start_time=time.time() #open Atlas #Atlas=webdriver.Firefox() #Atlas.get('http://isc.astro.cornell.edu/~sloan/library/swsatlas/aot1.html') #Import Sloan data Sloan_List=np.genfromtxt('Sloan_List_RA_DEC.txt',delimiter=' ',\ skip_header=1,dtype=[('source',object),('TDT',object),('RA',object),\ ('DEC',object),('classification',object)]) for name in Sloan_List.dtype.names: if name=='source': source=Sloan_List[name] if name=='TDT': TDT=Sloan_List[name] if name=='RA': RA=Sloan_List[name] if name=='DEC': DEC=Sloan_List[name] if name=='classification': classification=Sloan_List[name] #Make each TDT entry 8 digits for i in range(len(TDT)): if len(TDT[i])<8: TDT[i]='0'+TDT[i] #remove spaces at end of source names for i in range(len(source)): if source[i][-1]==' ': source[i]=source[i][:-1] #MAKE DICTIONARIES #create lists for the meanings of the classifications, subsets, and suffixes level1_meanings=['naked star','star associated with dust',\ 'warm dusty object with little or no stellar contribution',\ 'cool dusty object','red spectrum rising to 45um','no continuum',\ 'flawed spectrum'] level2_meanings=['carbon-rich dust emission, dominated by SiC at 11.5um',\ 'carbon-rich proto planetary nebula',\ 'reddened continuum from amorphous carbon',\ 'carbon-rich spectrum showing the 21um feature',\ 'emission lines are the only significatn spectral feature',\ 'featureless (Groups 4 and 5)','miscellaneous',\ 'naked star, no molecular bands (Group 1 only)',\ 'naked star with oxygen-rich molecular bands (Group 1 only)',\ 'naked star with carbon-rich molecular bands (Group 1 only)',\ 'naked star with emission lines (Group 1 only)',\ 'a miscellaneous group of naked stars (Group 1 only)',\ 'planetary nebula, many emission lines',\ 'as PN, but with UIR features',\ 'oxygen-rich dust, 10um silicate absorption',\ 'oxygen-rich dust, self-absorbed silicate emission at 10um',\ 'crystalline silicate emission, especially at longer wavelengths',\ 'oxgyen-rich dust emission at 10-12 um',\ 'broad low-contrast dust feature from alumina',\ 'structured silicate emission',\ 'classic narrow silicate emission',\ 'crystalline silicate emission at 10-11um and to the red',\ 'UIR emission features dominate the spectrum',\ 'UIR emission features dominate the spectrum as only significant spectral feature',\ 'spectrum peaks 5-8um, drops to red, many are WR stars',\ 'silicate/carbon stars',\ 'mixture of carbon-rich and crystalline silicate features',\ 'mixture of UIR and crystalline silicate features',\ 'not applicable'] suffix_meanings=['emission lines','peculiar','UIR features present',\ 'uncertain classification','very uncertain classification'] #create lists of the classifications, subsets, and suffixes classification_subset_names=['level1','level2','suffix'] classification_subsets=[] level1=['1','2','3','4','5','6','7'] level2=['CE','CN','CR','CT','E','F','M','N','NO','NC','NE','NM',\ 'PN','PU','SA','SB','SC','SE','SEa','SEb','SEc','SEC','U','UE','W','C/SE',\ 'C/SC','U/SC','N/A'] suffix=['e','p','u',':','::'] classification_subsets.append(level1) classification_subsets.append(level2) classification_subsets.append(suffix) #create dictionaries for the meanings level1_meanings_dict={} for i in range(len(level1)): level1_meanings_dict[level1[i]]=level1_meanings[i] level2_meanings_dict={} for i in range(len(level2)): level2_meanings_dict[level2[i]]=level2_meanings[i] suffix_meanings_dict={} for i in range(len(suffix)): suffix_meanings_dict[suffix[i]]=suffix_meanings[i] #MAKE MASTER DICTIONARY for classification meanings Sloan_meanings={} Sloan_meanings[classification_subset_names[0]]=level1_meanings_dict Sloan_meanings[classification_subset_names[1]]=level2_meanings_dict Sloan_meanings[classification_subset_names[2]]=suffix_meanings_dict #Rawlist of objects and their classifications Sloan_objects_list=[] for i in range(len(source)): Sloan_objects_list+=[[source[i]]+[TDT[i]]+[classification[i]]+[RA[i]]+[DEC[i]]] Sloan_objects=np.array(Sloan_objects_list) #How to search #for i in range(len(Sloan_objects)): # if Sloan_objects[i][0]=='NGC 1386': # print i #outputs instance where object name is 'NGC 1386' ###### #Create folders #execfile('/Users/esilverstein1992/Desktop/Scripts/JPL/color mag plot/Object Spectra/SLOAN LIST/create_folders.py') #create base folder location # base='/Users/esilverstein1992/Desktop/Scripts/JPL/color mag plot/Object Spectra/SLOAN LIST/' #create Master folder # os.mkdir(base+'MASTER') os.mkdir('MASTER') #enter Master folder # os.chdir(base+'MASTER') os.chdir('MASTER') #create level1 folders # for i in level1: # os.mkdir(base+'MASTER/'+str(i)) for i in level1: os.mkdir(str(i)) #alter names of level2 dictionaries with '/' to create folders for j in range(len(level2)): for k in range(len(level2[j])): if level2[j][k]=='/': level2[j]=level2[j][0:k]+'|'+level2[j][k+1:] #alter names of 2.SE dictionaries so SEc and SEC aren't the same for j in range(len(level2)): if len(level2[j])==3: if level2[j][2].islower(): level2[j]=level2[j][0]+level2[j][1]+'_'+level2[j][2] #enter each level1 folder and create all level2 folders for i in level1: os.chdir(str(i)) for j in level2: os.mkdir(j) os.chdir('..') #remove suffixes from classification list for j in range(len(classification)): while classification[j][-1]=='e' or classification[j][-1]=='p' or \ classification[j][-1]=='u' or classification[j][-1]==':': if classification[j][-1]==':' and classification[j][-2]==':': classification[j]=classification[j][0:-2] elif classification[j][-1]=='e' or classification[j][-1]=='p' or \ classification[j][-1]=='u' or classification[j][-1]==':': classification[j]=classification[j][0:-1] #add underscore to 2.SEa,b,c for j in range(len(classification)): if classification[j][-1].islower()==True: classification[j]=classification[j][0:-1]+'_'+classification[j][-1] #add N|A to the classification if there isn't one #to be able to place into a folder for j in range(len(classification)): if len(classification[j])==1: classification[j]=classification[j]+'.'+'N|A' #change '/' to '|' in the source classifications for j in range(len(classification)): for k in range(len(classification[j])): if classification[j][k]=='/': classification[j]=classification[j][:k]+'|'+classification[j][k+1:] #create folder for each source for i in range(len(classification)): os.mkdir(classification[i][0]+'/'+classification[i][2:]+'/'+source[i]+' '+TDT[i]) print 'Folders Created' #END RESULT:: #1 MASTER folder #7 level 1 folders with the MASTER folder #29 level2 folders within EACH level1 folder #within the level2 folders are folders for each individual source of the 1239 #each of these source folders contains the name and TDT number #many level2 folders won't have ANY source folders within ##### #create list of objects with negative fluxes neg_flux_number=[] neg_flux_source=[] neg_flux_TDT=[] #Open browser to SWS Atlas driver=webdriver.Firefox() driver.get('http://irsa.ipac.caltech.edu/data/SWS/') #wait for page to load time.sleep(3) #Create MASSIVE 'FOR' LOOP for every object in Sloan List for a in range(1239): #create wvlen, flux, error lists as a failsafe wvlen=[] flux=[] flux_error=[] norm_error=[] #if they remain empty at the end, then skip to the next source #Search for the object in SWS Atlas #click on 'Single Object' to input name object_input=driver.find_element_by_name('locstr') #clear the box object_input.clear() #input RA-DEC of object object_input.send_keys(RA[a]) object_input.send_keys(', ') object_input.send_keys(DEC[a]) #limit search size #radnumber=driver.find_element_by_name('radius') #radnumber.clear() #radnumber.send_keys('1') #select 'arcseconds' #radunits=driver.find_element_by_xpath("//select/option[3]").click() #click on 'Submit' object_input.send_keys(Keys.RETURN) #EXAMPLE: driver.find_element_by_xpath("//input[@name='username']") #switch to this window: driver.switch_to_window(str(driver.window_handles[1])) #driver.switch_to_window(str(handle)) #wait for page to load time.sleep(3) #click to open the source table #try to click on the source table #if it can't, wait 20 seconds to load, then try again try: time.sleep(5) element=driver.find_element_by_xpath\ ("html/body/div[2]/form/center/center/table/tbody/tr[2]/td/a") element.click() except: time.sleep(10) element=driver.find_element_by_xpath\ ("html/body/div[2]/form/center/center/table/tbody/tr[2]/td/a") element.click() #wait for page to load time.sleep(1) #switch to this new window driver.switch_to_window(str(driver.window_handles[2])) #select the desired IPAC_FORMAT_ASCII_Data Set #find the desired row number based on name,TDT and 'filenum' match=False i=2 while match==False: xpathfilenum='''//tr['''+str(i)+''']/td[3]''' objectfilenum=driver.find_element_by_xpath(xpathfilenum) if str(objectfilenum.text)!=TDT[a]: i+=1 elif str(objectfilenum.text)==TDT[a]: match=True rownumber=i #create xpath codes and define the desired link's row, name, filenum and hyperlink table=driver.find_element_by_xpath("//tbody") xpathrow='''//tbody/tr['''+str(rownumber)+''']''' objectrow=driver.find_element_by_xpath(xpathrow) xpathname='''//tbody/tr['''+str(rownumber)+''']/td[2]''' objectname=driver.find_element_by_xpath(xpathname) xpathnumber='''//tbody/tr['''+str(rownumber)+''']/td[3]''' objectnumber=driver.find_element_by_xpath(xpathnumber) xpathhyperlink='''//tbody/tr['''+str(rownumber)+''']/td[6]/a''' objecthyperlink=driver.find_element_by_xpath(xpathhyperlink) #click on the link objecthyperlink.click() #switch to new window with the data driver.switch_to_window(str(driver.window_handles[3])) #wait to load time.sleep(1) #make sure this is a data table if driver.title=='': pass #if driver.title!='': # break ###### #import directly into python url=str(driver.current_url) downloaded_data=urllib2.urlopen(url) csv_data=csv.reader(downloaded_data) #create raw datatable datatable=[] for row in csv_data: datatable.append(''.join(row)) #delete the 3 rows of headers del datatable[0] del datatable[0] del datatable[0] #split each row into individual values for i in range(len(datatable)): datatable[i]=datatable[i].split(' ') j=0 while j<len(datatable[i]): if datatable[i][j]=='': del datatable[i][j] else: j=j+1 wvlen=[] flux=[] flux_error=[] norm_error=[] #append to wavelength, flux, flux_error, and norm_error lists for i in range(len(datatable)): wvlen.append(datatable[i][0]) flux.append(datatable[i][1]) flux_error.append(datatable[i][2]) norm_error.append(datatable[i][3]) #if an error occurred and wvlen, flux, errors, haven't been filled, #continue to next source if wvlen==[]: continue #change strings into numeric values for i in range(len(wvlen)): wvlen[i]=float(wvlen[i]) flux[i]=float(flux[i]) flux_error[i]=float(flux_error[i]) norm_error[i]=float(norm_error[i]) #change lists into arrays wvlen=np.array(wvlen) flux=np.array(flux) flux_error=np.array(flux_error) norm_error=np.array(norm_error) #Create unsmoothed pylab.plot(wvlen,flux) pylab.xlabel('wavelength (microns)') pylab.ylabel('flux (Janksys)') pylab.title(source[a]+' '+TDT[a]+' '+classification[a]+' '+'Wavelength vs. Flux 2.36-45um undegraded') plt.savefig(\ classification[a][0]+'/'+classification[a][2:]+'/'+source[a]+' '+TDT[a]+'/'\ +source[a]+' '+TDT[a]+' 2-45 undegraded.pdf') plt.close() #Create 2-5 unsmoothed shortlist=np.where(wvlen<5)[0] pylab.plot(wvlen[shortlist],flux[shortlist]) pylab.xlabel('wavelength (microns)') pylab.ylabel('flux (Janksys)') pylab.title(source[a]+' '+TDT[a]+' '+classification[a]+' '+'Wavelength vs. Flux 2.36-5um undegraded') plt.savefig(\ classification[a][0]+'/'+classification[a][2:]+'/'+source[a]+' '+TDT[a]+'/'\ +source[a]+' '+TDT[a]+' 2-5 undegraded.pdf') plt.close() #Create 2-5 smoothed #Degrade flux to resolution limit res=150. #Width of wavelength prior, OLD old_width=np.zeros(len(wvlen[shortlist])) for i in range(len(wvlen[shortlist])): if i==0: pass elif i==(len(wvlen[shortlist])-1): pass if i!=0 and i!=(len(wvlen[shortlist])-1): old_width[i]=((wvlen[shortlist][i]-wvlen[shortlist][i-1])/2)+\ ((wvlen[shortlist][i+1]-wvlen[shortlist][i])/2.) old_width[0]=old_width[1] old_width[-1]=old_width[-2] #Determine the width at each wavelength width=np.array([]) for i in wvlen[shortlist]: width=np.append(width,i/res) #Sum fluxes sum_flux=np.array([]) for i in wvlen[shortlist]: item=np.where(wvlen[shortlist]==i)[0][0] band_size=\ np.where(\ (wvlen[shortlist]>(i-(width[item])/2.))*(wvlen[shortlist]<(i+(width[item])/2.)))[0] fluxes=flux[shortlist][band_size] band_sum_fluxes=np.sum(fluxes) sum_flux=np.append(sum_flux,band_sum_fluxes) #find out how many datapoints are going into each wavelength width bin_number=np.array([]) for i in range(len(shortlist)): length=len(np.where((wvlen>(wvlen[shortlist][i]-width[i]/2))*(wvlen<(wvlen[shortlist][i]+width[i]/2)))[0]) bin_number=np.append(bin_number,length) new_flux=sum_flux/bin_number pylab.plot(wvlen[shortlist],new_flux) pylab.xlabel('wavelength (microns)') pylab.ylabel('Flux (Janskys)') pylab.title(source[a]+' '+TDT[a]+' '+classification[a]+' '+'Wavelength vs. Flux 2.36-5um degraded') plt.savefig(\ classification[a][0]+'/'+classification[a][2:]+'/'+source[a]+' '+TDT[a]+'/'\ +source[a]+' '+TDT[a]+' 2-5 degraded.pdf') plt.close() #create 2-5 both pylab.plot(wvlen[shortlist],new_flux,label='degraded') pylab.plot(wvlen[shortlist],flux[shortlist],label='undegraded') pylab.xlabel('wavelength (microns)') pylab.ylabel('Flux (Janskys)') pylab.title(source[a]+' '+TDT[a]+' '+classification[a]+' '+'Wavelength vs. Flux 2.36-5um') plt.legend(loc=4) plt.savefig(\ classification[a][0]+'/'+classification[a][2:]+'/'+source[a]+' '+TDT[a]+'/'\ +source[a]+' '+TDT[a]+' 2-5.pdf') plt.close() #swtich to and close data table window driver.switch_to_window(str(driver.window_handles[3])) driver.close() #switch to window #2 and close driver.switch_to_window(str(driver.window_handles[2])) driver.close() #switch to window #1 and close driver.switch_to_window(str(driver.window_handles[1])) driver.close() #switch back to SWS Atlas page driver.switch_to_window(str(driver.window_handles[0])) #print progress print a #append to negative flux list if >5% of fluxes are negative neg_instances=np.array([]) for i in range(len(flux)): if flux[i]<0: neg_instances=np.append(neg_instances,i) if len(neg_instances)>=616: neg_flux_number.append(str(a)) neg_flux_source.append(source[a]) neg_flux_TDT.append(TDT[a]) #close original window and quit driver driver.quit() #call time upon finishing end_time=time.time() #total run time in seconds, minutes, and hours run_time_s=end_time-start_time run_time_m=run_time_s/60. run_time_h=run_time_m/60. #create composite time run_time_h_comp=int(np.floor(run_time_h)) run_time_m_comp=int(np.floor(run_time_m-run_time_h_comp*60)) run_time_s_comp=int(np.floor(run_time_s-run_time_h_comp*60*60-run_time_m_comp*60)) run_time=str(run_time_h_comp)+':'+str(run_time_m_comp)+':'+str(run_time_s_comp) print run_time
mit
rhuelga/sms-tools
lectures/08-Sound-transformations/plots-code/stftFiltering-orchestra.py
2
1670
import numpy as np import time, os, sys import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/transformations/')) import utilFunctions as UF import stftTransformations as STFTT import stft as STFT (fs, x) = UF.wavread('../../../sounds/orchestra.wav') w = np.hamming(2048) N = 2048 H = 512 # design a band stop filter using a hanning window startBin = int(N*500.0/fs) nBins = int(N*2000.0/fs) bandpass = (np.hanning(nBins) * 65.0) - 60 filt = np.zeros(N//2+1)-60 filt[startBin:startBin+nBins] = bandpass y = STFTT.stftFiltering(x, fs, w, N, H, filt) mX,pX = STFT.stftAnal(x, w, N, H) mY,pY = STFT.stftAnal(y, w, N, H) plt.figure(1, figsize=(12, 9)) plt.subplot(311) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(mX[0,:].size)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX)) plt.title('mX (orchestra.wav)') plt.autoscale(tight=True) plt.subplot(312) plt.plot(fs*np.arange(mX[0,:].size)/float(N), filt, 'k', lw=1.3) plt.axis([0, fs/2, -60, 7]) plt.title('filter shape') plt.subplot(313) numFrames = int(mY[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(mY[0,:].size)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mY)) plt.title('mY') plt.autoscale(tight=True) plt.tight_layout() UF.wavwrite(y, fs, 'orchestra-stft-filtering.wav') plt.savefig('stftFiltering-orchestra.png') plt.show()
agpl-3.0
12yujim/pymtl
pymtl/tools/simulation/SimulationMetrics.py
8
8999
#========================================================================= # SimulationMetrics.py #========================================================================= from __future__ import print_function import pickle #------------------------------------------------------------------------- # SimulationMetrics #------------------------------------------------------------------------- # Utility class for storing various SimulationTool metrics. Useful for # gaining insight into simulator performace and determining the simulation # efficiency of hardware model implementations. class SimulationMetrics( object ): #----------------------------------------------------------------------- # __init__ #----------------------------------------------------------------------- def __init__( self ): self._ncycles = 0 self._pre_tick = True self.num_modules = 0 self.num_tick_blocks = 0 self.num_posedge_clk_blocks = 0 self.num_combinational_blocks = 0 self.num_slice_blocks = 0 self.input_add_events_per_cycle = [ 0 ] self.clock_add_events_per_cycle = [ 0 ] self.input_add_callbk_per_cycle = [ 0 ] self.clock_add_callbk_per_cycle = [ 0 ] self.input_comb_evals_per_cycle = [ 0 ] self.clock_comb_evals_per_cycle = [ 0 ] self.slice_comb_evals_per_cycle = [ 0 ] self.redun_comb_evals_per_cycle = [ 0 ] self.is_slice = dict() self.has_run = dict() #----------------------------------------------------------------------- # comb_evals_per_cycle #----------------------------------------------------------------------- @property def comb_evals_per_cycle( self ): return [ x+y for x,y in zip( self.input_comb_evals_per_cycle, self.clock_comb_evals_per_cycle ) ] #----------------------------------------------------------------------- # add_events_per_cycle #----------------------------------------------------------------------- @property def add_events_per_cycle( self ): return [ x+y for x,y in zip( self.input_add_events_per_cycle, self.clock_add_events_per_cycle ) ] #----------------------------------------------------------------------- # reg_model #----------------------------------------------------------------------- # Register a model in the design. def reg_model( self, model ): self.num_modules += 1 self.num_tick_blocks += len( model.get_tick_blocks() ) self.num_posedge_clk_blocks += len( model.get_posedge_clk_blocks() ) self.num_combinational_blocks += len( model.get_combinational_blocks() ) #----------------------------------------------------------------------- # reg_eval #----------------------------------------------------------------------- # Register an eval block in the design. def reg_eval( self, eval, is_slice = False ): self.has_run [ eval ] = False self.is_slice[ eval ] = is_slice if is_slice: self.num_slice_blocks += 1 #----------------------------------------------------------------------- # incr_metrics_cycle #----------------------------------------------------------------------- # Should be called at the end of each simulation cycle. Initializes data # structure storage to collect data for the next simulation cycle. def incr_metrics_cycle( self ): self._pre_tick = True self._ncycles += 1 self.input_add_events_per_cycle += [ 0 ] self.clock_add_events_per_cycle += [ 0 ] self.input_add_callbk_per_cycle += [ 0 ] self.clock_add_callbk_per_cycle += [ 0 ] self.input_comb_evals_per_cycle += [ 0 ] self.clock_comb_evals_per_cycle += [ 0 ] self.slice_comb_evals_per_cycle += [ 0 ] self.redun_comb_evals_per_cycle += [ 0 ] for key in self.has_run: self.has_run[ key ] = False #----------------------------------------------------------------------- # start_tick #----------------------------------------------------------------------- # Should be called before sequential logic blocks are executed. Allows # collection of unique metrics for each phase of eval execution. def start_tick( self ): self._pre_tick = False #----------------------------------------------------------------------- # incr_add_events #----------------------------------------------------------------------- # Increment the number of times add_event() was called. def incr_add_events( self ): if self._pre_tick: self.input_add_events_per_cycle[ self._ncycles ] += 1 else: self.clock_add_events_per_cycle[ self._ncycles ] += 1 #----------------------------------------------------------------------- # incr_add_events #----------------------------------------------------------------------- # Increment the number of callbacks we attempted to place on the event # queue. def incr_add_callbk( self ): if self._pre_tick: self.input_add_callbk_per_cycle[ self._ncycles ] += 1 else: self.clock_add_callbk_per_cycle[ self._ncycles ] += 1 #----------------------------------------------------------------------- # incr_comb_evals #----------------------------------------------------------------------- # Increment the number of evals we actually executed. def incr_comb_evals( self, eval ): if self._pre_tick: self.input_comb_evals_per_cycle[ self._ncycles ] += 1 else: self.clock_comb_evals_per_cycle[ self._ncycles ] += 1 if self.has_run[ eval ]: self.redun_comb_evals_per_cycle[ self._ncycles ] += 1 else: self.has_run[ eval ] = True if self.is_slice[ eval ]: self.slice_comb_evals_per_cycle[ self._ncycles ] += 1 #----------------------------------------------------------------------- # print_metrics #----------------------------------------------------------------------- # Print metrics to the commandline. def print_metrics( self, detailed = True ): print("-"*72) print("Simulation Metrics") print("-"*72) print() print("ncycles: {:4}".format(self._ncycles )) print("modules: {:4}".format(self.num_modules )) print("@tick blocks: {:4}".format(self.num_tick_blocks )) print("@posedge_clk blocks: {:4}".format(self.num_posedge_clk_blocks )) print("@combinational blocks: {:4}".format(self.num_combinational_blocks)) print("slice blocks: {:4}".format(self.num_slice_blocks )) print("-"*72) if not detailed: return print() print(" pre-tick post-tick other ") print("cycle adde clbk eval adde clbk eval slice redun") print("-------- ---- ---- ---- ---- ---- ---- ----- -----") for i in range( self._ncycles ): print("{:8} {:4} {:4} {:4} {:4} {:4} {:4} {:5} {:5}".format( i, self.input_add_events_per_cycle[ i ], self.input_add_callbk_per_cycle[ i ], self.input_comb_evals_per_cycle[ i ], self.clock_add_events_per_cycle[ i ], self.clock_add_callbk_per_cycle[ i ], self.clock_comb_evals_per_cycle[ i ], self.slice_comb_evals_per_cycle[ i ], self.redun_comb_evals_per_cycle[ i ], )) print("-"*72) #----------------------------------------------------------------------- # pickle_metrics #----------------------------------------------------------------------- # Pickle metrics to a file. Useful for loading in Python later for # for creating matplotlib plots. def pickle_metrics( self, filename ): del self.is_slice del self.has_run pickle.dump( self, open( filename, 'wb' ) ) #------------------------------------------------------------------------- # DummyMetrics #------------------------------------------------------------------------- # Dummy class which provides the interface of the SimulationMetrics # metrics collection class, but doesn't actually collect anything metrics. # This is used as a swap in replacement when collection is disabled so # developers don't have to worry about adding a check to disable each # call to SimulationMetrics methods. class DummyMetrics( object ): def reg_model( self, model ): pass def reg_eval( self, eval, is_slice = False ): pass def incr_metrics_cycle( self ): pass def start_tick( self ): pass def incr_add_events( self ): pass def incr_add_callbk( self ): pass def incr_comb_evals( self, eval ): pass
bsd-3-clause
numenta-archive/htmresearch
projects/dp1/dp_experiment1.py
3
12622
# Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ This is for running some very preliminary disjoint pooling experiments. """ import cPickle from multiprocessing import Pool import random import time import numpy import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 from htmresearch.frameworks.layers.l2_l4_inference import L4L2Experiment from htmresearch.frameworks.layers.object_machine_factory import ( createObjectMachine ) def printColumnPoolerDiagnostics(pooler): print "sampleSizeProximal: ", pooler.sampleSizeProximal print "Average number of proximal synapses per cell:", print float(pooler.numberOfProximalSynapses()) / pooler.cellCount print "Average number of distal segments per cell:", print float(pooler.numberOfDistalSegments()) / pooler.cellCount print "Average number of connected distal synapses per cell:", print float(pooler.numberOfConnectedDistalSynapses()) / pooler.cellCount print "Average number of distal synapses per cell:", print float(pooler.numberOfDistalSynapses()) / pooler.cellCount def runExperiment(args): """ Run experiment. args is a dict representing the parameters. We do it this way to support multiprocessing. The method returns the args dict updated with multiple additional keys representing accuracy metrics. """ numObjects = args.get("numObjects", 10) numLocations = args.get("numLocations", 10) numFeatures = args.get("numFeatures", 10) numColumns = args.get("numColumns", 2) sensorInputSize = args.get("sensorInputSize", 300) networkType = args.get("networkType", "MultipleL4L2Columns") longDistanceConnections = args.get("longDistanceConnections", 0) locationNoise = args.get("locationNoise", 0.0) featureNoise = args.get("featureNoise", 0.0) numPoints = args.get("numPoints", 10) trialNum = args.get("trialNum", 42) plotInferenceStats = args.get("plotInferenceStats", True) settlingTime = args.get("settlingTime", 3) includeRandomLocation = args.get("includeRandomLocation", False) enableFeedback = args.get("enableFeedback", True) numAmbiguousLocations = args.get("numAmbiguousLocations", 0) numInferenceRpts = args.get("numInferenceRpts", 1) numLearningRpts = args.get("numLearningRpts", 3) l2Params = args.get("l2Params", None) l4Params = args.get("l4Params", None) # Create the objects objects = createObjectMachine( machineType="simple", numInputBits=20, sensorInputSize=sensorInputSize, externalInputSize=2400, numCorticalColumns=numColumns, numFeatures=numFeatures, numLocations=numLocations, seed=trialNum ) objects.createRandomObjects(numObjects, numPoints=numPoints, numLocations=numLocations, numFeatures=numFeatures) r = objects.objectConfusion() print "Average common pairs in objects=", r[0], print ", locations=",r[1],", features=",r[2] # print "Total number of objects created:",len(objects.getObjects()) # print "Objects are:" # for o in objects: # pairs = objects[o] # pairs.sort() # print str(o) + ": " + str(pairs) # This object machine will simulate objects where each object is just one # unique feature/location pair. We will use this to pretrain L4/L2 with # individual pairs. pairObjects = createObjectMachine( machineType="simple", numInputBits=20, sensorInputSize=sensorInputSize, externalInputSize=2400, numCorticalColumns=numColumns, numFeatures=numFeatures, numLocations=numLocations, seed=trialNum ) # Create "pair objects" consisting of all unique F/L pairs from our objects. # These pairs should have the same SDRs as the original objects. pairObjects.locations = objects.locations pairObjects.features = objects.features distinctPairs = objects.getDistinctPairs() print "Number of distinct feature/location pairs:",len(distinctPairs) for pairNumber,pair in enumerate(distinctPairs): pairObjects.addObject([pair], pairNumber) ##################################################### # # Setup experiment and train the network name = "dp_O%03d_L%03d_F%03d_C%03d_T%03d" % ( numObjects, numLocations, numFeatures, numColumns, trialNum ) exp = L4L2Experiment( name, numCorticalColumns=numColumns, L2Overrides=l2Params, L4Overrides=l4Params, networkType = networkType, longDistanceConnections=longDistanceConnections, inputSize=sensorInputSize, externalInputSize=2400, numInputBits=20, seed=trialNum, enableFeedback=enableFeedback, numLearningPoints=numLearningRpts, ) # Learn all FL pairs in each L4 and in each L2 # Learning in L2 involves choosing a small random number of cells, growing # proximal synapses to L4 cells. Growing distal synapses to active cells in # each neighboring column. Each column gets its own distal segment. exp.learnObjects(pairObjects.provideObjectsToLearn()) # Verify that all columns learned the pairs # numCorrectClassifications = 0 # for pairId in pairObjects: # # obj = pairObjects[pairId] # objectSensations = {} # for c in range(numColumns): # objectSensations[c] = [obj[0]]*settlingTime # # inferConfig = { # "object": pairId, # "numSteps": settlingTime, # "pairs": objectSensations, # } # # inferenceSDRs = pairObjects.provideObjectToInfer(inferConfig) # # exp.infer(inferenceSDRs, objectName=pairId, reset=False) # # if exp.isObjectClassified(pairId, minOverlap=30): # numCorrectClassifications += 1 # # exp.sendReset() # # print "Classification accuracy for pairs=",100.0*numCorrectClassifications/len(distinctPairs) ######################################################################## # # Create "object representations" in L2 by simultaneously invoking the union # of all FL pairs in an object and doing some sort of spatial pooling to # create L2 representation. exp.resetStatistics() for objectId in objects: # Create one sensation per object consisting of the union of all features # and the union of locations. ul, uf = objects.getUniqueFeaturesLocationsInObject(objectId) print "Object",objectId,"Num unique features:",len(uf),"Num unique locations:",len(ul) objectSensations = {} for c in range(numColumns): objectSensations[c] = [(tuple(ul), tuple(uf))]*settlingTime inferConfig = { "object": objectId, "numSteps": settlingTime, "pairs": objectSensations, } inferenceSDRs = objects.provideObjectToInfer(inferConfig) exp.infer(inferenceSDRs, objectName="Object "+str(objectId)) # Compute confusion matrix between all objects as network settles for iteration in range(settlingTime): confusion = numpy.zeros((numObjects, numObjects)) for o1 in objects: for o2 in objects: confusion[o1, o2] = len(set(exp.statistics[o1]["Full L2 SDR C0"][iteration]) & set(exp.statistics[o2]["Full L2 SDR C0"][iteration]) ) plt.figure() plt.imshow(confusion) plt.xlabel('Object #') plt.ylabel('Object #') plt.title("Object overlaps") plt.colorbar() plt.savefig("confusion_random_10L_5F_"+str(iteration)+".pdf") plt.close() for col in range(numColumns): print "Diagnostics for column",col printColumnPoolerDiagnostics(exp.getAlgorithmInstance(column=col)) print return args # Show average overlap as a function of number of shared FL pairs, # shared locations, shared features # Compute confusion matrix showing number of shared FL pairs # Compute confusion matrix using our normal method def runExperimentPool(numObjects, numLocations, numFeatures, numColumns, longDistanceConnectionsRange = [0.0], numWorkers=7, nTrials=1, numPoints=10, locationNoiseRange=[0.0], featureNoiseRange=[0.0], enableFeedback=[True], ambiguousLocationsRange=[0], numInferenceRpts=1, settlingTime=3, l2Params=None, l4Params=None, resultsName="convergence_results.pkl"): """ Allows you to run a number of experiments using multiple processes. For each parameter except numWorkers, pass in a list containing valid values for that parameter. The cross product of everything is run, and each combination is run nTrials times. Returns a list of dict containing detailed results from each experiment. Also pickles and saves the results in resultsName for later analysis. Example: results = runExperimentPool( numObjects=[10], numLocations=[5], numFeatures=[5], numColumns=[2,3,4,5,6], numWorkers=8, nTrials=5) """ # Create function arguments for every possibility args = [] for c in reversed(numColumns): for o in reversed(numObjects): for l in numLocations: for f in numFeatures: for p in longDistanceConnectionsRange: for t in range(nTrials): for locationNoise in locationNoiseRange: for featureNoise in featureNoiseRange: for ambiguousLocations in ambiguousLocationsRange: for feedback in enableFeedback: args.append( {"numObjects": o, "numLocations": l, "numFeatures": f, "numColumns": c, "trialNum": t, "numPoints": numPoints, "longDistanceConnections" : p, "plotInferenceStats": False, "locationNoise": locationNoise, "featureNoise": featureNoise, "enableFeedback": feedback, "numAmbiguousLocations": ambiguousLocations, "numInferenceRpts": numInferenceRpts, "l2Params": l2Params, "l4Params": l4Params, "settlingTime": settlingTime, } ) numExperiments = len(args) print "{} experiments to run, {} workers".format(numExperiments, numWorkers) # Run the pool if numWorkers > 1: pool = Pool(processes=numWorkers) rs = pool.map_async(runExperiment, args, chunksize=1) while not rs.ready(): remaining = rs._number_left pctDone = 100.0 - (100.0*remaining) / numExperiments print " =>", remaining, "experiments remaining, percent complete=",pctDone time.sleep(5) pool.close() # No more work pool.join() result = rs.get() else: result = [] for arg in args: result.append(runExperiment(arg)) # print "Full results:" # pprint.pprint(result, width=150) # Pickle results for later use with open(resultsName,"wb") as f: cPickle.dump(result,f) return result if __name__ == "__main__": # This is how you run a specific experiment in single process mode. Useful # for debugging, profiling, etc. results = runExperiment( { "numObjects": 20, "numPoints": 10, "numLocations": 10, "numFeatures": 5, "numColumns": 1, "trialNum": 4, "settlingTime": 3, "plotInferenceStats": False, # Outputs detailed graphs } )
agpl-3.0
vigilv/scikit-learn
sklearn/manifold/tests/test_t_sne.py
53
21055
import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.neighbors import BallTree from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises_regexp from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _joint_probabilities_nn from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _kl_divergence_bh from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold import _barnes_hut_tsne from sklearn.manifold._utils import _binary_search_perplexity from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from sklearn.metrics.pairwise import pairwise_distances def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Error difference old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.2, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.9) assert_equal(it, 1) assert("error difference" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=-1.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) distances = random_state.randn(50, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, None, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_binary_search_neighbors(): # Binary perplexity search approximation. # Should be approximately equal to the slow method when we use # all points as neighbors. n_samples = 500 desired_perplexity = 25.0 random_state = check_random_state(0) distances = random_state.randn(n_samples, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) P1 = _binary_search_perplexity(distances, None, desired_perplexity, verbose=0) # Test that when we use all the neighbors the results are identical k = n_samples neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64) P2 = _binary_search_perplexity(distances, neighbors_nn, desired_perplexity, verbose=0) assert_array_almost_equal(P1, P2, decimal=4) # Test that the highest P_ij are the same when few neighbors are used for k in np.linspace(80, n_samples, 10): k = int(k) topn = k * 10 # check the top 10 *k entries out of k * k entries neighbors_nn = np.argsort(distances, axis=1)[:, :k] P2k = _binary_search_perplexity(distances, neighbors_nn, desired_perplexity, verbose=0) idx = np.argsort(P1.ravel())[::-1] P1top = P1.ravel()[idx][:topn] P2top = P2k.ravel()[idx][:topn] assert_array_almost_equal(P1top, P2top, decimal=2) def test_binary_perplexity_stability(): # Binary perplexity search should be stable. # The binary_search_perplexity had a bug wherein the P array # was uninitialized, leading to sporadically failing tests. k = 10 n_samples = 100 random_state = check_random_state(0) distances = random_state.randn(n_samples, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) last_P = None neighbors_nn = np.argsort(distances, axis=1)[:, :k] for _ in range(100): P = _binary_search_perplexity(distances.copy(), neighbors_nn.copy(), 3, verbose=0) P1 = _joint_probabilities_nn(distances, neighbors_nn, 3, verbose=0) if last_P is None: last_P = P last_P1 = P1 else: assert_array_almost_equal(P, last_P, decimal=4) assert_array_almost_equal(P1, last_P1, decimal=4) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features).astype(np.float32) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) fun = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[0] grad = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) # The Barnes-Hut approximation uses a different method to estimate # P_ij using only a a number of nearest neighbors instead of all # points (so that k = 3 * perplexity). As a result we set the # perplexity=5, so that the number of neighbors is 5%. n_components = 2 methods = ['exact', 'barnes_hut'] X = random_state.randn(100, n_components).astype(np.float32) for init in ('random', 'pca'): for method in methods: tsne = TSNE(n_components=n_components, perplexity=50, learning_rate=100.0, init=init, random_state=0, method=method) X_embedded = tsne.fit_transform(X) T = trustworthiness(X, X_embedded, n_neighbors=1) assert_almost_equal(T, 1.0, decimal=1) def test_fit_csr_matrix(): # X can be a sparse matrix. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0, method='exact') X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0, metric="precomputed", random_state=0, verbose=0) X_embedded = tsne.fit_transform(D) assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1) def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_not_available(): # 'init' must be 'pca' or 'random'. m = "'init' must be 'pca', 'random' or a NumPy array" assert_raises_regexp(ValueError, m, TSNE, init="not available") def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available") assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_answer_gradient_two_points(): # Test the tree with only a single set of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0]]) pos_output = np.array([[-4.961291e-05, -1.072243e-04], [9.259460e-05, 2.702024e-04]]) neighbors = np.array([[1], [0]]) grad_output = np.array([[-2.37012478e-05, -6.29044398e-05], [2.37012478e-05, 6.29044398e-05]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_answer_gradient_four_points(): # Four points tests the tree with multiple levels of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array([[6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05]]) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array([[5.81128448e-05, -7.78033454e-06], [-5.81526851e-05, 7.80976444e-06], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_skip_num_points_gradient(): # Test the kwargs option skip_num_points. # # Skip num points should make it such that the Barnes_hut gradient # is not calculated for indices below skip_num_point. # Aside from skip_num_points=2 and the first two gradient rows # being set to zero, these data points are the same as in # test_answer_gradient_four_points() pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array([[6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05]]) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array([[0.0, 0.0], [0.0, 0.0], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output, False, 0.1, 2) def _run_answer_test(pos_input, pos_output, neighbors, grad_output, verbose=False, perplexity=0.1, skip_num_points=0): distances = pairwise_distances(pos_input).astype(np.float32) args = distances, perplexity, verbose pos_output = pos_output.astype(np.float32) neighbors = neighbors.astype(np.int64) pij_input = _joint_probabilities(*args) pij_input = squareform(pij_input).astype(np.float32) grad_bh = np.zeros(pos_output.shape, dtype=np.float32) _barnes_hut_tsne.gradient(pij_input, pos_output, neighbors, grad_bh, 0.5, 2, 1, skip_num_points=0) assert_array_almost_equal(grad_bh, grad_output, decimal=4) def test_verbose(): # Verbose options write to stdout. random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("Computing pairwise distances" in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("Finished" in out) assert("early exaggeration" in out) assert("Finished" in out) def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X) def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1) X = random_state.randn(5, 2) X_embedded = tsne.fit(X).embedding_ assert(np.all(np.isfinite(X_embedded))) def test_no_sparse_on_barnes_hut(): # No sparse matrices allowed on Barnes-Hut. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_iter=199, method='barnes_hut') assert_raises_regexp(TypeError, "A sparse matrix was.*", tsne.fit_transform, X_csr) def test_64bit(): # Ensure 64bit arrays are handled correctly. random_state = check_random_state(0) methods = ['barnes_hut', 'exact'] for method in methods: for dt in [np.float32, np.float64]: X = random_state.randn(100, 2).astype(dt) tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0, random_state=0, method=method) tsne.fit_transform(X) def test_barnes_hut_angle(): # When Barnes-Hut's angle=0 this corresponds to the exact method. angle = 0.0 perplexity = 10 n_samples = 100 for n_components in [2, 3]: n_features = 5 degrees_of_freedom = float(n_components - 1.0) random_state = check_random_state(0) distances = random_state.randn(n_samples, n_features) distances = distances.astype(np.float32) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) params = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, perplexity, False) kl, gradex = _kl_divergence(params, P, degrees_of_freedom, n_samples, n_components) k = n_samples - 1 bt = BallTree(distances) distances_nn, neighbors_nn = bt.query(distances, k=k + 1) neighbors_nn = neighbors_nn[:, 1:] Pbh = _joint_probabilities_nn(distances, neighbors_nn, perplexity, False) kl, gradbh = _kl_divergence_bh(params, Pbh, neighbors_nn, degrees_of_freedom, n_samples, n_components, angle=angle, skip_num_points=0, verbose=False) assert_array_almost_equal(Pbh, P, decimal=5) assert_array_almost_equal(gradex, gradbh, decimal=5) def test_quadtree_similar_point(): # Introduce a point into a quad tree where a similar point already exists. # Test will hang if it doesn't complete. Xs = [] # check the case where points are actually different Xs.append(np.array([[1, 2], [3, 4]], dtype=np.float32)) # check the case where points are the same on X axis Xs.append(np.array([[1.0, 2.0], [1.0, 3.0]], dtype=np.float32)) # check the case where points are arbitrarily close on X axis Xs.append(np.array([[1.00001, 2.0], [1.00002, 3.0]], dtype=np.float32)) # check the case where points are the same on Y axis Xs.append(np.array([[1.0, 2.0], [3.0, 2.0]], dtype=np.float32)) # check the case where points are arbitrarily close on Y axis Xs.append(np.array([[1.0, 2.00001], [3.0, 2.00002]], dtype=np.float32)) # check the case where points are arbitraryily close on both axes Xs.append(np.array([[1.00001, 2.00001], [1.00002, 2.00002]], dtype=np.float32)) # check the case where points are arbitraryily close on both axes # close to machine epsilon - x axis Xs.append(np.array([[1, 0.0003817754041], [2, 0.0003817753750]], dtype=np.float32)) # check the case where points are arbitraryily close on both axes # close to machine epsilon - y axis Xs.append(np.array([[0.0003817754041, 1.0], [0.0003817753750, 2.0]], dtype=np.float32)) for X in Xs: counts = np.zeros(3, dtype='int64') _barnes_hut_tsne.check_quadtree(X, counts) m = "Tree consistency failed: unexpected number of points at root node" assert_equal(counts[0], counts[1], m) m = "Tree consistency failed: unexpected number of points on the tree" assert_equal(counts[0], counts[2], m) def test_index_offset(): # Make sure translating between 1D and N-D indices are preserved assert_equal(_barnes_hut_tsne.test_index2offset(), 1) assert_equal(_barnes_hut_tsne.test_index_offset(), 1)
bsd-3-clause
Twangist/log_calls
tests/test_with_sklearn/test_decorate_sklearn_KMeans_functions.py
1
6482
__author__ = 'brianoneill' ############################################################################### def test_deco_sklearn_cluster_kmeans_function(): """ Dunno how to decorate `sklearn.cluster.kmeans` so that the decorated funciton is called via `sklearn.cluster.kmeans(...)`. What gets decorated is the function qualified by the *module* name, `sklearn.cluster.kmeans_.kmeans` because sklearn.cluster.kmeans_ is the module of the function `sklearn.cluster.kmeans` as per inspect.getmodule >>> from sklearn.datasets import make_blobs >>> n_samples = 1500 >>> random_state = 170 >>> X, y = make_blobs(n_samples=n_samples, random_state=random_state) >>> from log_calls import log_calls THIS Doesn't work: # import sklearn # import sklearn.cluster # log_calls.decorate_module_function(sklearn.cluster.k_means) # ret = sklearn.cluster.k_means(X, n_clusters=45) ### THIS WORKS (import module and call it through module name :| ): >>> ## TODO Can this be improved?? It's clunky to require that the module name be known. >>> import sklearn.cluster.k_means_ >>> log_calls.decorate_module_function(sklearn.cluster.k_means_.k_means, ... args_sep='\\n', ... override=True) >>> ret = sklearn.cluster.k_means_.k_means(X, n_clusters=3, random_state=2) # doctest: +NORMALIZE_WHITESPACE k_means <== called by <module> arguments: X=array([[ -5.19811282e+00, 6.41869316e-01], [ -5.75229538e+00, 4.18627111e-01], [ -1.08448984e+01, -7.55352273e+00], ..., [ 1.36105255e+00, -9.07491863e-01], [ -3.54141108e-01, 7.12241630e-01], [ 1.88577252e+00, 1.41185693e-03]]) n_clusters=3 random_state=2 defaults: init='k-means++' precompute_distances='auto' n_init=10 max_iter=300 verbose=False tol=0.0001 copy_x=True n_jobs=1 return_n_iter=False k_means ==> returning to <module> >>> ret (array([[ 1.91176144, 0.40634045], [-8.94137566, -5.48137132], [-4.55490993, 0.02920864]]), array([2, 2, 1, ..., 0, 0, 0], dtype=int32), 2862.7319140789582) """ pass def test__decorate_functions(): """ >>> from sklearn.datasets import make_blobs >>> n_samples = 1500 >>> random_state = 170 >>> X, y = make_blobs(n_samples=n_samples, random_state=random_state) >>> from log_calls import log_calls (B) import the module, deco the fn as a module function, and call the fn via the module ==> OUTPUT: >>> import sklearn.cluster.k_means_ >>> log_calls.decorate_module_function(sklearn.cluster.k_means_.k_means, ... override=True) >>> ret_B = sklearn.cluster.k_means_.k_means(X, n_clusters=3, random_state=2) # doctest: +NORMALIZE_WHITESPACE k_means <== called by <module> arguments: X=array([[ -5.19811282e+00, 6.41869316e-01], [ -5.75229538e+00, 4.18627111e-01], [ -1.08448984e+01, -7.55352273e+00], ..., [ 1.36105255e+00, -9.07491863e-01], [ -3.54141108e-01, 7.12241630e-01], [ 1.88577252e+00, 1.41185693e-03]]), n_clusters=3, random_state=2 defaults: init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=0.0001, copy_x=True, n_jobs=1, return_n_iter=False k_means ==> returning to <module> >>> ret_B (array([[ 1.91176144, 0.40634045], [-8.94137566, -5.48137132], [-4.55490993, 0.02920864]]), array([2, 2, 1, ..., 0, 0, 0], dtype=int32), 2862.7319140789582) (A) import the package, deco the fn as a package function; >>> import sklearn.cluster >>> log_calls.decorate_package_function(sklearn.cluster.k_means, ... override=True) Call the fn via the package ==> OUTPUT, and Call the fn via the module ==> OUTPUT. Call via package -- OUTPUT: >>> ret = sklearn.cluster.k_means(X, n_clusters=3, random_state=2) # doctest: +NORMALIZE_WHITESPACE k_means <== called by <module> arguments: X=array([[ -5.19811282e+00, 6.41869316e-01], [ -5.75229538e+00, 4.18627111e-01], [ -1.08448984e+01, -7.55352273e+00], ..., [ 1.36105255e+00, -9.07491863e-01], [ -3.54141108e-01, 7.12241630e-01], [ 1.88577252e+00, 1.41185693e-03]]), n_clusters=3, random_state=2 defaults: init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=0.0001, copy_x=True, n_jobs=1, return_n_iter=False k_means ==> returning to <module> >>> ret (array([[ 1.91176144, 0.40634045], [-8.94137566, -5.48137132], [-4.55490993, 0.02920864]]), array([2, 2, 1, ..., 0, 0, 0], dtype=int32), 2862.7319140789582) Call via module -- OUTPUT TOO now :D:D:D : >>> ret = sklearn.cluster.k_means_.k_means(X, n_clusters=3, random_state=2) # doctest: +NORMALIZE_WHITESPACE k_means <== called by <module> arguments: X=array([[ -5.19811282e+00, 6.41869316e-01], [ -5.75229538e+00, 4.18627111e-01], [ -1.08448984e+01, -7.55352273e+00], ..., [ 1.36105255e+00, -9.07491863e-01], [ -3.54141108e-01, 7.12241630e-01], [ 1.88577252e+00, 1.41185693e-03]]), n_clusters=3, random_state=2 defaults: init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=0.0001, copy_x=True, n_jobs=1, return_n_iter=False k_means ==> returning to <module> >>> ret (array([[ 1.91176144, 0.40634045], [-8.94137566, -5.48137132], [-4.55490993, 0.02920864]]), array([2, 2, 1, ..., 0, 0, 0], dtype=int32), 2862.7319140789582) """ pass ############################################################################## # end of tests. ############################################################################## import doctest # For unittest integration def load_tests(loader, tests, ignore): try: import sklearn except ImportError: pass else: tests.addTests(doctest.DocTestSuite()) return tests if __name__ == '__main__': doctest.testmod()
mit
fspaolo/scikit-learn
examples/linear_model/plot_ols.py
8
1966
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import pylab as pl import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis] diabetes_X_temp = diabetes_X[:, :, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X_temp[:-20] diabetes_X_test = diabetes_X_temp[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs pl.scatter(diabetes_X_test, diabetes_y_test, color='black') pl.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) pl.xticks(()) pl.yticks(()) pl.show()
bsd-3-clause
jmontoyam/mne-python
mne/preprocessing/tests/test_infomax.py
6
5969
# Authors: Denis A. Engemann <[email protected]> # # License: BSD (3-clause) """ Test the infomax algorithm. Parts of this code are taken from scikit-learn """ import numpy as np from numpy.testing import assert_almost_equal from scipy import stats from scipy import linalg from mne.preprocessing.infomax_ import infomax from mne.utils import requires_sklearn, run_tests_if_main, check_version def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) @requires_sklearn def test_infomax_blowup(): """ Test the infomax algorithm blowup condition """ # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 100 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) center_and_norm(m) X = _get_pca().fit_transform(m.T) k_ = infomax(X, extended=True, l_rate=0.1) s_ = np.dot(k_, X.T) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) @requires_sklearn def test_infomax_simple(): """ Test the infomax algorithm on very simple data. """ rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 500 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) for add_noise in (False, True): m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, n_samples) center_and_norm(m) algos = [True, False] for algo in algos: X = _get_pca().fit_transform(m.T) k_ = infomax(X, extended=algo) s_ = np.dot(k_, X.T) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) def test_infomax_weights_ini(): """ Test the infomax algorithm when user provides an initial weights matrix. """ X = np.random.random((3, 100)) weights = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) w1 = infomax(X, max_iter=0, weights=weights, extended=True) w2 = infomax(X, max_iter=0, weights=weights, extended=False) assert_almost_equal(w1, weights) assert_almost_equal(w2, weights) @requires_sklearn def test_non_square_infomax(): """ Test non-square infomax """ rng = np.random.RandomState(0) n_samples = 200 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix n_observed = 6 mixing = rng.randn(n_observed, 2) for add_noise in (False, True): m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(n_observed, n_samples) center_and_norm(m) m = m.T m = _get_pca(rng).fit_transform(m) # we need extended since input signals are sub-gaussian unmixing_ = infomax(m, random_state=rng, extended=True) s_ = np.dot(unmixing_, m.T) # Check that the mixing model described in the docstring holds: mixing_ = linalg.pinv(unmixing_.T) assert_almost_equal(m, s_.T.dot(mixing_)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) def _get_pca(rng=None): if not check_version('sklearn', '0.18'): from sklearn.decomposition import RandomizedPCA return RandomizedPCA(n_components=2, whiten=True, random_state=rng) else: from sklearn.decomposition import PCA return PCA(n_components=2, whiten=True, svd_solver='randomized', random_state=rng) run_tests_if_main()
bsd-3-clause
MTgeophysics/mtpy
tests/SmartMT/test_exportDialog.py
1
12640
import os from unittest import TestCase import matplotlib.pyplot as plt import numpy as np from qtpy import QtCore from qtpy.QtWidgets import QFileDialog, QMessageBox, QDialog from qtpy.QtTest import QTest from mtpy.gui.SmartMT.gui.export_dialog import ExportDialog, IMAGE_FORMATS from tests import make_temp_dir from tests.SmartMT import _click_area from tests.imaging import plt_wait def _fake_exec_accept(): return QFileDialog.Accepted def _fake_exec_reject(): return QFileDialog.Rejected def _rewrite_text(widget, text, modifier=QtCore.Qt.NoModifier): QTest.keyEvent(QTest.Click, widget, QtCore.Qt.Key_A, QtCore.Qt.ControlModifier) QTest.keyClicks(widget, text, modifier=modifier) QTest.keyEvent(QTest.Click, widget, QtCore.Qt.Key_Enter) def _create_fig(): t = np.arange(0.0, 2.0, 0.01) s = 1 + np.sin(2 * np.pi * t) plt.plot(t, s) plt.xlabel('time (s)') plt.ylabel('voltage (mV)') plt.title('About as simple as it gets, folks') plt.grid(True) # plt.savefig("test.png") # plt.show() plt_wait(1) return plt.gcf() # get access to the current fig class TestExportDialog(TestCase): @classmethod def setUpClass(cls): # setup temp dir cls._temp_dir = make_temp_dir(cls.__name__) def setUp(self): # create figure self._fig = _create_fig() # create GUI self.dialog = ExportDialog() self.dialog.show() QTest.qWaitForWindowActive(self.dialog) def tearDown(self): self.dialog.close() plt.close(self._fig) def test_defaults(self): """ test gui default state""" # check row states self.assertTrue(self.dialog.ui.comboBox_fileName.currentText() == "figure.png", "Default File Name") self.assertTrue(self.dialog.ui.comboBox_directory.currentText() == os.path.expanduser("~"), "Default Path") # file type self.assertTrue(set(["{} (.{})".format(desc, ext) for ext, desc in self._fig.canvas.get_supported_filetypes().items()]) == set([str(self.dialog.ui.comboBox_fileType.itemText(i)) for i in range(self.dialog.ui.comboBox_fileType.count())]), "Supported Formats") self.assertTrue(self.dialog.ui.checkBox_tightBbox.isChecked(), "Tight Layout Default") self.assertFalse(self.dialog.get_transparent(), "Transparent Default") self.assertTrue(self.dialog.ui.comboBox_orientation.currentText() == "Landscape", "Orientation Default") self.assertTrue(self.dialog.ui.spinBox_dpi.value() == 80) self.assertTrue(self.dialog.ui.doubleSpinBox_height_inches.value() == 6.) self.assertTrue(self.dialog.ui.doubleSpinBox_width_inches.value() == 8.) self.assertTrue(self.dialog.ui.spinBox_height_pixels.value() == 480) self.assertTrue(self.dialog.ui.spinBox_width_pixels.value() == 640) self.assertTrue(self.dialog.ui.checkBox_open_after_export.isChecked()) # check states from the getters self.assertTrue(self.dialog.get_bbox_inches() == 'tight', "Tight Layout Value") self.assertTrue(self.dialog.get_file_format()[0] == 'png', "Format Value") self.assertTrue(self.dialog.get_orientation() == 'landscape', "Orientation Value") self.assertTrue(os.path.normpath(self.dialog.get_save_file_name()) == os.path.normpath(os.path.join(os.path.expanduser("~"), str(self.dialog.ui.comboBox_fileName.currentText())) ), "Save File Path Value") def test_file_name_change(self): # select all existing tests _rewrite_text(self.dialog.ui.comboBox_fileName, "test_file.jpg") # current text should have changed self.assertTrue(self.dialog.ui.comboBox_fileName.currentText() == "test_file.jpg", "Changed file name") # format should have changed self.assertTrue(self.dialog.get_file_format()[0] == "jpg") # transparent should be false self.assertFalse(self.dialog.get_transparent(), "transparent") # change to file with unsupported format _rewrite_text(self.dialog.ui.comboBox_fileName, "test_file_2.abcd") # current text should have changed self.assertTrue(self.dialog.ui.comboBox_fileName.currentText() == "test_file_2.abcd", "Changed file name") # current format should not been changed self.assertTrue(self.dialog.get_file_format()[0] == "jpg") def test_file_type_change(self): for i in range(self.dialog.ui.comboBox_fileType.count()): self.dialog.ui.comboBox_fileType.setCurrentIndex(i) extenion = self.dialog.get_file_format()[0] self.assertTrue(self.dialog.ui.comboBox_fileName.currentText() == "figure.{}".format(extenion)) def test_directory_change(self): _rewrite_text(self.dialog.ui.comboBox_directory, os.path.abspath(self._temp_dir)) self.assertTrue(os.path.dirname(self.dialog.get_save_file_name()) == os.path.abspath(self._temp_dir)) # print self.dialog.get_save_file_name() # select from the browse self.dialog._dir_dialog.setDirectory(os.path.normpath(os.path.expanduser("~"))) self.dialog._dir_dialog.exec_ = _fake_exec_reject # path should not change _click_area(self.dialog.ui.pushButton_browse) self.assertTrue(os.path.dirname(self.dialog.get_save_file_name()) == os.path.abspath(self._temp_dir)) self.dialog._dir_dialog.exec_ = _fake_exec_accept _click_area(self.dialog.ui.pushButton_browse) # QTest.qWaitForWindowShown(self.dialog._dir_dialog) # self.dialog._dir_dialog.accept() self.assertTrue( os.path.dirname( os.path.normpath(self.dialog.get_save_file_name()) ) == os.path.normpath(os.path.expanduser("~"))) def test_export(self): # set export dir _rewrite_text(self.dialog.ui.comboBox_directory, os.path.abspath(self._temp_dir)) fname = self.dialog.get_save_file_name() if os.path.isfile(fname): # if file exist, remove os.remove(fname) self.assertFalse(os.path.exists(fname), "File exists") # set open after to false self.dialog.ui.checkBox_open_after_export.setChecked(False) self.dialog.exec_ = self._fake_export_dialog_exec_cancel # should not create file self.dialog._msg_box.exec_ = self._fake_msg_dialog_exec_cancel fname = self.dialog.export_to_file(self._fig) print(self._fig.get_dpi(), self.dialog.ui.spinBox_dpi.value()) self.assertTrue(self.dialog.ui.spinBox_dpi.value() == self._fig.get_dpi()) self.assertTrue(fname is None) self.assertFalse(os.path.exists(self.dialog.get_save_file_name()), "File exists") # save the new file now self.dialog.exec_ = self._fake_export_dialog_exec_export fname = self.dialog.export_to_file(self._fig) self.assertTrue(os.path.exists(fname), "File exists") self.assertTrue(os.path.isfile(fname)) file_count = len([name for name in os.listdir(self._temp_dir) if os.path.isfile(os.path.join(self._temp_dir, name))]) # save to the same file and overwrite self.dialog._msg_box.exec_ = self._fake_msg_dialog_exec_overwrite fname = self.dialog.export_to_file(self._fig) self.assertTrue(os.path.exists(fname), "File exists") new_file_count = len([name for name in os.listdir(self._temp_dir) if os.path.isfile(os.path.join(self._temp_dir, name))]) self.assertTrue(file_count == new_file_count) # no file should be created # save to the same file and save as new name self.dialog._msg_box.exec_ = self._fake_msg_dialog_exec_save_as fname = self.dialog.export_to_file(self._fig) self.assertTrue(os.path.exists(fname), "File exists") new_file_count = len([name for name in os.listdir(self._temp_dir) if os.path.isfile(os.path.join(self._temp_dir, name))]) self.assertTrue(file_count + 1 == new_file_count) # one extra file should be created file_count = new_file_count def test_dpi(self): # save to higher dpi # set export dir _rewrite_text(self.dialog.ui.comboBox_directory, os.path.abspath(self._temp_dir)) self.dialog.exec_ = self._fake_export_dialog_exec_export self.dialog._msg_box.exec_ = self._fake_msg_dialog_exec_overwrite # set open after to false self.dialog.ui.checkBox_open_after_export.setChecked(False) QTest.keyClicks(self.dialog.ui.spinBox_dpi, '400') _rewrite_text(self.dialog.ui.comboBox_fileName, "400dpi.jpg") fname = self.dialog.export_to_file(self._fig) self.assertTrue(os.path.exists(fname), "File exists") new_file_count = len([name for name in os.listdir(self._temp_dir) if os.path.isfile(os.path.join(self._temp_dir, name))]) QTest.keyClicks(self.dialog.ui.spinBox_dpi, '600') _rewrite_text(self.dialog.ui.comboBox_fileName, "600dpi.jpg") fname = self.dialog.export_to_file(self._fig) self.assertTrue(os.path.exists(fname), "File exists") new_file_count = len([name for name in os.listdir(self._temp_dir) if os.path.isfile(os.path.join(self._temp_dir, name))]) QTest.keyClicks(self.dialog.ui.spinBox_dpi, '1000') _rewrite_text(self.dialog.ui.comboBox_fileName, "1000dpi.jpg") fname = self.dialog.export_to_file(self._fig) self.assertTrue(os.path.exists(fname), "File exists") new_file_count = len([name for name in os.listdir(self._temp_dir) if os.path.isfile(os.path.join(self._temp_dir, name))]) def _fake_msg_dialog_exec_overwrite(self): self.dialog._msg_box.show() QTest.qWaitForWindowActive(self.dialog._msg_box) _click_area(self.dialog._msg_box_button_overwrite) return QMessageBox.Accepted def _fake_msg_dialog_exec_save_as(self): self.dialog._msg_box.show() QTest.qWaitForWindowActive(self.dialog._msg_box) _click_area(self.dialog._msg_box_button_save_as) return QMessageBox.Accepted def _fake_msg_dialog_exec_cancel(self): self.dialog._msg_box.show() QTest.qWaitForWindowActive(self.dialog._msg_box) _click_area(self.dialog._msg_box_button_cancel) return QMessageBox.Cancel def _fake_export_dialog_exec_cancel(self): _click_area(self.dialog.ui.pushButton_cancel) return QDialog.Rejected def _fake_export_dialog_exec_export(self): _click_area(self.dialog.ui.pushButton_export) return QDialog.Accepted def _transparent_test_gen(index, ext, description): def _test_transparent(self): # set to save to tmp dir _rewrite_text(self.dialog.ui.comboBox_directory, os.path.abspath(self._temp_dir)) self.dialog.exec_ = self._fake_export_dialog_exec_export self.dialog._msg_box.exec_ = self._fake_msg_dialog_exec_overwrite # set open after to false self.dialog.ui.checkBox_open_after_export.setChecked(False) # print "testing save to {0[1]} (.{0[0]})".format(self.dialog.get_file_format()) for isTrans in [True, False]: _rewrite_text(self.dialog.ui.comboBox_fileName, "transparent_{}.{}".format(isTrans, ext)) self.dialog.ui.comboBox_fileType.setCurrentIndex(index) self.assertTrue((ext, description) == self.dialog.get_file_format(), "sanity check") self.dialog.ui.checkBox_transparent.setChecked(isTrans) try: fname = self.dialog.export_to_file(self._fig) except RuntimeError as e: self.skipTest(e.message) self.assertTrue(os.path.exists(fname), "testing save to {0[1]} (.{0[0]}) without transparent".format( self.dialog.get_file_format())) return _test_transparent # generate tests for index, (ext, description) in enumerate(IMAGE_FORMATS): _test = _transparent_test_gen(index, ext, description) _test.__name__ = "test_transparent_{}".format(ext) setattr(TestExportDialog, _test.__name__, _test)
gpl-3.0
cmcantalupo/geopm
integration/experiment/power_sweep/gen_power_sweep_summary.py
1
3310
#!/usr/bin/env python # # Copyright (c) 2015 - 2021, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY LOG OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ''' Prints a summary of the data from a power sweep experiment. ''' import sys import pandas import argparse import geopmpy.io from experiment import common_args def summary(parse_output): # rename some columns parse_output['power_limit'] = parse_output['POWER_PACKAGE_LIMIT_TOTAL'] parse_output['runtime'] = parse_output['runtime (s)'] parse_output['network_time'] = parse_output['time-hint-network (s)'] parse_output['energy_pkg'] = parse_output['package-energy (J)'] parse_output['energy_dram'] = parse_output['dram-energy (J)'] parse_output['frequency'] = parse_output['frequency (Hz)'] parse_output['achieved_power'] = parse_output['energy_pkg'] / parse_output['sync-runtime (s)'] parse_output['iteration'] = parse_output.apply(lambda row: row['Profile'].split('_')[-1], axis=1) # add extra columns parse_output['cpu_time'] = parse_output['runtime'] - parse_output['network_time'] # set up index for grouping parse_output = parse_output.set_index(['Agent', 'host', 'power_limit']) summary = pandas.DataFrame() for col in ['count', 'runtime', 'cpu_time', 'network_time', 'energy_pkg', 'energy_dram', 'frequency', 'achieved_power']: summary[col] = parse_output[col].groupby(['Agent', 'power_limit']).mean() return summary if __name__ == '__main__': parser = argparse.ArgumentParser() common_args.add_output_dir(parser) args = parser.parse_args() output_dir = args.output_dir output = geopmpy.io.RawReportCollection("*report", dir_name=output_dir) result = summary(output.get_epoch_df()) sys.stdout.write('{}\n'.format(result))
bsd-3-clause
theroncarmichael/GC-CaT-Metallicitiy
interp.py
1
9342
#! /usr/bin/env python ''' Created on Mar 17, 2011 @author: Chris Usher ''' import numpy as np #import matplotlib.pyplot as plt import scipy.interpolate as interpolate def redisperse(inputwavelengths, inputfluxes, firstWavelength=None, lastWavelength=None, dispersion=None, nPixels=None, outside=None, function='spline'): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] epsilon = 1e-10 if dispersion == None and nPixels != None: if firstWavelength == None: firstWavelength = inputwavelengths[0] if lastWavelength == None: lastWavelength = inputwavelengths[-1] outputwavelengths = np.linspace(firstWavelength, lastWavelength, nPixels) elif dispersion != None and nPixels == None: if firstWavelength == None: firstWavelength = inputwavelengths[0] if lastWavelength == None: lastWavelength = inputwavelengths[-1] outputwavelengths = np.arange(firstWavelength, lastWavelength + epsilon, dispersion) elif dispersion != None and nPixels != None: if firstWavelength != None: outputwavelengths = firstWavelength + dispersion * np.ones(nPixels) elif lastWavelength != None: outputwavelengths = lastWavelength - dispersion * np.ones(nPixels) outputwavelengths = outputwavelengths[::-1] else: outputwavelengths = inputwavelengths[0] + dispersion * np.ones(nPixels) else: dispersion = (inputwavelengths[-1] - inputwavelengths[0]) / (inputwavelengths.size - 1) if lastWavelength == None: lastWavelength = inputwavelengths[-1] if firstWavelength != None: outputwavelengths = np.arange(firstWavelength, lastWavelength + epsilon, dispersion) else: outputwavelengths = np.arange(inputwavelengths[0], lastWavelength + epsilon, dispersion) outputdispersion = outputwavelengths[1] - outputwavelengths[0] outputedges = np.linspace(outputwavelengths[0] - outputdispersion / 2, outputwavelengths[-1] + outputdispersion / 2, outputwavelengths.size + 1) outputfluxes = interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function) return (outputwavelengths, outputfluxes) def rebin(inputwavelengths, inputfluxes, outputwavelengths, outside=None, function='spline', ratio=False): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] outputedges = np.empty(outputwavelengths.size + 1) outputedges[1:-1] = (outputwavelengths[1:] + outputwavelengths[:-1]) / 2 outputedges[0] = 3 * outputwavelengths[0] / 2 - outputwavelengths[1] / 2 outputedges[-1] = 3 * outputwavelengths[-1] / 2 - outputwavelengths[-2] / 2 return interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) def interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside=None, function='spline', ratio=False): if not ratio: fluxdensities = inputfluxes / inputdispersions.mean() else: fluxdensities = inputfluxes outputfluxes = np.ones(outputwavelengths.size) if outside != None: outputfluxes = outputfluxes * outside else: middle = (outputwavelengths[0] + outputwavelengths[-1]) / 2 firstnew = None lastnew = None if function == 'nearest': pixels = np.arange(0, inputfluxes.size) for newpixel in range(outputfluxes.size): if inputedges[0] <= outputwavelengths[newpixel] <= inputedges[-1]: outputlowerlimit = outputedges[newpixel] outputupperlimit = outputedges[newpixel + 1] outputfluxes[newpixel] = 0 below = inputedges[1:] < outputlowerlimit above = inputedges[:-1] > outputupperlimit ok = ~(below | above) for oldpixel in pixels[ok]: inputlowerlimit = inputedges[oldpixel] inputupperlimit = inputedges[oldpixel + 1] if inputlowerlimit >= outputlowerlimit and inputupperlimit <= outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * inputdispersions[oldpixel] elif inputlowerlimit < outputlowerlimit and inputupperlimit > outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * (outputupperlimit - outputlowerlimit) elif inputlowerlimit < outputlowerlimit and outputlowerlimit <= inputupperlimit <= outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * (inputupperlimit - outputlowerlimit) elif outputupperlimit >= inputlowerlimit >= outputlowerlimit and inputupperlimit > outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * (outputupperlimit - inputlowerlimit) if firstnew == None: firstnew = outputfluxes[newpixel] if ratio: outputfluxes[newpixel] = outputfluxes[newpixel] / (outputupperlimit - outputlowerlimit) elif outputwavelengths[newpixel] > inputwavelengths[-1] and lastnew == None: lastnew = outputfluxes[newpixel - 1] else: fluxspline = interpolate.UnivariateSpline(inputwavelengths, fluxdensities, s=0, k=3) for newpixel in range(outputfluxes.size): if inputedges[0] <= outputwavelengths[newpixel] <= inputedges[-1]: outputlowerlimit = outputedges[newpixel] outputupperlimit = outputedges[newpixel + 1] outputfluxes[newpixel] = fluxspline.integral(outputedges[newpixel], outputedges[newpixel + 1]) if firstnew == None: firstnew = outputfluxes[newpixel] if ratio: outputfluxes[newpixel] = outputfluxes[newpixel] / (outputupperlimit - outputlowerlimit) elif outputwavelengths[newpixel] > inputwavelengths[-1] and lastnew == None: lastnew = outputfluxes[newpixel - 1] if outside == None: for newpixel in range(outputfluxes.size): if outputwavelengths[newpixel] < inputwavelengths[0]: outputfluxes[newpixel] = firstnew elif outputwavelengths[newpixel] > inputwavelengths[-1]: outputfluxes[newpixel] = lastnew return outputfluxes def lineartolog(inputwavelengths, inputfluxes, outside=0, function='spline', ratio=False, logDispersion=0): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] if logDispersion: outputedges = np.arange(np.log10(inputedges[0]), np.log10(inputedges[-1]), logDispersion) outputwavelengths = (outputedges[:-1] + outputedges[1:]) / 2 outputedges = 10**outputedges outputwavelengths = 10**outputwavelengths else: outputedges = np.logspace(np.log10(inputedges[0]), np.log10(inputedges[-1]), inputedges.size) outputwavelengths = (outputedges[:-1] * outputedges[1:])**.5 return outputwavelengths, interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) def logtolinear(inputwavelengths, inputfluxes, outside=0, function='spline', ratio=False): logWavelengths = np.log10(inputwavelengths) inputedges = np.empty(logWavelengths.size + 1) inputedges[1:-1] = (logWavelengths[1:] + logWavelengths[:-1]) / 2 inputedges[0] = 3 * logWavelengths[0] / 2 - logWavelengths[1] / 2 inputedges[-1] = 3 * logWavelengths[-1] / 2 - logWavelengths[-2] / 2 inputedges = 10**inputedges inputdispersions = inputedges[1:] - inputedges[:-1] outputedges = np.linspace(inputedges[0], inputedges[-1], inputedges.size) outputwavelengths = (outputedges[:-1] + outputedges[1:]) / 2 return outputwavelengths, interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) #plt.show()
bsd-3-clause
mikechan0731/tunnel_calculation
forTR_ver4.py
1
12948
# C:\Python27\Scripts # -*- coding: utf-8 -*- # Author : MikeChan # Email : [email protected] import pandas as pd import numpy as np from scipy import optimize import xlrd, os from time import sleep, time import matplotlib.pyplot as plt import FileDialog #===== helper func. ===== def draw_parsley_ver4(t=0.05): print " " *2 + " " + " _ " + " " + " " *2 sleep(t) print " _/\_ " *2 + " " + " |_| " + " " + " _/\_ " *2 sleep(t) print " __\ /__ " *2 + " " + " |:| " + " " + " __\ /__ " *2 sleep(t) print " <_ _> " *2 + " " + " |:| " + " " + " <_ _> " *2 sleep(t) print " |/ )\| " *2 + " " + " \:/ " + " " + " |/ )\| " *2 sleep(t) print " / " *2 + " " + " | " + " " + " / " *2 sleep(t) print u" = = = = = = = = = = = = = = = = = = = = = = = = = = = " sleep(t) print u" || 香菜轉檔(加香腸) version 4.0 || " sleep(t) print u" = = = = = = = = = = = = = = = = = = = = = = = = = = = " def draw_parsley_ver3(t=0.05): print " _/\_ " *5 sleep(t) print " __\ /__ " *5 sleep(t) print " <_ _> " *5 sleep(t) print " |/ )\| " *5 sleep(t) print " / " *5 sleep(t) print u" = = = = = = = = = = = = = = = = = = = = = = = = = = = " sleep(t) print u" || 香菜轉檔 version 4.0 || " sleep(t) print u" = = = = = = = = = = = = = = = = = = = = = = = = = = = " def draw_parsley_ver2(t=0.05): #===== draw terminal ===== print u" .k. " sleep(t) print u" 2 " sleep(t) print u" U7 u@r " sleep(t) print u" :MNvGE@EU 7.LNO " sleep(t) print u" OMJXGOG@ .@G8Gui5L " sleep(t) print u" r@O8kr. M8kvYNOPYi " sleep(t) print u" , i [email protected]@GXSSNEZXM@O. " sleep(t) print u" ri@@@7 LJ..N@FvvUNNqZujBNj5. " sleep(t) print u" .LqM0X0@@r v :i @GP52:OOOL " sleep(t) print u" @@@@B8MMNEMGEi:@ . qMNM@q " sleep(t) print u" uJuGqvr825@@@@@ . E1v J:Pk@J iUL " sleep(t) print u" .F1121OM@:;@@@, .@ :BkSq5vYBOLv@ur " sleep(t) print u" 8@@@M8ZNM@0 Y, Mu rMFkuS001vS8SMZ " sleep(t) print u" :J@B0BOOE7 LMv k@8FuPXkSPZGM1 " sleep(t) print u" M@@@G 7Nr7@5NGOEXSur : " sleep(t) print u" P@F rGMNkjqPO MO;iMNXN0Fi2SEMU: " sleep(t) print u" :@051S1jFY51.5U5UkqZqF5kv " sleep(t) print u" :@MOOqBB vGqEE8PkPqFu7 " sleep(t) print u" 58@@: rq@@@@EOkFq0OZ " sleep(t) print u" i: :i@0:@@5ZBB@O " sleep(t) print u" ,ui2k " sleep(t) print u" = = = = = = = = = = = = = = = = = = = = = = = = = = = " sleep(t) print u" || 香菜轉檔 version 3.0 || " sleep(t) print u" = = = = = = = = = = = = = = = = = = = = = = = = = = = " sleep(t) def read_dir_file(path): print u"共 %d 筆檔案" % len(os.listdir(path.rstrip())) count = 0 print os.listdir(path.rstrip()) for f in os.listdir(path.rstrip()): count += 1 read_no_title_data_and_generate_center_file(path.rstrip().rstrip()+ "\\" + f) calc_r_and_theta_from_file(path.rstrip().rstrip()+ "\\" + f) transfrom_single_file(path.rstrip().rstrip()+ "\\" + f) print u"第 %d 筆檔案完成." %count return def circle_fit(lidar_abs_e_arr, lidar_abs_n_arr): def calc_R(x,y, xc, yc): """ calculate the distance of each 2D points from the center (xc, yc) """ return np.sqrt((x-xc)**2 + (y-yc)**2) def f(c, x, y): """ calculate the algebraic distance between the data points and the mean circle centered at c=(xc, yc) """ Ri = calc_R(x, y, *c) return Ri - Ri.mean() def leastsq_circle(x,y): # coordinates of the barycenter x_m = np.mean(x) y_m = np.mean(y) center_estimate = x_m, y_m center, ier = optimize.leastsq(f, center_estimate, args=(x,y)) xc, yc = center Ri = calc_R(x, y, *center) R = Ri.mean() residu = np.sum((Ri - R)**2) return xc, yc, R, residu xc,yc,R,residu = leastsq_circle(lidar_abs_e_arr, lidar_abs_n_arr) return xc,yc,R,residu def read_no_title_data_and_generate_center_file(file_name): print u"讀取無標題檔案..." ori_f = pd.read_excel(file_name, header=None) new_df = pd.DataFrame({"lidar_e": ori_f[0],"lidar_n": ori_f[1],"lidar_z": ori_f[2]}) new_df_lenth = new_df["lidar_e"].size if new_df_lenth >= 10000: fit_len = 10000 else: fit_len = new_df_lenth # 取全部裡面隨機數量的點雲 lidar_for_fit = new_df.sample(n=fit_len) tunnel_z = lidar_for_fit['lidar_z'].mean() print u"計算擬合圓心中..." xc,yc,R,residu = circle_fit(lidar_for_fit['lidar_e'], lidar_for_fit['lidar_n']) center_df = pd.DataFrame({'tunnel_e': xc, 'tunnel_n':yc, 'tunnel_z': tunnel_z},index=[0]) print u"擬合圓心計算完成." all_df = pd.concat([new_df,center_df], axis=1) all_df.to_csv('%s_FIT.csv' %file_name.rstrip(),index=False) print u"_FIT.csv 產出." def calc_r_and_theta_from_file(file_name): print u"_FITcsv 檔案讀取中..." ori_f = pd.read_csv('%s_FIT.csv' %file_name.rstrip()) print u"計算角度與半徑..." data_length = len(ori_f["lidar_e"]) print u"共 %d 筆資料準備計算."%(data_length) tunnel_e = ori_f['tunnel_e'][0] tunnel_n = ori_f['tunnel_n'][0] tunnel_z = ori_f['tunnel_z'][0] r_theta_dict = {'radius':[float(i) for i in range(data_length)], 'theta':[float(i) for i in range(data_length)]} r_theta_df = pd.DataFrame(r_theta_dict) #print r_theta_df.head() # create dataframe likes: # redius theta # 0 0.0 0.0 # 1 1.0 1.0 # 2 2.0 2.0 print u"計算 radius...." # 計算對應 index 的 radius r_theta_df['radius'] = ( (ori_f['lidar_e'] - tunnel_e)**2 + (ori_f['lidar_n'] - tunnel_n)**2 ) ** 0.5 #print r_theta_df.head() # enter dataframe likes: # radius theta # 0 5.425958 0.0 # 1 5.442800 1.0 # 2 5.438896 2.0 # 3 5.439481 3.0 print u"radius 計算完畢." print u"計算 theta..." for i in range(data_length): if i%10000 ==0: print u"共 %d 筆完成尚餘 %d 筆."% (i, data_length-i) x = float(ori_f['lidar_e'][i] - tunnel_e) y = float(ori_f['lidar_n'][i] - tunnel_n) r = float(r_theta_df['radius'][i]) if x == 0 and y ==0: # 點雲為圓心 r_theta_df['theta'][i] = 'nan' elif x == 0 and y > 0: # x=0 y>0 r_theta_df['theta'][i] = 0 elif x == 0 and y < 0: # x=0 y<0 r_theta_df['theta'][i] = 180 elif x > 0 and y== 0: # x>0 y=0 r_theta_df['theta'][i] = 90 elif x < 0 and y == 0: # x<0 y=0 r_theta_df['theta'][i] = 270 # 1st quadrant elif x > 0 and y > 0: i_theta = np.rad2deg(np.arctan(np.abs(y)/np.abs(x))) r_theta_df['theta'][i] = 90 - i_theta # 2nd quadrant elif x > 0 and y < 0: i_theta = np.rad2deg(np.arctan(np.abs(y)/np.abs(x))) r_theta_df['theta'][i] = i_theta + 90.0 # 3rd quadrant elif x < 0 and y < 0: i_theta = np.rad2deg(np.arctan(np.abs(y)/np.abs(x))) r_theta_df['theta'][i] = (90- i_theta) + 180.0 # 4th quadrant elif x < 0 and y > 0: i_theta = np.rad2deg(np.arctan(np.abs(y)/np.abs(x))) r_theta_df['theta'][i] = i_theta +270.0 else: print "data error %s: row %d can't be classify by quadrant, deg=nan." %(file_name, i+2) r_theta_df['theta'][i] = i_theta with open("Error_Log.txt","a+") as err_log: err_log.write("Data Error %s: row %d can't be classify by quadrant, deg=nan.\n" %(file_name, i+2)) print u"theta 計算完畢." df_all = pd.concat([ori_f,r_theta_df], axis=1) print u"_RESULT.csv 產出." df_all.to_csv('%s_RESULT.csv' %file_name.rstrip(), index=False) return def transfrom_single_file(file_name): print u"計算每一度的平均半徑..." #===== open file ===== ori_f = pd.read_csv('%s_RESULT.csv' %file_name.rstrip()) #===== variable ===== data_len = ori_f["radius"].size arr = [] #===== helper func. ===== data_dict = {} for i in range(360): data_dict[str("%s")%i] = [] #===== main ===== for i in range(data_len): try: now_theta = int(round(ori_f[u'theta'][i])) except: print u"!!DATA MISSING!!%s: missing at row %d " %(file_name, i+2) with open("Error_Log.txt","a+") as err_log: print >>err_log, u"!!DATA MISSING!!%s: missing at row %d " %(file_name, i+2) continue if now_theta ==360: data_dict['0'].append(ori_f['radius'][i]) else: data_dict[str(now_theta)].append(ori_f['radius'][i]) for key in data_dict: if len(data_dict[key]) ==0: deg_meanR = 'nan' else: deg_meanR = float(sum(data_dict[key])/len(data_dict[key])) arr.append([int(key), int(len(data_dict[key])), float(deg_meanR)]) deg = [i[0] for i in arr] num = [i[1] for i in arr] deg_meanR =[i[2] for i in arr] df = pd.DataFrame({'deg': deg, 'num': num, 'deg_meanR': deg_meanR}) sorted_df = df.sort_values(by='deg') print u"平均半徑計算完畢." #print sorted_df.head() sorted_df.loc[sorted_df['num'] <=10, 'deg_meanR' ] = '' new_fn = file_name sorted_df.to_csv('%s_ANSWER.csv' %new_fn.rstrip(), index=False) print u"_ANSWER.CSV 產出." return def plot_or_not(file_name): answer_data = pd.read_csv(file_name.rstrip()) theta = np.np.deg2rad(answer_data['deg'] ) radii = answer_data['deg_meanR'] ax = plt.subplot(111, projection='polar') ax.plot(theta, radii, color='r', linewidth='3') ax.grid(True) ax.set_rmax(6.0) ax.set_rmin(4.0) ax.set_theta_zero_location('N') ax.set_theta_direction('clockwise') plt.show() #===== main ===== def main(): STATUS_KEY = -1 # -1=> 剛啟動; 1=>輸入為檔案; 2=> 輸入為資料夾 ; draw_parsley_ver4() while 1: read_input_path = raw_input(u"Input File dir or name: ") if read_input_path == "pp": print u"開啟繪圖模式" STATUS_KEY = 9 break elif os.path.isdir(read_input_path): print u"取得資料夾位置,進行批次處理作業." STATUS_KEY = 2 break elif os.path.isfile(read_input_path): print u"取得檔案位置,進行單一檔案轉換." STATUS_KEY = 1 break else: print u"輸入錯誤,請重新選擇." continue if STATUS_KEY == 1: print u"計算中..." read_no_title_data_and_generate_center_file(read_input_path) calc_r_and_theta_from_file(read_input_path) transfrom_single_file(read_input_path) print u"完成." elif STATUS_KEY == 2: read_dir_file(read_input_path) print u"全部完成." elif STATUS_KEY == 9: draw_data_name = raw_input("Input _ANSWER.csv file: ") try: plot_or_not(draw_data_name) print u"完成." except: print u"檔案錯誤,處罰你等待 3 秒,好好思考人生吧!" sleep(3) exit() else: print "Error operation!" if __name__ == "__main__": main()
apache-2.0
jmsolano/picongpu
examples/ThermalTest/tools/dispersion.py
11
2689
#!/usr/bin/env python # # Copyright 2013 Heiko Burau, Axel Huebl # # This file is part of PIConGPU. # # PIConGPU is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PIConGPU is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with PIConGPU. # If not, see <http://www.gnu.org/licenses/>. # #___________P A R A M E T E R S___________ omega_plasma = 6.718e13 # SI unit: 1/s v_th = 1.0e8 # SI unit: m/s c = 2.9979e8 # SI unit: m/s delta_t = 2.5e-15 # SI unit: s delta_z = c * delta_t # SI unit: m #_________________________________________ from numpy import * from matplotlib import pyplot as plt from matplotlib.ticker import FormatStrFormatter data_trans = loadtxt("eField_zt_trans.dat") data_long = loadtxt("eField_zt_long.dat") N_z = len(data_trans[:,0]) N_t = len(data_trans[0,:]) omega_max = pi*(N_t-1)/(N_t*delta_t)/omega_plasma k_max = pi * (N_z-1)/(N_z*delta_z) # __________________transversal plot______________________ ax = plt.subplot(211, autoscale_on=False, xlim=(-k_max, k_max), ylim=(-1, 10)) ax.xaxis.set_major_formatter(FormatStrFormatter('%2.2e')) ax.yaxis.set_major_formatter(FormatStrFormatter('%0.0f')) plt.xlabel(r"$k [1/m]$") plt.ylabel(r"$\omega / \omega_{pe} $") data_trans = fft.fftshift(fft.fft2(data_trans)) plt.imshow(abs(data_trans), extent=(-k_max, k_max, -omega_max, omega_max), aspect='auto', interpolation='nearest') plt.colorbar() # plot analytical dispersion relation x = linspace(-k_max, k_max, 200) y = sqrt(c**2 * x**2 + omega_plasma**2)/omega_plasma plt.plot(x, y, 'r--', linewidth=1) # ___________________longitudinal plot_____________________ ax = plt.subplot(212, autoscale_on=False, xlim=(-k_max, k_max), ylim=(-1, 10)) ax.xaxis.set_major_formatter(FormatStrFormatter('%2.2e')) ax.yaxis.set_major_formatter(FormatStrFormatter('%0.0f')) plt.xlabel(r"$k [1/m]$") plt.ylabel(r"$\omega / \omega_{pe} $") data_long = fft.fftshift(fft.fft2(data_long)) plt.imshow(abs(data_long), extent=(-k_max, k_max, -omega_max, omega_max), aspect='auto', interpolation='nearest') plt.colorbar() # plot analytical dispersion relation x = linspace(-k_max, k_max, 200) y = sqrt(3 * v_th**2 * x**2 + omega_plasma**2)/omega_plasma plt.plot(x, y, 'r--', linewidth=1) plt.show()
gpl-3.0
chenyyx/scikit-learn-doc-zh
examples/en/feature_selection/plot_select_from_model_boston.py
146
1527
""" =================================================== Feature selection using SelectFromModel and LassoCV =================================================== Use SelectFromModel meta-transformer along with Lasso to select the best couple of features from the Boston dataset. """ # Author: Manoj Kumar <[email protected]> # License: BSD 3 clause print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_boston from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import LassoCV # Load the boston dataset. boston = load_boston() X, y = boston['data'], boston['target'] # We use the base estimator LassoCV since the L1 norm promotes sparsity of features. clf = LassoCV() # Set a minimum threshold of 0.25 sfm = SelectFromModel(clf, threshold=0.25) sfm.fit(X, y) n_features = sfm.transform(X).shape[1] # Reset the threshold till the number of features equals two. # Note that the attribute can be set directly instead of repeatedly # fitting the metatransformer. while n_features > 2: sfm.threshold += 0.1 X_transform = sfm.transform(X) n_features = X_transform.shape[1] # Plot the selected two features from X. plt.title( "Features selected from Boston using SelectFromModel with " "threshold %0.3f." % sfm.threshold) feature1 = X_transform[:, 0] feature2 = X_transform[:, 1] plt.plot(feature1, feature2, 'r.') plt.xlabel("Feature number 1") plt.ylabel("Feature number 2") plt.ylim([np.min(feature2), np.max(feature2)]) plt.show()
gpl-3.0
themrmax/scikit-learn
examples/feature_selection/plot_feature_selection_pipeline.py
58
1049
""" ================== Pipeline Anova SVM ================== Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the selected features. """ from sklearn import svm from sklearn.datasets import samples_generator from sklearn.feature_selection import SelectKBest, f_regression from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report print(__doc__) # import some data to play with X, y = samples_generator.make_classification( n_features=20, n_informative=3, n_redundant=0, n_classes=4, n_clusters_per_class=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) # ANOVA SVM-C # 1) anova filter, take 3 best ranked features anova_filter = SelectKBest(f_regression, k=3) # 2) svm clf = svm.SVC(kernel='linear') anova_svm = make_pipeline(anova_filter, clf) anova_svm.fit(X_train, y_train) y_pred = anova_svm.predict(X_test) print(classification_report(y_test, y_pred))
bsd-3-clause
rileyrustad/pdxapartmentfinder
pipeline/crawler.py
1
2738
# -*- coding: utf-8 -*- """ Created on Thu Jan 7 10:59:34 2016 @author: Riley Rustad <[email protected]> This Script is designed to scrape data from Multnomah County apartment ads from Craigslist. """ # ============================================================================= # Imports import numpy as np import os.path from bs4 import BeautifulSoup import requests import time import random import datetime import json from pandas import DataFrame import scrape import status from datetime import date, datetime # ============================================================================= filepath = 'data/MasterApartmentData.json' # Check if file exists, and if it does, load that data if os.path.isfile(filepath) == True: f = open(filepath) my_dict = json.load(f) f.close() # If the file doesn't exist, create that file. else: f = open(filepath,'w') f.close() my_dict = {} print str(len(my_dict) )+" existing scraped listings." def merge_two_dicts(x, y): '''Merges two dictionaries together''' z = x.copy() z.update(y) return z unexplored_id_numbers = [] newdict = {} page_numbers = ['']+["?s='"+str(x+1)+'00' for x in range(24)] print "Searching for new listings..." # Collect all of the unexplored ID numbers. for it, page in enumerate(page_numbers): unexplored_id_numbers, my_dict = scrape.numbers(unexplored_id_numbers,my_dict,page) status.printProgress((it+1), len(page_numbers), prefix = 'Progress:', suffix = 'Complete', decimals = 2, barLength = 25) # Sleep at random intervals so that craigslist doesn't disconnect time.sleep(random.randrange(1,2)) new_numbers = len(unexplored_id_numbers) print str(new_numbers)+" new listings found" print "" print "Scraping info from new listings..." # Scrape new listings while len(unexplored_id_numbers)>0: id_number = unexplored_id_numbers.pop(-1) it = new_numbers - len(unexplored_id_numbers) status.printProgress(it, new_numbers, prefix = 'Progress:', suffix = 'Complete', decimals = 2, barLength = 50) # Get info for listing newdict = scrape.info(id_number,newdict) # Sleep at random intervals so that craigslist doesn't disconnect time.sleep(random.randrange(1, 2)) # Save the Data print str(len(newdict))+' new listings scraped' TodayData = open('data/TodaysData/TodaysData'+str(date)+'.json',"w") MasterData = open('data/MasterApartmentData.json',"w") json.dump(newdict,TodayData) my_dict = merge_two_dicts(my_dict,newdict) json.dump(my_dict, MasterData) print "Total number of listings scraped is now "+str(len(my_dict)) TodayData.close() MasterData.close()
mit
logpai/logparser
logparser/Drain/Drain.py
1
12453
""" Description : This file implements the Drain algorithm for log parsing Author : LogPAI team License : MIT """ import re import os import numpy as np import pandas as pd import hashlib from datetime import datetime class Logcluster: def __init__(self, logTemplate='', logIDL=None): self.logTemplate = logTemplate if logIDL is None: logIDL = [] self.logIDL = logIDL class Node: def __init__(self, childD=None, depth=0, digitOrtoken=None): if childD is None: childD = dict() self.childD = childD self.depth = depth self.digitOrtoken = digitOrtoken class LogParser: def __init__(self, log_format, indir='./', outdir='./result/', depth=4, st=0.4, maxChild=100, rex=[], keep_para=True): """ Attributes ---------- rex : regular expressions used in preprocessing (step1) path : the input path stores the input log file name depth : depth of all leaf nodes st : similarity threshold maxChild : max number of children of an internal node logName : the name of the input file containing raw log messages savePath : the output path stores the file containing structured logs """ self.path = indir self.depth = depth - 2 self.st = st self.maxChild = maxChild self.logName = None self.savePath = outdir self.df_log = None self.log_format = log_format self.rex = rex self.keep_para = keep_para def hasNumbers(self, s): return any(char.isdigit() for char in s) def treeSearch(self, rn, seq): retLogClust = None seqLen = len(seq) if seqLen not in rn.childD: return retLogClust parentn = rn.childD[seqLen] currentDepth = 1 for token in seq: if currentDepth >= self.depth or currentDepth > seqLen: break if token in parentn.childD: parentn = parentn.childD[token] elif '<*>' in parentn.childD: parentn = parentn.childD['<*>'] else: return retLogClust currentDepth += 1 logClustL = parentn.childD retLogClust = self.fastMatch(logClustL, seq) return retLogClust def addSeqToPrefixTree(self, rn, logClust): seqLen = len(logClust.logTemplate) if seqLen not in rn.childD: firtLayerNode = Node(depth=1, digitOrtoken=seqLen) rn.childD[seqLen] = firtLayerNode else: firtLayerNode = rn.childD[seqLen] parentn = firtLayerNode currentDepth = 1 for token in logClust.logTemplate: #Add current log cluster to the leaf node if currentDepth >= self.depth or currentDepth > seqLen: if len(parentn.childD) == 0: parentn.childD = [logClust] else: parentn.childD.append(logClust) break #If token not matched in this layer of existing tree. if token not in parentn.childD: if not self.hasNumbers(token): if '<*>' in parentn.childD: if len(parentn.childD) < self.maxChild: newNode = Node(depth=currentDepth + 1, digitOrtoken=token) parentn.childD[token] = newNode parentn = newNode else: parentn = parentn.childD['<*>'] else: if len(parentn.childD)+1 < self.maxChild: newNode = Node(depth=currentDepth+1, digitOrtoken=token) parentn.childD[token] = newNode parentn = newNode elif len(parentn.childD)+1 == self.maxChild: newNode = Node(depth=currentDepth+1, digitOrtoken='<*>') parentn.childD['<*>'] = newNode parentn = newNode else: parentn = parentn.childD['<*>'] else: if '<*>' not in parentn.childD: newNode = Node(depth=currentDepth+1, digitOrtoken='<*>') parentn.childD['<*>'] = newNode parentn = newNode else: parentn = parentn.childD['<*>'] #If the token is matched else: parentn = parentn.childD[token] currentDepth += 1 #seq1 is template def seqDist(self, seq1, seq2): assert len(seq1) == len(seq2) simTokens = 0 numOfPar = 0 for token1, token2 in zip(seq1, seq2): if token1 == '<*>': numOfPar += 1 continue if token1 == token2: simTokens += 1 retVal = float(simTokens) / len(seq1) return retVal, numOfPar def fastMatch(self, logClustL, seq): retLogClust = None maxSim = -1 maxNumOfPara = -1 maxClust = None for logClust in logClustL: curSim, curNumOfPara = self.seqDist(logClust.logTemplate, seq) if curSim>maxSim or (curSim==maxSim and curNumOfPara>maxNumOfPara): maxSim = curSim maxNumOfPara = curNumOfPara maxClust = logClust if maxSim >= self.st: retLogClust = maxClust return retLogClust def getTemplate(self, seq1, seq2): assert len(seq1) == len(seq2) retVal = [] i = 0 for word in seq1: if word == seq2[i]: retVal.append(word) else: retVal.append('<*>') i += 1 return retVal def outputResult(self, logClustL): log_templates = [0] * self.df_log.shape[0] log_templateids = [0] * self.df_log.shape[0] df_events = [] for logClust in logClustL: template_str = ' '.join(logClust.logTemplate) occurrence = len(logClust.logIDL) template_id = hashlib.md5(template_str.encode('utf-8')).hexdigest()[0:8] for logID in logClust.logIDL: logID -= 1 log_templates[logID] = template_str log_templateids[logID] = template_id df_events.append([template_id, template_str, occurrence]) df_event = pd.DataFrame(df_events, columns=['EventId', 'EventTemplate', 'Occurrences']) self.df_log['EventId'] = log_templateids self.df_log['EventTemplate'] = log_templates if self.keep_para: self.df_log["ParameterList"] = self.df_log.apply(self.get_parameter_list, axis=1) self.df_log.to_csv(os.path.join(self.savePath, self.logName + '_structured.csv'), index=False) occ_dict = dict(self.df_log['EventTemplate'].value_counts()) df_event = pd.DataFrame() df_event['EventTemplate'] = self.df_log['EventTemplate'].unique() df_event['EventId'] = df_event['EventTemplate'].map(lambda x: hashlib.md5(x.encode('utf-8')).hexdigest()[0:8]) df_event['Occurrences'] = df_event['EventTemplate'].map(occ_dict) df_event.to_csv(os.path.join(self.savePath, self.logName + '_templates.csv'), index=False, columns=["EventId", "EventTemplate", "Occurrences"]) def printTree(self, node, dep): pStr = '' for i in range(dep): pStr += '\t' if node.depth == 0: pStr += 'Root' elif node.depth == 1: pStr += '<' + str(node.digitOrtoken) + '>' else: pStr += node.digitOrtoken print(pStr) if node.depth == self.depth: return 1 for child in node.childD: self.printTree(node.childD[child], dep+1) def parse(self, logName): print('Parsing file: ' + os.path.join(self.path, logName)) start_time = datetime.now() self.logName = logName rootNode = Node() logCluL = [] self.load_data() count = 0 for idx, line in self.df_log.iterrows(): logID = line['LineId'] logmessageL = self.preprocess(line['Content']).strip().split() # logmessageL = filter(lambda x: x != '', re.split('[\s=:,]', self.preprocess(line['Content']))) matchCluster = self.treeSearch(rootNode, logmessageL) #Match no existing log cluster if matchCluster is None: newCluster = Logcluster(logTemplate=logmessageL, logIDL=[logID]) logCluL.append(newCluster) self.addSeqToPrefixTree(rootNode, newCluster) #Add the new log message to the existing cluster else: newTemplate = self.getTemplate(logmessageL, matchCluster.logTemplate) matchCluster.logIDL.append(logID) if ' '.join(newTemplate) != ' '.join(matchCluster.logTemplate): matchCluster.logTemplate = newTemplate count += 1 if count % 1000 == 0 or count == len(self.df_log): print('Processed {0:.1f}% of log lines.'.format(count * 100.0 / len(self.df_log))) if not os.path.exists(self.savePath): os.makedirs(self.savePath) self.outputResult(logCluL) print('Parsing done. [Time taken: {!s}]'.format(datetime.now() - start_time)) def load_data(self): headers, regex = self.generate_logformat_regex(self.log_format) self.df_log = self.log_to_dataframe(os.path.join(self.path, self.logName), regex, headers, self.log_format) def preprocess(self, line): for currentRex in self.rex: line = re.sub(currentRex, '<*>', line) return line def log_to_dataframe(self, log_file, regex, headers, logformat): """ Function to transform log file to dataframe """ log_messages = [] linecount = 0 with open(log_file, 'r') as fin: for line in fin.readlines(): try: match = regex.search(line.strip()) message = [match.group(header) for header in headers] log_messages.append(message) linecount += 1 except Exception as e: pass logdf = pd.DataFrame(log_messages, columns=headers) logdf.insert(0, 'LineId', None) logdf['LineId'] = [i + 1 for i in range(linecount)] return logdf def generate_logformat_regex(self, logformat): """ Function to generate regular expression to split log messages """ headers = [] splitters = re.split(r'(<[^<>]+>)', logformat) regex = '' for k in range(len(splitters)): if k % 2 == 0: splitter = re.sub(' +', '\\\s+', splitters[k]) regex += splitter else: header = splitters[k].strip('<').strip('>') regex += '(?P<%s>.*?)' % header headers.append(header) regex = re.compile('^' + regex + '$') return headers, regex def get_parameter_list(self, row): template_regex = re.sub(r"<.{1,5}>", "<*>", row["EventTemplate"]) if "<*>" not in template_regex: return [] template_regex = re.sub(r'([^A-Za-z0-9])', r'\\\1', template_regex) template_regex = re.sub(r'\\ +', r'\s+', template_regex) template_regex = "^" + template_regex.replace("\<\*\>", "(.*?)") + "$" parameter_list = re.findall(template_regex, row["Content"]) parameter_list = parameter_list[0] if parameter_list else () parameter_list = list(parameter_list) if isinstance(parameter_list, tuple) else [parameter_list] return parameter_list
mit
phobson/statsmodels
statsmodels/datasets/co2/data.py
3
3045
#! /usr/bin/env python """Mauna Loa Weekly Atmospheric CO2 Data""" __docformat__ = 'restructuredtext' COPYRIGHT = """This is public domain.""" TITLE = """Mauna Loa Weekly Atmospheric CO2 Data""" SOURCE = """ Data obtained from http://cdiac.ornl.gov/trends/co2/sio-keel-flask/sio-keel-flaskmlo_c.html Obtained on 3/15/2014. Citation: Keeling, C.D. and T.P. Whorf. 2004. Atmospheric CO2 concentrations derived from flask air samples at sites in the SIO network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. """ DESCRSHORT = """Atmospheric CO2 from Continuous Air Samples at Mauna Loa Observatory, Hawaii, U.S.A.""" DESCRLONG = """ Atmospheric CO2 from Continuous Air Samples at Mauna Loa Observatory, Hawaii, U.S.A. Period of Record: March 1958 - December 2001 Methods: An Applied Physics Corporation (APC) nondispersive infrared gas analyzer was used to obtain atmospheric CO2 concentrations, based on continuous data (four measurements per hour) from atop intake lines on several towers. Steady data periods of not less than six hours per day are required; if no such six-hour periods are available on any given day, then no data are used that day. Weekly averages were calculated for most weeks throughout the approximately 44 years of record. The continuous data for year 2000 is compared with flask data from the same site in the graphics section.""" #suggested notes NOTE = """:: Number of observations: 2225 Number of variables: 2 Variable name definitions: date - sample date in YYMMDD format co2 - CO2 Concentration ppmv The data returned by load_pandas contains the dates as the index. """ import numpy as np from statsmodels.datasets import utils as du from os.path import dirname, abspath import pandas as pd def load(): """ Load the data and return a Dataset class instance. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() names = data.dtype.names return du.Dataset(data=data, names=names) def load_pandas(): data = load() # pandas <= 0.12.0 fails in the to_datetime regex on Python 3 index = pd.DatetimeIndex(start=data.data['date'][0].decode('utf-8'), periods=len(data.data), format='%Y%m%d', freq='W-SAT') dataset = pd.DataFrame(data.data['co2'], index=index, columns=['co2']) #NOTE: this is how I got the missing values in co2.csv #new_index = pd.DatetimeIndex(start='1958-3-29', end=index[-1], # freq='W-SAT') #data.data = dataset.reindex(new_index) data.data = dataset return data def _get_data(): filepath = dirname(abspath(__file__)) with open(filepath + '/co2.csv', 'rb') as f: data = np.recfromtxt(f, delimiter=",", names=True, dtype=['a8', float]) return data
bsd-3-clause
abhisg/scikit-learn
examples/cross_decomposition/plot_compare_cross_decomposition.py
128
4761
""" =================================== Compare cross decomposition methods =================================== Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the 'directions of covariance', i.e. the components of each datasets that explain the most shared variance between both datasets. This is apparent on the **scatterplot matrix** display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different components is weak: the point cloud is very spherical. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA ############################################################################### # Dataset based latent variables model n = 500 # 2 latents vars: l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X_train = X[:n / 2] Y_train = Y[:n / 2] X_test = X[n / 2:] Y_test = Y[n / 2:] print("Corr(X)") print(np.round(np.corrcoef(X.T), 2)) print("Corr(Y)") print(np.round(np.corrcoef(Y.T), 2)) ############################################################################### # Canonical (symmetric) PLS # Transform data # ~~~~~~~~~~~~~~ plsca = PLSCanonical(n_components=2) plsca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test) # Scatter plot of scores # ~~~~~~~~~~~~~~~~~~~~~~ # 1) On diagonal plot X vs Y scores on each components plt.figure(figsize=(12, 8)) plt.subplot(221) plt.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train") plt.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 1: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") plt.subplot(224) plt.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train") plt.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 2: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") # 2) Off diagonal plot components 1 vs 2 for X and Y plt.subplot(222) plt.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train") plt.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test") plt.xlabel("X comp. 1") plt.ylabel("X comp. 2") plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.subplot(223) plt.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train") plt.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test") plt.xlabel("Y comp. 1") plt.ylabel("Y comp. 2") plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)' % np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.show() ############################################################################### # PLS regression, with multivariate response, a.k.a. PLS2 n = 1000 q = 3 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) B = np.array([[1, 2] + [0] * (p - 2)] * q).T # each Yj = 1*X1 + 2*X2 + noize Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5 pls2 = PLSRegression(n_components=3) pls2.fit(X, Y) print("True B (such that: Y = XB + Err)") print(B) # compare pls2.coef_ with B print("Estimated B") print(np.round(pls2.coef_, 1)) pls2.predict(X) ############################################################################### # PLS regression, with univariate response, a.k.a. PLS1 n = 1000 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5 pls1 = PLSRegression(n_components=3) pls1.fit(X, y) # note that the number of compements exceeds 1 (the dimension of y) print("Estimated betas") print(np.round(pls1.coef_, 1)) ############################################################################### # CCA (PLS mode B with symmetric deflation) cca = CCA(n_components=2) cca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test)
bsd-3-clause
openmichigan/metrics_tools
openmichigan-metrics-pdf/ga_api_timeseries.py
1
20456
import sys import infofile import requests, json import get_material_links from pylab import * #? import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates from datetime import date, timedelta from apiclient.errors import HttpError from oauth2client.client import AccessTokenRefreshError import httplib2 from apiclient.discovery import build from oauth2client.client import flow_from_clientsecrets from oauth2client.file import Storage from oauth2client.tools import run # structural stuff, TODO # generalization; TODO def get_country(city_name): baseurl = "http://maps.googleapis.com/maps/api/geocode/json?address=%s&sensor=false" % city_name r = requests.get(baseurl) d = json.loads(r.text) if "country" in d["results"][0]["address_components"][-1]["types"]: country = d["results"][0]["address_components"][-1]["short_name"] else: country = d["results"][0]["address_components"][-2]["short_name"] return country class GoogleAnalyticsData(object): def __init__(self, days_back=30): self.days_back = days_back self.CLIENT_SECRETS = 'client_secrets.json' # helpful msg if it's missing self.MISSING_CLIENT_SECRETS_MSG = '%s is missing' % self.CLIENT_SECRETS self.paramlist = [int(infofile.profileid),infofile.pgpath] # should this be here or in overall file?? # flow object to be used if we need to authenticate (this remains a bit of a problem in some cases) self.FLOW = flow_from_clientsecrets(self.CLIENT_SECRETS, scope='https://www.googleapis.com/auth/analytics.readonly', message=self.MISSING_CLIENT_SECRETS_MSG) # a file to store the access token self.TOKEN_FILE_NAME = 'analytics.dat' # should be stored in a SECURE PLACE def proper_start_date(self): """Gets accurate date in YYYY-mm-dd format that is default 30 (or, however many specified) days earlier than current day""" d = date.today() - timedelta(days=self.days_back) return str(d) def prepare_credentials(self): # get existing creds storage = Storage(self.TOKEN_FILE_NAME) credentials = storage.get() # if existing creds are invalid and Run Auth flow # run method will store any new creds if credentials is None or credentials.invalid: credentials = run(self.FLOW, storage) return credentials def initialize_service(self): http = httplib2.Http() credentials = self.prepare_credentials() http = credentials.authorize(http) # authorize the http obj return build('analytics', 'v3', http=http) def deal_with_results(self, res): """Handles results gotten from API and formatted, plots them with matplotlib tools and saves plot img""" view_nums = [x[1] for x in res] # y axis date_strs = [mdates.datestr2num(x[0]) for x in res] fig, ax = plt.subplots(1) ax.plot_date(date_strs, view_nums, fmt="g-") fig.autofmt_xdate() ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') total = sum(view_nums) plt.title("%d total Course Views over past %s days" % (total, len(date_strs)-1)) # should get title of course #plt.text(3,3,"TESTING ADDING A STRING THING TO PLOT PDF") return fig def main(self): self.service = self.initialize_service() try: self.profile_id = self.paramlist[0] if self.profile_id: results = self.get_results(self.service, self.profile_id) res = self.return_results(results) except TypeError, error: print "There was an API error: %s " % (error) except HttpError, error: print "There was an API error: %s " % (error) except AccessTokenRefreshError: print "The credentials have been revoked or expired, please re-run app to reauthorize." except: print "Did you provide a profile id and a path as cli arguments? (Do you need to?) Try again." else: # should run if it did not hit an except clause return self.deal_with_results(res) def get_results(self, service, profile_id): # query = service.data().ga().get(ids='ga:%s' % profile_id, start_date='2010-03-01',end_date='2013-05-15',metrics='ga:pageviews',dimensions='ga:pagePath',filters='ga:pagePath==%s' % (sys.argv[2])) start = self.proper_start_date() # change to change num of days back end = str(date.today()) # return query.execute() return self.service.data().ga().get(ids='ga:%s' % (profile_id), start_date=start,end_date=end,metrics='ga:pageviews',dimensions='ga:date',sort='ga:date',filters='ga:pagePath==%s' % (self.paramlist[1])).execute()#(sys.argv[2])).execute() def return_results(self, results): if results: #date_views_tup = [(str(x[0][-4:-2])+"/"+str(x[0][-2:]),int(x[1])) for x in results.get('rows')] ## altered date strs # should be list of tuples of form: ("mm/dd", views) where views is int date_views_tup = [(str(x[0]), int(x[1])) for x in results.get('rows')] return date_views_tup else: print "No results found." return None def print_results(self, results): # print data nicely for the user (may also want to pipe to a file) ## this turned into a testing fxn -- TODO decide whether/what printing is needed and change to class __str__ method if results: print "Profile: %s" % results.get('profileInfo').get('profileName') #print 'Total Pageviews: %s' % results.get('rows')[0][1] for r in results.get('rows'): print r else: print "No results found." # for modularity -- poss look @ Python print-results examples (e.g. by country or whatever) todo class GABulkDownloads_Views(GoogleAnalyticsData): def __init__(self, days_back=30): self.days_back = days_back self.CLIENT_SECRETS = 'client_secrets.json' # helpful msg if it's missing self.MISSING_CLIENT_SECRETS_MSG = '%s is missing' % self.CLIENT_SECRETS ## TODO need to handle non-bulk-download pages appropriately # if self.get_bulk_dl_link() != 0: # self.paramlist = [int(infofile.profileid),self.get_bulk_dl_link()] # needs error checking TODO # else: # self.paramlist = [int(infofile.profileid)] self.paramlist = [int(infofile.profileid),self.get_bulk_dl_link()] # needs error checking TODO self.paramlist_second = [int(infofile.profileid), infofile.pgpath] self.FLOW = flow_from_clientsecrets(self.CLIENT_SECRETS, scope='https://www.googleapis.com/auth/analytics.readonly', message=self.MISSING_CLIENT_SECRETS_MSG) self.TOKEN_FILE_NAME = 'analytics.dat' def get_bulk_dl_link(self): url = None try: import mechanize br = mechanize.Browser() except: print "Dependency (Mechanize) not installed. Try again." return None else: response = br.open("http://open.umich.edu%s" % infofile.pgpath) for link in br.links(): if "Download all" in link.text: # depends on current page lang/phrasing response = br.follow_link(link) url = response.geturl() # else: # print "No bulk download available" # #return 0 if url: return url[len("http://open.umich.edu"):] # if no Download All, error -- needs checking + graceful handling else: return 0 def get_results_other(self, service, profile_id): # query = service.data().ga().get(ids='ga:%s' % profile_id, start_date='2010-03-01',end_date='2013-05-15',metrics='ga:pageviews',dimensions='ga:pagePath',filters='ga:pagePath==%s' % (sys.argv[2])) start = self.proper_start_date() # change to change num of days back end = str(date.today()) # return query.execute() return self.service.data().ga().get(ids='ga:%s' % (profile_id), start_date=start,end_date=end,metrics='ga:pageviews',dimensions='ga:date',sort='ga:date',filters='ga:pagePath==%s' % (self.paramlist_second[1])).execute()#(sys.argv[2])).execute() def deal_with_results(self, res): """Handles results gotten from API and formatted, plots them with matplotlib tools and saves plot img""" view_nums = [x[1] for x in res] # y axis view_nums_orig = [x[1] for x in self.return_results(self.get_results_other(self.service,self.profile_id))] ## let's see date_strs = [mdates.datestr2num(x[0]) for x in res] # x axis fig, ax = plt.subplots(1) ax.plot_date(date_strs, view_nums, fmt="b-", label="Downloads") ax.plot_date(date_strs, view_nums_orig, fmt="g-", label="Views") fig.autofmt_xdate() ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') #total = sum(view_nums) plt.legend(loc='upper left') plt.title("Course Views vs Bulk Material Downloads over past %s days" % (len(date_strs)-1)) # should get title of course #savefig('test4.png') return fig class GABulkDownloads(GABulkDownloads_Views): def deal_with_results(self, res): """Handles results gotten from API and formatted, plots them with matplotlib tools and saves plot img""" view_nums = [x[1] for x in res] # y axis date_strs = [mdates.datestr2num(x[0]) for x in res] # x axis fig, ax = plt.subplots(1) ax.plot_date(date_strs, view_nums, fmt="b-") fig.autofmt_xdate() ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') total = sum(view_nums) plt.title("%d total Bulk Course Material Downloads over past %s days" % (total, len(date_strs)-1)) # should get title of course #savefig('test5.png') #fig.show() return fig class GA_Text_Info(GABulkDownloads_Views): # depends on the main fxn in GABulkDownloads_Views -- this calls deal_with_results() def return_info(self): """Handles results gotten from API and formatted, returns data""" #res = self.get_results() self.service = self.initialize_service() try: self.profile_id = self.paramlist[0] if self.profile_id: results = self.get_results(self.service, self.profile_id) res = self.return_results(results) else: print "Profile ID missing in return_info fxn" except: print "Error occurred." else: view_nums = [x[1] for x in res] # y axis view_nums_orig = [x[1] for x in self.return_results(self.get_results_other(self.service,self.profile_id))] ## let's see total_dls = sum(view_nums) total_views = sum(view_nums_orig) top_countries = self.get_more_info() #top_resources = self.indiv_dl_nums() # get more info with other queries? TODO self.info_dict = {'Across time span':self.days_back, 'Total Page Views': total_views, 'Total Bulk Downloads': total_dls, 'Top Nations': top_countries} #, 'Top Resources':top_resources} return self.info_dict # making this a class attribute so I can use it below easily def deal_with_results(self, res): ## to be called in main -- do plots here basically ind_res = res #self.resources_results # holding it in class structure for easy access :/ ugly terribleness a bit files = [str(x[0].encode('utf-8')) for x in ind_res] nums = [int(x[3].encode('utf-8')) for x in ind_res] fig, ax = plt.subplots(1) ax.plot(files, nums) # this as line plot doesn't make sense, each is a different plotted line, so this should be bar or should get individual bits over time (and plot each by date obviously) plt.title("bad line chart of individual resources") return fig # if get_results itself changes, will have to change main() as well because return_results() depends on this being as is NOTE TODO def get_results(self, service, profile_id): # query = service.data().ga().get(ids='ga:%s' % profile_id, start_date='2010-03-01',end_date='2013-05-15',metrics='ga:pageviews',dimensions='ga:pagePath',filters='ga:pagePath==%s' % (sys.argv[2])) start = self.proper_start_date() # change to change num of days back end = str(date.today()) # return query.execute() if self.get_bulk_dl_link() != 0: return self.service.data().ga().get(ids='ga:%s' % (profile_id), start_date=start,end_date=end,metrics='ga:pageviews',dimensions='ga:date',sort='ga:date',filters='ga:pagePath==%s' % (self.paramlist[1])).execute()#(sys.argv[2])).execute() #else: # need to handle non-bulk-download links appropriately! TODO # but a different function that will get all the infos because it will take infodict?? that is a possibility, though ugly NTS def get_more_info_tups(self, top_what=10): # don't need to pass in infodict b/c class attr now # dimensions=ga:country # metrics=ga:visits # sort=-ga:visits self.profile_id = self.paramlist[0] self.service = self.initialize_service() start = self.proper_start_date() end = str(date.today()) results = self.service.data().ga().get(ids='ga:%s' % (self.profile_id), start_date=start,end_date=end,metrics='ga:pageviews',dimensions='ga:country',sort='-ga:pageviews',filters='ga:pagePath==%s' % (self.paramlist[1])).execute()#(sys.argv[2])).execute() if results and results.get('rows'): # for x in results.get('rows'): # print x top_nations = [(x[0].encode('utf-8'), x[1].encode('utf-8')) for x in results.get('rows') if "not set" not in x[0].encode('utf-8')][:top_what] # for x in top_nations: # print x return top_nations else: print "No results found." return None def get_cities_tups(self, top_what=10): self.profile_id = self.paramlist[0] self.service = self.initialize_service() start = self.proper_start_date() end = str(date.today()) results = self.service.data().ga().get(ids='ga:%s' % (self.profile_id), start_date=start,end_date=end,metrics='ga:pageviews',dimensions='ga:city',sort='-ga:pageviews',filters='ga:pagePath==%s' % (self.paramlist[1])).execute()#(sys.argv[2])).execute() if results and results.get('rows'): # for x in results.get('rows'): # print x top_cities = [(x[0].encode('utf-8'), x[1].encode('utf-8')) for x in results.get('rows') if "not set" not in x[0].encode('utf-8')][:top_what] # for x in top_nations: # print x return top_cities else: print "No results found." return None def get_more_info(self, top_what=10): self.profile_id = self.paramlist[0] self.service = self.initialize_service() start = self.proper_start_date() end = str(date.today()) results = self.service.data().ga().get(ids='ga:%s' % (self.profile_id), start_date=start,end_date=end,metrics='ga:pageviews',dimensions='ga:country',sort='-ga:pageviews',filters='ga:pagePath==%s' % (self.paramlist[1])).execute()#(sys.argv[2])).execute() if results: # for x in results.get('rows'): # print x top_nations = [x[0].encode('utf-8') for x in results.get('rows') if "not set" not in x[0].encode('utf-8')][:top_what] # for x in top_nations: # print x return top_nations else: print "No results found." return None ## need maybe scraping-y fxn to find out what common term is in files to dl on course pg? ## OR some other sort of commonality e.g. creator?? are our naming conventions solid enough? ## (meh that's a terrible thing to depend on) ## OR list of all file links on course and check in lists -- expect performance worse but honestly... esp if monthly... ## TODO should know the DIFFERENCES between the popular individual materials and 'less so' def indiv_dls_helper(self): self.profile_id = self.paramlist[0] self.service = self.initialize_service() start = self.proper_start_date() end = str(date.today()) resources_results = self.service.data().ga().get(ids='ga:%s' % (self.profile_id), start_date=start,end_date=end,metrics='ga:visitsWithEvent',dimensions='ga:eventLabel,ga:eventCategory,ga:eventAction',sort='-ga:visitsWithEvent').execute()#(sys.argv[2])).execute() return resources_results.get('rows') def indiv_dl_nums(self): # pass in string that identifies all files of certain cat (hoping there is one) -- default Dr Gunderson atm ## TODO except that we have a problem because the file names are ureliable, can only rely on fact that they are in the course. should extract filenames from scrapingness # self.profile_id = self.paramlist[0] # self.service = self.initialize_service() # start = '2011-01-01'#self.proper_start_date() # end = str(date.today()) results = self.indiv_dls_helper() if results: # for x in results.get('rows'): # if id_string in x[0].encode('utf-8'): # print x course_files = get_material_links.get_material_links() sorted_resources = sorted([x for x in results.get('rows') if x[0][21:] in course_files if int(x[3]) != 0], key=lambda x: int(x[3].encode('utf-8')), reverse=True) top_ten_resources = sorted_resources[:10] # for x in top_ten_resources: # print x[0][21:].encode('utf-8') return ["%s -- %s" % (x[0][21:].encode('utf-8'), x[3].encode('utf-8')) for x in top_ten_resources] #print type(results) # print results else: print "No results found." return None # def plot_indiv_dls(self): # ind_res = self.resources_results # holding it in class structure for easy access :/ ugly terribleness a bit def main(self): self.service = self.initialize_service() try: self.profile_id = self.paramlist[0] if self.profile_id: #results = self.get_results(self.service, self.profile_id) #res = self.return_results(results) res = self.indiv_dls_helper() except TypeError, error: print "There was an API error: %s " % (error) except HttpError, error: print "There was an API error: %s " % (error) except AccessTokenRefreshError: print "The credentials have been revoked or expired, please re-run app to reauthorize." except: print "Did you provide a profile id and a path as cli arguments? (Do you need to?) Try again." else: # should run if it did not hit an except clause return self.deal_with_results(res) class GA_Info_forTime(GA_Text_Info): def hash_by_day(self): views_day_ranges = {} # over range of past days_back number days today = date.today() dates_overall = [] for i in sorted(range(0,self.days_back), reverse=True): date_to_get = today - timedelta(days=i) # get results and handle results for the prope get_results fxn results = self.get_results(self.service, self.profile_id, date_to_get) date_views_tup = [(str(x[0]), int(x[1])) for x in results.get('rows')] # this is from other return_results so it may not work #print date_views_tup dates_overall.append(date_views_tup) # presumably each date_views_tup will only have one elem, take out extra layer (TODO fix if this is not so) print dates_overall return dates_overall def get_results(self, service, profile_id, start): # start should be a proper start date, and it should be whatever SINGLE date, which is gotten by in a wrapper timedeltaing from start of pd to today # query = service.data().ga().get(ids='ga:%s' % profile_id, start_date='2010-03-01',end_date='2013-05-15',metrics='ga:pageviews',dimensions='ga:pagePath',filters='ga:pagePath==%s' % (sys.argv[2])) # return query.execute() end = start #+ timedelta(days=1) #end = date.today() return self.service.data().ga().get(ids='ga:%s' % (profile_id), start_date=str(start),end_date=str(end),metrics='ga:pageviews',dimensions='ga:date',filters='ga:pagePath==%s' % (self.paramlist_second[1])).execute()#(sys.argv[2])).execute() def main(self): self.service = self.initialize_service() try: self.profile_id = self.paramlist[0] if not self.profile_id: # results = self.get_results(self.service, self.profile_id) # res = self.return_results(results) print "Error: missing profile ID!" except TypeError, error: print "There was an API error: %s " % (error) except HttpError, error: print "There was an API error: %s " % (error) except AccessTokenRefreshError: print "The credentials have been revoked or expired, please re-run app to reauthorize." except: print "Did you provide a profile id and a path as cli arguments? (Do you need to?) Try again." else: # should run if it did not hit an except clause return self.hash_by_day() class GA_dls_forTime(GA_Info_forTime): def get_results(self, service, profile_id, start): # start should be a proper start date, and it should be whatever SINGLE date, which is gotten by in a wrapper timedeltaing from start of pd to today # query = service.data().ga().get(ids='ga:%s' % profile_id, start_date='2010-03-01',end_date='2013-05-15',metrics='ga:pageviews',dimensions='ga:pagePath',filters='ga:pagePath==%s' % (sys.argv[2])) # return query.execute() end = start #+ timedelta(days=1) #end = date.today() return self.service.data().ga().get(ids='ga:%s' % (profile_id), start_date=str(start),end_date=str(end),metrics='ga:pageviews',dimensions='ga:date',filters='ga:pagePath==%s' % (self.paramlist[1])).execute() # paramlist holds dls, _second holds views # everything else is the same if __name__ == '__main__': ## TESTING (pre unit tests) #main(sys.argv) #main(param_list) #print "running the right file" a = GoogleAnalyticsData() #print a.paramlist[0] a.main() c = GABulkDownloads_Views() c.main() b = GABulkDownloads() #print b.paramlist b.main()
mit
briney/abstar
abstar/utils/pandaseq.py
1
7169
#!/usr/bin/python # filename: pandaseq.py # # Copyright (c) 2015 Bryan Briney # License: The MIT license (http://opensource.org/licenses/MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software # and associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # from __future__ import absolute_import, division, print_function, unicode_literals import os import sys import glob import subprocess as sp from multiprocessing import cpu_count from abutils.utils import log logger = log.get_logger('basespace') def list_files(d): return sorted([f for f in glob.glob(d + '/*') if os.path.isfile(f)]) def pair_files(files, nextseq): pairs = {} for f in files: if nextseq: f_prefix = '_'.join(os.path.basename(f).split('_')[:-2]) else: f_prefix = '_'.join(os.path.basename(f).split('_')[:-3]) if f_prefix in pairs: pairs[f_prefix].append(f) else: pairs[f_prefix] = [f, ] return pairs def batch_pandaseq(f, r, o, algo): cmd = 'pandaseq -f {0} -r {1} -A {2} -d rbfkms -T {3} -w {4}'.format(f, r, algo, cpu_count(), o) sp.Popen(cmd, shell=True, stderr=sp.STDOUT, stdout=sp.PIPE).communicate() def merge_reads(files, output, algo, nextseq, i): files.sort() f = files[0] r = files[1] if nextseq: lane = os.path.basename(f).split('_')[-3] sample_id = '_'.join(os.path.basename(f).split('_')[:-4]) sample = sample_id + '_' + lane else: sample = '_'.join(os.path.basename(f).split('_')[:-4]) print_sample_info(i, sample) o = os.path.join(output, '{}.fasta'.format(sample)) batch_pandaseq(f, r, o, algo) return o def print_start_info(): logger.info('') logger.info('') logger.info('========================================') logger.info('Merging reads with PANDAseq') logger.info('========================================') logger.info('') def print_input_info(files): logger.info('The input directory contains {} pair(s) of files to be merged.\n'.format(len(files) / 2)) def print_sample_info(i, sample): logger.info('[ {} ] Merging sample {}'.format(str(i + 1), sample)) def print_sample_end(): logger.info('Done.') def run(input, output, algorithm='simple_bayesian', nextseq=False): ''' Merge paired-end FASTQ files with PANDAseq. Examples: To merge a directory of raw (gzip compressed) files from a MiSeq run:: merged_files = run('/path/to/input', '/path/to/output') Same as above, but using the Pear_ read merging algorithm:: merged_files = run('/path/to/input', '/path/to/output', algorithm='pear') To merge a list of file pairs:: file_pairs = [(sample1_R1.fastq, sample1_R2.fastq), (sample2_R1.fastq.gz, sample2_R2.fastq.gz), (sample3_R1.fastq, sample3_R2.fastq)] merged_files = run(file_pairs, '/path/to/output') .. _Pear: http://sco.h-its.org/exelixis/web/software/pear/ Args: input (str, list): Input can be one of three things: 1. path to a directory of paired FASTQ files 2. a list of paired FASTQ files 3. a list of read pairs, with each read pair being a list/tuple containing paths to two paired read files Regardless of what input type is provided, paired FASTQ files can be either gzip compressed or uncompressed. When providing a list of files or a directory of files, it is assumed that all files follow Illumina naming conventions. If your file names aren't Illumina-like, submit your files as a list of read pairs to ensure that the proper pairs of files are merged. output (str): Path to an output directory, into which merged FASTQ files will be deposited. To determine the filename for the merged file, the R1 file (or the first file in the read pair) is split at the first occurance of the '_' character. Therefore, the read pair ``['my-sequences_R1.fastq', 'my-sequences_R2.fastq']`` would be merged into ``my-sequences.fasta``. algorithm (str): PANDAseq algorithm to be used for merging reads. Choices are: 'simple_bayesian', 'ea_util', 'flash', 'pear', 'rdp_mle', 'stitch', or 'uparse'. Default is 'simple_bayesian', which is the default PANDAseq algorithm. nextseq (bool): Set to ``True`` if the sequencing data was generated on a NextSeq. Needed because the naming conventions for NextSeq output files differs from MiSeq output. Returns: list: a list of merged file paths ''' print_start_info() if os.path.isdir(input): files = list_files(input) pairs = pair_files(files, nextseq) elif type(input) in [list, tuple]: if all([type(i) in [list, tuple] for i in input]) and all([len(i) == 2 for i in input]): files = [f for sublist in input for f in sublist] pairs = {n: i for n, i in zip(range(len(input)), input)} elif all([os.path.isfile(i) for i in input]): files = input pairs = pair_files(files, nextseq) else: err = 'ERROR: Invalid input. Input may be one of three things:\n' err += ' 1. a directory path\n' err += ' 2. a list of file paths\n' err += ' 3. a list of file pairs (lists/tuples containing exactly 2 file paths)' raise RuntimeError(err) else: err = 'ERROR: Invalid input. Input may be one of three things:\n' err += ' 1. a directory path\n' err += ' 2. a list of file paths\n' err += ' 3. a list of file pairs (lists/tuples containing exactly 2 file paths)' raise RuntimeError(err) print_input_info(files) merged_files = [] for i, pair in enumerate(sorted(pairs.keys())): if len(pairs[pair]) == 2: # logger.info('Merging {} and {}'.format(pairs[pair][0], pairs[pair][1])) mf = merge_reads(pairs[pair], output, algorithm, nextseq, i) merged_files.append(mf) return merged_files
mit
shirtsgroup/pygo
analysis/QRE_scripts/MBAR_foldingcurve.py
1
6622
# Ellen Zhong # [email protected] # 03/08/2014 import sys import numpy import pymbar # for MBAR analysis import timeseries # for timeseries analysis import os import os.path import pdb import wham from optparse import OptionParser def parse_args(): parser=OptionParser() parser.add_option("-r", "--replicas", default=24, type="int",dest="replicas", help="number of replicas (default: 24)") parser.add_option("-n", "--N_max", default=100000, type="int",dest="N_max", help="number of data points to read in (default: 100k)") parser.add_option("-s", "--skip", default=1, type="int",dest="skip", help="skip every n data points") parser.add_option("--direc", dest="direc", help="Qtraj_singleprot.txt file location") parser.add_option('-t', "--tfile", dest="tfile", default="/home/edz3fz/proteinmontecarlo/T32.txt", help="file of temperatures (default: T32.txt)") parser.add_option('-Q', "--Qfile", dest="Qfile", default="/home/edz3fz/proteinmontecarlo/Q32.txt", help="file of Qpins (default: Q32.txt)") parser.add_option("--k_Qpin", type="float", default=10, help="Q umbrella spring constant (default: 10)") parser.add_option('--show', action="store_true", default=False, help="show plot at end") (args,_) = parser.parse_args() return args def read_data(args, T, Q, K): U_kn = numpy.empty([K,args.N_max/args.skip], numpy.float64) Q_kn = numpy.empty([K,args.N_max/args.skip], numpy.float64) print "Reading data..." for i in range(len(T)): suffix = '%i_%2.2f' % (int(T[i]), Q[i]) ufile = '%s/energy%s.npy' % (args.direc, suffix) data = numpy.load(ufile)[-args.N_max::] U_kn[i,:] = data[::args.skip] Qfile = '%s/fractionnative%s.npy' %(args.direc, suffix) data = numpy.load(Qfile)[-args.N_max::] Q_kn[i,:] = data[::args.skip] # if args.surf: # sfile = '%s/surfenergy%i.npy' %(args.direc, t) # data = numpy.load(sfile)[-args.N_max::] # if numpy.shape(data) == (N_max,2): # if data[:,0]==data[:,1]: # data = data[:,0] # else: # data = numpy.sum(data,axis=1) # U_kn[i,:] -= data[::args.skip] N_max = args.N_max/args.skip return U_kn, Q_kn, N_max def subsample(U_kn,Q_kn,K,N_max): assume_uncorrelated = False if assume_uncorrelated: print 'Assuming data is uncorrelated' N_k = numpy.zeros(K, numpy.int32) N_k[:] = N_max else: print 'Subsampling the data...' N_k = numpy.zeros(K,numpy.int32) g = numpy.zeros(K,numpy.float64) for k in range(K): # subsample the energies g[k] = timeseries.statisticalInefficiency(Q_kn[k])#,suppress_warning=True) indices = numpy.array(timeseries.subsampleCorrelatedData(Q_kn[k],g=g[k])) # indices of uncorrelated samples N_k[k] = len(indices) # number of uncorrelated samplesadsf U_kn[k,0:N_k[k]] = U_kn[k,indices] Q_kn[k,0:N_k[k]] = Q_kn[k,indices] return U_kn, Q_kn, N_k def get_ukln(args, N_max, K, Qpin, beta_k, k_Qpin, U_kn, Q_kn, N_k): print 'Computing reduced potential energies...' u_kln = numpy.zeros([K,K,N_max], numpy.float32) for k in range(K): for l in range(K): u_kln[k,l,0:N_k[k]] = beta_k[l] * (U_kn[k,0:N_k[k]] - k_Qpin[k]*(Q_kn[k,0:N_k[k]]-Qpin[k])**2 + k_Qpin[l]*(Q_kn[k,0:N_k[k]]-Qpin[l])**2) return u_kln def get_mbar(beta_k, U_kn, N_k, u_kln): print 'Initializing mbar...' #f_k = wham.histogram_wham(beta_k, U_kn, N_k) try: f_k = numpy.loadtxt('f.k.out') assert(len(f_k)==len(beta_k)) mbar = pymbar.MBAR(u_kln, N_k, initial_f_k = f_k, verbose=True) except: mbar = pymbar.MBAR(u_kln, N_k, verbose=True) #mbar = pymbar.MBAR(u_kln, N_k, initial_f_k = f_k, verbose=True) return mbar def main(): args = parse_args() kB = 0.00831447/4.184 #Boltzmann constant (Gas constant) in kJ/(mol*K) dT = 2.5 # Temperature increment for calculating Cv(T) T = numpy.loadtxt(args.tfile) K = len(T) Qpin = numpy.loadtxt(args.Qfile) k_Qpin = args.k_Qpin*numpy.ones(K) print 'Initial temperature states are', T U_kn, Q_kn, N_max = read_data(args, T, Qpin, K) U_kn, Q_kn, N_k = subsample(U_kn, Q_kn, K, N_max) # Define new states without Q biasing T_new = numpy.arange(250,325,5) K_new = len(T_new) # Update states T = numpy.concatenate((T, T_new)) Qpin = numpy.concatenate((Qpin, numpy.zeros(K_new))) k_Qpin = numpy.concatenate((k_Qpin, numpy.zeros(K_new))) K += K_new N_k = numpy.concatenate((N_k,numpy.zeros(K_new))) U_kn = numpy.concatenate((U_kn,numpy.zeros([K_new,N_max]))) Q_kn = numpy.concatenate((Q_kn,numpy.zeros([K_new,N_max]))) beta_k = 1/(kB*T) pdb.set_trace() u_kln = get_ukln(args, N_max, K, Qpin, beta_k, k_Qpin, U_kn, Q_kn, N_k) print "Initializing MBAR..." # Use Adaptive Method (Both Newton-Raphson and Self-Consistent, testing which is better) mbar = get_mbar(beta_k, U_kn, N_k, u_kln) print "Computing Expectations for E..." (E_expect, dE_expect) = mbar.computeExpectations(u_kln)*(beta_k)**(-1) print "Computing Expectations for E^2..." (E2_expect,dE2_expect) = mbar.computeExpectations(u_kln*u_kln)*(beta_k)**(-2) print "Computing Expectations for Q..." (Q,dQ) = mbar.computeExpectations(Q_kn) print "Computing Heat Capacity as ( <E^2> - <E>^2 ) / ( R*T^2 )..." Cv = numpy.zeros([K], numpy.float64) dCv = numpy.zeros([K], numpy.float64) for i in range(K): Cv[i] = (E2_expect[i] - (E_expect[i]*E_expect[i])) / ( kB * T[i] * T[i]) dCv[i] = 2*dE_expect[i]**2 / (kB *T[i]*T[i]) # from propagation of error numpy.save(args.direc+'/foldingcurve_umbrella',numpy.array([T, Q, dQ])) numpy.save(args.direc+'/heatcap_umbrella',numpy.array([T, Cv, dCv])) import matplotlib.pyplot as plt #ncavg = numpy.average(Q_fromfile, axis=1) plt.figure(1) #plt.plot(T, ncavg, 'ko') plt.plot(T[-K_new::],Q[-K_new::],'k') plt.errorbar(T[-K_new::], Q[-K_new::], yerr=dQ[-K_new::]) plt.xlabel('Temperature (K)') plt.ylabel('Q fraction native contacts') #plt.title('Heat Capacity from Go like model MC simulation of 1BSQ') plt.savefig(args.direc+'/foldingcurve.png') numpy.save(args.direc+'/foldingcurve',numpy.array([T, Q, dQ])) numpy.save(args.direc+'/heatcap',numpy.array([T, Cv, dCv])) if args.show: plt.show() if __name__ == '__main__': main()
gpl-2.0
sinhrks/expandas
pandas_ml/skaccessors/test/test_multioutput.py
2
1807
#!/usr/bin/env python try: import sklearn.multioutput as multioutput except ImportError: pass import numpy as np import pandas as pd import pandas_ml as pdml import pandas_ml.util.testing as tm class TestMultiOutput(tm.TestCase): def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.multioutput.MultiOutputRegressor, multioutput.MultiOutputRegressor) self.assertIs(df.multioutput.MultiOutputClassifier, multioutput.MultiOutputClassifier) def test_multioutput(self): # http://scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_regression_multioutput.html#sphx-glr-auto-examples-ensemble-plot-random-forest-regression-multioutput-py from sklearn.multioutput import MultiOutputRegressor from sklearn.ensemble import RandomForestRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(600, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y += (0.5 - rng.rand(*y.shape)) df = pdml.ModelFrame(X, target=y) max_depth = 30 rf1 = df.ensemble.RandomForestRegressor(max_depth=max_depth, random_state=self.random_state) reg1 = df.multioutput.MultiOutputRegressor(rf1) rf2 = RandomForestRegressor(max_depth=max_depth, random_state=self.random_state) reg2 = MultiOutputRegressor(rf2) df.fit(reg1) reg2.fit(X, y) result = df.predict(reg2) expected = pd.DataFrame(reg2.predict(X)) tm.assert_frame_equal(result, expected)
bsd-3-clause
crichardson17/starburst_atlas
Low_resolution_sims/DustFree_LowRes/Padova_cont/padova_cont_5/Rest.py
33
7215
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith(".grd"): inputfile = file for file in os.listdir('.'): if file.endswith(".txt"): inputfile2 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid = []; with open(inputfile, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid.append(row); grid = asarray(grid) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #for grid phi_values = grid[1:len(dataEmissionlines)+1,6] hdens_values = grid[1:len(dataEmissionlines)+1,7] #for lines headers = headers[1:] Emissionlines = dataEmissionlines[:, 1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(Emissionlines[0]),4)) #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = Emissionlines[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(Emissionlines),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] #change desired lines here! line = [3,4,15,22,37,53,54,55,57,62,77,88,89,90,92,93] #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("Rest of the Lines", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('Rest.pdf') plt.clf()
gpl-2.0
hainm/scikit-learn
examples/mixture/plot_gmm.py
248
2817
""" ================================= Gaussian Mixture Model Ellipsoids ================================= Plot the confidence ellipsoids of a mixture of two Gaussians with EM and variational Dirichlet process. Both models have access to five components with which to fit the data. Note that the EM model will necessarily use all five components while the DP model will effectively only use as many as are needed for a good fit. This is a property of the Dirichlet Process prior. Here we can see that the EM model splits some components arbitrarily, because it is trying to fit too many components, while the Dirichlet Process model adapts it number of state automatically. This example doesn't show it, as we're in a low-dimensional space, but another advantage of the Dirichlet process model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are dimensions in the data, due to regularization properties of the inference algorithm. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] # Fit a mixture of Gaussians with EM using five components gmm = mixture.GMM(n_components=5, covariance_type='full') gmm.fit(X) # Fit a Dirichlet process mixture of Gaussians using five components dpgmm = mixture.DPGMM(n_components=5, covariance_type='full') dpgmm.fit(X) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([(gmm, 'GMM'), (dpgmm, 'Dirichlet Process GMM')]): splot = plt.subplot(2, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-10, 10) plt.ylim(-3, 6) plt.xticks(()) plt.yticks(()) plt.title(title) plt.show()
bsd-3-clause
msultan/msmbuilder
msmbuilder/cluster/agglomerative.py
6
11834
# Author: Robert McGibbon <[email protected]> # Contributors: Brooke Husic <[email protected]> # Copyright (c) 2017, Stanford University # All rights reserved. #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import, print_function, division import numpy as np import six import scipy.spatial.distance import warnings from msmbuilder import libdistance from scipy.cluster.hierarchy import fcluster from sklearn.utils import check_random_state from sklearn.base import ClusterMixin, TransformerMixin from . import MultiSequenceClusterMixin from ..base import BaseEstimator from fastcluster import linkage #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- __all__ = ['_LandmarkAgglomerative'] def ward_pooling_function(x, cluster_cardinality, intra_cluster_sum): normalization_factor = cluster_cardinality*(cluster_cardinality+1)/2 squared_sums = (x**2).sum(axis=1) result_vector = ((cluster_cardinality * squared_sums - intra_cluster_sum) / normalization_factor) return result_vector POOLING_FUNCTIONS = { 'average': lambda x, ignore1, ignore2: np.mean(x, axis=1), 'complete': lambda x, ignore1, ignore2: np.max(x, axis=1), 'single': lambda x, ignore1, ignore2: np.min(x, axis=1), 'ward': ward_pooling_function, } #----------------------------------------------------------------------------- # Utilities #----------------------------------------------------------------------------- def pdist(X, metric='euclidean'): if isinstance(metric, six.string_types): return libdistance.pdist(X, metric) n = len(X) d = np.empty((n, n)) for i in range(n): d[i, :] = metric(X, X, i) return scipy.spatial.distance.squareform(d, checks=False) def cdist(XA, XB, metric='euclidean'): if isinstance(metric, six.string_types): return libdistance.cdist(XA, XB, metric) nA, nB = len(XA), len(XB) d = np.empty((nA, nB)) for i in range(nA): d[i, :] = metric(XB, XA, i) return d #----------------------------------------------------------------------------- # Main Code #----------------------------------------------------------------------------- class _LandmarkAgglomerative(ClusterMixin, TransformerMixin): """Landmark-based agglomerative hierarchical clustering Landmark-based agglomerative clustering is a simple scalable version of "standard" hierarchical clustering which doesn't require computing the full matrix of pairwise distances between all data points. The idea is basically to subsample only ``n_landmarks`` "landmark" data points, cluster them, and then assign labels to the remaining data points based on their distances to (and the labels of) the landmarks. Parameters ---------- n_clusters : int The number of clusters to find. n_landmarks : int, optional Memory-saving approximation. Instead of actually clustering every point, we instead select n_landmark points either randomly or by striding the data matrix (see ``landmark_strategy``). Then we cluster the only the landmarks, and then assign the remaining dataset based on distances to the landmarks. Note that n_landmarks=None is equivalent to using every point in the dataset as a landmark. linkage : {'single', 'complete', 'average', 'ward'}, default='average' Which linkage criterion to use. The linkage criterion determines which distance to use between sets of observation. The algorithm will merge the pairs of cluster that minimize this criterion. - average uses the average of the distances of each observation of the two sets. - complete or maximum linkage uses the maximum distances between all observations of the two sets. - single uses the minimum distance between all observations of the two sets. - ward linkage minimizes the within-cluster variance The linkage also effects the predict() method and the use of landmarks. After computing the distance from each new data point to the landmarks, the new data point will be assigned to the cluster that minimizes the linkage function between the new data point and each of the landmarks. (i.e with ``single``, new data points will be assigned the label of the closest landmark, with ``average``, it will be assigned the label of the landmark s.t. the mean distance from the test point to all the landmarks with that label is minimized, etc.) metric : string or callable, default= "euclidean" Metric used to compute the distance between samples. landmark_strategy : {'stride', 'random'}, default='stride' Method for determining landmark points. Only matters when n_landmarks is not None. "stride" takes landmarks every n-th data point in X, and random selects them uniformly at random. random_state : integer or numpy.RandomState, optional The generator used to select random landmarks. Only used if landmark_strategy=='random'. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. max_landmarks : int, optional, default=None Useful for hyperparameter searching. If n_clusters exceeds n_landmarks, max_landmarks will be used. Otherwise, n_landmarks will be used. If None, no cutoff is enforced on n_landmarks, which may result in memory issues. ward_predictor : {'single', 'complete', 'average', 'ward'}, default='ward' Which criterion to use when predicting cluster assignments after fitting with ward linkage. References ---------- .. [1] Mullner, D. "Modern hierarchical, agglomerative clustering algorithms." arXiv:1109.2378 (2011). Attributes ---------- landmark_labels_ : np.array, [n_landmarks] landmarks_ : np.array, [n_landmarks, X.shape] cluster_centers_ : np.array, [n_clusters, X.shape] Coordinates of cluster centers (unless RMSD is the metric) """ def __init__(self, n_clusters, n_landmarks=None, linkage='average', metric='euclidean', landmark_strategy='stride', random_state=None, max_landmarks=None, ward_predictor='ward'): self.n_clusters = n_clusters self.n_landmarks = n_landmarks self.metric = metric self.landmark_strategy = landmark_strategy self.random_state = random_state self.linkage = linkage self.max_landmarks = max_landmarks self.ward_predictor = ward_predictor self.landmark_labels_ = None self.landmarks_ = None self.cluster_centers_ = None def fit(self, X, y=None): """ Compute agglomerative clustering. Parameters ---------- X : array-like, shape=(n_samples, n_features) Returns ------- self """ if self.max_landmarks is not None: if self.n_clusters > self.n_landmarks: self.n_landmarks = self.max_landmarks if self.n_landmarks is None: distances = pdist(X, self.metric) tree = linkage(distances, method=self.linkage) self.landmark_labels_ = fcluster(tree, criterion='maxclust', t=self.n_clusters) - 1 self.cardinality_ = np.bincount(self.landmark_labels_) self.squared_distances_within_cluster_ = np.zeros(self.n_clusters) n = len(X) for k in range(len(distances)): i = int(n - 2 - np.floor(np.sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5)) j = int(k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2) if self.landmark_labels_[i] == self.landmark_labels_[j]: self.squared_distances_within_cluster_[ self.landmark_labels_[i]] += distances[k] ** 2 self.landmarks_ = X else: if self.landmark_strategy == 'random': land_indices = check_random_state(self.random_state).randint( len(X), size=self.n_landmarks) else: land_indices = np.arange(len(X))[::(len(X) // self.n_landmarks)][:self.n_landmarks] distances = pdist(X[land_indices], self.metric) tree = linkage(distances, method=self.linkage) self.landmark_labels_ = fcluster(tree, criterion='maxclust', t=self.n_clusters) - 1 self.cardinality_ = np.bincount(self.landmark_labels_) self.squared_distances_within_cluster_ = np.zeros(self.n_clusters) n = len(X[land_indices]) for k in range(len(distances)): i = int(n - 2 - np.floor(np.sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5)) j = int(k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2) if self.landmark_labels_[i] == self.landmark_labels_[j]: self.squared_distances_within_cluster_[ self.landmark_labels_[i]] += distances[k] ** 2 self.landmarks_ = X[land_indices] if self.metric != 'rmsd': cluster_centers_ = [] for i in range(self.n_clusters): temp = list(np.mean(self.landmarks_[self.landmark_labels_==i], axis=0)) cluster_centers_.append(temp) self.cluster_centers_ = np.array(cluster_centers_) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ dists = cdist(X, self.landmarks_, self.metric) pfunc_name = self.ward_predictor if self.linkage == 'ward' else self.linkage try: pooling_func = POOLING_FUNCTIONS[pfunc_name] except KeyError: raise ValueError("linkage {} is not supported".format(pfunc_name)) pooled_distances = np.empty(len(X)) pooled_distances.fill(np.infty) labels = np.zeros(len(X), dtype=int) for i in range(self.n_clusters): if np.any(self.landmark_labels_ == i): d = pooling_func(dists[:, self.landmark_labels_ == i], self.cardinality_[i], self.squared_distances_within_cluster_[i]) if np.any(d < 0): warnings.warn("Distance shouldn't be negative.") mask = (d < pooled_distances) pooled_distances[mask] = d[mask] labels[mask] = i else: print("No data points were assigned to cluster {}".format(i)) return labels def fit_predict(self, X): """Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X). """ self.fit(X) return self.predict(X) class LandmarkAgglomerative(MultiSequenceClusterMixin, _LandmarkAgglomerative, BaseEstimator): __doc__ = _LandmarkAgglomerative.__doc__ _allow_trajectory = True
lgpl-2.1
mattilyra/scikit-learn
examples/datasets/plot_iris_dataset.py
35
1929
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= The Iris Dataset ========================================================= This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. The below plot uses the first two features. See `here <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(8, 6)) plt.clf() # Plot the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # To getter a better understanding of interaction of the dimensions # plot the first three PCA dimensions fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) X_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=Y, cmap=plt.cm.Paired) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
cython-testbed/pandas
pandas/core/config_init.py
8
17165
""" This module is imported from the pandas package __init__.py file in order to ensure that the core.config options registered here will be available as soon as the user loads the package. if register_option is invoked inside specific modules, they will not be registered until that module is imported, which may or may not be a problem. If you need to make sure options are available even before a certain module is imported, register them here rather then in the module. """ import pandas.core.config as cf from pandas.core.config import (is_int, is_bool, is_text, is_instance_factory, is_one_of_factory, is_callable) from pandas.io.formats.console import detect_console_encoding from pandas.io.formats.terminal import is_terminal # compute use_bottleneck_doc = """ : bool Use the bottleneck library to accelerate if it is installed, the default is True Valid values: False,True """ def use_bottleneck_cb(key): from pandas.core import nanops nanops.set_use_bottleneck(cf.get_option(key)) use_numexpr_doc = """ : bool Use the numexpr library to accelerate computation if it is installed, the default is True Valid values: False,True """ def use_numexpr_cb(key): from pandas.core.computation import expressions expressions.set_use_numexpr(cf.get_option(key)) with cf.config_prefix('compute'): cf.register_option('use_bottleneck', True, use_bottleneck_doc, validator=is_bool, cb=use_bottleneck_cb) cf.register_option('use_numexpr', True, use_numexpr_doc, validator=is_bool, cb=use_numexpr_cb) # # options from the "display" namespace pc_precision_doc = """ : int Floating point output precision (number of significant digits). This is only a suggestion """ pc_colspace_doc = """ : int Default space for DataFrame columns. """ pc_max_rows_doc = """ : int If max_rows is exceeded, switch to truncate view. Depending on `large_repr`, objects are either centrally truncated or printed as a summary view. 'None' value means unlimited. In case python/IPython is running in a terminal and `large_repr` equals 'truncate' this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. """ pc_max_cols_doc = """ : int If max_cols is exceeded, switch to truncate view. Depending on `large_repr`, objects are either centrally truncated or printed as a summary view. 'None' value means unlimited. In case python/IPython is running in a terminal and `large_repr` equals 'truncate' this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. """ pc_max_categories_doc = """ : int This sets the maximum number of categories pandas should output when printing out a `Categorical` or a Series of dtype "category". """ pc_max_info_cols_doc = """ : int max_info_columns is used in DataFrame.info method to decide if per column information will be printed. """ pc_nb_repr_h_doc = """ : boolean When True, IPython notebook will use html representation for pandas objects (if it is available). """ pc_date_dayfirst_doc = """ : boolean When True, prints and parses dates with the day first, eg 20/01/2005 """ pc_date_yearfirst_doc = """ : boolean When True, prints and parses dates with the year first, eg 2005/01/20 """ pc_pprint_nest_depth = """ : int Controls the number of nested levels to process when pretty-printing """ pc_multi_sparse_doc = """ : boolean "sparsify" MultiIndex display (don't display repeated elements in outer levels within groups) """ pc_encoding_doc = """ : str/unicode Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. """ float_format_doc = """ : callable The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. """ max_colwidth_doc = """ : int The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. """ colheader_justify_doc = """ : 'left'/'right' Controls the justification of column headers. used by DataFrameFormatter. """ pc_expand_repr_doc = """ : boolean Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, `max_columns` is still respected, but the output will wrap-around across multiple "pages" if its width exceeds `display.width`. """ pc_show_dimensions_doc = """ : boolean or 'truncate' Whether to print out dimensions at the end of DataFrame repr. If 'truncate' is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) """ pc_east_asian_width_doc = """ : boolean Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) """ pc_ambiguous_as_wide_doc = """ : boolean Whether to handle Unicode characters belong to Ambiguous as Wide (width=2) (default: False) """ pc_latex_repr_doc = """ : boolean Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) """ pc_table_schema_doc = """ : boolean Whether to publish a Table Schema representation for frontends that support it. (default: False) """ pc_html_border_doc = """ : int A ``border=value`` attribute is inserted in the ``<table>`` tag for the DataFrame HTML repr. """ pc_html_border_deprecation_warning = """\ html.border has been deprecated, use display.html.border instead (currently both are identical) """ pc_html_use_mathjax_doc = """\ : boolean When True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol. (default: True) """ pc_width_doc = """ : int Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. """ pc_chop_threshold_doc = """ : float or None if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. """ pc_max_seq_items = """ : int or None when pretty-printing a long sequence, no more then `max_seq_items` will be printed. If items are omitted, they will be denoted by the addition of "..." to the resulting string. If set to None, the number of items to be printed is unlimited. """ pc_max_info_rows_doc = """ : int or None df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. """ pc_large_repr_doc = """ : 'truncate'/'info' For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). """ pc_memory_usage_doc = """ : bool, string or None This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,'deep' """ pc_latex_escape = """ : bool This specifies if the to_latex method of a Dataframe uses escapes special characters. Valid values: False,True """ pc_latex_longtable = """ :bool This specifies if the to_latex method of a Dataframe uses the longtable format. Valid values: False,True """ pc_latex_multicolumn = """ : bool This specifies if the to_latex method of a Dataframe uses multicolumns to pretty-print MultiIndex columns. Valid values: False,True """ pc_latex_multicolumn_format = """ : string This specifies the format for multicolumn headers. Can be surrounded with '|'. Valid values: 'l', 'c', 'r', 'p{<width>}' """ pc_latex_multirow = """ : bool This specifies if the to_latex method of a Dataframe uses multirows to pretty-print MultiIndex rows. Valid values: False,True """ style_backup = dict() def table_schema_cb(key): from pandas.io.formats.printing import _enable_data_resource_formatter _enable_data_resource_formatter(cf.get_option(key)) with cf.config_prefix('display'): cf.register_option('precision', 6, pc_precision_doc, validator=is_int) cf.register_option('float_format', None, float_format_doc, validator=is_one_of_factory([None, is_callable])) cf.register_option('column_space', 12, validator=is_int) cf.register_option('max_info_rows', 1690785, pc_max_info_rows_doc, validator=is_instance_factory((int, type(None)))) cf.register_option('max_rows', 60, pc_max_rows_doc, validator=is_instance_factory([type(None), int])) cf.register_option('max_categories', 8, pc_max_categories_doc, validator=is_int) cf.register_option('max_colwidth', 50, max_colwidth_doc, validator=is_int) if is_terminal(): max_cols = 0 # automatically determine optimal number of columns else: max_cols = 20 # cannot determine optimal number of columns cf.register_option('max_columns', max_cols, pc_max_cols_doc, validator=is_instance_factory([type(None), int])) cf.register_option('large_repr', 'truncate', pc_large_repr_doc, validator=is_one_of_factory(['truncate', 'info'])) cf.register_option('max_info_columns', 100, pc_max_info_cols_doc, validator=is_int) cf.register_option('colheader_justify', 'right', colheader_justify_doc, validator=is_text) cf.register_option('notebook_repr_html', True, pc_nb_repr_h_doc, validator=is_bool) cf.register_option('date_dayfirst', False, pc_date_dayfirst_doc, validator=is_bool) cf.register_option('date_yearfirst', False, pc_date_yearfirst_doc, validator=is_bool) cf.register_option('pprint_nest_depth', 3, pc_pprint_nest_depth, validator=is_int) cf.register_option('multi_sparse', True, pc_multi_sparse_doc, validator=is_bool) cf.register_option('encoding', detect_console_encoding(), pc_encoding_doc, validator=is_text) cf.register_option('expand_frame_repr', True, pc_expand_repr_doc) cf.register_option('show_dimensions', 'truncate', pc_show_dimensions_doc, validator=is_one_of_factory([True, False, 'truncate'])) cf.register_option('chop_threshold', None, pc_chop_threshold_doc) cf.register_option('max_seq_items', 100, pc_max_seq_items) cf.register_option('width', 80, pc_width_doc, validator=is_instance_factory([type(None), int])) cf.register_option('memory_usage', True, pc_memory_usage_doc, validator=is_one_of_factory([None, True, False, 'deep'])) cf.register_option('unicode.east_asian_width', False, pc_east_asian_width_doc, validator=is_bool) cf.register_option('unicode.ambiguous_as_wide', False, pc_east_asian_width_doc, validator=is_bool) cf.register_option('latex.repr', False, pc_latex_repr_doc, validator=is_bool) cf.register_option('latex.escape', True, pc_latex_escape, validator=is_bool) cf.register_option('latex.longtable', False, pc_latex_longtable, validator=is_bool) cf.register_option('latex.multicolumn', True, pc_latex_multicolumn, validator=is_bool) cf.register_option('latex.multicolumn_format', 'l', pc_latex_multicolumn, validator=is_text) cf.register_option('latex.multirow', False, pc_latex_multirow, validator=is_bool) cf.register_option('html.table_schema', False, pc_table_schema_doc, validator=is_bool, cb=table_schema_cb) cf.register_option('html.border', 1, pc_html_border_doc, validator=is_int) cf.register_option('html.use_mathjax', True, pc_html_use_mathjax_doc, validator=is_bool) with cf.config_prefix('html'): cf.register_option('border', 1, pc_html_border_doc, validator=is_int) cf.deprecate_option('html.border', msg=pc_html_border_deprecation_warning, rkey='display.html.border') tc_sim_interactive_doc = """ : boolean Whether to simulate interactive mode for purposes of testing """ with cf.config_prefix('mode'): cf.register_option('sim_interactive', False, tc_sim_interactive_doc) use_inf_as_null_doc = """ : boolean use_inf_as_null had been deprecated and will be removed in a future version. Use `use_inf_as_na` instead. """ use_inf_as_na_doc = """ : boolean True means treat None, NaN, INF, -INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way). """ # We don't want to start importing everything at the global context level # or we'll hit circular deps. def use_inf_as_na_cb(key): from pandas.core.dtypes.missing import _use_inf_as_na _use_inf_as_na(key) with cf.config_prefix('mode'): cf.register_option('use_inf_as_na', False, use_inf_as_na_doc, cb=use_inf_as_na_cb) cf.register_option('use_inf_as_null', False, use_inf_as_null_doc, cb=use_inf_as_na_cb) cf.deprecate_option('mode.use_inf_as_null', msg=use_inf_as_null_doc, rkey='mode.use_inf_as_na') # user warnings chained_assignment = """ : string Raise an exception, warn, or no action if trying to use chained assignment, The default is warn """ with cf.config_prefix('mode'): cf.register_option('chained_assignment', 'warn', chained_assignment, validator=is_one_of_factory([None, 'warn', 'raise'])) # Set up the io.excel specific configuration. writer_engine_doc = """ : string The default Excel writer engine for '{ext}' files. Available options: auto, {others}. """ _xls_options = ['xlwt'] _xlsm_options = ['openpyxl'] _xlsx_options = ['openpyxl', 'xlsxwriter'] with cf.config_prefix("io.excel.xls"): cf.register_option("writer", "auto", writer_engine_doc.format( ext='xls', others=', '.join(_xls_options)), validator=str) with cf.config_prefix("io.excel.xlsm"): cf.register_option("writer", "auto", writer_engine_doc.format( ext='xlsm', others=', '.join(_xlsm_options)), validator=str) with cf.config_prefix("io.excel.xlsx"): cf.register_option("writer", "auto", writer_engine_doc.format( ext='xlsx', others=', '.join(_xlsx_options)), validator=str) # Set up the io.parquet specific configuration. parquet_engine_doc = """ : string The default parquet reader/writer engine. Available options: 'auto', 'pyarrow', 'fastparquet', the default is 'auto' """ with cf.config_prefix('io.parquet'): cf.register_option( 'engine', 'auto', parquet_engine_doc, validator=is_one_of_factory(['auto', 'pyarrow', 'fastparquet'])) # -------- # Plotting # --------- register_converter_doc = """ : bool Whether to register converters with matplotlib's units registry for dates, times, datetimes, and Periods. Toggling to False will remove the converters, restoring any converters that pandas overwrote. """ def register_converter_cb(key): from pandas.plotting import register_matplotlib_converters from pandas.plotting import deregister_matplotlib_converters if cf.get_option(key): register_matplotlib_converters() else: deregister_matplotlib_converters() with cf.config_prefix("plotting.matplotlib"): cf.register_option("register_converters", True, register_converter_doc, validator=bool, cb=register_converter_cb)
bsd-3-clause
rl-institut/reegis-hp
reegis_hp/de21/test.py
3
1906
import pandas as pd from matplotlib import pyplot as plt import logging from oemof.tools import logger logger.define_logging() exit(0) df = pd.read_csv('/home/uwe/geo.csv', index_col='zip_code') del df['Unnamed: 0'] del df['gid'] df.to_csv('/home/uwe/git_local/reegis-hp/reegis_hp/de21/geometries/postcode.csv') exit(0) df = pd.read_csv('solar_cap.csv', index_col=[0, 1, 2, 3]) # df = df.sortlevel() # df = df.reindex_axis(sorted(df.columns), axis=1) df.index = df.index.droplevel(0) my = df.groupby(level=[0]).sum() # df_all = pd.Series(df.sum(axis=1), index=df.index) # my = df_all.unstack(level=0) # my = my.sortlevel() my.plot(stacked=True, kind='area') # plt.show() # df.loc['Solar'].plot(stacked=True, kind='area') # df.loc['Solar'].plot() # plt.show() df = pd.read_csv('test_cap.csv', index_col=[0, 1]).fillna(0) df = df.sortlevel() df = df.reindex_axis(sorted(df.columns), axis=1) print(df) df_all = pd.Series(df.sum(axis=1), index=df.index) my = df_all.unstack(level=0) my = my.sortlevel() my.plot(stacked=True, kind='area') # plt.show() df.loc['Solar'].plot(stacked=True, kind='area') df.loc['Solar'].plot() plt.show() exit(0) seq_file = 'my_scenarios/reegis_de_21_test_neu_seq.csv' # seq_neu = 'scenarios/reegis_de_21_test_neu_neu_seq.csv' # para_file = 'scenarios/reegis_de_3_test.csv' para_file = 'my_scenarios/EK_test3_neu2.csv' seq_neu = 'my_scenarios/EK_test3_neu2_seq.csv' df_seq = pd.read_csv(seq_neu, header=[0, 1, 2, 3, 4], parse_dates=True, index_col=0) # tmp_csv.to_csv(seq_neu) # print(tmp_csv.index) df = pd.read_csv(para_file, index_col=[0, 1, 2]) mask = df['actual_value'].str.contains('seq').fillna(False) a = df[mask].index.tolist() print(a[0]) # print(pd.Series([1, 2, 4])) # # df.loc[[a[0]], 'actual_value'] = pd.Series([1, 2, 4]) # print(df['actual_value'].loc[[a[0]]]) # s = df.to_dict() # print(s['actual_value'][a[0]]) print(df_seq[a[0]])
gpl-3.0
yvesalexandre/privacy-tools
within_voronoi_translation/within_voronoi_translation.py
1
7700
#!/usr/bin/env python """ within_voronoi_translation.py: Move antennas uniformly within their voronoi cell. Noise is often added to the GPS coordinates of antennas to hinter's an attacker ability to link outside information to the released database. This code takes as input a list of antennas location and moves them uniformly within their voronoi cell and either the convex hull formed by the antennas or the polygon. The noise added is proportional to the density of antennas in the region while preserving the overall structure of the mesh. Use: > import within_voronoi_translation as wvt > wvt.generate_new_positions([(0.367, 0.491), (0.415, 0.289), (0.495, 0.851),...]) Test: $ python within_voronoi_translation.py or $ python within_voronoi_translation.py senegal Algorithm: Points are then draw at random in the square bounding the circle whose diameter is equal to the maximum of the distance between the centroid its voronoi vertices or the half-min distance with its neighbors for border points. Points are rejected until they fall in the voronoi cell and either inside the convex hull or the polygon. Author: Yves-Alexandre de Montjoye https://github.com/yvesalexandre/privacy-tools """ import scipy.spatial import random import numpy as np def __compute_distance(a, pos, positions): """ Return the distance between an antenna a and a point pos (tuple) """ x1 = positions[a][0] y1 = positions[a][1] x2, y2 = pos[0], pos[1] return np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) def __compute_distance_centroids(a, b, positions): """ Return the distance between two antennas a and b """ return __compute_distance(a, positions[b], positions) def __compute_border_points(positions): """ Return the set of points for which at least one of their voronoi vertice falls outside of the convex hull. """ voronoi = scipy.spatial.Voronoi(positions) vertices_outside = set([-1]) for i, vertice in enumerate(voronoi.vertices): if not __in_convexhull(vertice, initial_positions): vertices_outside.add(i) points_outside = set() for region_id, region in enumerate(voronoi.regions): if any(point in vertices_outside for point in region): points_outside.add(list(voronoi.point_region).index(region_id)) return points_outside def __compute_max_radius(positions, neighbors): """ Return a list of the maximum distances between an antenna and its voronoi vertices. Note: the half-min distance to its neighbors for border points """ voronoi = scipy.spatial.Voronoi(positions) border_points = __compute_border_points(positions) radiuses = [] for point, region in enumerate(voronoi.point_region): if point not in border_points: radiuses.append(max([__compute_distance(point, voronoi.vertices[pos], positions) for pos in voronoi.regions[region]])) else: radiuses.append(min([__compute_distance_centroids(point,i,positions) for i in neighbors[point]]) / 2) return radiuses def __compute_neighbors(positions): """ Return a list of the neighbors of every antenna. """ delaunay = scipy.spatial.Delaunay(positions) slices, delaunay_neighbors = delaunay.vertex_neighbor_vertices neighbors = [] for node, pos in enumerate(positions): neighbors.append(list(delaunay_neighbors[slices[node]:slices[node + 1]])) return neighbors def __in_convexhull(point, initial_positions): """ Return True if the point is inside the convex hull. """ if set(scipy.spatial.ConvexHull(initial_positions + [point]).vertices) - set(scipy.spatial.ConvexHull(initial_positions).vertices): return False else: return True def __draw_point(node, positions, neighbors, radiuses, polygon): """ Return the new position of the antenna. """ condition = True while condition: trans_x, trans_y = [(random.random() - .5) * radiuses[node] for i in range(2)] proposed_point = (positions[node][0] - trans_x, positions[node][1] - trans_y) in_voronoi = __compute_distance(node, proposed_point, positions) < min([__compute_distance(i, proposed_point, positions) for i in neighbors[node]]) if in_voronoi: if polygon: if __in_polygon(proposed_point, polygon): return proposed_point else: if __in_convexhull(proposed_point, positions): return proposed_point return proposed_point def generate_new_positions(positions, polygon=None): """ Return the new position for all the antennas. Shapefile: polygon expects a lonlat polygon. Shapefiles can loaded in python using shapefile and can be converted to lonlat format using pyproj.transform and the appropriate projection (http://www.prj2epsg.org/search). """ neighbors = __compute_neighbors(positions) radiuses = __compute_max_radius(positions, neighbors) output = [] for point_id in range(len(positions)): output.append(__draw_point(point_id, positions, neighbors, radiuses, polygon)) return output def __in_polygon(point,poly): """ Return whether a point is in a polygon. Ray-casting Algorithm Adapted from http://geospatialpython.com/2011/08/point-in-polygon-2-on-line.html """ x, y = point # check if point is a vertex if (x,y) in poly: return True # check if point is on a boundary for i in range(len(poly)): p1 = None p2 = None if i == 0: p1 = poly[0] p2 = poly[1] else: p1 = poly[i - 1] p2 = poly[i] if p1[1] == p2[1] and p1[1] == y and x > min(p1[0], p2[0]) and x < max(p1[0], p2[0]): return True n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n + 1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xints = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x if p1x == p2x or x <= xints: inside = not inside p1x,p1y = p2x,p2y return inside if __name__ == '__main__': import sys import matplotlib.pyplot as plt if (len(sys.argv) > 1) and (sys.argv[1] == 'senegal'): main_type = False else: main_type = True if main_type: initial_positions = [(random.random(), random.random()) for i in range(350)] new_positions = generate_new_positions(initial_positions) else: import pyproj import shapefile sf = shapefile.Reader('senegal_shapefile/senegal.shp') region = sf.shapes()[0] polygon = [pyproj.transform(pyproj.Proj(init='epsg:32628'),pyproj.Proj(proj='latlong'), pts[0], pts[1]) for pts in region.points] initial_positions = [] while len(initial_positions) < 350: point = [random.uniform(-18, -11), random.uniform(12,17)] if __in_polygon(point,polygon): initial_positions.append(point) new_positions = generate_new_positions(initial_positions, polygon) fig = plt.figure(figsize=(10,9)) scipy.spatial.voronoi_plot_2d(scipy.spatial.Voronoi(initial_positions), plt.gca()) for i, pos in enumerate(initial_positions): plt.text(pos[0], pos[1], str(i)) for point in __compute_border_points(initial_positions): initial_pos = initial_positions[point] plt.plot(initial_pos[0], initial_pos[1], marker='o', color='g', ls='') if main_type: hull = scipy.spatial.ConvexHull(initial_positions) for simplex in hull.simplices: x, y = zip(*[initial_positions[simplex[0]], initial_positions[simplex[1]]]) plt.plot(x, y, 'b-') else: list_x, list_y = zip(*polygon) plt.plot(list_x, list_y, 'b-') for i, pos in enumerate(new_positions): initial_pos = initial_positions[i] plt.plot([initial_pos[0], pos[0]], [initial_pos[1], pos[1]], 'k-') plt.plot(pos[0], pos[1], marker='o', color='r', ls='') plt.show()
mit
toobaz/pandas
pandas/core/tools/timedeltas.py
2
6506
""" timedelta support tools """ import warnings import numpy as np from pandas._libs.tslibs import NaT from pandas._libs.tslibs.timedeltas import Timedelta, parse_timedelta_unit from pandas.util._decorators import deprecate_kwarg from pandas.core.dtypes.common import is_list_like from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.arrays.timedeltas import sequence_to_td64ns @deprecate_kwarg(old_arg_name="box", new_arg_name=None) def to_timedelta(arg, unit="ns", box=True, errors="raise"): """ Convert argument to timedelta. Timedeltas are absolute differences in times, expressed in difference units (e.g. days, hours, minutes, seconds). This method converts an argument from a recognized timedelta format / value into a Timedelta type. Parameters ---------- arg : str, timedelta, list-like or Series The data to be converted to timedelta. unit : str, default 'ns' Denotes the unit of the arg. Possible values: ('Y', 'M', 'W', 'D', 'days', 'day', 'hours', hour', 'hr', 'h', 'm', 'minute', 'min', 'minutes', 'T', 'S', 'seconds', 'sec', 'second', 'ms', 'milliseconds', 'millisecond', 'milli', 'millis', 'L', 'us', 'microseconds', 'microsecond', 'micro', 'micros', 'U', 'ns', 'nanoseconds', 'nano', 'nanos', 'nanosecond', 'N'). box : bool, default True - If True returns a Timedelta/TimedeltaIndex of the results. - If False returns a numpy.timedelta64 or numpy.darray of values of dtype timedelta64[ns]. .. deprecated:: 0.25.0 Use :meth:`Series.to_numpy` or :meth:`Timedelta.to_timedelta64` instead to get an ndarray of values or numpy.timedelta64, respectively. errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception. - If 'coerce', then invalid parsing will be set as NaT. - If 'ignore', then invalid parsing will return the input. Returns ------- timedelta64 or numpy.array of timedelta64 Output type returned if parsing succeeded. See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_datetime : Convert argument to datetime. Examples -------- Parsing a single string to a Timedelta: >>> pd.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> pd.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015') Parsing a list or array of strings: >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT], dtype='timedelta64[ns]', freq=None) Converting numbers by specifying the `unit` keyword argument: >>> pd.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'], dtype='timedelta64[ns]', freq=None) >>> pd.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) Returning an ndarray by using the 'box' keyword argument: >>> pd.to_timedelta(np.arange(5), box=False) array([0, 1, 2, 3, 4], dtype='timedelta64[ns]') """ unit = parse_timedelta_unit(unit) if errors not in ("ignore", "raise", "coerce"): raise ValueError("errors must be one of 'ignore', " "'raise', or 'coerce'}") if unit in {"Y", "y", "M"}: warnings.warn( "M and Y units are deprecated and " "will be removed in a future version.", FutureWarning, stacklevel=2, ) if arg is None: return arg elif isinstance(arg, ABCSeries): values = _convert_listlike(arg._values, unit=unit, box=False, errors=errors) return arg._constructor(values, index=arg.index, name=arg.name) elif isinstance(arg, ABCIndexClass): return _convert_listlike(arg, unit=unit, box=box, errors=errors, name=arg.name) elif isinstance(arg, np.ndarray) and arg.ndim == 0: # extract array scalar and process below arg = arg.item() elif is_list_like(arg) and getattr(arg, "ndim", 1) == 1: return _convert_listlike(arg, unit=unit, box=box, errors=errors) elif getattr(arg, "ndim", 1) > 1: raise TypeError( "arg must be a string, timedelta, list, tuple, " "1-d array, or Series" ) # ...so it must be a scalar value. Return scalar. return _coerce_scalar_to_timedelta_type(arg, unit=unit, box=box, errors=errors) def _coerce_scalar_to_timedelta_type(r, unit="ns", box=True, errors="raise"): """Convert string 'r' to a timedelta object.""" try: result = Timedelta(r, unit) if not box: # explicitly view as timedelta64 for case when result is pd.NaT result = result.asm8.view("timedelta64[ns]") except ValueError: if errors == "raise": raise elif errors == "ignore": return r # coerce result = NaT return result def _convert_listlike(arg, unit="ns", box=True, errors="raise", name=None): """Convert a list of objects to a timedelta index object.""" if isinstance(arg, (list, tuple)) or not hasattr(arg, "dtype"): # This is needed only to ensure that in the case where we end up # returning arg (errors == "ignore"), and where the input is a # generator, we return a useful list-like instead of a # used-up generator arg = np.array(list(arg), dtype=object) try: value = sequence_to_td64ns(arg, unit=unit, errors=errors, copy=False)[0] except ValueError: if errors == "ignore": return arg else: # This else-block accounts for the cases when errors='raise' # and errors='coerce'. If errors == 'raise', these errors # should be raised. If errors == 'coerce', we shouldn't # expect any errors to be raised, since all parsing errors # cause coercion to pd.NaT. However, if an error / bug is # introduced that causes an Exception to be raised, we would # like to surface it. raise if box: from pandas import TimedeltaIndex value = TimedeltaIndex(value, unit="ns", name=name) return value
bsd-3-clause
ManuelMBaumann/opt_tau
num_exper/mekrylov.py
1
10316
import scipy.sparse as sparse import matplotlib.pyplot as plt #import scipy.io as io import numpy as np import scipy.sparse.linalg as spla import pyamg from math import sqrt, atan, cos, sin, pi, atan2 from numpy.linalg import norm #from scipy.io import mmwrite from nutils import * from numpy.linalg import solve from scipy.linalg.blas import get_blas_funcs from plot_misc import * import time import cmath class convergenceHistory: def __init__(self, plot_resnrm=False): self.resvec = [] self.plot_resnrm = plot_resnrm def callback(self, _rnrm_): self.resvec.append(_rnrm_) if self.plot_resnrm: print(str(len(self.resvec))+' - '+str(_rnrm_)) class __NoPrecond__(object): def solve(self,_X_): return _X_ def megmres(A, B, m=1000, X0=None, tol=1e-8, maxit=None, M1=None, callback=None, plot_ritz=False): size = B.shape if maxit is None: maxit = 2*np.prod(size) if M1 is None: # No preconditioner class class __NoPrecond__(object): def solve(self,_X_): return _X_ M1 = __NoPrecond__() if X0 is None: X0 = np.zeros(size, dtype = complex) X = np.array(X0) bnrm = norm(B) info = 1 # Check for zero rhs: if bnrm == 0.0: # Solution is null-vector info = 0 return np.zeros(size), info # Compute initial residual: R = B - A.dot(X) rnrm = norm(R) # Relative tolerance tolb = tol*bnrm if callback is not None: callback(rnrm) if rnrm < tolb: # Initial guess is a good enough solution info = 0 return X, info # Initialization rotmat = get_blas_funcs('rotg', dtype=np.complex128) # call to ZROTG V = [np.zeros(size, dtype=complex) for i in range(0, m+1)] H = np.zeros((m+1, m), dtype=complex) cs = np.zeros(m+1, dtype=np.float64) cs_tmp = np.zeros(1, dtype=np.complex128) sn = np.zeros(m+1, dtype=np.complex128) e1 = np.zeros(m+1, dtype=complex) e1[0] = 1. for _iter in range(0, maxit): # Begin iteration V[0] = R/rnrm s = rnrm*e1 for i in range(0, m): # Construct orthonormal basis # using Gram-Schmidt W = A.dot(M1.solve(V[i])) for k in range(0, i+1): H[k, i] = np.vdot(V[k],W) W = W - H[k, i]*V[k] H[i+1, i] = norm(W) V[i+1] = W/H[i+1, i] for k in range(0, i): # Apply Givens rotation temp = cs[k]*H[k, i] + sn[k]*H[k+1, i] H[k+1, i] = -np.conj(sn[k])*H[k, i] + cs[k]*H[k+1, i] H[k, i] = temp cs_tmp, sn[i] = rotmat(H[i, i], H[i+1, i]) cs[i] = cs_tmp.real # BUGFIX: BLAS wrapper out params temp = cs[i]*s[i] s[i+1] = -np.conj(sn[i])*s[i] s[i] = temp H[i, i] = cs[i]*H[i, i] + sn[i]*H[i+1, i] H[i+1, i] = 0.0 rnrm = abs(s[i+1]) if callback is not None: callback(rnrm) if rnrm < tolb: y = solve(H[:i, :i], s[:i]) Xtmp = np.zeros(size, dtype=complex) for k in range(0, i): Xtmp += y[k]*V[k] X += M1.solve(Xtmp) info = 0 if plot_ritz: plot_ritzvals(H[:i,:i]) return X, info y = solve(H[:m, :m], s[:m]) Xtmp = np.zeros(size, dtype=complex) for k in range(0, k): Xtmp += y[k]*V[k] X += M1.solve(Xtmp) R = B - A.dot(X) rnrm = norm(R) if callback is not None: callback(rnrm) if rnrm < tolb: info = 0 break if plot_ritz & _iter==maxit-1: plot_ritzvals(H[:m,:m]) return X, info def vectorize_me(A, om, tau, dd, P=None, imgtype='png'): eta = om/(om-tau) # simplified for right operators being diag matrices Pflag = 0 if P==None: P = __NoPrecond__() Pflag = 1 N = A.K.shape[0] Nom = A.Om.shape[0] Eij = np.zeros((N,Nom), dtype=complex) A_blk = np.zeros((N*Nom,N*Nom), dtype=complex) for i in range(N): for j in range(Nom): Eij[i,j] = 1.0 A_blk[j*N:(j+1)*N,i+j*N] = A.dot(P.solve(Eij))[:,j] Eij[i,j] = 0.0 with plot.PyPlot( 'blk_eigs', figsize=(10,10), imgtype=imgtype) as plt: vals = np.linalg.eigvals(A_blk) plt.plot(vals.real, vals.imag, 'bx', markersize=5) plt.axhline(linewidth=0.5, color='k') plt.axvline(linewidth=0.5, color='k') #plt.axis('equal') # Plotting plt.axis('scaled') plt.xlim([-1.7,1.7]) plt.ylim([-0.7,1.8]) #plt.axis([-1.7, 1.7, -0.7, 1.7]) plt.xlabel('real part', fontsize=16) plt.ylabel('imag part', fontsize=16) NOP = 100 th = np.linspace(0.0,2.0*pi,NOP) C = 0.0 + 1j*( (dd*abs(tau)**2)/(2.0*tau.imag*(tau.imag+dd*tau.real)) ) R = sqrt( abs(tau)**2*(dd**2+1.0)/(4.0*(tau.imag+dd*tau.real)**2) ) X = R*np.cos(th)+C.real Y = R*np.sin(th)+C.imag plt.plot(X, Y, color='0.55') plt.plot(C.real, C.imag, color='0.55', marker='x', markersize=10) plt.title('Spectrum of '+r'$A \circ P_1^{-1}$', fontsize=20) if Pflag==0: for k in range(1,Nom): # do not plot bounding circle for f_1 ck = -np.conj(tau)/(tau-np.conj(tau)) - eta[k] r = abs(tau/(tau-np.conj(tau))) x = r*np.cos(th)+ck.real y = r*np.sin(th)+ck.imag plt.plot(x, y, color='0.75', linestyle='dashed') plt.plot(ck.real, ck.imag, color='0.55', marker='x', markersize=10) plt.title('Spectrum of '+r'$A \circ P_1^{-1} \circ P_2^{-1}$', fontsize=20) if Pflag==1: with plot.PyPlot( 'blk_spy', ndigits=0 ) as plt: plt.spy( A_blk, markersize=0.8, precision=0.05) def me_driver(K, C, M, b, freq, tau, damping, tol, maxit, plot_resnrm=True, iLU=False, fill_factor=10, rot=False, plot_ritz=False): class vG_op: def __init__(self, K, C, M, Om, P): self.K = K self.C = C self.M = M self.Om = Om self.P = P self.type = complex def dot(self, X): X = self.P.solve(X) return self.K.dot(X) + 1j*( self.C.dot( ((self.Om).dot(X.T)).T ) ) - self.M.dot( ((self.Om**2).dot(X.T)).T ) #return self.K.dot(X) - self.M.dot( ((self.Om**2).dot(X.T)).T ) def resub(self, X): return self.P.solve(X) class precon: def __init__(self, K, C, M, tau, eta, timing=False): P = K+1j*tau*C-tau**2*M #P = K-tau*M t0 = time.time() self.P = spla.splu(P.tocsc()) self.IE = sparse.identity(len(eta)) - sparse.diags(eta,0) te = time.time() if timing: print('LU decomposition:'+str(te-t0)) def solve(self, X): X = self.P.solve(X) return (self.IE.dot(X.T)).T class precon_ilu: def __init__(self, K, C, M, tau, eta, fill_factor=10.0, timing=False): P = K+1j*tau*C-tau**2*M #P = K-tau*M t0 = time.time() self.P = spla.spilu( P.tocsc(), fill_factor=fill_factor) self.IE = sparse.identity(len(eta)) - sparse.diags(eta,0) te = time.time() if timing: print('iLU({}) decomposition:'.format(fill_factor)+str(te-t0)) def solve(self, X): X = self.P.solve(X) return (self.IE.dot(X.T)).T class rot_precon: def __init__(self, eta, tau): c1 = (0-np.conj(tau))/(tau-np.conj(tau)) - eta[0] phi1 = cmath.polar(c1)[1] #phi1 = pi/2.0 rot = np.ones((len(eta),), dtype=complex) for k in range(0,len(eta)): ck = (0-np.conj(tau))/(tau-np.conj(tau)) - eta[k] phik = cmath.polar(ck)[1] rot[k] = np.exp(-1j*(phik-phi1)) self.R = sparse.diags(rot,0) def solve(self, X): return (self.R.dot(X.T)).T # Convert frequencies, damping model om = np.sqrt(1.0-1j*damping)*(2.0*pi*freq) Om = sparse.diags(om,0) tau2 = tau*max((2.0*pi*freq)**2) if tau.real<0.0: tau2 = opt_tau_anal( damping, min((2.0*pi*freq)**2), max((2.0*pi*freq)**2) ) tau = np.sqrt(tau2) #print(tau2, tau) print( tau/max(om.real) ) eta = om**2/(om**2-tau2) # Define preconditioners if not iLU: P1 = precon( K, C, M, tau, eta, timing=True ) else: P1 = precon_ilu( K, C, M, tau, eta, fill_factor=fill_factor, timing=True ) if rot: P2 = rot_precon( eta, tau2 ) else: P2 = __NoPrecond__() # Define operator and RHS A = vG_op( K, C, M, Om, P1 ) B = (b*np.ones((len(freq),1))).T if plot_ritz: vectorize_me(A, om**2, tau2, damping) vectorize_me(A, om**2, tau2, damping, imgtype='eps') if rot: vectorize_me(A, om**2, tau2, damping, P2) vectorize_me(A, om**2, tau2, damping, P2, imgtype='eps') # Run global GMRES X0 = np.zeros(B.shape, dtype=complex) res = convergenceHistory(plot_resnrm=plot_resnrm) X, info = megmres( A, B, X0=X0, tol=tol, maxit=maxit, M1=P2, callback=res.callback, plot_ritz=plot_ritz ) X = A.resub(X) # Plot convergence and bounding cirlces plot_meconvergence(res.resvec) I = sparse.identity(M.shape[0]) AA = sparse.bmat([[1j*C,K],[I,None]]) BB = sparse.bmat([[M,None],[None,I]]) plot_circles_on_circle( AA, BB, om**2, tau2, damping) if rot: plot_circles_on_circle( AA, BB, om**2, tau2, damping, rot=np.diag(P2.R.todense()) ) return X.T, len(res.resvec)
mit
cxxgtxy/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator_input_test.py
72
12865
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat( [labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' class EstimatorInputTest(test.TestCase): def testContinueTrainingDictionaryInput(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=50) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) del est # Create another estimator object with the same output dir. est2 = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = np.array(list(est2.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, float64_target['labels']) self.assertAllClose(other_score, scores['MSE']) def testBostonAll(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=100) scores = est.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(scores['MSE'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testBostonAllDictionaryInput(self): boston = base.load_boston() est = estimator.Estimator(model_fn=linear_model_fn) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=100) scores = est.evaluate( x=boston_input, y=float64_target, metrics={'MSE': metric_ops.streaming_mean_squared_error}) predictions = np.array(list(est.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = base.load_iris() est = estimator.SKCompat( estimator.Estimator(model_fn=logistic_model_no_mode_fn)) est.fit(iris.data, iris.target, steps=100) scores = est.score( x=iris.data, y=iris.target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] self.assertEqual(predictions['prob'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class) self.assertAllClose( predictions['class'], np.argmax( predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(scores['accuracy'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testIrisAllDictionaryInput(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) iris_data = {'input': iris.data} iris_target = {'labels': iris.target} est.fit(iris_data, iris_target, steps=100) scores = est.evaluate( x=iris_data, y=iris_target, metrics={('accuracy', 'class'): metric_ops.streaming_accuracy}) predictions = list(est.predict(x=iris_data)) predictions_class = list(est.predict(x=iris_data, outputs=['class'])) self.assertEqual(len(predictions), iris.target.shape[0]) classes_batch = np.array([p['class'] for p in predictions]) self.assertAllClose(classes_batch, np.array([p['class'] for p in predictions_class])) self.assertAllClose( classes_batch, np.argmax( np.array([p['prob'] for p in predictions]), axis=1)) other_score = _sklearn.accuracy_score(iris.target, classes_batch) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisInputFnLabelsDict(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn_labels_dict, steps=100) _ = est.evaluate( input_fn=iris_input_fn_labels_dict, steps=1, metrics={ 'accuracy': metric_spec.MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='class', label_key='labels') }) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testTrainInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testPredictInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testPredictInputFnWithQueue(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn_with_queue, num_epochs=2) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0] * 2) def testPredictConstInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) def input_fn(): features = array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) if __name__ == '__main__': test.main()
apache-2.0
behzadnouri/scipy
scipy/optimize/nonlin.py
34
46681
r""" Nonlinear solvers ----------------- .. currentmodule:: scipy.optimize This is a collection of general-purpose nonlinear multidimensional solvers. These solvers find *x* for which *F(x) = 0*. Both *x* and *F* can be multidimensional. Routines ~~~~~~~~ Large-scale nonlinear solvers: .. autosummary:: newton_krylov anderson General nonlinear solvers: .. autosummary:: broyden1 broyden2 Simple iterations: .. autosummary:: excitingmixing linearmixing diagbroyden Examples ~~~~~~~~ **Small problem** >>> def F(x): ... return np.cos(x) + x[::-1] - [1, 2, 3, 4] >>> import scipy.optimize >>> x = scipy.optimize.broyden1(F, [1,1,1,1], f_tol=1e-14) >>> x array([ 4.04674914, 3.91158389, 2.71791677, 1.61756251]) >>> np.cos(x) + x[::-1] array([ 1., 2., 3., 4.]) **Large problem** Suppose that we needed to solve the following integrodifferential equation on the square :math:`[0,1]\times[0,1]`: .. math:: \nabla^2 P = 10 \left(\int_0^1\int_0^1\cosh(P)\,dx\,dy\right)^2 with :math:`P(x,1) = 1` and :math:`P=0` elsewhere on the boundary of the square. The solution can be found using the `newton_krylov` solver: .. plot:: import numpy as np from scipy.optimize import newton_krylov from numpy import cosh, zeros_like, mgrid, zeros # parameters nx, ny = 75, 75 hx, hy = 1./(nx-1), 1./(ny-1) P_left, P_right = 0, 0 P_top, P_bottom = 1, 0 def residual(P): d2x = zeros_like(P) d2y = zeros_like(P) d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy return d2x + d2y - 10*cosh(P).mean()**2 # solve guess = zeros((nx, ny), float) sol = newton_krylov(residual, guess, method='lgmres', verbose=1) print('Residual: %g' % abs(residual(sol)).max()) # visualize import matplotlib.pyplot as plt x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)] plt.pcolor(x, y, sol) plt.colorbar() plt.show() """ # Copyright (C) 2009, Pauli Virtanen <[email protected]> # Distributed under the same license as Scipy. from __future__ import division, print_function, absolute_import import sys import numpy as np from scipy._lib.six import callable, exec_, xrange from scipy.linalg import norm, solve, inv, qr, svd, LinAlgError from numpy import asarray, dot, vdot import scipy.sparse.linalg import scipy.sparse from scipy.linalg import get_blas_funcs import inspect from scipy._lib._util import getargspec_no_self as _getargspec from .linesearch import scalar_search_wolfe1, scalar_search_armijo __all__ = [ 'broyden1', 'broyden2', 'anderson', 'linearmixing', 'diagbroyden', 'excitingmixing', 'newton_krylov'] #------------------------------------------------------------------------------ # Utility functions #------------------------------------------------------------------------------ class NoConvergence(Exception): pass def maxnorm(x): return np.absolute(x).max() def _as_inexact(x): """Return `x` as an array, of either floats or complex floats""" x = asarray(x) if not np.issubdtype(x.dtype, np.inexact): return asarray(x, dtype=np.float_) return x def _array_like(x, x0): """Return ndarray `x` as same array subclass and shape as `x0`""" x = np.reshape(x, np.shape(x0)) wrap = getattr(x0, '__array_wrap__', x.__array_wrap__) return wrap(x) def _safe_norm(v): if not np.isfinite(v).all(): return np.array(np.inf) return norm(v) #------------------------------------------------------------------------------ # Generic nonlinear solver machinery #------------------------------------------------------------------------------ _doc_parts = dict( params_basic=""" F : function(x) -> f Function whose root to find; should take and return an array-like object. x0 : array_like Initial guess for the solution """.strip(), params_extra=""" iter : int, optional Number of iterations to make. If omitted (default), make as many as required to meet tolerances. verbose : bool, optional Print status to stdout on every iteration. maxiter : int, optional Maximum number of iterations to make. If more are needed to meet convergence, `NoConvergence` is raised. f_tol : float, optional Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6. f_rtol : float, optional Relative tolerance for the residual. If omitted, not used. x_tol : float, optional Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used. x_rtol : float, optional Relative minimum step size. If omitted, not used. tol_norm : function(vector) -> scalar, optional Norm to use in convergence check. Default is the maximum norm. line_search : {None, 'armijo' (default), 'wolfe'}, optional Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'. callback : function, optional Optional callback function. It is called on every iteration as ``callback(x, f)`` where `x` is the current solution and `f` the corresponding residual. Returns ------- sol : ndarray An array (of similar array type as `x0`) containing the final solution. Raises ------ NoConvergence When a solution was not found. """.strip() ) def _set_doc(obj): if obj.__doc__: obj.__doc__ = obj.__doc__ % _doc_parts def nonlin_solve(F, x0, jacobian='krylov', iter=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, full_output=False, raise_exception=True): """ Find a root of a function, in a way suitable for large-scale problems. Parameters ---------- %(params_basic)s jacobian : Jacobian A Jacobian approximation: `Jacobian` object or something that `asjacobian` can transform to one. Alternatively, a string specifying which of the builtin Jacobian approximations to use: krylov, broyden1, broyden2, anderson diagbroyden, linearmixing, excitingmixing %(params_extra)s full_output : bool If true, returns a dictionary `info` containing convergence information. raise_exception : bool If True, a `NoConvergence` exception is raise if no solution is found. See Also -------- asjacobian, Jacobian Notes ----- This algorithm implements the inexact Newton method, with backtracking or full line searches. Several Jacobian approximations are available, including Krylov and Quasi-Newton methods. References ---------- .. [KIM] C. T. Kelley, \"Iterative Methods for Linear and Nonlinear Equations\". Society for Industrial and Applied Mathematics. (1995) http://www.siam.org/books/kelley/ """ condition = TerminationCondition(f_tol=f_tol, f_rtol=f_rtol, x_tol=x_tol, x_rtol=x_rtol, iter=iter, norm=tol_norm) x0 = _as_inexact(x0) func = lambda z: _as_inexact(F(_array_like(z, x0))).flatten() x = x0.flatten() dx = np.inf Fx = func(x) Fx_norm = norm(Fx) jacobian = asjacobian(jacobian) jacobian.setup(x.copy(), Fx, func) if maxiter is None: if iter is not None: maxiter = iter + 1 else: maxiter = 100*(x.size+1) if line_search is True: line_search = 'armijo' elif line_search is False: line_search = None if line_search not in (None, 'armijo', 'wolfe'): raise ValueError("Invalid line search") # Solver tolerance selection gamma = 0.9 eta_max = 0.9999 eta_treshold = 0.1 eta = 1e-3 for n in xrange(maxiter): status = condition.check(Fx, x, dx) if status: break # The tolerance, as computed for scipy.sparse.linalg.* routines tol = min(eta, eta*Fx_norm) dx = -jacobian.solve(Fx, tol=tol) if norm(dx) == 0: raise ValueError("Jacobian inversion yielded zero vector. " "This indicates a bug in the Jacobian " "approximation.") # Line search, or Newton step if line_search: s, x, Fx, Fx_norm_new = _nonlin_line_search(func, x, Fx, dx, line_search) else: s = 1.0 x = x + dx Fx = func(x) Fx_norm_new = norm(Fx) jacobian.update(x.copy(), Fx) if callback: callback(x, Fx) # Adjust forcing parameters for inexact methods eta_A = gamma * Fx_norm_new**2 / Fx_norm**2 if gamma * eta**2 < eta_treshold: eta = min(eta_max, eta_A) else: eta = min(eta_max, max(eta_A, gamma*eta**2)) Fx_norm = Fx_norm_new # Print status if verbose: sys.stdout.write("%d: |F(x)| = %g; step %g; tol %g\n" % ( n, norm(Fx), s, eta)) sys.stdout.flush() else: if raise_exception: raise NoConvergence(_array_like(x, x0)) else: status = 2 if full_output: info = {'nit': condition.iteration, 'fun': Fx, 'status': status, 'success': status == 1, 'message': {1: 'A solution was found at the specified ' 'tolerance.', 2: 'The maximum number of iterations allowed ' 'has been reached.' }[status] } return _array_like(x, x0), info else: return _array_like(x, x0) _set_doc(nonlin_solve) def _nonlin_line_search(func, x, Fx, dx, search_type='armijo', rdiff=1e-8, smin=1e-2): tmp_s = [0] tmp_Fx = [Fx] tmp_phi = [norm(Fx)**2] s_norm = norm(x) / norm(dx) def phi(s, store=True): if s == tmp_s[0]: return tmp_phi[0] xt = x + s*dx v = func(xt) p = _safe_norm(v)**2 if store: tmp_s[0] = s tmp_phi[0] = p tmp_Fx[0] = v return p def derphi(s): ds = (abs(s) + s_norm + 1) * rdiff return (phi(s+ds, store=False) - phi(s)) / ds if search_type == 'wolfe': s, phi1, phi0 = scalar_search_wolfe1(phi, derphi, tmp_phi[0], xtol=1e-2, amin=smin) elif search_type == 'armijo': s, phi1 = scalar_search_armijo(phi, tmp_phi[0], -tmp_phi[0], amin=smin) if s is None: # XXX: No suitable step length found. Take the full Newton step, # and hope for the best. s = 1.0 x = x + s*dx if s == tmp_s[0]: Fx = tmp_Fx[0] else: Fx = func(x) Fx_norm = norm(Fx) return s, x, Fx, Fx_norm class TerminationCondition(object): """ Termination condition for an iteration. It is terminated if - |F| < f_rtol*|F_0|, AND - |F| < f_tol AND - |dx| < x_rtol*|x|, AND - |dx| < x_tol """ def __init__(self, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, iter=None, norm=maxnorm): if f_tol is None: f_tol = np.finfo(np.float_).eps ** (1./3) if f_rtol is None: f_rtol = np.inf if x_tol is None: x_tol = np.inf if x_rtol is None: x_rtol = np.inf self.x_tol = x_tol self.x_rtol = x_rtol self.f_tol = f_tol self.f_rtol = f_rtol if norm is None: self.norm = maxnorm else: self.norm = norm self.iter = iter self.f0_norm = None self.iteration = 0 def check(self, f, x, dx): self.iteration += 1 f_norm = self.norm(f) x_norm = self.norm(x) dx_norm = self.norm(dx) if self.f0_norm is None: self.f0_norm = f_norm if f_norm == 0: return 1 if self.iter is not None: # backwards compatibility with Scipy 0.6.0 return 2 * (self.iteration > self.iter) # NB: condition must succeed for rtol=inf even if norm == 0 return int((f_norm <= self.f_tol and f_norm/self.f_rtol <= self.f0_norm) and (dx_norm <= self.x_tol and dx_norm/self.x_rtol <= x_norm)) #------------------------------------------------------------------------------ # Generic Jacobian approximation #------------------------------------------------------------------------------ class Jacobian(object): """ Common interface for Jacobians or Jacobian approximations. The optional methods come useful when implementing trust region etc. algorithms that often require evaluating transposes of the Jacobian. Methods ------- solve Returns J^-1 * v update Updates Jacobian to point `x` (where the function has residual `Fx`) matvec : optional Returns J * v rmatvec : optional Returns A^H * v rsolve : optional Returns A^-H * v matmat : optional Returns A * V, where V is a dense matrix with dimensions (N,K). todense : optional Form the dense Jacobian matrix. Necessary for dense trust region algorithms, and useful for testing. Attributes ---------- shape Matrix dimensions (M, N) dtype Data type of the matrix. func : callable, optional Function the Jacobian corresponds to """ def __init__(self, **kw): names = ["solve", "update", "matvec", "rmatvec", "rsolve", "matmat", "todense", "shape", "dtype"] for name, value in kw.items(): if name not in names: raise ValueError("Unknown keyword argument %s" % name) if value is not None: setattr(self, name, kw[name]) if hasattr(self, 'todense'): self.__array__ = lambda: self.todense() def aspreconditioner(self): return InverseJacobian(self) def solve(self, v, tol=0): raise NotImplementedError def update(self, x, F): pass def setup(self, x, F, func): self.func = func self.shape = (F.size, x.size) self.dtype = F.dtype if self.__class__.setup is Jacobian.setup: # Call on the first point unless overridden self.update(self, x, F) class InverseJacobian(object): def __init__(self, jacobian): self.jacobian = jacobian self.matvec = jacobian.solve self.update = jacobian.update if hasattr(jacobian, 'setup'): self.setup = jacobian.setup if hasattr(jacobian, 'rsolve'): self.rmatvec = jacobian.rsolve @property def shape(self): return self.jacobian.shape @property def dtype(self): return self.jacobian.dtype def asjacobian(J): """ Convert given object to one suitable for use as a Jacobian. """ spsolve = scipy.sparse.linalg.spsolve if isinstance(J, Jacobian): return J elif inspect.isclass(J) and issubclass(J, Jacobian): return J() elif isinstance(J, np.ndarray): if J.ndim > 2: raise ValueError('array must have rank <= 2') J = np.atleast_2d(np.asarray(J)) if J.shape[0] != J.shape[1]: raise ValueError('array must be square') return Jacobian(matvec=lambda v: dot(J, v), rmatvec=lambda v: dot(J.conj().T, v), solve=lambda v: solve(J, v), rsolve=lambda v: solve(J.conj().T, v), dtype=J.dtype, shape=J.shape) elif scipy.sparse.isspmatrix(J): if J.shape[0] != J.shape[1]: raise ValueError('matrix must be square') return Jacobian(matvec=lambda v: J*v, rmatvec=lambda v: J.conj().T * v, solve=lambda v: spsolve(J, v), rsolve=lambda v: spsolve(J.conj().T, v), dtype=J.dtype, shape=J.shape) elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'): return Jacobian(matvec=getattr(J, 'matvec'), rmatvec=getattr(J, 'rmatvec'), solve=J.solve, rsolve=getattr(J, 'rsolve'), update=getattr(J, 'update'), setup=getattr(J, 'setup'), dtype=J.dtype, shape=J.shape) elif callable(J): # Assume it's a function J(x) that returns the Jacobian class Jac(Jacobian): def update(self, x, F): self.x = x def solve(self, v, tol=0): m = J(self.x) if isinstance(m, np.ndarray): return solve(m, v) elif scipy.sparse.isspmatrix(m): return spsolve(m, v) else: raise ValueError("Unknown matrix type") def matvec(self, v): m = J(self.x) if isinstance(m, np.ndarray): return dot(m, v) elif scipy.sparse.isspmatrix(m): return m*v else: raise ValueError("Unknown matrix type") def rsolve(self, v, tol=0): m = J(self.x) if isinstance(m, np.ndarray): return solve(m.conj().T, v) elif scipy.sparse.isspmatrix(m): return spsolve(m.conj().T, v) else: raise ValueError("Unknown matrix type") def rmatvec(self, v): m = J(self.x) if isinstance(m, np.ndarray): return dot(m.conj().T, v) elif scipy.sparse.isspmatrix(m): return m.conj().T * v else: raise ValueError("Unknown matrix type") return Jac() elif isinstance(J, str): return dict(broyden1=BroydenFirst, broyden2=BroydenSecond, anderson=Anderson, diagbroyden=DiagBroyden, linearmixing=LinearMixing, excitingmixing=ExcitingMixing, krylov=KrylovJacobian)[J]() else: raise TypeError('Cannot convert object to a Jacobian') #------------------------------------------------------------------------------ # Broyden #------------------------------------------------------------------------------ class GenericBroyden(Jacobian): def setup(self, x0, f0, func): Jacobian.setup(self, x0, f0, func) self.last_f = f0 self.last_x = x0 if hasattr(self, 'alpha') and self.alpha is None: # Autoscale the initial Jacobian parameter # unless we have already guessed the solution. normf0 = norm(f0) if normf0: self.alpha = 0.5*max(norm(x0), 1) / normf0 else: self.alpha = 1.0 def _update(self, x, f, dx, df, dx_norm, df_norm): raise NotImplementedError def update(self, x, f): df = f - self.last_f dx = x - self.last_x self._update(x, f, dx, df, norm(dx), norm(df)) self.last_f = f self.last_x = x class LowRankMatrix(object): r""" A matrix represented as .. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger However, if the rank of the matrix reaches the dimension of the vectors, full matrix representation will be used thereon. """ def __init__(self, alpha, n, dtype): self.alpha = alpha self.cs = [] self.ds = [] self.n = n self.dtype = dtype self.collapsed = None @staticmethod def _matvec(v, alpha, cs, ds): axpy, scal, dotc = get_blas_funcs(['axpy', 'scal', 'dotc'], cs[:1] + [v]) w = alpha * v for c, d in zip(cs, ds): a = dotc(d, v) w = axpy(c, w, w.size, a) return w @staticmethod def _solve(v, alpha, cs, ds): """Evaluate w = M^-1 v""" if len(cs) == 0: return v/alpha # (B + C D^H)^-1 = B^-1 - B^-1 C (I + D^H B^-1 C)^-1 D^H B^-1 axpy, dotc = get_blas_funcs(['axpy', 'dotc'], cs[:1] + [v]) c0 = cs[0] A = alpha * np.identity(len(cs), dtype=c0.dtype) for i, d in enumerate(ds): for j, c in enumerate(cs): A[i,j] += dotc(d, c) q = np.zeros(len(cs), dtype=c0.dtype) for j, d in enumerate(ds): q[j] = dotc(d, v) q /= alpha q = solve(A, q) w = v/alpha for c, qc in zip(cs, q): w = axpy(c, w, w.size, -qc) return w def matvec(self, v): """Evaluate w = M v""" if self.collapsed is not None: return np.dot(self.collapsed, v) return LowRankMatrix._matvec(v, self.alpha, self.cs, self.ds) def rmatvec(self, v): """Evaluate w = M^H v""" if self.collapsed is not None: return np.dot(self.collapsed.T.conj(), v) return LowRankMatrix._matvec(v, np.conj(self.alpha), self.ds, self.cs) def solve(self, v, tol=0): """Evaluate w = M^-1 v""" if self.collapsed is not None: return solve(self.collapsed, v) return LowRankMatrix._solve(v, self.alpha, self.cs, self.ds) def rsolve(self, v, tol=0): """Evaluate w = M^-H v""" if self.collapsed is not None: return solve(self.collapsed.T.conj(), v) return LowRankMatrix._solve(v, np.conj(self.alpha), self.ds, self.cs) def append(self, c, d): if self.collapsed is not None: self.collapsed += c[:,None] * d[None,:].conj() return self.cs.append(c) self.ds.append(d) if len(self.cs) > c.size: self.collapse() def __array__(self): if self.collapsed is not None: return self.collapsed Gm = self.alpha*np.identity(self.n, dtype=self.dtype) for c, d in zip(self.cs, self.ds): Gm += c[:,None]*d[None,:].conj() return Gm def collapse(self): """Collapse the low-rank matrix to a full-rank one.""" self.collapsed = np.array(self) self.cs = None self.ds = None self.alpha = None def restart_reduce(self, rank): """ Reduce the rank of the matrix by dropping all vectors. """ if self.collapsed is not None: return assert rank > 0 if len(self.cs) > rank: del self.cs[:] del self.ds[:] def simple_reduce(self, rank): """ Reduce the rank of the matrix by dropping oldest vectors. """ if self.collapsed is not None: return assert rank > 0 while len(self.cs) > rank: del self.cs[0] del self.ds[0] def svd_reduce(self, max_rank, to_retain=None): """ Reduce the rank of the matrix by retaining some SVD components. This corresponds to the \"Broyden Rank Reduction Inverse\" algorithm described in [1]_. Note that the SVD decomposition can be done by solving only a problem whose size is the effective rank of this matrix, which is viable even for large problems. Parameters ---------- max_rank : int Maximum rank of this matrix after reduction. to_retain : int, optional Number of SVD components to retain when reduction is done (ie. rank > max_rank). Default is ``max_rank - 2``. References ---------- .. [1] B.A. van der Rotten, PhD thesis, \"A limited memory Broyden method to solve high-dimensional systems of nonlinear equations\". Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003). http://www.math.leidenuniv.nl/scripties/Rotten.pdf """ if self.collapsed is not None: return p = max_rank if to_retain is not None: q = to_retain else: q = p - 2 if self.cs: p = min(p, len(self.cs[0])) q = max(0, min(q, p-1)) m = len(self.cs) if m < p: # nothing to do return C = np.array(self.cs).T D = np.array(self.ds).T D, R = qr(D, mode='economic') C = dot(C, R.T.conj()) U, S, WH = svd(C, full_matrices=False, compute_uv=True) C = dot(C, inv(WH)) D = dot(D, WH.T.conj()) for k in xrange(q): self.cs[k] = C[:,k].copy() self.ds[k] = D[:,k].copy() del self.cs[q:] del self.ds[q:] _doc_parts['broyden_params'] = """ alpha : float, optional Initial guess for the Jacobian is ``(-1/alpha)``. reduction_method : str or tuple, optional Method used in ensuring that the rank of the Broyden matrix stays low. Can either be a string giving the name of the method, or a tuple of the form ``(method, param1, param2, ...)`` that gives the name of the method and values for additional parameters. Methods available: - ``restart``: drop all matrix columns. Has no extra parameters. - ``simple``: drop oldest matrix column. Has no extra parameters. - ``svd``: keep only the most significant SVD components. Takes an extra parameter, ``to_retain``, which determines the number of SVD components to retain when rank reduction is done. Default is ``max_rank - 2``. max_rank : int, optional Maximum rank for the Broyden matrix. Default is infinity (ie., no rank reduction). """.strip() class BroydenFirst(GenericBroyden): r""" Find a root of a function, using Broyden's first Jacobian approximation. This method is also known as \"Broyden's good method\". Parameters ---------- %(params_basic)s %(broyden_params)s %(params_extra)s Notes ----- This algorithm implements the inverse Jacobian Quasi-Newton update .. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df) which corresponds to Broyden's first Jacobian update .. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx References ---------- .. [1] B.A. van der Rotten, PhD thesis, \"A limited memory Broyden method to solve high-dimensional systems of nonlinear equations\". Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003). http://www.math.leidenuniv.nl/scripties/Rotten.pdf """ def __init__(self, alpha=None, reduction_method='restart', max_rank=None): GenericBroyden.__init__(self) self.alpha = alpha self.Gm = None if max_rank is None: max_rank = np.inf self.max_rank = max_rank if isinstance(reduction_method, str): reduce_params = () else: reduce_params = reduction_method[1:] reduction_method = reduction_method[0] reduce_params = (max_rank - 1,) + reduce_params if reduction_method == 'svd': self._reduce = lambda: self.Gm.svd_reduce(*reduce_params) elif reduction_method == 'simple': self._reduce = lambda: self.Gm.simple_reduce(*reduce_params) elif reduction_method == 'restart': self._reduce = lambda: self.Gm.restart_reduce(*reduce_params) else: raise ValueError("Unknown rank reduction method '%s'" % reduction_method) def setup(self, x, F, func): GenericBroyden.setup(self, x, F, func) self.Gm = LowRankMatrix(-self.alpha, self.shape[0], self.dtype) def todense(self): return inv(self.Gm) def solve(self, f, tol=0): r = self.Gm.matvec(f) if not np.isfinite(r).all(): # singular; reset the Jacobian approximation self.setup(self.last_x, self.last_f, self.func) return self.Gm.matvec(f) def matvec(self, f): return self.Gm.solve(f) def rsolve(self, f, tol=0): return self.Gm.rmatvec(f) def rmatvec(self, f): return self.Gm.rsolve(f) def _update(self, x, f, dx, df, dx_norm, df_norm): self._reduce() # reduce first to preserve secant condition v = self.Gm.rmatvec(dx) c = dx - self.Gm.matvec(df) d = v / vdot(df, v) self.Gm.append(c, d) class BroydenSecond(BroydenFirst): """ Find a root of a function, using Broyden\'s second Jacobian approximation. This method is also known as \"Broyden's bad method\". Parameters ---------- %(params_basic)s %(broyden_params)s %(params_extra)s Notes ----- This algorithm implements the inverse Jacobian Quasi-Newton update .. math:: H_+ = H + (dx - H df) df^\dagger / ( df^\dagger df) corresponding to Broyden's second method. References ---------- .. [1] B.A. van der Rotten, PhD thesis, \"A limited memory Broyden method to solve high-dimensional systems of nonlinear equations\". Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003). http://www.math.leidenuniv.nl/scripties/Rotten.pdf """ def _update(self, x, f, dx, df, dx_norm, df_norm): self._reduce() # reduce first to preserve secant condition v = df c = dx - self.Gm.matvec(df) d = v / df_norm**2 self.Gm.append(c, d) #------------------------------------------------------------------------------ # Broyden-like (restricted memory) #------------------------------------------------------------------------------ class Anderson(GenericBroyden): """ Find a root of a function, using (extended) Anderson mixing. The Jacobian is formed by for a 'best' solution in the space spanned by last `M` vectors. As a result, only a MxM matrix inversions and MxN multiplications are required. [Ey]_ Parameters ---------- %(params_basic)s alpha : float, optional Initial guess for the Jacobian is (-1/alpha). M : float, optional Number of previous vectors to retain. Defaults to 5. w0 : float, optional Regularization parameter for numerical stability. Compared to unity, good values of the order of 0.01. %(params_extra)s References ---------- .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996). """ # Note: # # Anderson method maintains a rank M approximation of the inverse Jacobian, # # J^-1 v ~ -v*alpha + (dX + alpha dF) A^-1 dF^H v # A = W + dF^H dF # W = w0^2 diag(dF^H dF) # # so that for w0 = 0 the secant condition applies for last M iterates, ie., # # J^-1 df_j = dx_j # # for all j = 0 ... M-1. # # Moreover, (from Sherman-Morrison-Woodbury formula) # # J v ~ [ b I - b^2 C (I + b dF^H A^-1 C)^-1 dF^H ] v # C = (dX + alpha dF) A^-1 # b = -1/alpha # # and after simplification # # J v ~ -v/alpha + (dX/alpha + dF) (dF^H dX - alpha W)^-1 dF^H v # def __init__(self, alpha=None, w0=0.01, M=5): GenericBroyden.__init__(self) self.alpha = alpha self.M = M self.dx = [] self.df = [] self.gamma = None self.w0 = w0 def solve(self, f, tol=0): dx = -self.alpha*f n = len(self.dx) if n == 0: return dx df_f = np.empty(n, dtype=f.dtype) for k in xrange(n): df_f[k] = vdot(self.df[k], f) try: gamma = solve(self.a, df_f) except LinAlgError: # singular; reset the Jacobian approximation del self.dx[:] del self.df[:] return dx for m in xrange(n): dx += gamma[m]*(self.dx[m] + self.alpha*self.df[m]) return dx def matvec(self, f): dx = -f/self.alpha n = len(self.dx) if n == 0: return dx df_f = np.empty(n, dtype=f.dtype) for k in xrange(n): df_f[k] = vdot(self.df[k], f) b = np.empty((n, n), dtype=f.dtype) for i in xrange(n): for j in xrange(n): b[i,j] = vdot(self.df[i], self.dx[j]) if i == j and self.w0 != 0: b[i,j] -= vdot(self.df[i], self.df[i])*self.w0**2*self.alpha gamma = solve(b, df_f) for m in xrange(n): dx += gamma[m]*(self.df[m] + self.dx[m]/self.alpha) return dx def _update(self, x, f, dx, df, dx_norm, df_norm): if self.M == 0: return self.dx.append(dx) self.df.append(df) while len(self.dx) > self.M: self.dx.pop(0) self.df.pop(0) n = len(self.dx) a = np.zeros((n, n), dtype=f.dtype) for i in xrange(n): for j in xrange(i, n): if i == j: wd = self.w0**2 else: wd = 0 a[i,j] = (1+wd)*vdot(self.df[i], self.df[j]) a += np.triu(a, 1).T.conj() self.a = a #------------------------------------------------------------------------------ # Simple iterations #------------------------------------------------------------------------------ class DiagBroyden(GenericBroyden): """ Find a root of a function, using diagonal Broyden Jacobian approximation. The Jacobian approximation is derived from previous iterations, by retaining only the diagonal of Broyden matrices. .. warning:: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem. Parameters ---------- %(params_basic)s alpha : float, optional Initial guess for the Jacobian is (-1/alpha). %(params_extra)s """ def __init__(self, alpha=None): GenericBroyden.__init__(self) self.alpha = alpha def setup(self, x, F, func): GenericBroyden.setup(self, x, F, func) self.d = np.ones((self.shape[0],), dtype=self.dtype) / self.alpha def solve(self, f, tol=0): return -f / self.d def matvec(self, f): return -f * self.d def rsolve(self, f, tol=0): return -f / self.d.conj() def rmatvec(self, f): return -f * self.d.conj() def todense(self): return np.diag(-self.d) def _update(self, x, f, dx, df, dx_norm, df_norm): self.d -= (df + self.d*dx)*dx/dx_norm**2 class LinearMixing(GenericBroyden): """ Find a root of a function, using a scalar Jacobian approximation. .. warning:: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem. Parameters ---------- %(params_basic)s alpha : float, optional The Jacobian approximation is (-1/alpha). %(params_extra)s """ def __init__(self, alpha=None): GenericBroyden.__init__(self) self.alpha = alpha def solve(self, f, tol=0): return -f*self.alpha def matvec(self, f): return -f/self.alpha def rsolve(self, f, tol=0): return -f*np.conj(self.alpha) def rmatvec(self, f): return -f/np.conj(self.alpha) def todense(self): return np.diag(-np.ones(self.shape[0])/self.alpha) def _update(self, x, f, dx, df, dx_norm, df_norm): pass class ExcitingMixing(GenericBroyden): """ Find a root of a function, using a tuned diagonal Jacobian approximation. The Jacobian matrix is diagonal and is tuned on each iteration. .. warning:: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem. Parameters ---------- %(params_basic)s alpha : float, optional Initial Jacobian approximation is (-1/alpha). alphamax : float, optional The entries of the diagonal Jacobian are kept in the range ``[alpha, alphamax]``. %(params_extra)s """ def __init__(self, alpha=None, alphamax=1.0): GenericBroyden.__init__(self) self.alpha = alpha self.alphamax = alphamax self.beta = None def setup(self, x, F, func): GenericBroyden.setup(self, x, F, func) self.beta = self.alpha * np.ones((self.shape[0],), dtype=self.dtype) def solve(self, f, tol=0): return -f*self.beta def matvec(self, f): return -f/self.beta def rsolve(self, f, tol=0): return -f*self.beta.conj() def rmatvec(self, f): return -f/self.beta.conj() def todense(self): return np.diag(-1/self.beta) def _update(self, x, f, dx, df, dx_norm, df_norm): incr = f*self.last_f > 0 self.beta[incr] += self.alpha self.beta[~incr] = self.alpha np.clip(self.beta, 0, self.alphamax, out=self.beta) #------------------------------------------------------------------------------ # Iterative/Krylov approximated Jacobians #------------------------------------------------------------------------------ class KrylovJacobian(Jacobian): r""" Find a root of a function, using Krylov approximation for inverse Jacobian. This method is suitable for solving large-scale problems. Parameters ---------- %(params_basic)s rdiff : float, optional Relative step size to use in numerical differentiation. method : {'lgmres', 'gmres', 'bicgstab', 'cgs', 'minres'} or function Krylov method to use to approximate the Jacobian. Can be a string, or a function implementing the same interface as the iterative solvers in `scipy.sparse.linalg`. The default is `scipy.sparse.linalg.lgmres`. inner_M : LinearOperator or InverseJacobian Preconditioner for the inner Krylov iteration. Note that you can use also inverse Jacobians as (adaptive) preconditioners. For example, >>> from scipy.optimize.nonlin import BroydenFirst, KrylovJacobian >>> from scipy.optimize.nonlin import InverseJacobian >>> jac = BroydenFirst() >>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac)) If the preconditioner has a method named 'update', it will be called as ``update(x, f)`` after each nonlinear step, with ``x`` giving the current point, and ``f`` the current function value. inner_tol, inner_maxiter, ... Parameters to pass on to the \"inner\" Krylov solver. See `scipy.sparse.linalg.gmres` for details. outer_k : int, optional Size of the subspace kept across LGMRES nonlinear iterations. See `scipy.sparse.linalg.lgmres` for details. %(params_extra)s See Also -------- scipy.sparse.linalg.gmres scipy.sparse.linalg.lgmres Notes ----- This function implements a Newton-Krylov solver. The basic idea is to compute the inverse of the Jacobian with an iterative Krylov method. These methods require only evaluating the Jacobian-vector products, which are conveniently approximated by a finite difference: .. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega Due to the use of iterative matrix inverses, these methods can deal with large nonlinear problems. Scipy's `scipy.sparse.linalg` module offers a selection of Krylov solvers to choose from. The default here is `lgmres`, which is a variant of restarted GMRES iteration that reuses some of the information obtained in the previous Newton steps to invert Jacobians in subsequent steps. For a review on Newton-Krylov methods, see for example [1]_, and for the LGMRES sparse inverse method, see [2]_. References ---------- .. [1] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004). doi:10.1016/j.jcp.2003.08.010 .. [2] A.H. Baker and E.R. Jessup and T. Manteuffel, SIAM J. Matrix Anal. Appl. 26, 962 (2005). doi:10.1137/S0895479803422014 """ def __init__(self, rdiff=None, method='lgmres', inner_maxiter=20, inner_M=None, outer_k=10, **kw): self.preconditioner = inner_M self.rdiff = rdiff self.method = dict( bicgstab=scipy.sparse.linalg.bicgstab, gmres=scipy.sparse.linalg.gmres, lgmres=scipy.sparse.linalg.lgmres, cgs=scipy.sparse.linalg.cgs, minres=scipy.sparse.linalg.minres, ).get(method, method) self.method_kw = dict(maxiter=inner_maxiter, M=self.preconditioner) if self.method is scipy.sparse.linalg.gmres: # Replace GMRES's outer iteration with Newton steps self.method_kw['restrt'] = inner_maxiter self.method_kw['maxiter'] = 1 elif self.method is scipy.sparse.linalg.lgmres: self.method_kw['outer_k'] = outer_k # Replace LGMRES's outer iteration with Newton steps self.method_kw['maxiter'] = 1 # Carry LGMRES's `outer_v` vectors across nonlinear iterations self.method_kw.setdefault('outer_v', []) # But don't carry the corresponding Jacobian*v products, in case # the Jacobian changes a lot in the nonlinear step # # XXX: some trust-region inspired ideas might be more efficient... # See eg. Brown & Saad. But needs to be implemented separately # since it's not an inexact Newton method. self.method_kw.setdefault('store_outer_Av', False) for key, value in kw.items(): if not key.startswith('inner_'): raise ValueError("Unknown parameter %s" % key) self.method_kw[key[6:]] = value def _update_diff_step(self): mx = abs(self.x0).max() mf = abs(self.f0).max() self.omega = self.rdiff * max(1, mx) / max(1, mf) def matvec(self, v): nv = norm(v) if nv == 0: return 0*v sc = self.omega / nv r = (self.func(self.x0 + sc*v) - self.f0) / sc if not np.all(np.isfinite(r)) and np.all(np.isfinite(v)): raise ValueError('Function returned non-finite results') return r def solve(self, rhs, tol=0): if 'tol' in self.method_kw: sol, info = self.method(self.op, rhs, **self.method_kw) else: sol, info = self.method(self.op, rhs, tol=tol, **self.method_kw) return sol def update(self, x, f): self.x0 = x self.f0 = f self._update_diff_step() # Update also the preconditioner, if possible if self.preconditioner is not None: if hasattr(self.preconditioner, 'update'): self.preconditioner.update(x, f) def setup(self, x, f, func): Jacobian.setup(self, x, f, func) self.x0 = x self.f0 = f self.op = scipy.sparse.linalg.aslinearoperator(self) if self.rdiff is None: self.rdiff = np.finfo(x.dtype).eps ** (1./2) self._update_diff_step() # Setup also the preconditioner, if possible if self.preconditioner is not None: if hasattr(self.preconditioner, 'setup'): self.preconditioner.setup(x, f, func) #------------------------------------------------------------------------------ # Wrapper functions #------------------------------------------------------------------------------ def _nonlin_wrapper(name, jac): """ Construct a solver wrapper with given name and jacobian approx. It inspects the keyword arguments of ``jac.__init__``, and allows to use the same arguments in the wrapper function, in addition to the keyword arguments of `nonlin_solve` """ args, varargs, varkw, defaults = _getargspec(jac.__init__) kwargs = list(zip(args[-len(defaults):], defaults)) kw_str = ", ".join(["%s=%r" % (k, v) for k, v in kwargs]) if kw_str: kw_str = ", " + kw_str kwkw_str = ", ".join(["%s=%s" % (k, k) for k, v in kwargs]) if kwkw_str: kwkw_str = kwkw_str + ", " # Construct the wrapper function so that its keyword arguments # are visible in pydoc.help etc. wrapper = """ def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw): jac = %(jac)s(%(kwkw)s **kw) return nonlin_solve(F, xin, jac, iter, verbose, maxiter, f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search, callback) """ wrapper = wrapper % dict(name=name, kw=kw_str, jac=jac.__name__, kwkw=kwkw_str) ns = {} ns.update(globals()) exec_(wrapper, ns) func = ns[name] func.__doc__ = jac.__doc__ _set_doc(func) return func broyden1 = _nonlin_wrapper('broyden1', BroydenFirst) broyden2 = _nonlin_wrapper('broyden2', BroydenSecond) anderson = _nonlin_wrapper('anderson', Anderson) linearmixing = _nonlin_wrapper('linearmixing', LinearMixing) diagbroyden = _nonlin_wrapper('diagbroyden', DiagBroyden) excitingmixing = _nonlin_wrapper('excitingmixing', ExcitingMixing) newton_krylov = _nonlin_wrapper('newton_krylov', KrylovJacobian)
bsd-3-clause
jakobj/UP-Tasks
NEST/single_neuron_task/single_neuron.py
3
1344
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import nest # import NEST module def single_neuron(spike_times, sim_duration): nest.set_verbosity('M_WARNING') # reduce NEST output nest.ResetKernel() # reset simulation kernel # create LIF neuron with exponential synaptic currents neuron = nest.Create('iaf_psc_exp') # create a voltmeter voltmeter = nest.Create('voltmeter', params={'interval': 0.1}) # create a spike generator spikegenerator = nest.Create('spike_generator') # ... and let it spike at predefined times nest.SetStatus(spikegenerator, {'spike_times': spike_times}) # connect spike generator and voltmeter to the neuron nest.Connect(spikegenerator, neuron) nest.Connect(voltmeter, neuron) # run simulation for sim_duration nest.Simulate(sim_duration) # read out recording time and voltage from voltmeter times = nest.GetStatus(voltmeter)[0]['events']['times'] voltage = nest.GetStatus(voltmeter)[0]['events']['V_m'] # plot results plt.plot(times, voltage) plt.xlabel('Time (ms)') plt.ylabel('Membrane potential (mV)') filename = 'single_neuron.png' plt.savefig(filename, dpi=300) if __name__ == '__main__': spike_times = [10., 50.] sim_duration = 100. single_neuron(spike_times, sim_duration)
gpl-2.0
flightgong/scikit-learn
benchmarks/bench_plot_omp_lars.py
31
4457
"""Benchmarks of orthogonal matching pursuit (:ref:`OMP`) versus least angle regression (:ref:`least_angle_regression`) The input data is mostly low rank but is a fat infinite tail. """ from __future__ import print_function import gc import sys from time import time import numpy as np from sklearn.linear_model import lars_path, orthogonal_mp from sklearn.datasets.samples_generator import make_sparse_coded_signal def compute_bench(samples_range, features_range): it = 0 results = dict() lars = np.empty((len(features_range), len(samples_range))) lars_gram = lars.copy() omp = lars.copy() omp_gram = lars.copy() max_it = len(samples_range) * len(features_range) for i_s, n_samples in enumerate(samples_range): for i_f, n_features in enumerate(features_range): it += 1 n_informative = n_features / 10 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') # dataset_kwargs = { # 'n_train_samples': n_samples, # 'n_test_samples': 2, # 'n_features': n_features, # 'n_informative': n_informative, # 'effective_rank': min(n_samples, n_features) / 10, # #'effective_rank': None, # 'bias': 0.0, # } dataset_kwargs = { 'n_samples': 1, 'n_components': n_features, 'n_features': n_samples, 'n_nonzero_coefs': n_informative, 'random_state': 0 } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) y, X, _ = make_sparse_coded_signal(**dataset_kwargs) X = np.asfortranarray(X) gc.collect() print("benchmarking lars_path (with Gram):", end='') sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path(X, y, Xy=Xy, Gram=G, max_iter=n_informative) delta = time() - tstart print("%0.3fs" % delta) lars_gram[i_f, i_s] = delta gc.collect() print("benchmarking lars_path (without Gram):", end='') sys.stdout.flush() tstart = time() lars_path(X, y, Gram=None, max_iter=n_informative) delta = time() - tstart print("%0.3fs" % delta) lars[i_f, i_s] = delta gc.collect() print("benchmarking orthogonal_mp (with Gram):", end='') sys.stdout.flush() tstart = time() orthogonal_mp(X, y, precompute_gram=True, n_nonzero_coefs=n_informative) delta = time() - tstart print("%0.3fs" % delta) omp_gram[i_f, i_s] = delta gc.collect() print("benchmarking orthogonal_mp (without Gram):", end='') sys.stdout.flush() tstart = time() orthogonal_mp(X, y, precompute_gram=False, n_nonzero_coefs=n_informative) delta = time() - tstart print("%0.3fs" % delta) omp[i_f, i_s] = delta results['time(LARS) / time(OMP)\n (w/ Gram)'] = (lars_gram / omp_gram) results['time(LARS) / time(OMP)\n (w/o Gram)'] = (lars / omp) return results if __name__ == '__main__': samples_range = np.linspace(1000, 5000, 5).astype(np.int) features_range = np.linspace(1000, 5000, 5).astype(np.int) results = compute_bench(samples_range, features_range) max_time = max(np.max(t) for t in results.values()) import pylab as pl fig = pl.figure('scikit-learn OMP vs. LARS benchmark results') for i, (label, timings) in enumerate(sorted(results.iteritems())): ax = fig.add_subplot(1, 2, i) vmax = max(1 - timings.min(), -1 + timings.max()) pl.matshow(timings, fignum=False, vmin=1 - vmax, vmax=1 + vmax) ax.set_xticklabels([''] + map(str, samples_range)) ax.set_yticklabels([''] + map(str, features_range)) pl.xlabel('n_samples') pl.ylabel('n_features') pl.title(label) pl.subplots_adjust(0.1, 0.08, 0.96, 0.98, 0.4, 0.63) ax = pl.axes([0.1, 0.08, 0.8, 0.06]) pl.colorbar(cax=ax, orientation='horizontal') pl.show()
bsd-3-clause
harisbal/pandas
pandas/tests/io/test_sql.py
3
96428
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ from __future__ import print_function import pytest import sqlite3 import csv import warnings import numpy as np import pandas as pd from datetime import datetime, date, time from pandas.core.dtypes.common import ( is_object_dtype, is_datetime64_dtype, is_datetime64tz_dtype) from pandas import DataFrame, Series, Index, MultiIndex, isna, concat from pandas import date_range, to_datetime, to_timedelta, Timestamp import pandas.compat as compat from pandas.compat import range, lrange, string_types, PY36 import pandas.io.sql as sql from pandas.io.sql import read_sql_table, read_sql_query import pandas.util.testing as tm try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { 'create_iris': { 'sqlite': """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", 'mysql': """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", 'postgresql': """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""" }, 'insert_iris': { 'sqlite': """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", 'mysql': """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", 'postgresql': """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""" }, 'create_test_types': { 'sqlite': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", 'mysql': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", 'postgresql': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""" }, 'insert_test_types': { 'sqlite': { 'query': """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, 'fields': ( 'TextCol', 'DateCol', 'IntDateCol', 'IntDateOnlyCol', 'FloatCol', 'IntCol', 'BoolCol', 'IntColWithNull', 'BoolColWithNull' ) }, 'mysql': { 'query': """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, 'fields': ( 'TextCol', 'DateCol', 'IntDateCol', 'IntDateOnlyCol', 'FloatCol', 'IntCol', 'BoolCol', 'IntColWithNull', 'BoolColWithNull' ) }, 'postgresql': { 'query': """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, 'fields': ( 'TextCol', 'DateCol', 'DateColWithTz', 'IntDateCol', 'IntDateOnlyCol', 'FloatCol', 'IntCol', 'BoolCol', 'IntColWithNull', 'BoolColWithNull' ) }, }, 'read_parameters': { 'sqlite': "SELECT * FROM iris WHERE Name=? AND SepalLength=?", 'mysql': 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', 'postgresql': 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s' }, 'read_named_parameters': { 'sqlite': """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, 'mysql': """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, 'postgresql': """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """ }, 'create_view': { 'sqlite': """ CREATE VIEW iris_view AS SELECT * FROM iris """ } } class MixInBase(object): def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, 'conn'): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute("DROP TABLE IF EXISTS %s" % sql._get_valid_mysql_name(table_name)) self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute('SHOW TABLES') return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute("DROP TABLE IF EXISTS %s" % sql._get_valid_sqlite_name(table_name)) self.conn.commit() def _get_all_tables(self): c = self.conn.execute( "SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest(object): """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, 'execute'): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[('io', 'data', 'iris.csv')]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, 'conn'): self.setup_connect() self.drop_table('iris') self._get_exec().execute(SQL_STRINGS['create_iris'][self.flavor]) with io.open(iris_csv_file, mode='r', newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS['insert_iris'][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table('iris_view') self._get_exec().execute(SQL_STRINGS['create_view'][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _load_test1_data(self): columns = ['index', 'A', 'B', 'C', 'D'] data = [( '2000-01-03 00:00:00', 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169), ('2000-01-04 00:00:00', 1.04791624281, - 0.0412318367011, -0.16181208307, 0.212549316967), ('2000-01-05 00:00:00', 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952), ('2000-01-06 00:00:00', 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227)] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame(dict(A=[4, 1, 3, 6], B=['asd', 'gsq', 'ylt', 'jkl'], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=['1990-11-22', '1991-10-26', '1993-11-26', '1995-12-12'])) df['E'] = to_datetime(df['E']) self.test_frame2 = df def _load_test3_data(self): columns = ['index', 'A', 'B'] data = [( '2000-01-03 00:00:00', 2 ** 31 - 1, -1.987670), ('2000-01-04 00:00:00', -29, -0.0412318367011), ('2000-01-05 00:00:00', 20000, 0.731167677815), ('2000-01-06 00:00:00', -290867, 1.56762092543)] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table('types_test_data') self._get_exec().execute(SQL_STRINGS['create_test_types'][self.flavor]) ins = SQL_STRINGS['insert_test_types'][self.flavor] data = [ { 'TextCol': 'first', 'DateCol': '2000-01-03 00:00:00', 'DateColWithTz': '2000-01-01 00:00:00-08:00', 'IntDateCol': 535852800, 'IntDateOnlyCol': 20101010, 'FloatCol': 10.10, 'IntCol': 1, 'BoolCol': False, 'IntColWithNull': 1, 'BoolColWithNull': False, }, { 'TextCol': 'first', 'DateCol': '2000-01-04 00:00:00', 'DateColWithTz': '2000-06-01 00:00:00-07:00', 'IntDateCol': 1356998400, 'IntDateOnlyCol': 20101212, 'FloatCol': 10.10, 'IntCol': 1, 'BoolCol': False, 'IntColWithNull': None, 'BoolColWithNull': None, }, ] for d in data: self._get_exec().execute( ins['query'], [d[field] for field in ins['fields']] ) def _count_rows(self, table_name): result = self._get_exec().execute( "SELECT count(*) AS count_1 FROM %s" % table_name).fetchone() return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS['read_parameters'][self.flavor] params = ['Iris-setosa', 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS['read_named_parameters'][self.flavor] params = {'name': 'Iris-setosa', 'length': 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self): self.drop_table('test_frame1') self.pandasSQL.to_sql(self.test_frame1, 'test_frame1') assert self.pandasSQL.has_table('test_frame1') # Nuke table self.drop_table('test_frame1') def _to_sql_empty(self): self.drop_table('test_frame1') self.pandasSQL.to_sql(self.test_frame1.iloc[:0], 'test_frame1') def _to_sql_fail(self): self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') assert self.pandasSQL.has_table('test_frame1') pytest.raises(ValueError, self.pandasSQL.to_sql, self.test_frame1, 'test_frame1', if_exists='fail') self.drop_table('test_frame1') def _to_sql_replace(self): self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='replace') assert self.pandasSQL.has_table('test_frame1') num_entries = len(self.test_frame1) num_rows = self._count_rows('test_frame1') assert num_rows == num_entries self.drop_table('test_frame1') def _to_sql_append(self): # Nuke table just in case self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='append') assert self.pandasSQL.has_table('test_frame1') num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows('test_frame1') assert num_rows == num_entries self.drop_table('test_frame1') def _roundtrip(self): self.drop_table('test_frame_roundtrip') self.pandasSQL.to_sql(self.test_frame1, 'test_frame_roundtrip') result = self.pandasSQL.read_query( 'SELECT * FROM test_frame_roundtrip') result.set_index('level_0', inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _to_sql_save_index(self): df = DataFrame.from_records([(1, 2.1, 'line1'), (2, 1.5, 'line2')], columns=['A', 'B', 'C'], index=['A']) self.pandasSQL.to_sql(df, 'test_to_sql_saves_index') ix_cols = self._get_index_columns('test_to_sql_saves_index') assert ix_cols == [['A', ], ] def _transaction_test(self): self.pandasSQL.execute("CREATE TABLE test_trans (A INT, B TEXT)") ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" # Make sure when transaction is rolled back, no rows get inserted try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise Exception('error') except Exception: # ignore raised exception pass res = self.pandasSQL.read_query('SELECT * FROM test_trans') assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query('SELECT * FROM test_trans') assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = 'sqlite' mode = None def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query( "SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query( "SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, 'test_frame1', self.conn) assert sql.has_table('test_frame1', self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, 'test_frame2', self.conn, if_exists='fail') assert sql.has_table('test_frame2', self.conn) pytest.raises(ValueError, sql.to_sql, self.test_frame1, 'test_frame2', self.conn, if_exists='fail') def test_to_sql_replace(self): sql.to_sql(self.test_frame1, 'test_frame3', self.conn, if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame3', self.conn, if_exists='replace') assert sql.has_table('test_frame3', self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows('test_frame3') assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, 'test_frame4', self.conn, if_exists='fail') # Add to table again sql.to_sql(self.test_frame1, 'test_frame4', self.conn, if_exists='append') assert sql.has_table('test_frame4', self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows('test_frame4') assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, 'test_frame5', self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype='int64'), name='series') sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_to_sql_panel(self): panel = tm.makePanel() pytest.raises(NotImplementedError, sql.to_sql, panel, 'test_panel', self.conn) def test_roundtrip(self): sql.to_sql(self.test_frame1, 'test_frame_roundtrip', con=self.conn) result = sql.read_sql_query( 'SELECT * FROM test_frame_roundtrip', con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index('level_0', inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql(self.test_frame1, 'test_frame_roundtrip', con=self.conn, index=False, chunksize=2) result = sql.read_sql_query( 'SELECT * FROM test_frame_roundtrip', con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates=['DateCol']) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0) ] df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0) ] df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates=['IntDateCol']) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0) ] df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates={'IntDateCol': 's'}) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0) ] df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, parse_dates={'IntDateOnlyCol': '%Y%m%d'}) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp('2010-10-10'), pd.Timestamp('2010-12-12') ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn, index_col='DateCol', parse_dates=['DateCol', 'IntDateCol']) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta( Series(['00:00:01', '00:00:03'], name='foo')).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql('test_timedelta', self.conn) result = sql.read_sql_query('SELECT * FROM test_timedelta', self.conn) tm.assert_series_equal(result['foo'], df['foo'].astype('int64')) def test_complex(self): df = DataFrame({'a': [1 + 1j, 2j]}) # Complex data type should raise error pytest.raises(ValueError, df.to_sql, 'test_complex', self.conn) def test_to_sql_index_label(self): temp_frame = DataFrame({'col1': range(4)}) # no index name, defaults to 'index' sql.to_sql(temp_frame, 'test_index_label', self.conn) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[0] == 'index' # specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label='other_label') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[0] == "other_label" # using the index name temp_frame.index.name = 'index_name' sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[0] == "index_name" # has index name, but specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label='other_label') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[0] == "other_label" # index name is integer temp_frame.index.name = 0 sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[0] == "0" temp_frame.index.name = None sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label=0) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[0] == "0" def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame({'col1': range(4)}, index=MultiIndex.from_product( [('A0', 'A1'), ('B0', 'B1')])) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, 'test_index_label', self.conn) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[0] == 'level_0' assert frame.columns[1] == 'level_1' # specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label=['A', 'B']) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[:2].tolist() == ['A', 'B'] # using the index name temp_frame.index.names = ['A', 'B'] sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace') frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[:2].tolist() == ['A', 'B'] # has index name, but specifying index_label sql.to_sql(temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label=['C', 'D']) frame = sql.read_sql_query('SELECT * FROM test_index_label', self.conn) assert frame.columns[:2].tolist() == ['C', 'D'] # wrong length of index_label pytest.raises(ValueError, sql.to_sql, temp_frame, 'test_index_label', self.conn, if_exists='replace', index_label='C') def test_multiindex_roundtrip(self): df = DataFrame.from_records([(1, 2.1, 'line1'), (2, 1.5, 'line2')], columns=['A', 'B', 'C'], index=['A', 'B']) df.to_sql('test_multiindex_roundtrip', self.conn) result = sql.read_sql_query('SELECT * FROM test_multiindex_roundtrip', self.conn, index_col=['A', 'B']) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists='replace') def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, 'test', con=self.conn) assert 'CREATE' in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({'a': [1.1, 1.2], 'b': [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == 'sqlalchemy' else 'INTEGER' create_sql = sql.get_schema(float_frame, 'test', con=self.conn, dtype={'b': dtype}) assert 'CREATE' in create_sql assert 'INTEGER' in create_sql def test_get_schema_keys(self): frame = DataFrame({'Col1': [1.1, 1.2], 'Col2': [2.1, 2.2]}) create_sql = sql.get_schema(frame, 'test', con=self.conn, keys='Col1') constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema(self.test_frame1, 'test', con=self.conn, keys=['A', 'B']) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list('abcde')) df.to_sql('test_chunksize', self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query("select * from test_chunksize", self.conn, chunksize=5): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == 'sqlalchemy': res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( {'person_id': [1, 2, 3], 'person_name': ['John P. Doe', 'Jane Dove', 'John P. Doe']}) df2 = df.copy() df2['person_name'] = df2['person_name'].astype('category') df2.to_sql('test_categorical', self.conn, index=False) res = sql.read_sql_query('SELECT * FROM test_categorical', self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=[u'\xe9', u'b']) df.to_sql('test_unicode', self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({'A': [0, 1, 2], 'B': [0.2, np.nan, 5.6]}) df.to_sql('d1187b08-4943-4c8d-a7f6', self.conn, index=False) res = sql.read_sql_query('SELECT * FROM `d1187b08-4943-4c8d-a7f6`', self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = 'sqlite' mode = 'sqlalchemy' def connect(self): if SQLALCHEMY_INSTALLED: return sqlalchemy.create_engine('sqlite:///:memory:') else: pytest.skip('SQLAlchemy not installed') def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, 'test_frame', self.conn) cols = ['A', 'B'] result = sql.read_sql_table('test_frame', self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, 'test_frame', self.conn) result = sql.read_sql_table('test_frame', self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table( 'test_frame', self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table('test_frame', self.conn, index_col=["A", "B"], columns=["C", "D"]) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query( "SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql( "SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table('iris', self.conn) iris_frame2 = sql.read_sql('iris', self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table('other_table', self.conn) sql.read_sql_query('SELECT * FROM other_table', self.conn) # Verify some things assert len(w) == 0 def test_warning_case_insensitive_table_name(self): # see gh-7815 # # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql('CaseSensitive', self.conn) # Verify some things assert len(w) == 0 def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes('test_index_saved') ixs = [i['column_names'] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame({'time': to_datetime(['201412120154', '201412110254'], utc=True)}) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) assert isinstance(table.table.c['time'].type, sqltypes.DateTime) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = 'sqlite:///' + name table = 'iris' test_frame1.to_sql(table, db_uri, if_exists='replace', index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = 'SELECT * FROM iris' test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user try: # the rest of this test depends on pg8000's being absent import pg8000 # noqa pytest.skip("pg8000 is installed") except ImportError: pass db_uri = "postgresql+pg8000://user:pass@host/dbname" with tm.assert_raises_regex(ImportError, "pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table('iris', metadata, sa.Column('SepalLength', sa.REAL), sa.Column('SepalWidth', sa.REAL), sa.Column('PetalLength', sa.REAL), sa.Column('PetalWidth', sa.REAL), sa.Column('Name', sa.TEXT) ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text('select * from iris where name=:name') iris_df = sql.read_sql(name_text, self.conn, params={ 'name': 'Iris-versicolor'}) all_names = set(iris_df['Name']) assert all_names == {'Iris-versicolor'} def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam('name')) iris_df = sql.read_sql(name_select, self.conn, params={'name': 'Iris-setosa'}) all_names = set(iris_df['Name']) assert all_names == {'Iris-setosa'} class _EngineToConnMixin(object): """ A mixin that causes setup_connect to create a conn rather than an engine. """ @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): super(_EngineToConnMixin, self).load_test_data_and_sql() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn yield self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) # XXX: # super(_EngineToConnMixin, self).teardown_method(method) @pytest.mark.single class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass @pytest.mark.single class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = 'sqlite' mode = 'fallback' def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) def test_con_string_import_error(self): if not SQLALCHEMY_INSTALLED: conn = 'mysql://root@localhost/pandas_nosetest' pytest.raises(ImportError, sql.read_sql, "SELECT * FROM iris", conn) else: pytest.skip('SQLAlchemy is installed') def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) pytest.raises(sql.DatabaseError, sql.read_sql, 'iris', self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=['a', 'b ']) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, 'test') assert 'CREATE' in create_sql def _get_sqlite_column_type(self, schema, column): for col in schema.split('\n'): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError('Column %s not found' % (column)) def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame({'time': to_datetime(['201412120154', '201412110254'], utc=True)}) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() assert self._get_sqlite_column_type(schema, 'time') == "TIMESTAMP" # ----------------------------------------------------------------------------- # -- Database flavor specific tests class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor = None @pytest.fixture(autouse=True, scope='class') def setup_class(cls): cls.setup_import() cls.setup_driver() # test connection try: conn = cls.connect() conn.connect() except sqlalchemy.exc.OperationalError: msg = "{0} - can't connect to {1} server".format(cls, cls.flavor) pytest.skip(msg) def load_test_data_and_sql(self): self._load_raw_sql() self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: pytest.skip('SQLAlchemy not installed') @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: pytest.skip( "Can't connect to {0} server".format(self.flavor)) def test_aread_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, 'temp_frame') assert temp_conn.has_table('temp_frame') def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, 'temp_frame') assert temp_conn.has_table('temp_frame') pandasSQL.drop_table('temp_frame') assert not temp_conn.has_table('temp_frame') def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=['SepalLength', 'SepalLength']) tm.equalContents( iris_frame.columns.values, ['SepalLength', 'SepalLength']) def test_read_table_absent(self): pytest.raises( ValueError, sql.read_sql_table, "this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) assert issubclass(df.BoolCol.dtype.type, np.bool_) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA values becomes object assert issubclass(df.BoolColWithNull.dtype.type, np.object) def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={'i64': [2**62]}) df.to_sql('test_bigint', self.conn, index=False) result = sql.read_sql_table('test_bigint', self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. assert issubclass(df.DateCol.dtype.type, np.datetime64) def test_datetime_with_timezone(self): # edge case that converts postgresql datetime with time zone types # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok # but should be more natural, so coerce to datetime64[ns] for now def check(col): # check that a column is either datetime64[ns] # or datetime64[ns, UTC] if is_datetime64_dtype(col.dtype): # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" assert col[0] == Timestamp('2000-01-01 08:00:00') # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" assert col[1] == Timestamp('2000-06-01 07:00:00') elif is_datetime64tz_dtype(col.dtype): assert str(col.dt.tz) == 'UTC' # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" # GH 6415 expected_data = [Timestamp('2000-01-01 08:00:00', tz='UTC'), Timestamp('2000-06-01 07:00:00', tz='UTC')] expected = Series(expected_data, name=col.name) tm.assert_series_equal(col, expected) else: raise AssertionError("DateCol loaded with incorrect type " "-> {0}".format(col.dtype)) # GH11216 df = pd.read_sql_query("select * from types_test_data", self.conn) if not hasattr(df, 'DateColWithTz'): pytest.skip("no column with datetime with time zone") # this is parsed on Travis (linux), but not on macosx for some reason # even with the same versions of psycopg2 & sqlalchemy, possibly a # Postgrsql server version difference col = df.DateColWithTz assert (is_object_dtype(col.dtype) or is_datetime64_dtype(col.dtype) or is_datetime64tz_dtype(col.dtype)) df = pd.read_sql_query("select * from types_test_data", self.conn, parse_dates=['DateColWithTz']) if not hasattr(df, 'DateColWithTz'): pytest.skip("no column with datetime with time zone") col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == 'UTC' check(df.DateColWithTz) df = pd.concat(list(pd.read_sql_query("select * from types_test_data", self.conn, chunksize=1)), ignore_index=True) col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == 'UTC' expected = sql.read_sql_table("types_test_data", self.conn) col = expected.DateColWithTz assert is_datetime64tz_dtype(col.dtype) tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz) # xref #7139 # this might or might not be converted depending on the postgres driver df = sql.read_sql_table("types_test_data", self.conn) check(df.DateColWithTz) def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types_test_data", self.conn) df = sql.read_sql_table("types_test_data", self.conn, parse_dates=['DateCol']) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table("types_test_data", self.conn, parse_dates={'DateCol': '%Y-%m-%d %H:%M:%S'}) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table("types_test_data", self.conn, parse_dates={ 'DateCol': {'format': '%Y-%m-%d %H:%M:%S'}}) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates=['IntDateCol']) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={'IntDateCol': 's'}) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table("types_test_data", self.conn, parse_dates={'IntDateCol': {'unit': 's'}}) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_datetime(self): df = DataFrame({'A': date_range('2013-01-01 09:00:00', periods=3), 'B': np.arange(3.0)}) df.to_sql('test_datetime', self.conn) # with read_table -> type information from schema used result = sql.read_sql_table('test_datetime', self.conn) result = result.drop('index', axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query('SELECT * FROM test_datetime', self.conn) result = result.drop('index', axis=1) if self.flavor == 'sqlite': assert isinstance(result.loc[0, 'A'], string_types) result['A'] = to_datetime(result['A']) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame({'A': date_range('2013-01-01 09:00:00', periods=3), 'B': np.arange(3.0)}) df.loc[1, 'A'] = np.nan df.to_sql('test_datetime', self.conn, index=False) # with read_table -> type information from schema used result = sql.read_sql_table('test_datetime', self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query('SELECT * FROM test_datetime', self.conn) if self.flavor == 'sqlite': assert isinstance(result.loc[0, 'A'], string_types) result['A'] = to_datetime(result['A'], errors='coerce') tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql('test_date', self.conn, index=False) res = read_sql_table('test_date', self.conn) result = res['a'] expected = to_datetime(df['a']) # comes back as datetime64 tm.assert_series_equal(result, expected) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql('test_time', self.conn, index=False) res = read_sql_table('test_time', self.conn) tm.assert_frame_equal(res, df) # GH8341 # first, use the fallback to have the sqlite adapter put in place sqlite_conn = TestSQLiteFallback.connect() sql.to_sql(df, "test_time2", sqlite_conn, index=False) res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) # check if adapter is in place # then test if sqlalchemy is unaffected by the sqlite adapter sql.to_sql(df, "test_time3", self.conn, index=False) if self.flavor == 'sqlite': res = sql.read_sql_query("SELECT * FROM test_time3", self.conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) res = sql.read_sql_table("test_time3", self.conn) tm.assert_frame_equal(df, res) def test_mixed_dtype_insert(self): # see GH6509 s1 = Series(2**25 + 1, dtype=np.int32) s2 = Series(0.0, dtype=np.float32) df = DataFrame({'s1': s1, 's2': s2}) # write and read again df.to_sql("test_read_write", self.conn, index=False) df2 = sql.read_sql_table("test_read_write", self.conn) tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) def test_nan_numeric(self): # NaNs in numeric float column df = DataFrame({'A': [0, 1, 2], 'B': [0.2, np.nan, 5.6]}) df.to_sql('test_nan', self.conn, index=False) # with read_table result = sql.read_sql_table('test_nan', self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query('SELECT * FROM test_nan', self.conn) tm.assert_frame_equal(result, df) def test_nan_fullcolumn(self): # full NaN column (numeric float column) df = DataFrame({'A': [0, 1, 2], 'B': [np.nan, np.nan, np.nan]}) df.to_sql('test_nan', self.conn, index=False) # with read_table result = sql.read_sql_table('test_nan', self.conn) tm.assert_frame_equal(result, df) # with read_sql -> not type info from table -> stays None df['B'] = df['B'].astype('object') df['B'] = None result = sql.read_sql_query('SELECT * FROM test_nan', self.conn) tm.assert_frame_equal(result, df) def test_nan_string(self): # NaNs in string column df = DataFrame({'A': [0, 1, 2], 'B': ['a', 'b', np.nan]}) df.to_sql('test_nan', self.conn, index=False) # NaNs are coming back as None df.loc[2, 'B'] = None # with read_table result = sql.read_sql_table('test_nan', self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query('SELECT * FROM test_nan', self.conn) tm.assert_frame_equal(result, df) def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes(tbl_name) ixs = [i['column_names'] for i in ixs] return ixs def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def test_get_schema_create_table(self): # Use a dataframe without a bool column, since MySQL converts bool to # TINYINT (which read_sql_table returns as an int and causes a dtype # mismatch) self._load_test3_data() tbl = 'test_get_schema_create_table' create_sql = sql.get_schema(self.test_frame3, tbl, con=self.conn) blank_test_df = self.test_frame3.iloc[:0] self.drop_table(tbl) self.conn.execute(create_sql) returned_df = sql.read_sql_table(tbl, self.conn) tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) self.drop_table(tbl) def test_dtype(self): cols = ['A', 'B'] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql('dtype_test', self.conn) df.to_sql('dtype_test2', self.conn, dtype={'B': sqlalchemy.TEXT}) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltype = meta.tables['dtype_test2'].columns['B'].type assert isinstance(sqltype, sqlalchemy.TEXT) pytest.raises(ValueError, df.to_sql, 'error', self.conn, dtype={'B': str}) # GH9083 df.to_sql('dtype_test3', self.conn, dtype={'B': sqlalchemy.String(10)}) meta.reflect() sqltype = meta.tables['dtype_test3'].columns['B'].type assert isinstance(sqltype, sqlalchemy.String) assert sqltype.length == 10 # single dtype df.to_sql('single_dtype_test', self.conn, dtype=sqlalchemy.TEXT) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltypea = meta.tables['single_dtype_test'].columns['A'].type sqltypeb = meta.tables['single_dtype_test'].columns['B'].type assert isinstance(sqltypea, sqlalchemy.TEXT) assert isinstance(sqltypeb, sqlalchemy.TEXT) def test_notna_dtype(self): cols = {'Bool': Series([True, None]), 'Date': Series([datetime(2012, 5, 1), None]), 'Int': Series([1, None], dtype='object'), 'Float': Series([1.1, None]) } df = DataFrame(cols) tbl = 'notna_dtype_test' df.to_sql(tbl, self.conn) returned_df = sql.read_sql_table(tbl, self.conn) # noqa meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() if self.flavor == 'mysql': my_type = sqltypes.Integer else: my_type = sqltypes.Boolean col_dict = meta.tables[tbl].columns assert isinstance(col_dict['Bool'].type, my_type) assert isinstance(col_dict['Date'].type, sqltypes.DateTime) assert isinstance(col_dict['Int'].type, sqltypes.Integer) assert isinstance(col_dict['Float'].type, sqltypes.Float) def test_double_precision(self): V = 1.23456789101112131415 df = DataFrame({'f32': Series([V, ], dtype='float32'), 'f64': Series([V, ], dtype='float64'), 'f64_as_f32': Series([V, ], dtype='float64'), 'i32': Series([5, ], dtype='int32'), 'i64': Series([5, ], dtype='int64'), }) df.to_sql('test_dtypes', self.conn, index=False, if_exists='replace', dtype={'f64_as_f32': sqlalchemy.Float(precision=23)}) res = sql.read_sql_table('test_dtypes', self.conn) # check precision of float64 assert (np.round(df['f64'].iloc[0], 14) == np.round(res['f64'].iloc[0], 14)) # check sql types meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() col_dict = meta.tables['test_dtypes'].columns assert str(col_dict['f32'].type) == str(col_dict['f64_as_f32'].type) assert isinstance(col_dict['f32'].type, sqltypes.Float) assert isinstance(col_dict['f64'].type, sqltypes.Float) assert isinstance(col_dict['i32'].type, sqltypes.Integer) assert isinstance(col_dict['i64'].type, sqltypes.BigInteger) def test_connectable_issue_example(self): # This tests the example raised in issue # https://github.com/pandas-dev/pandas/issues/10104 def foo(connection): query = 'SELECT test_foo_data FROM test_foo_data' return sql.read_sql_query(query, con=connection) def bar(connection, data): data.to_sql(name='test_foo_data', con=connection, if_exists='append') def main(connectable): with connectable.connect() as conn: with conn.begin(): foo_data = conn.run_callable(foo) conn.run_callable(bar, foo_data) DataFrame({'test_foo_data': [0, 1, 2]}).to_sql( 'test_foo_data', self.conn) main(self.conn) def test_temporary_table(self): test_data = u'Hello, World!' expected = DataFrame({'spam': [test_data]}) Base = declarative.declarative_base() class Temporary(Base): __tablename__ = 'temp_test' __table_args__ = {'prefixes': ['TEMPORARY']} id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) spam = sqlalchemy.Column(sqlalchemy.Unicode(30), nullable=False) Session = sa_session.sessionmaker(bind=self.conn) session = Session() with session.transaction: conn = session.connection() Temporary.__table__.create(conn) session.add(Temporary(spam=test_data)) session.flush() df = sql.read_sql_query( sql=sqlalchemy.select([Temporary.spam]), con=conn, ) tm.assert_frame_equal(df, expected) class _TestSQLAlchemyConn(_EngineToConnMixin, _TestSQLAlchemy): def test_transactions(self): pytest.skip( "Nested transactions rollbacks don't work with Pandas") class _TestSQLiteAlchemy(object): """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = 'sqlite' @classmethod def connect(cls): return sqlalchemy.create_engine('sqlite:///:memory:') @classmethod def setup_driver(cls): # sqlite3 is built-in cls.driver = None def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # sqlite has no boolean type, so integer type is returned assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Non-native Bool column with NA values stays as float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but assert not issubclass(df.DateCol.dtype.type, np.datetime64) def test_bigint_warning(self): # test no warning for BIGINT (to support int64) is raised (GH7433) df = DataFrame({'a': [1, 2]}, dtype='int64') df.to_sql('test_bigintwarning', self.conn, index=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") sql.read_sql_table('test_bigintwarning', self.conn) assert len(w) == 0 class _TestMySQLAlchemy(object): """ Test the sqlalchemy backend against an MySQL database. """ flavor = 'mysql' @classmethod def connect(cls): url = 'mysql+{driver}://root@localhost/pandas_nosetest' return sqlalchemy.create_engine(url.format(driver=cls.driver), connect_args=cls.connect_args) @classmethod def setup_driver(cls): try: import pymysql # noqa cls.driver = 'pymysql' from pymysql.constants import CLIENT cls.connect_args = {'client_flag': CLIENT.MULTI_STATEMENTS} except ImportError: pytest.skip('pymysql not installed') def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # MySQL has no real BOOL type (it's an alias for TINYINT) assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA = int column with NA values => becomes float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_read_procedure(self): # see GH7324. Although it is more an api test, it is added to the # mysql tests as sqlite does not have stored procedures df = DataFrame({'a': [1, 2, 3], 'b': [0.1, 0.2, 0.3]}) df.to_sql('test_procedure', self.conn, index=False) proc = """DROP PROCEDURE IF EXISTS get_testdb; CREATE PROCEDURE get_testdb () BEGIN SELECT * FROM test_procedure; END""" connection = self.conn.connect() trans = connection.begin() try: r1 = connection.execute(proc) # noqa trans.commit() except: trans.rollback() raise res1 = sql.read_sql_query("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res1) # test delegation to read_sql_query res2 = sql.read_sql("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res2) class _TestPostgreSQLAlchemy(object): """ Test the sqlalchemy backend against an PostgreSQL database. """ flavor = 'postgresql' @classmethod def connect(cls): url = 'postgresql+{driver}://postgres@localhost/pandas_nosetest' return sqlalchemy.create_engine(url.format(driver=cls.driver)) @classmethod def setup_driver(cls): try: import psycopg2 # noqa cls.driver = 'psycopg2' except ImportError: pytest.skip('psycopg2 not installed') def test_schema_support(self): # only test this for postgresql (schema's not supported in # mysql/sqlite) df = DataFrame({'col1': [1, 2], 'col2': [ 0.1, 0.2], 'col3': ['a', 'n']}) # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe to different schema's df.to_sql('test_schema_public', self.conn, index=False) df.to_sql('test_schema_public_explicit', self.conn, index=False, schema='public') df.to_sql('test_schema_other', self.conn, index=False, schema='other') # read dataframes back in res1 = sql.read_sql_table('test_schema_public', self.conn) tm.assert_frame_equal(df, res1) res2 = sql.read_sql_table('test_schema_public_explicit', self.conn) tm.assert_frame_equal(df, res2) res3 = sql.read_sql_table('test_schema_public_explicit', self.conn, schema='public') tm.assert_frame_equal(df, res3) res4 = sql.read_sql_table('test_schema_other', self.conn, schema='other') tm.assert_frame_equal(df, res4) pytest.raises(ValueError, sql.read_sql_table, 'test_schema_other', self.conn, schema='public') # different if_exists options # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe with different if_exists options df.to_sql('test_schema_other', self.conn, schema='other', index=False) df.to_sql('test_schema_other', self.conn, schema='other', index=False, if_exists='replace') df.to_sql('test_schema_other', self.conn, schema='other', index=False, if_exists='append') res = sql.read_sql_table( 'test_schema_other', self.conn, schema='other') tm.assert_frame_equal(concat([df, df], ignore_index=True), res) # specifying schema in user-provided meta # The schema won't be applied on another Connection # because of transactional schemas if isinstance(self.conn, sqlalchemy.engine.Engine): engine2 = self.connect() meta = sqlalchemy.MetaData(engine2, schema='other') pdsql = sql.SQLDatabase(engine2, meta=meta) pdsql.to_sql(df, 'test_schema_other2', index=False) pdsql.to_sql(df, 'test_schema_other2', index=False, if_exists='replace') pdsql.to_sql(df, 'test_schema_other2', index=False, if_exists='append') res1 = sql.read_sql_table( 'test_schema_other2', self.conn, schema='other') res2 = pdsql.read_table('test_schema_other2') tm.assert_frame_equal(res1, res2) @pytest.mark.single class TestMySQLAlchemy(_TestMySQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single class TestMySQLAlchemyConn(_TestMySQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single class TestPostgreSQLAlchemy(_TestPostgreSQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single class TestPostgreSQLAlchemyConn(_TestPostgreSQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single class TestSQLiteAlchemy(_TestSQLiteAlchemy, _TestSQLAlchemy): pass @pytest.mark.single class TestSQLiteAlchemyConn(_TestSQLiteAlchemy, _TestSQLAlchemyConn): pass # ----------------------------------------------------------------------------- # -- Test Sqlite / MySQL fallback @pytest.mark.single class TestSQLiteFallback(SQLiteMixIn, PandasSQLTest): """ Test the fallback mode against an in-memory sqlite database. """ flavor = 'sqlite' @classmethod def connect(cls): return sqlite3.connect(':memory:') def setup_connect(self): self.conn = self.connect() def load_test_data_and_sql(self): self.pandasSQL = sql.SQLiteDatabase(self.conn) self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_create_and_drop_table(self): temp_frame = DataFrame( {'one': [1., 2., 3., 4.], 'two': [4., 3., 2., 1.]}) self.pandasSQL.to_sql(temp_frame, 'drop_test_frame') assert self.pandasSQL.has_table('drop_test_frame') self.pandasSQL.drop_table('drop_test_frame') assert not self.pandasSQL.has_table('drop_test_frame') def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql('test_date', self.conn, index=False) res = read_sql_query('SELECT * FROM test_date', self.conn) if self.flavor == 'sqlite': # comes back as strings tm.assert_frame_equal(res, df.astype(str)) elif self.flavor == 'mysql': tm.assert_frame_equal(res, df) def test_datetime_time(self): # test support for datetime.time, GH #8341 df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql('test_time', self.conn, index=False) res = read_sql_query('SELECT * FROM test_time', self.conn) if self.flavor == 'sqlite': # comes back as strings expected = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(res, expected) def _get_index_columns(self, tbl_name): ixs = sql.read_sql_query( "SELECT * FROM sqlite_master WHERE type = 'index' " + "AND tbl_name = '%s'" % tbl_name, self.conn) ix_cols = [] for ix_name in ixs.name: ix_info = sql.read_sql_query( "PRAGMA index_info(%s)" % ix_name, self.conn) ix_cols.append(ix_info.name.tolist()) return ix_cols def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): if PY36: pytest.skip("not working on python > 3.5") self._transaction_test() def _get_sqlite_column_type(self, table, column): recs = self.conn.execute('PRAGMA table_info(%s)' % table) for cid, name, ctype, not_null, default, pk in recs: if name == column: return ctype raise ValueError('Table %s, column %s not found' % (table, column)) def test_dtype(self): if self.flavor == 'mysql': pytest.skip('Not applicable to MySQL legacy') cols = ['A', 'B'] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql('dtype_test', self.conn) df.to_sql('dtype_test2', self.conn, dtype={'B': 'STRING'}) # sqlite stores Boolean values as INTEGER assert self._get_sqlite_column_type( 'dtype_test', 'B') == 'INTEGER' assert self._get_sqlite_column_type( 'dtype_test2', 'B') == 'STRING' pytest.raises(ValueError, df.to_sql, 'error', self.conn, dtype={'B': bool}) # single dtype df.to_sql('single_dtype_test', self.conn, dtype='STRING') assert self._get_sqlite_column_type( 'single_dtype_test', 'A') == 'STRING' assert self._get_sqlite_column_type( 'single_dtype_test', 'B') == 'STRING' def test_notna_dtype(self): if self.flavor == 'mysql': pytest.skip('Not applicable to MySQL legacy') cols = {'Bool': Series([True, None]), 'Date': Series([datetime(2012, 5, 1), None]), 'Int': Series([1, None], dtype='object'), 'Float': Series([1.1, None]) } df = DataFrame(cols) tbl = 'notna_dtype_test' df.to_sql(tbl, self.conn) assert self._get_sqlite_column_type(tbl, 'Bool') == 'INTEGER' assert self._get_sqlite_column_type(tbl, 'Date') == 'TIMESTAMP' assert self._get_sqlite_column_type(tbl, 'Int') == 'INTEGER' assert self._get_sqlite_column_type(tbl, 'Float') == 'REAL' def test_illegal_names(self): # For sqlite, these should work fine df = DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) # Raise error on blank pytest.raises(ValueError, df.to_sql, "", self.conn) for ndx, weird_name in enumerate( ['test_weird_name]', 'test_weird_name[', 'test_weird_name`', 'test_weird_name"', 'test_weird_name\'', '_b.test_weird_name_01-30', '"_b.test_weird_name_01-30"', '99beginswithnumber', '12345', u'\xe9']): df.to_sql(weird_name, self.conn) sql.table_exists(weird_name, self.conn) df2 = DataFrame([[1, 2], [3, 4]], columns=['a', weird_name]) c_tbl = 'test_weird_col_name%d' % ndx df2.to_sql(c_tbl, self.conn) sql.table_exists(c_tbl, self.conn) # ----------------------------------------------------------------------------- # -- Old tests from 0.13.1 (before refactor using sqlalchemy) def date_format(dt): """Returns date in YYYYMMDD format.""" return dt.strftime('%Y%m%d') _formatters = { datetime: lambda dt: "'%s'" % date_format(dt), str: lambda x: "'%s'" % x, np.str_: lambda x: "'%s'" % x, compat.text_type: lambda x: "'%s'" % x, compat.binary_type: lambda x: "'%s'" % x, float: lambda x: "%.8f" % x, int: lambda x: "%s" % x, type(None): lambda x: "NULL", np.float64: lambda x: "%.10f" % x, bool: lambda x: "'%s'" % x, } def format_query(sql, *args): """ """ processed_args = [] for arg in args: if isinstance(arg, float) and isna(arg): arg = None formatter = _formatters[type(arg)] processed_args.append(formatter(arg)) return sql % tuple(processed_args) def tquery(query, con=None, cur=None): """Replace removed sql.tquery function""" res = sql.execute(query, con=con, cur=cur).fetchall() if res is None: return None else: return list(res) def _skip_if_no_pymysql(): try: import pymysql # noqa except ImportError: pytest.skip('pymysql not installed, skipping') @pytest.mark.single class TestXSQLite(SQLiteMixIn): @pytest.fixture(autouse=True) def setup_method(self, request, datapath): self.method = request.function self.conn = sqlite3.connect(':memory:') # In some test cases we may close db connection # Re-open conn here so we can perform cleanup in teardown yield self.method = request.function self.conn = sqlite3.connect(':memory:') def test_basic(self): frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): frame = tm.makeTimeDataFrame() frame.iloc[0, 0] = np.nan create_sql = sql.get_schema(frame, 'test') cur = self.conn.cursor() cur.execute(create_sql) cur = self.conn.cursor() ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index tm.assert_frame_equal(result, frame, check_less_precise=True) def test_execute(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test') cur = self.conn.cursor() cur.execute(create_sql) ins = "INSERT INTO test VALUES (?, ?, ?, ?)" row = frame.iloc[0] sql.execute(ins, self.conn, params=tuple(row)) self.conn.commit() result = sql.read_sql("select * from test", self.conn) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test') lines = create_sql.splitlines() for l in lines: tokens = l.split(' ') if len(tokens) == 2 and tokens[0] == 'A': assert tokens[1] == 'DATETIME' frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test', keys=['A', 'B']) lines = create_sql.splitlines() assert 'PRIMARY KEY ("A", "B")' in create_sql cur = self.conn.cursor() cur.execute(create_sql) @tm.capture_stdout def test_execute_fail(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.conn) with pytest.raises(Exception): sql.execute('INSERT INTO test VALUES("foo", "bar", 7)', self.conn) def test_execute_closed_connection(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) self.conn.close() with pytest.raises(Exception): tquery("select * from test", con=self.conn) def test_na_roundtrip(self): pass def _check_roundtrip(self, frame): sql.to_sql(frame, name='test_table', con=self.conn, index=False) result = sql.read_sql("select * from test_table", self.conn) # HACK! Change this once indexes are handled properly. result.index = frame.index expected = frame tm.assert_frame_equal(result, expected) frame['txt'] = ['a'] * len(frame) frame2 = frame.copy() frame2['Idx'] = Index(lrange(len(frame2))) + 10 sql.to_sql(frame2, name='test_table2', con=self.conn, index=False) result = sql.read_sql("select * from test_table2", self.conn, index_col='Idx') expected = frame.copy() expected.index = Index(lrange(len(frame2))) + 10 expected.index.name = 'Idx' tm.assert_frame_equal(expected, result) def test_keyword_as_column_names(self): df = DataFrame({'From': np.ones(5)}) sql.to_sql(df, con=self.conn, name='testkeywords', index=False) def test_onecolumn_of_integer(self): # GH 3628 # a column_of_integers dataframe should transfer well to sql mono_df = DataFrame([1, 2], columns=['c0']) sql.to_sql(mono_df, con=self.conn, name='mono_df', index=False) # computing the sum via sql con_x = self.conn the_sum = sum(my_c0[0] for my_c0 in con_x.execute("select * from mono_df")) # it should not fail, and gives 3 ( Issue #3628 ) assert the_sum == 3 result = sql.read_sql("select * from mono_df", con_x) tm.assert_frame_equal(result, mono_df) def test_if_exists(self): df_if_exists_1 = DataFrame({'col1': [1, 2], 'col2': ['A', 'B']}) df_if_exists_2 = DataFrame( {'col1': [3, 4, 5], 'col2': ['C', 'D', 'E']}) table_name = 'table_if_exists' sql_select = "SELECT * FROM %s" % table_name def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ self.drop_table(test_table_to_drop) # test if invalid value for if_exists raises appropriate error pytest.raises(ValueError, sql.to_sql, frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='notvalidvalue') clean_up(table_name) # test if_exists='fail' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail') pytest.raises(ValueError, sql.to_sql, frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail') # test if_exists='replace' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='replace', index=False) assert tquery(sql_select, con=self.conn) == [(1, 'A'), (2, 'B')] sql.to_sql(frame=df_if_exists_2, con=self.conn, name=table_name, if_exists='replace', index=False) assert (tquery(sql_select, con=self.conn) == [(3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) # test if_exists='append' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail', index=False) assert tquery(sql_select, con=self.conn) == [(1, 'A'), (2, 'B')] sql.to_sql(frame=df_if_exists_2, con=self.conn, name=table_name, if_exists='append', index=False) assert (tquery(sql_select, con=self.conn) == [(1, 'A'), (2, 'B'), (3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) @pytest.mark.single @pytest.mark.skip(reason="gh-13611: there is no support for MySQL " "if SQLAlchemy is not installed") class TestXMySQL(MySQLMixIn): @pytest.fixture(autouse=True, scope='class') def setup_class(cls): _skip_if_no_pymysql() # test connection import pymysql try: # Try Travis defaults. # No real user should allow root access with a blank password. pymysql.connect(host='localhost', user='root', passwd='', db='pandas_nosetest') except: pass else: return try: pymysql.connect(read_default_group='pandas') except pymysql.ProgrammingError: pytest.skip( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") except pymysql.Error: pytest.skip( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") @pytest.fixture(autouse=True) def setup_method(self, request, datapath): _skip_if_no_pymysql() import pymysql try: # Try Travis defaults. # No real user should allow root access with a blank password. self.conn = pymysql.connect(host='localhost', user='root', passwd='', db='pandas_nosetest') except: pass else: return try: self.conn = pymysql.connect(read_default_group='pandas') except pymysql.ProgrammingError: pytest.skip( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") except pymysql.Error: pytest.skip( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf. ") self.method = request.function def test_basic(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() frame.iloc[0, 0] = np.nan drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, 'test') cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index tm.assert_frame_equal(result, frame, check_less_precise=True) def test_chunksize_read_type(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() frame.index.name = "index" drop_sql = "DROP TABLE IF EXISTS test" cur = self.conn.cursor() cur.execute(drop_sql) sql.to_sql(frame, name='test', con=self.conn) query = "select * from test" chunksize = 5 chunk_gen = pd.read_sql_query(sql=query, con=self.conn, chunksize=chunksize, index_col="index") chunk_df = next(chunk_gen) tm.assert_frame_equal(frame[:chunksize], chunk_df) def test_execute(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, 'test') cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" row = frame.iloc[0].values.tolist() sql.execute(ins, self.conn, params=tuple(row)) self.conn.commit() result = sql.read_sql("select * from test", self.conn) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): _skip_if_no_pymysql() frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, 'test') lines = create_sql.splitlines() for l in lines: tokens = l.split(' ') if len(tokens) == 2 and tokens[0] == 'A': assert tokens[1] == 'DATETIME' frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, 'test', keys=['A', 'B']) lines = create_sql.splitlines() assert 'PRIMARY KEY (`A`, `B`)' in create_sql cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) @tm.capture_stdout def test_execute_fail(self): _skip_if_no_pymysql() drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.conn) with pytest.raises(Exception): sql.execute('INSERT INTO test VALUES("foo", "bar", 7)', self.conn) def test_execute_closed_connection(self, request, datapath): _skip_if_no_pymysql() drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) self.conn.close() with pytest.raises(Exception): tquery("select * from test", con=self.conn) # Initialize connection again (needed for tearDown) self.setup_method(request, datapath) def test_na_roundtrip(self): _skip_if_no_pymysql() pass def _check_roundtrip(self, frame): _skip_if_no_pymysql() drop_sql = "DROP TABLE IF EXISTS test_table" cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.to_sql(frame, name='test_table', con=self.conn, index=False) result = sql.read_sql("select * from test_table", self.conn) # HACK! Change this once indexes are handled properly. result.index = frame.index result.index.name = frame.index.name expected = frame tm.assert_frame_equal(result, expected) frame['txt'] = ['a'] * len(frame) frame2 = frame.copy() index = Index(lrange(len(frame2))) + 10 frame2['Idx'] = index drop_sql = "DROP TABLE IF EXISTS test_table2" cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.to_sql(frame2, name='test_table2', con=self.conn, index=False) result = sql.read_sql("select * from test_table2", self.conn, index_col='Idx') expected = frame.copy() # HACK! Change this once indexes are handled properly. expected.index = index expected.index.names = result.index.names tm.assert_frame_equal(expected, result) def test_keyword_as_column_names(self): _skip_if_no_pymysql() df = DataFrame({'From': np.ones(5)}) sql.to_sql(df, con=self.conn, name='testkeywords', if_exists='replace', index=False) def test_if_exists(self): _skip_if_no_pymysql() df_if_exists_1 = DataFrame({'col1': [1, 2], 'col2': ['A', 'B']}) df_if_exists_2 = DataFrame( {'col1': [3, 4, 5], 'col2': ['C', 'D', 'E']}) table_name = 'table_if_exists' sql_select = "SELECT * FROM %s" % table_name def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ self.drop_table(test_table_to_drop) # test if invalid value for if_exists raises appropriate error pytest.raises(ValueError, sql.to_sql, frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='notvalidvalue') clean_up(table_name) # test if_exists='fail' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail', index=False) pytest.raises(ValueError, sql.to_sql, frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail') # test if_exists='replace' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='replace', index=False) assert tquery(sql_select, con=self.conn) == [(1, 'A'), (2, 'B')] sql.to_sql(frame=df_if_exists_2, con=self.conn, name=table_name, if_exists='replace', index=False) assert (tquery(sql_select, con=self.conn) == [(3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name) # test if_exists='append' sql.to_sql(frame=df_if_exists_1, con=self.conn, name=table_name, if_exists='fail', index=False) assert tquery(sql_select, con=self.conn) == [(1, 'A'), (2, 'B')] sql.to_sql(frame=df_if_exists_2, con=self.conn, name=table_name, if_exists='append', index=False) assert (tquery(sql_select, con=self.conn) == [(1, 'A'), (2, 'B'), (3, 'C'), (4, 'D'), (5, 'E')]) clean_up(table_name)
bsd-3-clause
RayMick/scikit-learn
examples/linear_model/plot_sgd_penalties.py
249
1563
""" ============== SGD: Penalties ============== Plot the contours of the three penalties. All of the above are supported by :class:`sklearn.linear_model.stochastic_gradient`. """ from __future__ import division print(__doc__) import numpy as np import matplotlib.pyplot as plt def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2 * x - 2 * z + 4 * x * z - (4 * z ** 2 - 8 * x * z ** 2 + 8 * x ** 2 * z ** 2 - 16 * x ** 2 * z ** 3 + 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2) - 2 * x * z ** 2) / (2 - 4 * z) for x in xs]) def cross(ext): plt.plot([-ext, ext], [0, 0], "k-") plt.plot([0, 0], [-ext, ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) plt.plot(xs, l1(xs), "r-", label="L1") plt.plot(xs, -1.0 * l1(xs), "r-") plt.plot(-1 * xs, l1(xs), "r-") plt.plot(-1 * xs, -1.0 * l1(xs), "r-") plt.plot(xs, l2(xs), "b-", label="L2") plt.plot(xs, -1.0 * l2(xs), "b-") plt.plot(-1 * xs, l2(xs), "b-") plt.plot(-1 * xs, -1.0 * l2(xs), "b-") plt.plot(xs, el(xs, alpha), "y-", label="Elastic Net") plt.plot(xs, -1.0 * el(xs, alpha), "y-") plt.plot(-1 * xs, el(xs, alpha), "y-") plt.plot(-1 * xs, -1.0 * el(xs, alpha), "y-") plt.xlabel(r"$w_0$") plt.ylabel(r"$w_1$") plt.legend() plt.axis("equal") plt.show()
bsd-3-clause
rvraghav93/scikit-learn
sklearn/neural_network/rbm.py
26
12280
"""Restricted Boltzmann Machine """ # Authors: Yann N. Dauphin <[email protected]> # Vlad Niculae # Gabriel Synnaeve # Lars Buitinck # License: BSD 3 clause import time import numpy as np import scipy.sparse as sp from scipy.special import expit # logistic function from ..base import BaseEstimator from ..base import TransformerMixin from ..externals.six.moves import xrange from ..utils import check_array from ..utils import check_random_state from ..utils import gen_even_slices from ..utils import issparse from ..utils.extmath import safe_sparse_dot from ..utils.extmath import log_logistic from ..utils.validation import check_is_fitted class BernoulliRBM(BaseEstimator, TransformerMixin): """Bernoulli Restricted Boltzmann Machine (RBM). A Restricted Boltzmann Machine with binary visible units and binary hidden units. Parameters are estimated using Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) [2]. The time complexity of this implementation is ``O(d ** 2)`` assuming d ~ n_features ~ n_components. Read more in the :ref:`User Guide <rbm>`. Parameters ---------- n_components : int, optional Number of binary hidden units. learning_rate : float, optional The learning rate for weight updates. It is *highly* recommended to tune this hyper-parameter. Reasonable values are in the 10**[0., -3.] range. batch_size : int, optional Number of examples per minibatch. n_iter : int, optional Number of iterations/sweeps over the training dataset to perform during training. verbose : int, optional The verbosity level. The default, zero, means silent mode. random_state : integer or numpy.RandomState, optional A random number generator instance to define the state of the random permutations generator. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- intercept_hidden_ : array-like, shape (n_components,) Biases of the hidden units. intercept_visible_ : array-like, shape (n_features,) Biases of the visible units. components_ : array-like, shape (n_components, n_features) Weight matrix, where n_features in the number of visible units and n_components is the number of hidden units. Examples -------- >>> import numpy as np >>> from sklearn.neural_network import BernoulliRBM >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = BernoulliRBM(n_components=2) >>> model.fit(X) BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=2, n_iter=10, random_state=None, verbose=0) References ---------- [1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation 18, pp 1527-1554. http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf [2] Tieleman, T. Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. International Conference on Machine Learning (ICML) 2008 """ def __init__(self, n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, random_state=None): self.n_components = n_components self.learning_rate = learning_rate self.batch_size = batch_size self.n_iter = n_iter self.verbose = verbose self.random_state = random_state def transform(self, X): """Compute the hidden layer activation probabilities, P(h=1|v=X). Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) The data to be transformed. Returns ------- h : array, shape (n_samples, n_components) Latent representations of the data. """ check_is_fitted(self, "components_") X = check_array(X, accept_sparse='csr', dtype=np.float64) return self._mean_hiddens(X) def _mean_hiddens(self, v): """Computes the probabilities P(h=1|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- h : array-like, shape (n_samples, n_components) Corresponding mean field values for the hidden layer. """ p = safe_sparse_dot(v, self.components_.T) p += self.intercept_hidden_ return expit(p, out=p) def _sample_hiddens(self, v, rng): """Sample from the distribution P(h|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to sample from. rng : RandomState Random number generator to use. Returns ------- h : array-like, shape (n_samples, n_components) Values of the hidden layer. """ p = self._mean_hiddens(v) return (rng.random_sample(size=p.shape) < p) def _sample_visibles(self, h, rng): """Sample from the distribution P(v|h). Parameters ---------- h : array-like, shape (n_samples, n_components) Values of the hidden layer to sample from. rng : RandomState Random number generator to use. Returns ------- v : array-like, shape (n_samples, n_features) Values of the visible layer. """ p = np.dot(h, self.components_) p += self.intercept_visible_ expit(p, out=p) return (rng.random_sample(size=p.shape) < p) def _free_energy(self, v): """Computes the free energy F(v) = - log sum_h exp(-E(v,h)). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- free_energy : array-like, shape (n_samples,) The value of the free energy. """ return (- safe_sparse_dot(v, self.intercept_visible_) - np.logaddexp(0, safe_sparse_dot(v, self.components_.T) + self.intercept_hidden_).sum(axis=1)) def gibbs(self, v): """Perform one Gibbs sampling step. Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to start from. Returns ------- v_new : array-like, shape (n_samples, n_features) Values of the visible layer after one Gibbs step. """ check_is_fitted(self, "components_") if not hasattr(self, "random_state_"): self.random_state_ = check_random_state(self.random_state) h_ = self._sample_hiddens(v, self.random_state_) v_ = self._sample_visibles(h_, self.random_state_) return v_ def partial_fit(self, X, y=None): """Fit the model to the data X which should contain a partial segment of the data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) if not hasattr(self, 'components_'): self.components_ = np.asarray( self.random_state_.normal( 0, 0.01, (self.n_components, X.shape[1]) ), order='F') if not hasattr(self, 'intercept_hidden_'): self.intercept_hidden_ = np.zeros(self.n_components, ) if not hasattr(self, 'intercept_visible_'): self.intercept_visible_ = np.zeros(X.shape[1], ) if not hasattr(self, 'h_samples_'): self.h_samples_ = np.zeros((self.batch_size, self.n_components)) self._fit(X, self.random_state_) def _fit(self, v_pos, rng): """Inner fit for one mini-batch. Adjust the parameters to maximize the likelihood of v using Stochastic Maximum Likelihood (SML). Parameters ---------- v_pos : array-like, shape (n_samples, n_features) The data to use for training. rng : RandomState Random number generator to use for sampling. """ h_pos = self._mean_hiddens(v_pos) v_neg = self._sample_visibles(self.h_samples_, rng) h_neg = self._mean_hiddens(v_neg) lr = float(self.learning_rate) / v_pos.shape[0] update = safe_sparse_dot(v_pos.T, h_pos, dense_output=True).T update -= np.dot(h_neg.T, v_neg) self.components_ += lr * update self.intercept_hidden_ += lr * (h_pos.sum(axis=0) - h_neg.sum(axis=0)) self.intercept_visible_ += lr * (np.asarray( v_pos.sum(axis=0)).squeeze() - v_neg.sum(axis=0)) h_neg[rng.uniform(size=h_neg.shape) < h_neg] = 1.0 # sample binomial self.h_samples_ = np.floor(h_neg, h_neg) def score_samples(self, X): """Compute the pseudo-likelihood of X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Values of the visible layer. Must be all-boolean (not checked). Returns ------- pseudo_likelihood : array-like, shape (n_samples,) Value of the pseudo-likelihood (proxy for likelihood). Notes ----- This method is not deterministic: it computes a quantity called the free energy on X, then on a randomly corrupted version of X, and returns the log of the logistic function of the difference. """ check_is_fitted(self, "components_") v = check_array(X, accept_sparse='csr') rng = check_random_state(self.random_state) # Randomly corrupt one feature in each sample in v. ind = (np.arange(v.shape[0]), rng.randint(0, v.shape[1], v.shape[0])) if issparse(v): data = -2 * v[ind] + 1 v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape) else: v_ = v.copy() v_[ind] = 1 - v_[ind] fe = self._free_energy(v) fe_ = self._free_energy(v_) return v.shape[1] * log_logistic(fe_ - fe) def fit(self, X, y=None): """Fit the model to the data X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) n_samples = X.shape[0] rng = check_random_state(self.random_state) self.components_ = np.asarray( rng.normal(0, 0.01, (self.n_components, X.shape[1])), order='F') self.intercept_hidden_ = np.zeros(self.n_components, ) self.intercept_visible_ = np.zeros(X.shape[1], ) self.h_samples_ = np.zeros((self.batch_size, self.n_components)) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) batch_slices = list(gen_even_slices(n_batches * self.batch_size, n_batches, n_samples)) verbose = self.verbose begin = time.time() for iteration in xrange(1, self.n_iter + 1): for batch_slice in batch_slices: self._fit(X[batch_slice], rng) if verbose: end = time.time() print("[%s] Iteration %d, pseudo-likelihood = %.2f," " time = %.2fs" % (type(self).__name__, iteration, self.score_samples(X).mean(), end - begin)) begin = end return self
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/e328.py
2
6737
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import MixtureDensityLayer from neuralnilm.objectives import (scaled_cost, mdn_nll, scaled_cost_ignore_inactive, ignore_inactive, scaled_cost3) from neuralnilm.plot import MDNPlotter from lasagne.nonlinearities import sigmoid, rectify, tanh from lasagne.objectives import mse from lasagne.init import Uniform, Normal from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 1000 GRADIENT_STEPS = 100 SEQ_LENGTH = 512 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], # 'hair straighteners', # 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 2500, 2400], on_power_thresholds=[5] * 5, max_input_power=5900, min_on_durations=[60, 1800, 1800], min_off_durations=[12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=SEQ_LENGTH, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], # skip_probability=0.5, one_target_per_seq=True, n_seq_per_batch=16, subsample_target=4, include_diff=False, clip_appliance_power=True, target_is_prediction=False, # independently_center_inputs = True, standardise_input=True, unit_variance_targets=True, input_padding=0, lag=0 # reshape_target_to_2D=True, # input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), # 'std': np.array([ 0.12636775], dtype=np.float32)}, # target_stats={ # 'mean': np.array([ 0.04066789, 0.01881946, # 0.24639061, 0.17608672, 0.10273963], # dtype=np.float32), # 'std': np.array([ 0.11449792, 0.07338708, # 0.26608968, 0.33463112, 0.21250485], # dtype=np.float32)} ) N = 50 net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, # loss_function=partial(ignore_inactive, loss_func=mdn_nll, seq_length=SEQ_LENGTH), # loss_function=lambda x, t: mdn_nll(x, t).mean(), # loss_function=lambda x, t: mse(x, t).mean(), # loss_function=partial(scaled_cost, loss_func=mse), # loss_function=ignore_inactive, loss_function=partial(scaled_cost3, ignore_inactive=False), updates_func=momentum, learning_rate=1e-3, learning_rate_changes_by_iteration={ 25: 5e-4, 100: 1e-4 # 4000: 1e-03, # 6000: 5e-06, # 7000: 1e-06 # 2000: 5e-06 # 3000: 1e-05 # 7000: 5e-06, # 10000: 1e-06, # 15000: 5e-07, # 50000: 1e-07 }, do_save_activations=True # plotter=MDNPlotter ) def exp_a(name): global source # source_dict_copy = deepcopy(source_dict) # source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 2, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 2, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, # { # 'type': FeaturePoolLayer, # 'ds': 2, # number of feature maps to be pooled together # 'axis': 1, # pool over the time axis # 'pool_function': T.max # }, # { # 'type': BidirectionalRecurrentLayer, # 'num_units': N, # 'gradient_steps': GRADIENT_STEPS, # 'W_in_to_hid': Normal(std=1/sqrt(N)), # 'nonlinearity': tanh # }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'W': Normal(std=1/sqrt(N)), 'nonlinearity': T.nnet.softplus } # { # 'type': MixtureDensityLayer, # 'num_units': source.n_outputs, # 'num_components': 1, # 'nonlinearity_mu': T.nnet.softplus # } ] net = Net(**net_dict_copy) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') EXPERIMENTS = list('a') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=None) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") raise finally: logging.shutdown() if __name__ == "__main__": main()
mit
kdebrab/pandas
pandas/tests/extension/base/groupby.py
3
2747
import pytest import pandas.util.testing as tm import pandas as pd from .base import BaseExtensionTests class BaseGroupbyTests(BaseExtensionTests): """Groupby-specific tests.""" def test_grouping_grouper(self, data_for_grouping): df = pd.DataFrame({ "A": ["B", "B", None, None, "A", "A", "B", "C"], "B": data_for_grouping }) gr1 = df.groupby("A").grouper.groupings[0] gr2 = df.groupby("B").grouper.groupings[0] tm.assert_numpy_array_equal(gr1.grouper, df.A.values) tm.assert_extension_array_equal(gr2.grouper, data_for_grouping) @pytest.mark.parametrize('as_index', [True, False]) def test_groupby_extension_agg(self, as_index, data_for_grouping): df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) result = df.groupby("B", as_index=as_index).A.mean() _, index = pd.factorize(data_for_grouping, sort=True) # TODO(ExtensionIndex): remove astype index = pd.Index(index.astype(object), name="B") expected = pd.Series([3, 1, 4], index=index, name="A") if as_index: self.assert_series_equal(result, expected) else: expected = expected.reset_index() self.assert_frame_equal(result, expected) def test_groupby_extension_no_sort(self, data_for_grouping): df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) result = df.groupby("B", sort=False).A.mean() _, index = pd.factorize(data_for_grouping, sort=False) # TODO(ExtensionIndex): remove astype index = pd.Index(index.astype(object), name="B") expected = pd.Series([1, 3, 4], index=index, name="A") self.assert_series_equal(result, expected) def test_groupby_extension_transform(self, data_for_grouping): valid = data_for_grouping[~data_for_grouping.isna()] df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid}) result = df.groupby("B").A.transform(len) expected = pd.Series([3, 3, 2, 2, 3, 1], name="A") self.assert_series_equal(result, expected) @pytest.mark.parametrize('op', [ lambda x: 1, lambda x: [1] * len(x), lambda x: pd.Series([1] * len(x)), lambda x: x, ], ids=['scalar', 'list', 'series', 'object']) def test_groupby_extension_apply(self, data_for_grouping, op): df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) df.groupby("B").apply(op) df.groupby("B").A.apply(op) df.groupby("A").apply(op) df.groupby("A").B.apply(op)
bsd-3-clause
ArtezGDA/MappingTheCity-Maps
Kimberley ter Heerdt/Poster/Visual-3/wiki-birthsvisualmetdatatekst.py
1
1087
import json import matplotlib.pyplot as plt def visual_file(file_name, line_color): fig = plt.figure(1) with open(file_name, 'r') as f: data = json.load(f) for d in data: cur_births = d['birth'] for cur_birth in cur_births: year = cur_birth['year'] deathyear = cur_birth['deathyear'] if deathyear: radius = int(deathyear) - int(year) else: radius = 2016 - int(year) ax = fig.add_subplot(1, 1, 1) circe = plt.Circle((year, 0), radius=radius, color=line_color, fill=False) ax.add_patch(circe) plt.xlim(800, 2100) plt.xticks([i for i in range(800, 2016, 50)]) plt.ylim(0, 150) plt.xlabel('January', fontsize=17) plt.yticks([]) plt.subplots_adjust(left=0.01, right=0.99, top=0.58, bottom=0.4) plt.show() if __name__ == '__main__': file_name = 'wikibirth-jan.json' line_color = 'gray' visual_file(file_name, line_color)
mit
skrueger111/zazzie
src/scripts/convergence_test.py
3
31326
# from __future__ import absolute_import # from __future__ import division # from __future__ import print_function # # from __future__ import unicode_literals """SASSIE: Copyright (C) 2011-2015 Joseph E. Curtis, Ph.D. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import glob import logging import numpy import os import pandas import time import sasmol.sasmol as sasmol # allows for creating plots without an xserver try: dummy = os.environ["DISPLAY"] except: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # convergence_test # # 08/24/2016 -- updating for github repo : sch # # 1 2 3 4 5 6 7 # 34567890123456789012345678901234567890123456789012345678901234567890123456789 logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) class AlignInputs(object): def __init__(self, goal_pdb, move, ref_pdb, out_fname, **kwargs): self.goal_pdb = goal_pdb self.ref_pdb = ref_pdb self.move = move self.out_fname = out_fname self.path = kwargs.get('path', './') self.basis_atoms = kwargs.get('basis_atoms', 'CA') self.seg_or_chain = kwargs.get('seg_or_chain', 'segname') self.seg_chain = kwargs.get('seg_chain', 'GAG') self.min_resid = kwargs.get('min_resid', 20) self.max_resid = kwargs.get('max_resid', 30) default_filter = ( '(({}[i] == "{}") and (name[i] == "{}") and ' '(resid[i] >= {}) and (resid[i] <= {}))'.format( self.seg_or_chain, self.seg_chain, self.basis_atoms, self.min_resid, self.max_resid)) self.goal_filter = kwargs.get('goal_filter', default_filter) self.move_filter = kwargs.get('move_filter', default_filter) logging.debug('goal_pdb: {}'.format(self.goal_pdb)) logging.debug('ref_pdb: {}'.format(self.ref_pdb)) logging.debug('move: {}'.format(self.move)) logging.debug('out_fname: {}'.format(self.out_fname)) logging.debug('path: {}'.format(self.path)) logging.debug('goal_filter: {}'.format(self.goal_filter)) logging.debug('move_filter: {}'.format(self.move_filter)) def align(inputs): ''' input: ------ inputs: object should contain the following attributes goal: goal pdb ref: reference pdb containing molecule info for moving pdb/dcd move: pdb/dcd to align out: output dcd file path: output path goal_filter: goal basis filter move_filter: move basis filter note: inputs.ref and inputs.move can ofter be the same pdb ''' aa_goal_pdb = inputs.goal_pdb aa_move_pdb = inputs.ref_pdb aa_move_fname = inputs.move save_fname = inputs.out_fname path = inputs.path if save_fname == aa_move_fname: in_place = True save_fname = 'temp' + save_fname[-4:] try: goal_filter = inputs.goal_filter except: basis_atoms = inputs.basis_atoms goal_seg_or_ch = inputs.goal_seg_or_chain goal_segname = inputs.goal_seg_chain goal_res_max = inputs.goal_max goal_res_min = inputs.goal_min try: move_filter = inputs.move_filter except: basis_atoms = inputs.basis_atoms move_seg_or_ch = inputs.move_seg_or_chain move_segname = inputs.move_seg_chain move_res_max = inputs.move_max move_res_min = inputs.move_min move_filter = ('((%s[i] == "%s") and (name[i] == "%s") and ' '(resid[i] >= %s) and (resid[i] <= %s))' % ( move_seg_or_ch, move_segname, basis_atoms, move_res_min, move_res_max)) # check input assert os.path.exists(aa_move_fname), ('ERROR: no such file - %s' % aa_move_fname) assert os.path.exists(aa_move_pdb), ('ERROR: no such file - %s' % aa_move_pdb) assert os.path.exists(aa_goal_pdb), ('ERROR: no such file - %s' % aa_goal_pdb) # create the SasMol objects sub_goal = sasmol.SasMol(0) sub_move = sasmol.SasMol(0) aa_goal = sasmol.SasMol(0) aa_move = sasmol.SasMol(0) aa_goal.read_pdb(aa_goal_pdb) aa_move.read_pdb(aa_move_pdb) if aa_move_fname[-3:] == 'pdb': aa_move.read_pdb(aa_move_fname) n_frames = aa_move.number_of_frames() in_type = 'pdb' elif aa_move_fname[-3:] == 'dcd': dcd_file = aa_move.open_dcd_read(aa_move_fname) n_frames = dcd_file[2] in_type = 'dcd' else: message = "\n~~~ ERROR, unknown input type ~~~\n" print_failure(message, txtOutput) return out_type = save_fname[-3:].lower() if 'dcd' == out_type: dcd_out_file = aa_move.open_dcd_write(path + save_fname) elif 'pdb' == out_type: dcd_out_file = None error, goal_seg_mask = aa_goal.get_subset_mask(goal_filter) assert not error, error error, move_seg_mask = aa_move.get_subset_mask(move_filter) assert not error, error error = aa_goal.copy_molecule_using_mask(sub_goal, goal_seg_mask, 0) assert not error, error error = aa_move.copy_molecule_using_mask(sub_move, move_seg_mask, 0) assert not error, error # calculate the center of mass of the subset of m1 com_sub_goal = sub_goal.calccom(0) sub_goal.center(0) # center the m1 coordinates # get the m1 centered coordinates coor_sub_goal = sub_goal.coor()[0] for i in xrange(n_frames): if in_type == 'dcd': aa_move.read_dcd_step(dcd_file, i) # move m2 to be centered at the origin aa_move.center(0) error, sub_move.coor = aa_move.get_coor_using_mask( 0, move_seg_mask) sub_move.setCoor(sub_move.coor) # calculate the center of mass of the subset of m2 com_sub_move = sub_move.calccom(0) # move the subset of m2 to be centered at the origin sub_move.center(0) # get the new coordinates of the subset of m2 coor_sub_move = sub_move.coor[0] # align m2 using the transformation from sub_m2 to sub_m1 aa_move.align( 0, coor_sub_move, com_sub_move, coor_sub_goal, com_sub_goal) elif in_type == 'pdb': # move m2 to be centered at the origin aa_move.center(i) error, sub_move.coor = aa_move.get_coor_using_mask( i, move_seg_mask) sub_move.setCoor(sub_move.coor) # calculate the center of mass of the subset of m2 com_sub_move = sub_move.calccom(0) # move the subset of m2 to be centered at the origin sub_move.center(0) # get the new coordinates of the subset of m2 coor_sub_move = sub_move.coor[0] # align m2 using the transformation from sub_m2 to sub_m1 aa_move.align( i, coor_sub_move, com_sub_move, coor_sub_goal, com_sub_goal) aa_move.write_dcd_step(dcd_out_file, 0, i + 1) if in_type == 'dcd': aa_move.close_dcd_read(dcd_file[0]) if out_type == 'dcd': aa_move.close_dcd_write(dcd_out_file) if in_place: os.remove(aa_move_fname) os.rename(save_fname, aa_move_fname) logging.info('Alingment of {} complete. \m/ >.< \m/'.format(aa_move_fname)) def calc_sas_convergence_all(sas_folders, output_prefix=None, granularity=int(1e3), show=False, sas_ext='iq'): assert len(sas_folders) == 1, ("ERROR: mode for examining multiple " "folders not currently tested") if not output_prefix: output_prefix = 'sas_convergence' # initialize data sets iq_all = [] list_new_grids = [] list_occupied_grids = [] n_q, n_spec = load_iq(sas_folders, sas_ext, iq_all) count_sas_grids(sas_folders, iq_all, n_q, n_spec, list_new_grids, list_occupied_grids, granularity) total_spec = n_spec.sum() new_grids = numpy.zeros((total_spec, len(sas_folders) + 1)) new_grids[:, 0] = numpy.arange(total_spec) occupied_grids = numpy.copy(new_grids) for i in xrange(len(sas_folders)): rows = list_new_grids[i][:, 0] - 1 new_grids[rows, 1] = list_new_grids[i][:, 1] occupied_grids[rows, 1] = list_occupied_grids[i][:, 1] # create output text files fname_occupied_grids = output_prefix + '_occupied_grids.npy' fname_new_grids = output_prefix + '_new_grids.npy' numpy.savetxt(fname_occupied_grids, occupied_grids) numpy.savetxt(fname_new_grids, new_grids) print 'output text files: \n%s \n%s' % (fname_occupied_grids, fname_new_grids) plot_convergence(new_grids, sas_folders, occupied_grids, output_prefix, show, spatial=False) def calc_sas_convergence_by_run(sas_folders, output_prefix=None, granularity=int(1e3), show=False, sas_ext='iq'): assert len(sas_folders) == 1, ("ERROR: mode for examining multiple " "folders not currently tested") if not output_prefix: output_prefix = 'sas_convergence' # initialize data sets iq_all = [] list_new_grids = [] list_occupied_grids = [] n_q, n_spec = load_iq(sas_folders, sas_ext, iq_all) count_sas_grids(sas_folders, iq_all, n_q, n_spec, list_new_grids, list_occupied_grids, granularity) total_spec = n_spec.sum() new_grids = numpy.zeros((total_spec, len(sas_folders) + 1), dtype=int) new_grids[:, 0] = numpy.arange(total_spec) occupied_grids = numpy.copy(new_grids) for i in xrange(len(sas_folders)): rows = list_new_grids[i][:, 0] - 1 new_grids[rows, i + 1] = list_new_grids[i][:, 1] occupied_grids[rows, i + 1] = list_occupied_grids[i][:, 1] # create output text files fname_occupied_grids = output_prefix + '_occupied_grids_by_run.npy' fname_new_grids = output_prefix + '_new_grids_by_run.npy' numpy.savetxt(fname_occupied_grids, occupied_grids) numpy.savetxt(fname_new_grids, new_grids) print 'output text files: \n%s \n%s' % (fname_occupied_grids, fname_new_grids) plot_convergence(new_grids, sas_folders, occupied_grids, output_prefix, show, spatial=False) def calc_spatial_convergence_all(pdb_fname, dcd_fnames, output_prefix=None, show=False, **kwargs): assert len(dcd_fnames) == 1, ("ERROR: mode for examining multiple " "dcd files not currently tested") if not output_prefix: output_prefix = pdb_fname[:-4] # initialize data sets list_new_voxels = [] list_occupied_voxels = [] count_spatial_voxels(pdb_fname, dcd_fnames, list_new_voxels, list_occupied_voxels, **kwargs) n_structures = sum([len(new_voxels) for new_voxels in list_new_voxels]) new_voxels = numpy.empty((n_structures, 2)) occupied_voxels = numpy.empty((n_structures, 2)) new_voxels[:, 0] = numpy.arange(n_structures) occupied_voxels[:, 0] = numpy.arange(n_structures) for i in xrange(len(dcd_fnames)): rows = list_new_voxels[i][:, 0] - 1 new_voxels[rows, 1] = list_new_voxels[i][:, 1] occupied_voxels[rows, 1] = list_occupied_voxels[i][:, 1] # create output text files fname_occupied_voxels = output_prefix + '_occupied_voxels.npy' fname_new_voxels = output_prefix + '_new_voxels.npy' numpy.savetxt(fname_occupied_voxels, occupied_voxels) numpy.savetxt(fname_new_voxels, new_voxels) print 'output text files: \n%s \n%s' % (fname_occupied_voxels, fname_new_voxels) plot_convergence(new_voxels, dcd_fnames, occupied_voxels, output_prefix, show) def calc_spatial_convergence_by_run(pdb_fname, dcd_fnames, output_prefix=None, show=False, **kwargs): assert len(sas_folders) == 1, ("ERROR: mode for examining multiple " "folders not currently tested") if not output_prefix: output_prefix = pdb_fname[:4] # initialize data sets list_new_voxels = [] list_occupied_voxels = [] count_spatial_voxels(pdb_fname, dcd_fnames, list_new_voxels, list_occupied_voxels, **kwargs) n_structures = sum([len(new_voxels) for new_voxels in list_new_voxels]) new_voxels = numpy.empty((n_structures, len(dcd_fnames) + 1)) occupied_voxels = numpy.empty((n_structures, len(dcd_fnames) + 1)) new_voxels[:, 0] = numpy.arange(n_structures) occupied_voxels[:, 0] = numpy.arange(n_structures) for i in xrange(len(dcd_fnames)): rows = list_new_voxels[i][:, 0] - 1 new_voxels[rows, i + 1] = list_new_voxels[i][:, 1] occupied_voxels[rows, i + 1] = list_occupied_voxels[i][:, 1] # create output text files fname_occupied_voxels = output_prefix + '_occupied_voxels_by_run.npy' fname_new_voxels = output_prefix + '_new_voxels_by_run.npy' numpy.savetxt(fname_occupied_voxels, occupied_voxels) numpy.savetxt(fname_new_voxels, new_voxels) print 'output text files: \n%s \n%s' % (fname_occupied_voxels, fname_new_voxels) plot_convergence(new_voxels, dcd_fnames, occupied_voxels, output_prefix, show) def count_new_spatial_voxels(coors, voxel_set, delta): number_new_voxels = 0 for coor in coors: voxel_number = get_spatial_voxel_number(coor, delta) if voxel_number not in voxel_set: number_new_voxels += 1 voxel_set.add(voxel_number) return number_new_voxels def count_sas_grids(sas_folders, iq_all, n_q, n_spec, list_new_grids, list_occupied_grids, granularity=int(1e3), iq_low=0, iq_high=2): den = float(iq_high - iq_low) delta_i = 1.0 / granularity # using I(0) = 1 as the default number_of_occupied_grids = 0 cwd = os.getcwd() tic = time.time() for (i_folder, this_folder) in enumerate(sas_folders): logging.info('processing spec files from: {}\n'.format(this_folder)) output_prefix = os.path.join(cwd, this_folder, '{}_of_{}'.format( i_folder + 1, len(sas_folders))) output_new_grids = output_prefix + '_new_grids.npy' output_occupied_grids = output_prefix + '_occupied_grids.npy' try: # try loading output from previous run this_folder_new_grids = numpy.load(output_new_grids) this_folder_occupied_grids = numpy.load(output_occupied_grids) logging.info('Successfully loaded new voxels and occupied ' 'voxels for {} from:\n{} \n{}'.format( this_folder, output_new_grids, output_occupied_grids)) except: # calculate and create output logging.info('Calculating convergence. Did not find output ' 'files from previous calculation. Storing the output ' 'to:\n%s \n%s' % (output_new_grids, output_occupied_grids)) this_folder_new_grids = numpy.zeros( (n_spec[i_folder], 2), dtype=int) this_folder_new_grids[:, 0] = numpy.arange(n_spec[i_folder]) + 1 this_folder_occupied_grids = numpy.copy(this_folder_new_grids) occupied_grids = {} # convert I(Q) to bin number binned_iqs = numpy.array( (iq_all[i_folder] - 1.0) / delta_i, dtype=int) for i_spec in xrange(n_spec[i_folder]): number_of_new_grids = 0 for q in xrange(n_q): grids_this_q = occupied_grids.get(q, {}) if not grids_this_q.get(binned_iqs[i_spec, q], 0): grids_this_q[binned_iqs[i_spec, q]] = 1 number_of_new_grids += 1 occupied_grids[q] = grids_this_q number_of_occupied_grids += number_of_new_grids this_folder_occupied_grids[ i_spec, 1] = number_of_occupied_grids this_folder_new_grids[i_spec, 1] = number_of_new_grids # print "temporarily not saving output" numpy.save(output_new_grids, this_folder_new_grids) numpy.save(output_occupied_grids, this_folder_occupied_grids) list_new_grids.append(this_folder_new_grids) list_occupied_grids.append(this_folder_occupied_grids) toc = time.time() - tic logging.info("time used: {}".format(toc)) def old_count_sas_grids(sas_folders, iq_low, iq_high, iq_all, n_q, n_spec, list_new_grids, list_occupied_grids, n_grids): iq_low = numpy.array(iq_low).min(axis=0) iq_high = numpy.array(iq_high).max(axis=0) grid = numpy.zeros((n_q, n_grids + 1)) number_of_occupied_grids = 0 i_spec = 0 cwd = os.getcwd() tic = time.time() for (i_folder, this_folder) in enumerate(sas_folders): print 'processing spec files from: %s\n' % this_folder output_prefix = os.path.join(cwd, this_folder, '%d_of_%d' % (i_folder + 1, len(sas_folders))) output_new_grids = output_prefix + '_new_grids.npy' output_occupied_grids = output_prefix + '_occupied_grids.npy' try: # try loading output from previous run this_folder_new_grids = numpy.load(output_new_grids) this_folder_occupied_grids = numpy.load(output_occupied_grids) print('Successfully loaded new voxels and occupied voxels ' 'for %s from:\n%s \n%s' % (this_folder, output_new_grids, output_occupied_grids)) except: # calculate and create output print('Calculating convergence. Did not find output files from ' 'previous calculation. Storing the output to:\n%s \n%s' % ( output_new_grids, output_occupied_grids)) this_folder_new_grids = numpy.zeros((n_spec[i_folder], 2), dtype=int) this_folder_occupied_grids = numpy.zeros((n_spec[i_folder], 2), dtype=int) for i_spec_folder in xrange(n_spec[i_folder]): number_of_new_grids = 0 for q in xrange(n_q): num = iq_all[i_folder][q, i_spec_folder] - iq_low[q] den = iq_high[q] - iq_low[q] try: n = int(n_grids * (num / den)) except ValueError: n = int(numpy.nan_to_num(n_grids * (num / den))) if not grid[q, n]: grid[q, n] = 1 number_of_new_grids += 1 number_of_occupied_grids += number_of_new_grids this_folder_new_grids[i_spec_folder, :] = [ i_spec, number_of_new_grids] this_folder_occupied_grids[i_spec_folder, :] = [ i_spec, number_of_occupied_grids] i_spec += 1 numpy.save(output_new_grids, this_folder_new_grids) numpy.save(output_occupied_grids, this_folder_occupied_grids) list_new_grids.append(this_folder_new_grids) list_occupied_grids.append(this_folder_occupied_grids) toc = time.time() - tic print "time used: ", toc def count_spatial_voxels(pdb_fname, dcd_fnames, list_new_voxels, list_occupied_voxels, voxel_size=5.0, basis_filter=None, filter_label='', align_dcd=False, **kwargs): # initialize molecule and mask mol = sasmol.SasMol(0) mol.read_pdb(pdb_fname) n_dcds = len(dcd_fnames) cap_filter = '(name[i]=="CA" or name[i]=="P")' if basis_filter: error, mask = mol.get_subset_mask('%s and %s' % ( basis_filter, cap_filter)) else: error, mask = mol.get_subset_mask(cap_filter) assert not error, error voxel_set = set([]) number_occupied_voxels = 0 tic = time.time() for (i_dcd, dcd_fname) in enumerate(dcd_fnames): print 'processing dcd: %s\n' % dcd_fname dcd_output_prefix = '%s_%d_of_%d' % (dcd_fname[:-4], i_dcd + 1, n_dcds) output_new_voxels = '%s%s_new_voxels.npy' % ( dcd_output_prefix, filter_label) output_occupied_voxels = '%s%s_occupied_voxels.npy' % ( dcd_output_prefix, filter_label) try: # try loading output from previous run this_dcd_new_voxels = numpy.load(output_new_voxels) this_dcd_occupied_voxels = numpy.load(output_occupied_voxels) print('Successfully loaded new voxels and occupied voxels ' 'for %s from:\n%s \n%s' % (dcd_fname, output_new_voxels, output_occupied_voxels)) except: # calculate and create output print('Calculating convergence. Did not find output files from ' 'previous calculation. Storing the output to:\n%s \n%s' % ( output_new_voxels, output_occupied_voxels)) if align_dcd: inputs = AlignInputs(pdb_fname, dcd_fname, pdb_fname, dcd_fname, **kwargs) align(inputs) dcd_file = mol.open_dcd_read(dcd_fname) number_of_frames = dcd_file[2] this_dcd_new_voxels = numpy.empty((number_of_frames, 2), dtype=int) this_dcd_new_voxels[:, 0] = numpy.arange(number_of_frames) + 1 this_dcd_occupied_voxels = numpy.copy(this_dcd_new_voxels) for nf in xrange(number_of_frames): mol.read_dcd_step(dcd_file, nf) error, coor = mol.get_coor_using_mask(0, mask) assert not error, error number_new_voxels = count_new_spatial_voxels( coor[0], voxel_set, voxel_size) number_occupied_voxels += number_new_voxels this_dcd_occupied_voxels[nf, 1] = number_occupied_voxels this_dcd_new_voxels[nf, 1] = number_new_voxels numpy.save(output_new_voxels, this_dcd_new_voxels) numpy.save(output_occupied_voxels, this_dcd_occupied_voxels) list_new_voxels.append(this_dcd_new_voxels) list_occupied_voxels.append(this_dcd_occupied_voxels) toc = time.time() - tic logging.info("time used: {}".format(toc)) def get_spatial_voxel_number(coor, delta): idx = int(coor[0] / delta) idy = int(coor[1] / delta) idz = int(coor[2] / delta) return (idx, idy, idz) def load_iq(sas_folders, sas_ext, iq_all): n_folders = len(sas_folders) n_q = numpy.empty(n_folders, dtype=int) n_spec = numpy.empty(n_folders, dtype=int) cwd = os.getcwd() for (i_folder, this_folder) in enumerate(sas_folders): logging.info('loading spec files from: {}'.format(this_folder)) output_prefix = os.path.join(cwd, this_folder, '{}_of_{}'.format( i_folder + 1, n_folders)) output_iq = output_prefix + '_iq.h5' sas_search_path = os.path.join(cwd, this_folder, '*.' + sas_ext) file_list = glob.glob(sas_search_path) n_spec[i_folder] = len(file_list) if n_spec[i_folder] < 1: logging.info('No I(Q) files found in: {}'.format(sas_search_path)) else: try: # try loading iq_array from previous run store = pandas.HDFStore(output_iq) these_iqs_df = store['iq'] q_vals = store['q'] n_q[i_folder] = len(q_vals) these_iqs = numpy.array(these_iqs_df) logging.info( 'Successfully loaded iq_array for {} from:\n{}'.format( this_folder, output_iq)) except: logging.info( 'Loading in iq data from {}. Output stored to:\n{}'.format( this_folder, output_iq)) file_list.sort() ref_iq = numpy.loadtxt(file_list[0]) q_vals = pandas.Series(ref_iq[:, 0]) n_q[i_folder] = len(q_vals) these_iqs = numpy.empty((n_spec[i_folder], n_q[i_folder])) for (j, this_file) in enumerate(file_list): this_iq = numpy.loadtxt(this_file) if not numpy.all(0.0 == (this_iq[:, 0] - q_vals)): logging.error( 'Q values do not match for iq file: {0}'.format(iq_file)) these_iqs[j] = this_iq[:, 1] / this_iq[0, 1] # I(0) = 1 these_iqs_df = pandas.DataFrame(these_iqs, columns=q_vals) store['iq'] = these_iqs_df store['q'] = q_vals store.close() iq_all.append(these_iqs) assert n_q[i_folder] == n_q[0], ( 'ERROR: inconsistent number of Q-grid points between spec ' 'files in %s and %s' % (sas_folders[0], this_folder) ) n_q = n_q[0] return n_q, n_spec def plot_convergence(new_voxels, dcd_fnames, occupied_voxels, output_prefix, show=False, spatial=True): fig = plt.figure(figsize=(6, 10)) gs = gridspec.GridSpec(2, 1, left=0.1, right=0.9, wspace=0, hspace=0) ax = [] ax.append(plt.subplot(gs[0])) ax.append(plt.subplot(gs[1])) n_plots = new_voxels.shape[1] - 1 for i in xrange(n_plots): if 1 < n_plots < 100: label = dcd_fnames[i] else: label = '' if i > 0: # rows = (new_voxels[:, i+1] > 0) ax[0].plot(new_voxels[1:, 0], new_voxels[1:, i + 1], label=label) else: # rows = (new_voxels[:, i+1] > 0)[1:] # skip the initial frame ax[0].plot(new_voxels[1:, 0], new_voxels[1:, i + 1], label=label) ax[0].xaxis.set_ticklabels([]) if n_plots > 1: lg = ax[0].legend(bbox_to_anchor=(1, 1), loc=2) # lg.draw_frame(False) for i in xrange(n_plots): if i > 0: rows = (occupied_voxels[:, i + 1] > 0) # only plot non-zero values ax[1].plot(occupied_voxels[rows, 0], occupied_voxels[rows, i + 1]) else: rows = ( occupied_voxels[ :, i + 1] > 0)[ 1:] # skip the initial frame ax[1].plot(occupied_voxels[rows, 0], occupied_voxels[rows, i + 1]) ax[1].set_xlabel('Structures') ylim = ax[1].get_ylim() ax[1].set_ylim((ylim[0], ylim[1] * 1.1)) if spatial: ax[1].set_ylabel('Number of Occupied Voxels') ax[0].set_ylabel('Number of New Voxels') else: ax[1].set_ylabel('Number of Occupied Grids') ax[0].set_ylabel('Number of New Grids') plot_name = output_prefix + '_convergence' plot_name = os.path.join(os.getcwd(), plot_name) plt.savefig(plot_name + '.eps', dpi=400, bbox_inches='tight') plt.savefig(plot_name + '.png', dpi=400, bbox_inches='tight') print 'Saving figure to: \nevince %s.eps &\neog %s.png &' % (plot_name, plot_name) if show: plt.show() else: plt.close('all') if __name__ == '__main__': import sys mol = sasmol.SasMol(0) if len(sys.argv) < 3: mol.read_pdb('min_dsDNA60.pdb') # mol.read_dcd('run3_100k_ngb/monte_carlo/min_dsDNA60.dcd') dcd_full_name = 'run3_100k_ngb/monte_carlo/min_dsDNA60_sparse.dcd' else: mol.read_pdb(sys.argv[1]) dcd_full_name = sys.argv[2] voxel_set = set([]) delta = 5.0 list_number_new_voxels = [] list_number_occupied_voxels = [] number_occupied_voxels = 0 error, mask = mol.get_subset_mask('name[i]=="CA" or name[i]=="P"') dcd_file = mol.open_dcd_read(dcd_full_name) number_of_frames = dcd_file[2] tic = time.time() output_file = "number_of_occupied_voxels.txt" fout = open(output_file, 'w') fout.write("#frame_number, number_of_occupied_voxels\n") for nf in xrange(number_of_frames): mol.read_dcd_step(dcd_file, nf + 1) error, coors = mol.get_coor_using_mask(0, mask) assert not error, error number_new_voxels = count_new_spatial_voxels( coors[0], voxel_set, delta) number_occupied_voxels += number_new_voxels list_number_new_voxels.append(number_new_voxels) list_number_occupied_voxels.append(number_occupied_voxels) fout.write("%d %d\n" % (nf, number_occupied_voxels)) fout.close() toc = time.time() - tic print "\ntime used: ", toc fig = plt.figure(figsize=(6, 6)) gs = gridspec.GridSpec(2, 1, left=0.2, right=0.95, wspace=0, hspace=0) ax = [] ax.append(plt.subplot(gs[0])) ax.append(plt.subplot(gs[1])) ax[0].plot(range(len(list_number_new_voxels)), list_number_new_voxels) ax[0].set_xlabel('Structure') ax[0].set_ylabel('number of new voxels') ax[0].set_yscale('log') # lim([0, max(list_number_new_voxels)*1.05]) ax[0].xaxis.set_ticklabels([]) ax[1].plot( range( len(list_number_occupied_voxels)), list_number_occupied_voxels) ax[1].set_xlabel('Structure') ax[1].set_ylabel('number of occupied voxels') ylim = ax[1].get_ylim() ax[1].set_ylim((ylim[0], ylim[1] * 1.1)) plt.savefig('metric_convergence.eps', dpi=400, bbox_inches='tight') plt.savefig('metric_convergence.png', dpi=400, bbox_inches='tight') plt.show() print '\m/ >.< \m/'
gpl-3.0
Simclass/EDXD_Analysis
bin/data_creation.py
3
3978
import numpy as np import matplotlib.pyplot as plt import time from pyxe.williams import sigma_xx, sigma_yy, sigma_xy, cart2pol from pyxe.fitting_functions import strain_transformation, shear_transformation def plane_strain_s2e(sigma_xx, sigma_yy, sigma_xy, E, v, G=None): if G is None: G = E / (2 * (1 - v)) e_xx = (1 / E) * (sigma_xx - v*sigma_yy) e_yy = (1 / E) * (sigma_yy - v*sigma_xx) e_xy = sigma_xy / G return e_xx, e_yy, e_xy class StrainField(object): def __init__(self, x, y, K, E, v, G=None, state='plane strain'): self.K = K self.x = x self.y = y self.r, self.theta = cart2pol(x, y) self.sig_xx = sigma_xx(self.K, self.r, self.theta) self.sig_yy = sigma_yy(self.K, self.r, self.theta) self.sig_xy = sigma_xy(self.K, self.r, self.theta) sigma_comp = self.sig_xx, self.sig_yy, self.sig_xy stress2strain = plane_strain_s2e if state == 'plane strain' else None data = stress2strain(*sigma_comp, E, v, G) self.e_xx, self.e_yy, self.e_xy = data def extract_strain_map(self, phi=np.pi/2, shear=False): trans = strain_transformation if not shear else shear_transformation e = trans(phi, self.e_xx, self.e_yy, self.e_xy) return e def plot_strain_map(self, phi=np.pi/2, shear=False): e = self.extract_strain_map(phi, shear) plt.contourf(self.x, self.y, e, 21) plt.show() def extract_stress_map(self, phi=np.pi/2, shear=False): trans = strain_transformation if not shear else shear_transformation sig = trans(phi, self.sig_xx, self.sig_yy, self.sig_xy) return sig def plot_stress_map(self, phi=np.pi/2, shear=False): sig = self.extract_stress_map(phi, shear) plt.contourf(self.x, self.y, sig, 21) plt.show() def extract_strain_array(self, phi): """ Add valus for phi :param phi: :return: """ strain = np.nan * np.ones((self.x.shape + (1,) + phi.shape)) for idx, tt in enumerate(phi): e_xx1 = strain_transformation(tt, self.e_xx, self.e_yy, self.e_xy) strain[:, :, 0, idx] = e_xx1 return strain def create_nxs_shell(x, y, phi): group = None ss2_x = x ss2_y = y ss2_x = None scan_command = [b'ss2_x', b'ss2_y'] phi = phi q = 0 I = 0 # create nxs # h5py.save # load nxs and fill with data def add_strain_field(data, K, E, v, G=None, state='plane strain'): crack_field = StrainField(data.ss2_x, data.ss2_y, K, E, v, G, state) data.strain = crack_field.extract_strain_array(data.phi) data.strain_err = np.zeros_like(data.strain) return crack_field x = np.linspace(-0.5, 1, 100) y = np.linspace(-0.75, 0.75, 100) X, Y = np.meshgrid(x, y) data = StrainField(X, Y, 20*10**6, 200*10**9, 0.3) data.create_nxs(np.linspace(0, np.pi, 10)) #sigma_array = np.nan * np.ones((y.size, x.size, 1, n_phi)) #for idx, tt in enumerate(np.linspace(0, np.pi, n_phi)): # sigma_array[:, :, 0, idx] = strain_transformation(tt, *(sig_xx, sig_yy, sig_xy)) #e_xx, e_yy, e_xy = plane_strain_s2e(sig_xx, sig_yy, sig_xy, 200 * 10 **9, 0.3) #strain_array = np.nan * np.ones((y.size, x.size, 1, n_phi)) #for idx, tt in enumerate(np.linspace(0, np.pi, n_phi)): # e_xx1 = strain_transformation(tt, *(e_xx, e_yy, e_xy)) # strain_array[:, :, 0, idx] = e_xx1 # plt.figure() # e_xx1[e_xx1>0.004]=0.004 # e_xx1[e_xx1 < -0.001] = -0.001 # plt.contourf(X, Y, e_xx1, np.linspace(-0.001, 0.004, 25)) # plt.colorbar() # plt.contour(X, Y, e_xx1, np.linspace(-0.001, 0.004, 25), colors = 'k', linewidths=0.4, aplha=0.3) # plt.savefig(r'C:\Users\lbq76018\Documents\Python Scripts\pyxe_fake\%03d.png' % idx) #plt.show() #plt.figure() #c = plt.contourf(X, Y, sig_yy, 25) #plt.colorbar() #plt.figure() #c = plt.contourf(X, Y, e_yy, 25) #plt.colorbar() #plt.show() #print(sigma_array)
mit
jwlockhart/concept-networks
examples/draw_tripartite.py
1
3581
# @author Jeff Lockhart <[email protected]> # Script for drawing the tripartite network underlying analysis. # version 1.0 import pandas as pd import networkx as nx import matplotlib.pyplot as plt import sys #add the parent directory to the current session's path sys.path.insert(0, '../') from network_utils import * #read our cleaned up data df = pd.read_csv('../data/sgm_stud/merged.tsv', sep='\t') #The list of codes we're interested in. code_cols = ['culture_problem', #'culture_absent', 'culture_solution', 'culture_helpless', 'culture_victim', 'cishet_problem', 'cishet_victim', 'cishet_solution', #'cishet_absent', 'cishet_helpless', 'sgm_victim', 'sgm_problem', 'sgm_helpless', #'sgm_absent', 'sgm_solution', 'school_problem', 'school_solution', #'school_absent', 'school_victim', 'school_helpless', 'community_problem', 'community_solution', 'community_helpless', #'community_absent', 'community_victim'] #generate unique ID keys for each student and excerpt def s_id(row): return row['uni'] + str(row['Participant']) def e_id(row): return row['s_id'] + '-' + str(row['Start']) df['s_id'] = df.apply(s_id, axis=1) df['e_id'] = df.apply(e_id, axis=1) #make a graph g = nx.Graph() #add all of our codes as nodes for c in code_cols: g.add_node(c, t='code') #add each excerpt of text as a node. Connect it with relevant #students and codes. st = [] ex = [] last = '' for row in df.iterrows(): #add the student node g.add_node(row[1]['s_id'], t='student') #if we haven't seen this student before, save the order we saw them in if last != row[1]['s_id']: last = row[1]['s_id'] st.append(last) #add this excerpt node. Save its order to our list. g.add_node(row[1]['e_id'], t='excerpt') ex.append(row[1]['e_id']) #add the edge joining this student and excerpt. g.add_edge(row[1]['s_id'], row[1]['e_id']) #for each code this excerpt has, draw an edge to it for c in code_cols: if row[1][c]: g.add_edge(row[1]['e_id'], c) #get a dictionary of our code nodes' labels l = {} for c in code_cols: l[c] = c #fix the positions of each node type in columns pos = dict() #space out the student and code nodes to align with excerpt column height pos.update( (n, (1, i*5.57)) for i, n in enumerate(st) ) pos.update( (n, (2, i)) for i, n in enumerate(ex) ) pos.update( (n, (3, i*90)) for i, n in enumerate(code_cols) ) #make our figure big so we can see plt.figure(figsize=(20,20)) #draw our nodes nx.draw_networkx_nodes(g, pos, nodelist=st, node_color='r', node_shape='^') nx.draw_networkx_nodes(g, pos, nodelist=ex, node_color='b', node_shape='o', alpha=0.5) #draw our edges with low alpha so we can see nx.draw_networkx_edges(g, pos, alpha=0.2) #axes look silly plt.axis('off') #save the edges and nodes as one image plt.savefig('../data/tripartite_unlabeled.png') #save the labels for the codes as a different image #this lets me edit them in with GIMP so that they're better positioned. plt.figure(figsize=(20,20)) nx.draw_networkx_labels(g, pos, labels=l, font_size=20) nx.draw_networkx_edges(g, pos, alpha=0) plt.axis('off') plt.savefig('../data/tripartite_labeles.png')
gpl-3.0
caperren/Archives
OSU Coursework/ROB 456 - Intelligent Robotics/Homework 4 - A Star Pathfinding/hw4.py
1
7720
import csv from matplotlib import pyplot, patches from math import sqrt from heapq import * CSV_PATH = "world.csv" VAL_TO_COLOR = { 0: "green", 1: "red", -1: "blue" } EDGE_COST = 1 START_POSITION = (0, 0) END_POSITION = (19, 19) def import_csv_as_array(csv_path): csv_file = open(csv_path, "rU") # Open the file csv_reader = csv.reader(csv_file) # Put it through the csv reader # Loop through the csv lines and append them to an array output_array = [] for line in csv_reader: output_array.append([int(col_val) for col_val in line]) # Delete the csv reader and close the file del csv_reader csv_file.close() # Return our world map array return output_array def plot_grid_map(grid_map, fig_save_path=None): # Make the plot figure_object, axes_object = pyplot.subplots() # Plot appropriately colored rectangles for each point on the map for y, row in enumerate(grid_map): for x, col in enumerate(row): axes_object.add_patch(patches.Rectangle((x, y), 1, 1, fill=True, color=VAL_TO_COLOR[col])) # Plot some x and y dotted lines to make it nicer to view the underlying grid for y in range(len(grid_map)): axes_object.plot([0, len(grid_map[0])], [y, y], color="black", alpha=0.75, linestyle=":") for x in range(len(grid_map[0])): axes_object.plot([x, x], [0, len(grid_map)], color="black", alpha=0.75, linestyle=":") # Set the y limit from len(grid_map) to 0 so it matches how the file looks in terms of the map axes_object.set_ylim([len(grid_map), 0]) axes_object.autoscale(enable=True, tight=True) # If the optional argument to save to a file is added, output that file if fig_save_path: figure_object.savefig(fig_save_path, bbox_inches="tight") # Show the plot pyplot.show() class AStarSolver(object): # Directions to be used for children VALID_DIRECTIONS = \ [ [1, 0], # E [0, 1], # N [-1, 0], # W [0, -1], # S ] def __init__(self, world, start_position, end_position): # Initialize all the class variables self.world_map = world self.world_limit_x = len(self.world_map[0]) self.world_limit_y = len(self.world_map) self.start_position = start_position self.end_position = end_position self.open_set = [] self.closed_set = [] self.g_scores = {} self.f_scores = {} self.travel_path = {} self.final_path = [] self.solution_map = list(self.world_map) @staticmethod def heuristic(start_point, end_point): # Calculate the heuristic from point a to point b using the pythagorean theorem delta_x = abs(end_point[0] - start_point[0]) delta_y = abs(end_point[1] - start_point[1]) return sqrt(pow(delta_x, 2) + pow(delta_y, 2)) def solve_path(self): # Add the starting node, plus it's initial f_cost self.g_scores[self.start_position] = 0 self.f_scores[self.start_position] = self.heuristic(self.start_position, self.end_position) # Put the starting node into the open set as (f_score, position) # It needs to be in this form for heap sorting by f_score heappush(self.open_set, (self.f_scores[self.start_position], self.start_position)) while self.open_set: # Pop off the most recent node in open set with the lowest f_score current_node = heappop(self.open_set) # Extract the current position from the node current_position = current_node[1] # If we've reached the end, break so we can compute the final path if current_position == self.end_position: break # Now that we've reached this node, add it to the closed set self.closed_set.append(current_position) # Loop through the cardinal directions we can move to for delta_x, delta_y in self.VALID_DIRECTIONS: # Computer the child position based on the cardinal direction and teh current position child_position = (current_position[0] + delta_x, current_position[1] + delta_y) # Compute the child's g_score with an edge cost of 1 child_g_score = self.g_scores[current_position] + EDGE_COST # Check if location is in the world valid_x_limit = 0 <= child_position[0] < self.world_limit_x valid_y_limit = 0 <= child_position[1] < self.world_limit_y # If it's in the world, make sure the child location is not an obstacle valid_not_obstacle = None if valid_x_limit and valid_y_limit: valid_not_obstacle = self.world_map[child_position[1]][child_position[0]] != 1 # If the child is in a valid location and not an obstacle: if valid_x_limit and valid_y_limit and valid_not_obstacle: # Skip to the next child if we've already seen this node and the current path is more costly than # what we've seen previously if child_position in self.closed_set and child_g_score >= self.g_scores.get(child_position, 0): continue # Get a list of all positions in our open set open_set_positions = [x[1] for x in self.open_set] # If the score is better than what we've seen, or if we've never seen this node before, add the node # to our open set and add this as a potential path if child_g_score < self.g_scores.get(child_position, 0) or child_position not in open_set_positions: self.travel_path[child_position] = current_position # Add this jump to the travel path self.g_scores[child_position] = child_g_score # Sets the new g_score self.f_scores[child_position] = \ child_g_score + self.heuristic(child_position, self.end_position) # Sets the new f_score heappush(self.open_set, (self.f_scores[child_position], child_position)) # Add to open set # Work our way backwards from the end to find the proper path final_path = [self.end_position] # Add our last hop manually so the loop below can include our start position current_position = self.end_position # Set the current position to the end while current_position != self.start_position: # Keep looping until we've reached the beginning of the path current_position = self.travel_path[current_position] # Update the current to the last path location final_path.append(current_position) # Append this location to our final array self.final_path = final_path[::-1] # Now that we've found the path, reverse it so it's in order # This applies modifications to the world map with the solution so you can see the path when plotting for x, y in self.final_path: self.solution_map[y][x] = -1 def get_solution_map(self): # Gives us the solution map once we've found a solution return self.solution_map if __name__ == '__main__': world_map = import_csv_as_array(CSV_PATH) # Import the map solver = AStarSolver(world_map, START_POSITION, END_POSITION) # Initialize the solver solver.solve_path() # Solve the path solution_map = solver.get_solution_map() # Retrieve the solution map plot_grid_map(solution_map, "final_path.pdf") # Plot and save the solution
gpl-3.0
thirdwing/mxnet
python/mxnet/model.py
4
39905
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=fixme, invalid-name, too-many-arguments, too-many-locals, too-many-lines # pylint: disable=too-many-branches, too-many-statements """MXNet model module""" from __future__ import absolute_import, print_function import time import logging import warnings from collections import namedtuple import numpy as np from . import io from . import nd from . import symbol as sym from . import optimizer as opt from . import metric from . import kvstore as kvs from .context import Context, cpu from .initializer import Uniform from .optimizer import get_updater from .executor_manager import DataParallelExecutorManager, _check_arguments, _load_data from .io import DataDesc from .base import mx_real_t BASE_ESTIMATOR = object try: from sklearn.base import BaseEstimator BASE_ESTIMATOR = BaseEstimator except ImportError: SKLEARN_INSTALLED = False # Parameter to pass to batch_end_callback BatchEndParam = namedtuple('BatchEndParams', ['epoch', 'nbatch', 'eval_metric', 'locals']) def _create_kvstore(kvstore, num_device, arg_params): """Create kvstore This function select and create a proper kvstore if given the kvstore type. Parameters ---------- kvstore : KVStore or str The kvstore. num_device : int The number of devices arg_params : dict of str to `NDArray`. Model parameter, dict of name to `NDArray` of net's weights. """ update_on_kvstore = True if kvstore is None: kv = None elif isinstance(kvstore, kvs.KVStore): kv = kvstore elif isinstance(kvstore, str): # create kvstore using the string type if num_device is 1 and 'dist' not in kvstore: # no need to use kv for single device and single machine kv = None else: kv = kvs.create(kvstore) if kvstore == 'local': # automatically select a proper local max_size = max(np.prod(param.shape) for param in arg_params.values()) if max_size > 1024 * 1024 * 16: update_on_kvstore = False else: raise TypeError('kvstore must be KVStore, str or None') if kv is None: update_on_kvstore = False return (kv, update_on_kvstore) def _initialize_kvstore(kvstore, param_arrays, arg_params, param_names, update_on_kvstore): """Initialize kvstore""" for idx, param_on_devs in enumerate(param_arrays): name = param_names[idx] kvstore.init(name, arg_params[name]) if update_on_kvstore: kvstore.pull(name, param_on_devs, priority=-idx) def _update_params_on_kvstore(param_arrays, grad_arrays, kvstore, param_names): """Perform update of param_arrays from grad_arrays on kvstore.""" for index, pair in enumerate(zip(param_arrays, grad_arrays)): arg_list, grad_list = pair if grad_list[0] is None: continue name = param_names[index] # push gradient, priority is negative index kvstore.push(name, grad_list, priority=-index) # pull back the weights kvstore.pull(name, arg_list, priority=-index) def _update_params(param_arrays, grad_arrays, updater, num_device, kvstore=None, param_names=None): """Perform update of param_arrays from grad_arrays not on kvstore.""" for index, pair in enumerate(zip(param_arrays, grad_arrays)): arg_list, grad_list = pair if grad_list[0] is None: continue if kvstore: name = param_names[index] # push gradient, priority is negative index kvstore.push(name, grad_list, priority=-index) # pull back the sum gradients, to the same locations. kvstore.pull(name, grad_list, priority=-index) for k, p in enumerate(zip(arg_list, grad_list)): # faked an index here, to make optimizer create diff # state for the same index but on diff devs, TODO(mli) # use a better solution latter w, g = p updater(index*num_device+k, g, w) def _multiple_callbacks(callbacks, *args, **kwargs): """Sends args and kwargs to any configured callbacks. This handles the cases where the 'callbacks' variable is ``None``, a single function, or a list. """ if isinstance(callbacks, list): for cb in callbacks: cb(*args, **kwargs) return if callbacks: callbacks(*args, **kwargs) def _train_multi_device(symbol, ctx, arg_names, param_names, aux_names, arg_params, aux_params, begin_epoch, end_epoch, epoch_size, optimizer, kvstore, update_on_kvstore, train_data, eval_data=None, eval_metric=None, epoch_end_callback=None, batch_end_callback=None, logger=None, work_load_list=None, monitor=None, eval_end_callback=None, eval_batch_end_callback=None, sym_gen=None): """Internal training function on multiple devices. This function will also work for single device as well. Parameters ---------- symbol : Symbol The network configuration. ctx : list of Context The training devices. arg_names: list of str Name of all arguments of the network. param_names: list of str Name of all trainable parameters of the network. aux_names: list of str Name of all auxiliary states of the network. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. begin_epoch : int The begining training epoch. end_epoch : int The end training epoch. epoch_size : int, optional Number of batches in a epoch. In default, it is set to ``ceil(num_train_examples / batch_size)``. optimizer : Optimizer The optimization algorithm train_data : DataIter Training data iterator. eval_data : DataIter Validation data iterator. eval_metric : EvalMetric An evaluation function or a list of evaluation functions. epoch_end_callback : callable(epoch, symbol, arg_params, aux_states) A callback that is invoked at end of each epoch. This can be used to checkpoint model each epoch. batch_end_callback : callable(BatchEndParams) A callback that is invoked at end of each batch. This can be used to measure speed, get result from evaluation metric. etc. kvstore : KVStore The KVStore. update_on_kvstore : bool Whether or not perform weight updating on kvstore. logger : logging logger When not specified, default logger will be used. work_load_list : list of float or int, optional The list of work load for different devices, in the same order as ``ctx``. monitor : Monitor, optional Monitor installed to executor, for monitoring outputs, weights, and gradients for debugging. Notes ----- - This function will inplace update the NDArrays in `arg_params` and `aux_states`. """ if logger is None: logger = logging executor_manager = DataParallelExecutorManager(symbol=symbol, sym_gen=sym_gen, ctx=ctx, train_data=train_data, param_names=param_names, arg_names=arg_names, aux_names=aux_names, work_load_list=work_load_list, logger=logger) if monitor: executor_manager.install_monitor(monitor) executor_manager.set_params(arg_params, aux_params) if not update_on_kvstore: updater = get_updater(optimizer) if kvstore: _initialize_kvstore(kvstore=kvstore, param_arrays=executor_manager.param_arrays, arg_params=arg_params, param_names=executor_manager.param_names, update_on_kvstore=update_on_kvstore) if update_on_kvstore: kvstore.set_optimizer(optimizer) # Now start training train_data.reset() for epoch in range(begin_epoch, end_epoch): # Training phase tic = time.time() eval_metric.reset() nbatch = 0 # Iterate over training data. while True: do_reset = True for data_batch in train_data: executor_manager.load_data_batch(data_batch) if monitor is not None: monitor.tic() executor_manager.forward(is_train=True) executor_manager.backward() if update_on_kvstore: _update_params_on_kvstore(executor_manager.param_arrays, executor_manager.grad_arrays, kvstore, executor_manager.param_names) else: _update_params(executor_manager.param_arrays, executor_manager.grad_arrays, updater=updater, num_device=len(ctx), kvstore=kvstore, param_names=executor_manager.param_names) if monitor is not None: monitor.toc_print() # evaluate at end, so we can lazy copy executor_manager.update_metric(eval_metric, data_batch.label) nbatch += 1 # batch callback (for print purpose) if batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=epoch, nbatch=nbatch, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(batch_end_callback, batch_end_params) # this epoch is done possibly earlier if epoch_size is not None and nbatch >= epoch_size: do_reset = False break if do_reset: logger.info('Epoch[%d] Resetting Data Iterator', epoch) train_data.reset() # this epoch is done if epoch_size is None or nbatch >= epoch_size: break toc = time.time() logger.info('Epoch[%d] Time cost=%.3f', epoch, (toc - tic)) if epoch_end_callback or epoch + 1 == end_epoch: executor_manager.copy_to(arg_params, aux_params) _multiple_callbacks(epoch_end_callback, epoch, symbol, arg_params, aux_params) # evaluation if eval_data: eval_metric.reset() eval_data.reset() total_num_batch = 0 for i, eval_batch in enumerate(eval_data): executor_manager.load_data_batch(eval_batch) executor_manager.forward(is_train=False) executor_manager.update_metric(eval_metric, eval_batch.label) if eval_batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=epoch, nbatch=i, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(eval_batch_end_callback, batch_end_params) total_num_batch += 1 if eval_end_callback is not None: eval_end_params = BatchEndParam(epoch=epoch, nbatch=total_num_batch, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(eval_end_callback, eval_end_params) eval_data.reset() # end of all epochs return def save_checkpoint(prefix, epoch, symbol, arg_params, aux_params): """Checkpoint the model data into file. Parameters ---------- prefix : str Prefix of model name. epoch : int The epoch number of the model. symbol : Symbol The input Symbol. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """ if symbol is not None: symbol.save('%s-symbol.json' % prefix) save_dict = {('arg:%s' % k) : v.as_in_context(cpu()) for k, v in arg_params.items()} save_dict.update({('aux:%s' % k) : v.as_in_context(cpu()) for k, v in aux_params.items()}) param_name = '%s-%04d.params' % (prefix, epoch) nd.save(param_name, save_dict) logging.info('Saved checkpoint to \"%s\"', param_name) def load_checkpoint(prefix, epoch): """Load model checkpoint from file. Parameters ---------- prefix : str Prefix of model name. epoch : int Epoch number of model we would like to load. Returns ------- symbol : Symbol The symbol configuration of computation network. arg_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray Model parameter, dict of name to NDArray of net's auxiliary states. Notes ----- - Symbol will be loaded from ``prefix-symbol.json``. - Parameters will be loaded from ``prefix-epoch.params``. """ symbol = sym.load('%s-symbol.json' % prefix) save_dict = nd.load('%s-%04d.params' % (prefix, epoch)) arg_params = {} aux_params = {} for k, v in save_dict.items(): tp, name = k.split(':', 1) if tp == 'arg': arg_params[name] = v if tp == 'aux': aux_params[name] = v return (symbol, arg_params, aux_params) from .callback import LogValidationMetricsCallback # pylint: disable=wrong-import-position class FeedForward(BASE_ESTIMATOR): """Model class of MXNet for training and predicting feedforward nets. This class is designed for a single-data single output supervised network. Parameters ---------- symbol : Symbol The symbol configuration of computation network. ctx : Context or list of Context, optional The device context of training and prediction. To use multi GPU training, pass in a list of gpu contexts. num_epoch : int, optional Training parameter, number of training epochs(epochs). epoch_size : int, optional Number of batches in a epoch. In default, it is set to ``ceil(num_train_examples / batch_size)``. optimizer : str or Optimizer, optional Training parameter, name or optimizer object for training. initializer : initializer function, optional Training parameter, the initialization scheme used. numpy_batch_size : int, optional The batch size of training data. Only needed when input array is numpy. arg_params : dict of str to NDArray, optional Model parameter, dict of name to NDArray of net's weights. aux_params : dict of str to NDArray, optional Model parameter, dict of name to NDArray of net's auxiliary states. allow_extra_params : boolean, optional Whether allow extra parameters that are not needed by symbol to be passed by aux_params and ``arg_params``. If this is True, no error will be thrown when ``aux_params`` and ``arg_params`` contain more parameters than needed. begin_epoch : int, optional The begining training epoch. kwargs : dict The additional keyword arguments passed to optimizer. """ def __init__(self, symbol, ctx=None, num_epoch=None, epoch_size=None, optimizer='sgd', initializer=Uniform(0.01), numpy_batch_size=128, arg_params=None, aux_params=None, allow_extra_params=False, begin_epoch=0, **kwargs): warnings.warn( '\033[91mmxnet.model.FeedForward has been deprecated. ' + \ 'Please use mxnet.mod.Module instead.\033[0m', DeprecationWarning, stacklevel=2) if isinstance(symbol, sym.Symbol): self.symbol = symbol self.sym_gen = None else: assert(callable(symbol)) self.symbol = None self.sym_gen = symbol # model parameters self.arg_params = arg_params self.aux_params = aux_params self.allow_extra_params = allow_extra_params self.argument_checked = False if self.sym_gen is None: self._check_arguments() # basic configuration if ctx is None: ctx = [cpu()] elif isinstance(ctx, Context): ctx = [ctx] self.ctx = ctx # training parameters self.num_epoch = num_epoch self.epoch_size = epoch_size self.kwargs = kwargs.copy() self.optimizer = optimizer self.initializer = initializer self.numpy_batch_size = numpy_batch_size # internal helper state self._pred_exec = None self.begin_epoch = begin_epoch def _check_arguments(self): """verify the argument of the default symbol and user provided parameters""" if self.argument_checked: return assert(self.symbol is not None) self.argument_checked = True # check if symbol contain duplicated names. _check_arguments(self.symbol) # rematch parameters to delete useless ones if self.allow_extra_params: if self.arg_params: arg_names = set(self.symbol.list_arguments()) self.arg_params = {k : v for k, v in self.arg_params.items() if k in arg_names} if self.aux_params: aux_names = set(self.symbol.list_auxiliary_states()) self.aux_params = {k : v for k, v in self.aux_params.items() if k in aux_names} @staticmethod def _is_data_arg(name): """Check if name is a data argument.""" return name.endswith('data') or name.endswith('label') def _init_params(self, inputs, overwrite=False): """Initialize weight parameters and auxiliary states.""" inputs = [x if isinstance(x, DataDesc) else DataDesc(*x) for x in inputs] input_shapes = {item.name: item.shape for item in inputs} arg_shapes, _, aux_shapes = self.symbol.infer_shape(**input_shapes) assert arg_shapes is not None input_dtypes = {item.name: item.dtype for item in inputs} arg_dtypes, _, aux_dtypes = self.symbol.infer_type(**input_dtypes) assert arg_dtypes is not None arg_names = self.symbol.list_arguments() input_names = input_shapes.keys() param_names = [key for key in arg_names if key not in input_names] aux_names = self.symbol.list_auxiliary_states() param_name_attrs = [x for x in zip(arg_names, arg_shapes, arg_dtypes) if x[0] in param_names] arg_params = {k : nd.zeros(shape=s, dtype=t) for k, s, t in param_name_attrs} aux_name_attrs = [x for x in zip(aux_names, aux_shapes, aux_dtypes) if x[0] in aux_names] aux_params = {k : nd.zeros(shape=s, dtype=t) for k, s, t in aux_name_attrs} for k, v in arg_params.items(): if self.arg_params and k in self.arg_params and (not overwrite): arg_params[k][:] = self.arg_params[k][:] else: self.initializer(k, v) for k, v in aux_params.items(): if self.aux_params and k in self.aux_params and (not overwrite): aux_params[k][:] = self.aux_params[k][:] else: self.initializer(k, v) self.arg_params = arg_params self.aux_params = aux_params return (arg_names, list(param_names), aux_names) def __getstate__(self): this = self.__dict__.copy() this['_pred_exec'] = None return this def __setstate__(self, state): self.__dict__.update(state) def _init_predictor(self, input_shapes, type_dict=None): """Initialize the predictor module for running prediction.""" if self._pred_exec is not None: arg_shapes, _, _ = self.symbol.infer_shape(**dict(input_shapes)) assert arg_shapes is not None, "Incomplete input shapes" pred_shapes = [x.shape for x in self._pred_exec.arg_arrays] if arg_shapes == pred_shapes: return # for now only use the first device pred_exec = self.symbol.simple_bind( self.ctx[0], grad_req='null', type_dict=type_dict, **dict(input_shapes)) pred_exec.copy_params_from(self.arg_params, self.aux_params) _check_arguments(self.symbol) self._pred_exec = pred_exec def _init_iter(self, X, y, is_train): """Initialize the iterator given input.""" if isinstance(X, (np.ndarray, nd.NDArray)): if y is None: if is_train: raise ValueError('y must be specified when X is numpy.ndarray') else: y = np.zeros(X.shape[0]) if not isinstance(y, (np.ndarray, nd.NDArray)): raise TypeError('y must be ndarray when X is numpy.ndarray') if X.shape[0] != y.shape[0]: raise ValueError("The numbers of data points and labels not equal") if y.ndim == 2 and y.shape[1] == 1: y = y.flatten() if y.ndim != 1: raise ValueError("Label must be 1D or 2D (with 2nd dimension being 1)") if is_train: return io.NDArrayIter(X, y, min(X.shape[0], self.numpy_batch_size), shuffle=is_train, last_batch_handle='roll_over') else: return io.NDArrayIter(X, y, min(X.shape[0], self.numpy_batch_size), shuffle=False) if not isinstance(X, io.DataIter): raise TypeError('X must be DataIter, NDArray or numpy.ndarray') return X def _init_eval_iter(self, eval_data): """Initialize the iterator given eval_data.""" if eval_data is None: return eval_data if isinstance(eval_data, (tuple, list)) and len(eval_data) == 2: if eval_data[0] is not None: if eval_data[1] is None and isinstance(eval_data[0], io.DataIter): return eval_data[0] input_data = (np.array(eval_data[0]) if isinstance(eval_data[0], list) else eval_data[0]) input_label = (np.array(eval_data[1]) if isinstance(eval_data[1], list) else eval_data[1]) return self._init_iter(input_data, input_label, is_train=True) else: raise ValueError("Eval data is NONE") if not isinstance(eval_data, io.DataIter): raise TypeError('Eval data must be DataIter, or ' \ 'NDArray/numpy.ndarray/list pair (i.e. tuple/list of length 2)') return eval_data def predict(self, X, num_batch=None, return_data=False, reset=True): """Run the prediction, always only use one device. Parameters ---------- X : mxnet.DataIter num_batch : int or None The number of batch to run. Go though all batches if ``None``. Returns ------- y : numpy.ndarray or a list of numpy.ndarray if the network has multiple outputs. The predicted value of the output. """ X = self._init_iter(X, None, is_train=False) if reset: X.reset() data_shapes = X.provide_data data_names = [x[0] for x in data_shapes] type_dict = dict((key, value.dtype) for (key, value) in self.arg_params.items()) for x in X.provide_data: if isinstance(x, DataDesc): type_dict[x.name] = x.dtype else: type_dict[x[0]] = mx_real_t self._init_predictor(data_shapes, type_dict) batch_size = X.batch_size data_arrays = [self._pred_exec.arg_dict[name] for name in data_names] output_list = [[] for _ in range(len(self._pred_exec.outputs))] if return_data: data_list = [[] for _ in X.provide_data] label_list = [[] for _ in X.provide_label] i = 0 for batch in X: _load_data(batch, data_arrays) self._pred_exec.forward(is_train=False) padded = batch.pad real_size = batch_size - padded for o_list, o_nd in zip(output_list, self._pred_exec.outputs): o_list.append(o_nd[0:real_size].asnumpy()) if return_data: for j, x in enumerate(batch.data): data_list[j].append(x[0:real_size].asnumpy()) for j, x in enumerate(batch.label): label_list[j].append(x[0:real_size].asnumpy()) i += 1 if num_batch is not None and i == num_batch: break outputs = [np.concatenate(x) for x in output_list] if len(outputs) == 1: outputs = outputs[0] if return_data: data = [np.concatenate(x) for x in data_list] label = [np.concatenate(x) for x in label_list] if len(data) == 1: data = data[0] if len(label) == 1: label = label[0] return outputs, data, label else: return outputs def score(self, X, eval_metric='acc', num_batch=None, batch_end_callback=None, reset=True): """Run the model given an input and calculate the score as assessed by an evaluation metric. Parameters ---------- X : mxnet.DataIter eval_metric : metric.metric The metric for calculating score. num_batch : int or None The number of batches to run. Go though all batches if ``None``. Returns ------- s : float The final score. """ # setup metric if not isinstance(eval_metric, metric.EvalMetric): eval_metric = metric.create(eval_metric) X = self._init_iter(X, None, is_train=False) if reset: X.reset() data_shapes = X.provide_data data_names = [x[0] for x in data_shapes] type_dict = dict((key, value.dtype) for (key, value) in self.arg_params.items()) for x in X.provide_data: if isinstance(x, DataDesc): type_dict[x.name] = x.dtype else: type_dict[x[0]] = mx_real_t self._init_predictor(data_shapes, type_dict) data_arrays = [self._pred_exec.arg_dict[name] for name in data_names] for i, batch in enumerate(X): if num_batch is not None and i == num_batch: break _load_data(batch, data_arrays) self._pred_exec.forward(is_train=False) eval_metric.update(batch.label, self._pred_exec.outputs) if batch_end_callback is not None: batch_end_params = BatchEndParam(epoch=0, nbatch=i, eval_metric=eval_metric, locals=locals()) _multiple_callbacks(batch_end_callback, batch_end_params) return eval_metric.get()[1] def fit(self, X, y=None, eval_data=None, eval_metric='acc', epoch_end_callback=None, batch_end_callback=None, kvstore='local', logger=None, work_load_list=None, monitor=None, eval_end_callback=LogValidationMetricsCallback(), eval_batch_end_callback=None): """Fit the model. Parameters ---------- X : DataIter, or numpy.ndarray/NDArray Training data. If `X` is a `DataIter`, the name or (if name not available) the position of its outputs should match the corresponding variable names defined in the symbolic graph. y : numpy.ndarray/NDArray, optional Training set label. If X is ``numpy.ndarray`` or `NDArray`, `y` is required to be set. While y can be 1D or 2D (with 2nd dimension as 1), its first dimension must be the same as `X`, i.e. the number of data points and labels should be equal. eval_data : DataIter or numpy.ndarray/list/NDArray pair If eval_data is numpy.ndarray/list/NDArray pair, it should be ``(valid_data, valid_label)``. eval_metric : metric.EvalMetric or str or callable The evaluation metric. This could be the name of evaluation metric or a custom evaluation function that returns statistics based on a minibatch. epoch_end_callback : callable(epoch, symbol, arg_params, aux_states) A callback that is invoked at end of each epoch. This can be used to checkpoint model each epoch. batch_end_callback: callable(epoch) A callback that is invoked at end of each batch for purposes of printing. kvstore: KVStore or str, optional The KVStore or a string kvstore type: 'local', 'dist_sync', 'dist_async' In default uses 'local', often no need to change for single machiine. logger : logging logger, optional When not specified, default logger will be used. work_load_list : float or int, optional The list of work load for different devices, in the same order as `ctx`. Note ---- KVStore behavior - 'local', multi-devices on a single machine, will automatically choose best type. - 'dist_sync', multiple machines communicating via BSP. - 'dist_async', multiple machines with asynchronous communication. """ data = self._init_iter(X, y, is_train=True) eval_data = self._init_eval_iter(eval_data) if self.sym_gen: self.symbol = self.sym_gen(data.default_bucket_key) # pylint: disable=no-member self._check_arguments() self.kwargs["sym"] = self.symbol arg_names, param_names, aux_names = \ self._init_params(data.provide_data+data.provide_label) # setup metric if not isinstance(eval_metric, metric.EvalMetric): eval_metric = metric.create(eval_metric) # create kvstore (kvstore, update_on_kvstore) = _create_kvstore( kvstore, len(self.ctx), self.arg_params) param_idx2name = {} if update_on_kvstore: param_idx2name.update(enumerate(param_names)) else: for i, n in enumerate(param_names): for k in range(len(self.ctx)): param_idx2name[i*len(self.ctx)+k] = n self.kwargs["param_idx2name"] = param_idx2name # init optmizer if isinstance(self.optimizer, str): batch_size = data.batch_size if kvstore and 'dist' in kvstore.type and not '_async' in kvstore.type: batch_size *= kvstore.num_workers optimizer = opt.create(self.optimizer, rescale_grad=(1.0/batch_size), **(self.kwargs)) elif isinstance(self.optimizer, opt.Optimizer): optimizer = self.optimizer # do training _train_multi_device(self.symbol, self.ctx, arg_names, param_names, aux_names, self.arg_params, self.aux_params, begin_epoch=self.begin_epoch, end_epoch=self.num_epoch, epoch_size=self.epoch_size, optimizer=optimizer, train_data=data, eval_data=eval_data, eval_metric=eval_metric, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kvstore, update_on_kvstore=update_on_kvstore, logger=logger, work_load_list=work_load_list, monitor=monitor, eval_end_callback=eval_end_callback, eval_batch_end_callback=eval_batch_end_callback, sym_gen=self.sym_gen) def save(self, prefix, epoch=None): """Checkpoint the model checkpoint into file. You can also use `pickle` to do the job if you only work on Python. The advantage of `load` and `save` (as compared to `pickle`) is that the resulting file can be loaded from other MXNet language bindings. One can also directly `load`/`save` from/to cloud storage(S3, HDFS) Parameters ---------- prefix : str Prefix of model name. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """ if epoch is None: epoch = self.num_epoch assert epoch is not None save_checkpoint(prefix, epoch, self.symbol, self.arg_params, self.aux_params) @staticmethod def load(prefix, epoch, ctx=None, **kwargs): """Load model checkpoint from file. Parameters ---------- prefix : str Prefix of model name. epoch : int epoch number of model we would like to load. ctx : Context or list of Context, optional The device context of training and prediction. kwargs : dict Other parameters for model, including `num_epoch`, optimizer and `numpy_batch_size`. Returns ------- model : FeedForward The loaded model that can be used for prediction. Notes ----- - ``prefix-symbol.json`` will be saved for symbol. - ``prefix-epoch.params`` will be saved for parameters. """ symbol, arg_params, aux_params = load_checkpoint(prefix, epoch) return FeedForward(symbol, ctx=ctx, arg_params=arg_params, aux_params=aux_params, begin_epoch=epoch, **kwargs) @staticmethod def create(symbol, X, y=None, ctx=None, num_epoch=None, epoch_size=None, optimizer='sgd', initializer=Uniform(0.01), eval_data=None, eval_metric='acc', epoch_end_callback=None, batch_end_callback=None, kvstore='local', logger=None, work_load_list=None, eval_end_callback=LogValidationMetricsCallback(), eval_batch_end_callback=None, **kwargs): """Functional style to create a model. This function is more consistent with functional languages such as R, where mutation is not allowed. Parameters ---------- symbol : Symbol The symbol configuration of a computation network. X : DataIter Training data. y : numpy.ndarray, optional If `X` is a ``numpy.ndarray``, `y` must be set. ctx : Context or list of Context, optional The device context of training and prediction. To use multi-GPU training, pass in a list of GPU contexts. num_epoch : int, optional The number of training epochs(epochs). epoch_size : int, optional Number of batches in a epoch. In default, it is set to ``ceil(num_train_examples / batch_size)``. optimizer : str or Optimizer, optional The name of the chosen optimizer, or an optimizer object, used for training. initializer : initializer function, optional The initialization scheme used. eval_data : DataIter or numpy.ndarray pair If `eval_set` is ``numpy.ndarray`` pair, it should be (`valid_data`, `valid_label`). eval_metric : metric.EvalMetric or str or callable The evaluation metric. Can be the name of an evaluation metric or a custom evaluation function that returns statistics based on a minibatch. epoch_end_callback : callable(epoch, symbol, arg_params, aux_states) A callback that is invoked at end of each epoch. This can be used to checkpoint model each epoch. batch_end_callback: callable(epoch) A callback that is invoked at end of each batch for print purposes. kvstore: KVStore or str, optional The KVStore or a string kvstore type: 'local', 'dist_sync', 'dis_async'. Defaults to 'local', often no need to change for single machine. logger : logging logger, optional When not specified, default logger will be used. work_load_list : list of float or int, optional The list of work load for different devices, in the same order as `ctx`. """ model = FeedForward(symbol, ctx=ctx, num_epoch=num_epoch, epoch_size=epoch_size, optimizer=optimizer, initializer=initializer, **kwargs) model.fit(X, y, eval_data=eval_data, eval_metric=eval_metric, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kvstore, logger=logger, work_load_list=work_load_list, eval_end_callback=eval_end_callback, eval_batch_end_callback=eval_batch_end_callback) return model
apache-2.0
LaDO-IOUSP/Curious
Python/pizzaplot.py
1
1687
# -*- coding: UTF-8 -*- import matplotlib.pyplot as plt from matplotlib.patches import Wedge def pizzaplot(center, radius, angle=0,nb=2, ax=None, colors=[],**kwargs): ''' Plots circle with inputed number of divisions with different colors(multicolor scatter). =========================================================================== Input : -> center: center(x,y) of the scatter -> radius: radius of the circle (float) -> angle: angle of rotation of the color division (degrees [0...360]) -> nb: number of colors in the same plot (float) -> colors: colors to fill the scatter (list) =========================================================================== Output: -> Returns Matplotlib Patch & plots the scatter =========================================================================== Python version by: Hélio Almeida ([email protected]) Dante Campagnoli Napolitano ([email protected]) @ LaDO-IOUSP in 11/01/2017 ''' w= [] if len(colors)!=nb: raise ValueError('Number of colors and parts of scatter must be the same') if ax is None: ax = plt.gca() for i in np.arange(1,nb+1): exec('theta%s = angle+%i/%f*360.'%(str(i),i,float(nb))) for i in np.arange(1,nb+1): if i==nb: exec('w%s = Wedge(center, radius, theta%i, theta%i, fc=colors[%i], **kwargs)'%(str(i),i,1,i-1)) else: exec('w%s = Wedge(center, radius, theta%i, theta%i, fc=colors[%i], **kwargs)'%(str(i),i,i+1,i-1)) exec('ax.add_artist(w%i)'%i) exec('w.append(w%i)'%i) return w
mit
belteshassar/cartopy
lib/cartopy/tests/test_polygon.py
3
17387
# (C) British Crown Copyright 2011 - 2016, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) import unittest import numpy as np import shapely.geometry as sgeom import shapely.wkt import cartopy.crs as ccrs class TestBoundary(unittest.TestCase): def test_no_polygon_boundary_reversal(self): # Check that polygons preserve their clockwise or counter-clockwise # ordering when they are attached to the boundary. # Failure to do so will result in invalid polygons (their boundaries # cross-over). polygon = sgeom.Polygon([(-10, 30), (10, 60), (10, 50)]) projection = ccrs.Robinson(170.5) multi_polygon = projection.project_geometry(polygon) for polygon in multi_polygon: self.assertTrue(polygon.is_valid) def test_polygon_boundary_attachment(self): # Check the polygon is attached to the boundary even when no # intermediate point for one of the crossing segments would normally # exist. polygon = sgeom.Polygon([(-10, 30), (10, 60), (10, 50)]) projection = ccrs.Robinson(170.6) # This will raise an exception if the polygon/boundary intersection # fails. multi_polygon = projection.project_geometry(polygon) def test_out_of_bounds(self): # Check that a polygon that is completely out of the map boundary # doesn't produce an empty result. projection = ccrs.TransverseMercator(central_longitude=0) polys = [ # All valid ([(86, -1), (86, 1), (88, 1), (88, -1)], 1), # One out of backwards projection range ([(86, -1), (86, 1), (130, 1), (88, -1)], 1), # An out of backwards projection range segment ([(86, -1), (86, 1), (130, 1), (130, -1)], 1), # All out of backwards projection range ([(120, -1), (120, 1), (130, 1), (130, -1)], 0), ] # Try all four combinations of valid/NaN vs valid/NaN. for coords, expected_polys in polys: polygon = sgeom.Polygon(coords) multi_polygon = projection.project_geometry(polygon) self.assertEqual(len(multi_polygon), expected_polys) class TestMisc(unittest.TestCase): def test_misc(self): projection = ccrs.TransverseMercator(central_longitude=-90) polygon = sgeom.Polygon([(-10, 30), (10, 60), (10, 50)]) multi_polygon = projection.project_geometry(polygon) def test_small(self): projection = ccrs.Mercator() polygon = sgeom.Polygon([ (-179.7933201090486079, -16.0208822567412312), (-180.0000000000000000, -16.0671326636424396), (-179.9173693847652942, -16.5017831356493616), ]) multi_polygon = projection.project_geometry(polygon) self.assertEqual(len(multi_polygon), 1) self.assertEqual(len(multi_polygon[0].exterior.coords), 4) def test_former_infloop_case(self): # test a polygon which used to get stuck in an infinite loop # see https://github.com/SciTools/cartopy/issues/60 coords = [(260.625, 68.90383337092122), (360.0, 79.8556091996901), (360.0, 77.76848175458498), (0.0, 88.79068047337279), (210.0, 90.0), (135.0, 88.79068047337279), (260.625, 68.90383337092122)] geom = sgeom.Polygon(coords) target_projection = ccrs.PlateCarree() source_crs = ccrs.Geodetic() multi_polygon = target_projection.project_geometry(geom, source_crs) # check the result is non-empty self.assertFalse(multi_polygon.is_empty) def test_project_previous_infinite_loop(self): mstring1 = shapely.wkt.loads( 'MULTILINESTRING (' '(-179.9999990464349651 -80.2000000000000171, ' '-179.5000000001111005 -80.2000000000000171, ' '-179.5000000001111005 -79.9000000000000199, ' '-179.9999995232739138 -79.9499999523163041, ' '-179.8000000001110550 -80.0000000000000000, ' '-179.8000000001110550 -80.0999999999999943, ' '-179.9999999047436177 -80.0999999999999943), ' '(179.9999995231628702 -79.9499999523163041, ' '179.5000000000000000 -79.9000000000000199, ' '179.5000000000000000 -80.0000000000000000, ' '179.9999995231628702 -80.0499999523162842, ' '179.5000000000000000 -80.0999999999999943, ' '179.5000000000000000 -80.2000000000000171, ' '179.9999990463256836 -80.2000000000000171))') mstring2 = shapely.wkt.loads( 'MULTILINESTRING (' '(179.9999996185302678 -79.9999999904632659, ' '179.5999999999999943 -79.9899999999999949, ' '179.5999999999999943 -79.9399999999999977, ' '179.9999996185302678 -79.9599999809265114), ' '(-179.9999999047436177 -79.9600000000000080, ' '-179.9000000001110777 -79.9600000000000080, ' '-179.9000000001110777 -80.0000000000000000, ' '-179.9999999047436177 -80.0000000000000000))') multi_line_strings = [mstring1, mstring2] src = ccrs.PlateCarree() src._attach_lines_to_boundary(multi_line_strings, True) def test_3pt_poly(self): projection = ccrs.OSGB() polygon = sgeom.Polygon([(-1000, -1000), (-1000, 200000), (200000, -1000)]) multi_polygon = projection.project_geometry(polygon, ccrs.OSGB()) self.assertEqual(len(multi_polygon), 1) self.assertEqual(len(multi_polygon[0].exterior.coords), 4) def test_self_intersecting_1(self): # Geometry comes from a matplotlib contourf (see #537) wkt = ('POLYGON ((366.22000122 -9.71489298, ' '366.73212393 -9.679999349999999, ' '366.77412634 -8.767753000000001, ' '366.17762962 -9.679999349999999, ' '366.22000122 -9.71489298), ' '(366.22000122 -9.692636309999999, ' '366.32998657 -9.603356099999999, ' '366.74765799 -9.019999500000001, ' '366.5094086 -9.63175386, ' '366.22000122 -9.692636309999999))') geom = shapely.wkt.loads(wkt) source, target = ccrs.RotatedPole(198.0, 39.25), ccrs.EuroPP() projected = target.project_geometry(geom, source) # Before handling self intersecting interiors, the area would be # approximately 13262233761329. area = projected.area self.assertTrue(2.2e9 < area < 2.3e9, msg='Got area {}, expecting ~2.2e9'.format(area)) def test_self_intersecting_2(self): # Geometry comes from a matplotlib contourf (see #509) wkt = ('POLYGON ((343 20, 345 23, 342 25, 343 22, ' '340 25, 341 25, 340 25, 343 20), (343 21, ' '343 22, 344 23, 343 21))') geom = shapely.wkt.loads(wkt) source = target = ccrs.RotatedPole(193.0, 41.0) projected = target.project_geometry(geom, source) # Before handling self intersecting interiors, the area would be # approximately 64808. self.assertTrue(7.9 < projected.area < 8.1) def test_tiny_point_between_boundary_points(self): # Geometry comes from #259. target = ccrs.Orthographic(0, -75) source = ccrs.PlateCarree() wkt = 'POLYGON ((132 -40, 133 -6, 125.3 1, 115 -6, 132 -40))' geom = shapely.wkt.loads(wkt) target = ccrs.Orthographic(central_latitude=90., central_longitude=0) source = ccrs.PlateCarree() projected = target.project_geometry(geom, source) area = projected.area # Before fixing, this geometry used to fill the whole disk. Approx # 1.2e14. self.assertTrue(81330 < area < 81340, msg='Got area {}, expecting ~81336'.format(area)) class TestQuality(unittest.TestCase): def setUp(self): projection = ccrs.RotatedPole(pole_longitude=177.5, pole_latitude=37.5) polygon = sgeom.Polygon([ (177.5, -57.38460319), (180.0, -57.445077), (175.0, -57.19913331), ]) self.multi_polygon = projection.project_geometry(polygon) # from cartopy.tests.mpl import show # show(projection, self.multi_polygon) def test_split(self): # Start simple ... there should be two projected polygons. self.assertEqual(len(self.multi_polygon), 2) def test_repeats(self): # Make sure we don't have repeated points at the boundary, because # they mess up the linear extrapolation to the boundary. # Make sure there aren't any repeated points. xy = np.array(self.multi_polygon[0].exterior.coords) same = (xy[1:] == xy[:-1]).all(axis=1) self.assertFalse(any(same), 'Repeated points in projected geometry.') def test_symmetry(self): # Make sure the number of points added on the way towards the # boundary is similar to the number of points added on the way away # from the boundary. # Identify all the contiguous sets of non-boundary points. xy = np.array(self.multi_polygon[0].exterior.coords) boundary = np.logical_or(xy[:, 1] == 90, xy[:, 1] == -90) regions = (boundary[1:] != boundary[:-1]).cumsum() regions = np.insert(regions, 0, 0) # For each region, check if the number of increasing steps is roughly # equal to the number of decreasing steps. for i in range(boundary[0], regions.max(), 2): indices = np.where(regions == i) x = xy[indices, 0] delta = np.diff(x) num_incr = np.count_nonzero(delta > 0) num_decr = np.count_nonzero(delta < 0) self.assertLess(abs(num_incr - num_decr), 3, 'Too much asymmetry.') class PolygonTests(unittest.TestCase): def _assert_bounds(self, bounds, x1, y1, x2, y2, delta=1): self.assertAlmostEqual(bounds[0], x1, delta=delta) self.assertAlmostEqual(bounds[1], y1, delta=delta) self.assertAlmostEqual(bounds[2], x2, delta=delta) self.assertAlmostEqual(bounds[3], y2, delta=delta) class TestWrap(PolygonTests): # Test that Plate Carree projection "does the right thing"(tm) with # source data tha extends outside the [-180, 180] range. def test_plate_carree_no_wrap(self): proj = ccrs.PlateCarree() poly = sgeom.box(0, 0, 10, 10) multi_polygon = proj.project_geometry(poly, proj) # Check the structure self.assertEqual(len(multi_polygon), 1) # Check the rough shape polygon = multi_polygon[0] self._assert_bounds(polygon.bounds, 0, 0, 10, 10) def test_plate_carree_partial_wrap(self): proj = ccrs.PlateCarree() poly = sgeom.box(170, 0, 190, 10) multi_polygon = proj.project_geometry(poly, proj) # Check the structure self.assertEqual(len(multi_polygon), 2) # Check the rough shape polygon = multi_polygon[0] self._assert_bounds(polygon.bounds, 170, 0, 180, 10) polygon = multi_polygon[1] self._assert_bounds(polygon.bounds, -180, 0, -170, 10) def test_plate_carree_wrap(self): proj = ccrs.PlateCarree() poly = sgeom.box(200, 0, 220, 10) multi_polygon = proj.project_geometry(poly, proj) # Check the structure self.assertEqual(len(multi_polygon), 1) # Check the rough shape polygon = multi_polygon[0] self._assert_bounds(polygon.bounds, -160, 0, -140, 10) def ring(minx, miny, maxx, maxy, ccw): box = sgeom.box(minx, miny, maxx, maxy, ccw) return np.array(box.exterior.coords) class TestHoles(PolygonTests): def test_simple(self): proj = ccrs.PlateCarree() poly = sgeom.Polygon(ring(-40, -40, 40, 40, True), [ring(-20, -20, 20, 20, False)]) multi_polygon = proj.project_geometry(poly) # Check the structure self.assertEqual(len(multi_polygon), 1) self.assertEqual(len(multi_polygon[0].interiors), 1) # Check the rough shape polygon = multi_polygon[0] self._assert_bounds(polygon.bounds, -40, -47, 40, 47) self._assert_bounds(polygon.interiors[0].bounds, -20, -21, 20, 21) def test_wrapped_poly_simple_hole(self): proj = ccrs.PlateCarree(-150) poly = sgeom.Polygon(ring(-40, -40, 40, 40, True), [ring(-20, -20, 20, 20, False)]) multi_polygon = proj.project_geometry(poly) # Check the structure self.assertEqual(len(multi_polygon), 2) self.assertEqual(len(multi_polygon[0].interiors), 1) self.assertEqual(len(multi_polygon[1].interiors), 0) # Check the rough shape polygon = multi_polygon[0] self._assert_bounds(polygon.bounds, 110, -47, 180, 47) self._assert_bounds(polygon.interiors[0].bounds, 130, -21, 170, 21) polygon = multi_polygon[1] self._assert_bounds(polygon.bounds, -180, -43, -170, 43) def test_wrapped_poly_wrapped_hole(self): proj = ccrs.PlateCarree(-180) poly = sgeom.Polygon(ring(-40, -40, 40, 40, True), [ring(-20, -20, 20, 20, False)]) multi_polygon = proj.project_geometry(poly) # Check the structure self.assertEqual(len(multi_polygon), 2) self.assertEqual(len(multi_polygon[0].interiors), 0) self.assertEqual(len(multi_polygon[1].interiors), 0) # Check the rough shape polygon = multi_polygon[0] self._assert_bounds(polygon.bounds, 140, -47, 180, 47) polygon = multi_polygon[1] self._assert_bounds(polygon.bounds, -180, -47, -140, 47) def test_inverted_poly_simple_hole(self): proj = ccrs.NorthPolarStereo() poly = sgeom.Polygon([(0, 0), (-90, 0), (-180, 0), (-270, 0)], [[(0, -30), (90, -30), (180, -30), (270, -30)]]) multi_polygon = proj.project_geometry(poly) # Check the structure self.assertEqual(len(multi_polygon), 1) self.assertEqual(len(multi_polygon[0].interiors), 1) # Check the rough shape polygon = multi_polygon[0] self._assert_bounds(polygon.bounds, -2.4e7, -2.4e7, 2.4e7, 2.4e7, 1e6) self._assert_bounds(polygon.interiors[0].bounds, - 1.2e7, -1.2e7, 1.2e7, 1.2e7, 1e6) def test_inverted_poly_clipped_hole(self): proj = ccrs.NorthPolarStereo() poly = sgeom.Polygon([(0, 0), (-90, 0), (-180, 0), (-270, 0)], [[(-135, -60), (-45, -60), (45, -60), (135, -60)]]) multi_polygon = proj.project_geometry(poly) # Check the structure self.assertEqual(len(multi_polygon), 1) self.assertEqual(len(multi_polygon[0].interiors), 1) # Check the rough shape polygon = multi_polygon[0] self._assert_bounds(polygon.bounds, -5.0e7, -5.0e7, 5.0e7, 5.0e7, 1e6) self._assert_bounds(polygon.interiors[0].bounds, - 1.2e7, -1.2e7, 1.2e7, 1.2e7, 1e6) self.assertAlmostEqual(polygon.area, 7.30e15, delta=1e13) def test_inverted_poly_removed_hole(self): proj = ccrs.NorthPolarStereo(globe=ccrs.Globe(ellipse='WGS84')) poly = sgeom.Polygon([(0, 0), (-90, 0), (-180, 0), (-270, 0)], [[(-135, -75), (-45, -75), (45, -75), (135, -75)]]) multi_polygon = proj.project_geometry(poly) # Check the structure self.assertEqual(len(multi_polygon), 1) self.assertEqual(len(multi_polygon[0].interiors), 1) # Check the rough shape polygon = multi_polygon[0] self._assert_bounds(polygon.bounds, -5.0e7, -5.0e7, 5.0e7, 5.0e7, 1e6) self._assert_bounds(polygon.interiors[0].bounds, - 1.2e7, -1.2e7, 1.2e7, 1.2e7, 1e6) self.assertAlmostEqual(polygon.area, 7.34e15, delta=1e13) def test_multiple_interiors(self): exterior = ring(0, 0, 12, 12, True) interiors = [ring(1, 1, 2, 2, False), ring(1, 8, 2, 9, False)] poly = sgeom.Polygon(exterior, interiors) target = ccrs.PlateCarree() source = ccrs.Geodetic() assert len(list(target.project_geometry(poly, source))) == 1 if __name__ == '__main__': unittest.main()
gpl-3.0
bundgus/python-playground
matplotlib-playground/examples/pylab_examples/boxplot_demo.py
2
1288
import matplotlib.pyplot as plt import numpy as np # fake up some data spread = np.random.rand(50) * 100 center = np.ones(25) * 50 flier_high = np.random.rand(10) * 100 + 100 flier_low = np.random.rand(10) * -100 data = np.concatenate((spread, center, flier_high, flier_low), 0) # basic plot plt.boxplot(data) # notched plot plt.figure() plt.boxplot(data, 1) # change outlier point symbols plt.figure() plt.boxplot(data, 0, 'gD') # don't show outlier points plt.figure() plt.boxplot(data, 0, '') # horizontal boxes plt.figure() plt.boxplot(data, 0, 'rs', 0) # change whisker length plt.figure() plt.boxplot(data, 0, 'rs', 0, 0.75) # fake up some more data spread = np.random.rand(50) * 100 center = np.ones(25) * 40 flier_high = np.random.rand(10) * 100 + 100 flier_low = np.random.rand(10) * -100 d2 = np.concatenate((spread, center, flier_high, flier_low), 0) data.shape = (-1, 1) d2.shape = (-1, 1) # data = concatenate( (data, d2), 1 ) # Making a 2-D array only works if all the columns are the # same length. If they are not, then use a list instead. # This is actually more efficient because boxplot converts # a 2-D array into a list of vectors internally anyway. data = [data, d2, d2[::2, 0]] # multiple box plots on one figure plt.figure() plt.boxplot(data) plt.show()
mit
RayMick/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
297
1247
# Author: Mathieu Blondel <[email protected]> # License: BSD 3 clause import time import pylab as pl from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) pl.figure('scikit-learn parallel %s benchmark results' % func.__name__) pl.plot(sample_sizes, one_core, label="one core") pl.plot(sample_sizes, multi_core, label="multi core") pl.xlabel('n_samples') pl.ylabel('Time (s)') pl.title('Parallel %s' % func.__name__) pl.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) pl.show()
bsd-3-clause
smartscheduling/scikit-learn-categorical-tree
examples/covariance/plot_lw_vs_oas.py
248
2903
""" ============================= Ledoit-Wolf vs OAS estimation ============================= The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate. Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian. This example, inspired from Chen's publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data. [1] "Shrinkage Algorithms for MMSE Covariance Estimation" Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy.linalg import toeplitz, cholesky from sklearn.covariance import LedoitWolf, OAS np.random.seed(0) ############################################################################### n_features = 100 # simulation covariance matrix (AR(1) process) r = 0.1 real_cov = toeplitz(r ** np.arange(n_features)) coloring_matrix = cholesky(real_cov) n_samples_range = np.arange(6, 31, 1) repeat = 100 lw_mse = np.zeros((n_samples_range.size, repeat)) oa_mse = np.zeros((n_samples_range.size, repeat)) lw_shrinkage = np.zeros((n_samples_range.size, repeat)) oa_shrinkage = np.zeros((n_samples_range.size, repeat)) for i, n_samples in enumerate(n_samples_range): for j in range(repeat): X = np.dot( np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X) lw_mse[i, j] = lw.error_norm(real_cov, scaling=False) lw_shrinkage[i, j] = lw.shrinkage_ oa = OAS(store_precision=False, assume_centered=True) oa.fit(X) oa_mse[i, j] = oa.error_norm(real_cov, scaling=False) oa_shrinkage[i, j] = oa.shrinkage_ # plot MSE plt.subplot(2, 1, 1) plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1), label='OAS', color='r') plt.ylabel("Squared error") plt.legend(loc="upper right") plt.title("Comparison of covariance estimators") plt.xlim(5, 31) # plot shrinkage coefficient plt.subplot(2, 1, 2) plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1), label='OAS', color='r') plt.xlabel("n_samples") plt.ylabel("Shrinkage") plt.legend(loc="lower right") plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.) plt.xlim(5, 31) plt.show()
bsd-3-clause
Jimmy-Morzaria/scikit-learn
benchmarks/bench_plot_ward.py
290
1260
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import pylab as pl from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time pl.figure("scikit-learn Ward's method benchmark results") pl.imshow(np.log(ratio), aspect='auto', origin="lower") pl.colorbar() pl.contour(ratio, levels=[1, ], colors='k') pl.yticks(range(len(n_features)), n_features.astype(np.int)) pl.ylabel('N features') pl.xticks(range(len(n_samples)), n_samples.astype(np.int)) pl.xlabel('N samples') pl.title("Scikit's time, in units of scipy time (log)") pl.show()
bsd-3-clause
larsmans/seqlearn
seqlearn/datasets.py
4
3045
# Copyright 2013 Lars Buitinck from contextlib import closing from itertools import chain, groupby import numpy as np from sklearn.feature_extraction import FeatureHasher from sklearn.externals import six def load_conll(f, features, n_features=(2 ** 16), split=False): """Load CoNLL file, extract features on the tokens and vectorize them. The ConLL file format is a line-oriented text format that describes sequences in a space-separated format, separating the sequences with blank lines. Typically, the last space-separated part is a label. Since the tab-separated parts are usually tokens (and maybe things like part-of-speech tags) rather than feature vectors, a function must be supplied that does the actual feature extraction. This function has access to the entire sequence, so that it can extract context features. A ``sklearn.feature_extraction.FeatureHasher`` (the "hashing trick") is used to map symbolic input feature names to columns, so this function dos not remember the actual input feature names. Parameters ---------- f : {string, file-like} Input file. features : callable Feature extraction function. Must take a list of tokens l that represent a single sequence and an index i into this list, and must return an iterator over strings that represent the features of l[i]. n_features : integer, optional Number of columns in the output. split : boolean, default=False Whether to split lines on whitespace beyond what is needed to parse out the labels. This is useful for CoNLL files that have extra columns containing information like part of speech tags. Returns ------- X : scipy.sparse matrix, shape (n_samples, n_features) Samples (feature vectors), as a single sparse matrix. y : np.ndarray, dtype np.string, shape n_samples Per-sample labels. lengths : np.ndarray, dtype np.int32, shape n_sequences Lengths of sequences within (X, y). The sum of these is equal to n_samples. """ fh = FeatureHasher(n_features=n_features, input_type="string") labels = [] lengths = [] with _open(f) as f: raw_X = _conll_sequences(f, features, labels, lengths, split) X = fh.transform(raw_X) return X, np.asarray(labels), np.asarray(lengths, dtype=np.int32) def _conll_sequences(f, features, labels, lengths, split): # Divide input into blocks of empty and non-empty lines. lines = (str.strip(line) for line in f) groups = (grp for nonempty, grp in groupby(lines, bool) if nonempty) for group in groups: group = list(group) obs, lbl = zip(*(ln.rsplit(None, 1) for ln in group)) if split: obs = [x.split() for x in obs] labels.extend(lbl) lengths.append(len(lbl)) for i in six.moves.xrange(len(obs)): yield features(obs, i) def _open(f): return closing(open(f) if isinstance(f, six.string_types) else f)
mit
smenon8/AnimalWildlifeEstimator
script/RegressionCapsuleClass.py
1
1640
# python-3 # Regression Capsule Class # In the same lines as ClassifierCapsuleClass from sklearn.metrics import mean_absolute_error, mean_squared_error from BaseCapsuleClass import BaseCapsule from collections import OrderedDict import pandas as pd class RegressionCapsule(BaseCapsule): def __init__(self,clfObj,methodName,splitPercent,train_x,train_y,test_x,test_y): BaseCapsule.__init__(self,clfObj,methodName,splitPercent,train_x,train_y,test_x,test_y) self.residues = None def evalClassifierPerf(self): self.abserr = mean_absolute_error(self.test_y,self.preds) self.sqerr = mean_squared_error(self.test_y,self.preds) if not self.test_y.empty: self.residues = [list(self.test_y)[i] - self.preds[i] for i in range(len(self.preds))] def removeOutliers(self): idxs = [i for i in range(len(self.preds)) if self.preds[i] > 100 or self.preds[i] < 0] idxList = list(self.test_x.index) predDict = OrderedDict() for i in range(len(idxList)): predDict[idxList[i]] = self.preds[i] df = pd.DataFrame(predDict,index=['Predictions']).transpose() self.test_x.drop(self.test_x.index[idxs], inplace=True) if self.test_y != None: if not self.test_y.empty: self.test_y.drop(self.test_y.index[idxs], inplace=True) df.drop(df.index[idxs], inplace=True) self.preds = list(df['Predictions']) print("Number of outliers identified: %d" %len(idxs)) print(len(self.test_x),len(self.preds)) def runRgr(self,computeMetrics=True,removeOutliers=True): BaseCapsule.run(self) if removeOutliers: self.removeOutliers() if computeMetrics: return self.evalClassifierPerf() else: return 0
bsd-3-clause
zingale/hydro_examples
compressible/riemann-slow-shock.py
1
1642
# plot the Hugoniot loci for a compressible Riemann problem from __future__ import print_function import matplotlib.pyplot as plt import numpy as np import riemann import matplotlib as mpl # Use LaTeX for rendering mpl.rcParams['mathtext.fontset'] = 'cm' mpl.rcParams['mathtext.rm'] = 'serif' mpl.rcParams['font.size'] = 12 mpl.rcParams['legend.fontsize'] = 'large' mpl.rcParams['figure.titlesize'] = 'medium' if __name__ == "__main__": # setup the problem -- slow shock # stationary shock #left = riemann.State(p=100.0, u=-1.9336, rho=5.6698) #right = riemann.State(p=1.0, u=-10.9636, rho=1.0) # slow shock left = riemann.State(p=100.0, u=-1.4701, rho=5.6698) right = riemann.State(p=1.0, u=-10.5, rho=1.0) rp = riemann.RiemannProblem(left, right) rp.find_star_state() x, rho, u, p = rp.sample_solution(1.0, 128) plt.subplot(311) plt.plot(x, rho) plt.ylabel(r"$\rho$") plt.xlim(0, 1) plt.tick_params(axis="x", labelbottom="off") plt.subplot(312) plt.plot(x, u) plt.ylabel(r"$u$") plt.xlim(0, 1) plt.tick_params(axis="x", labelbottom="off") plt.subplot(313) plt.plot(x, p) plt.ylabel(r"$p$") plt.xlabel(r"$x$") plt.xlim(0, 1) f = plt.gcf() f.set_size_inches(6.0, 9.0) plt.tight_layout() plt.savefig("riemann-slowshock.pdf") gamma = rp.gamma e = p/rho/(gamma - 1.0) # output the solution with open("slowshock-exact.out", "w") as f: for n in range(len(x)): f.write("{:20.10g} {:20.10g} {:20.10g} {:20.10g} {:20.10g}\n".format(x[n], rho[n], u[n], p[n], e[n]))
bsd-3-clause
cybernet14/scikit-learn
sklearn/tree/tree.py
59
34839
""" This module gathers tree-based methods, including decision, regression and randomized trees. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # Licence: BSD 3 clause from __future__ import division import numbers from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from ..base import BaseEstimator, ClassifierMixin, RegressorMixin from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_array, check_random_state, compute_sample_weight from ..utils.validation import NotFittedError from ._criterion import Criterion from ._splitter import Splitter from ._tree import DepthFirstTreeBuilder, BestFirstTreeBuilder from ._tree import Tree from . import _tree, _splitter, _criterion __all__ = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] # ============================================================================= # Types and constants # ============================================================================= DTYPE = _tree.DTYPE DOUBLE = _tree.DOUBLE CRITERIA_CLF = {"gini": _criterion.Gini, "entropy": _criterion.Entropy} CRITERIA_REG = {"mse": _criterion.MSE, "friedman_mse": _criterion.FriedmanMSE} DENSE_SPLITTERS = {"best": _splitter.BestSplitter, "presort-best": _splitter.PresortBestSplitter, "random": _splitter.RandomSplitter} SPARSE_SPLITTERS = {"best": _splitter.BestSparseSplitter, "random": _splitter.RandomSparseSplitter} # ============================================================================= # Base decision tree # ============================================================================= class BaseDecisionTree(six.with_metaclass(ABCMeta, BaseEstimator, _LearntSelectorMixin)): """Base class for decision trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, random_state, class_weight=None): self.criterion = criterion self.splitter = splitter self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.random_state = random_state self.max_leaf_nodes = max_leaf_nodes self.class_weight = class_weight self.n_features_ = None self.n_outputs_ = None self.classes_ = None self.n_classes_ = None self.tree_ = None self.max_features_ = None def fit(self, X, y, sample_weight=None, check_input=True): """Build a decision tree from the training set (X, y). Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). In the regression case, use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : object Returns self. """ random_state = check_random_state(self.random_state) if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csc") if issparse(X): X.sort_indices() if X.indices.dtype != np.intc or X.indptr.dtype != np.intc: raise ValueError("No support for np.int64 index based " "sparse matrices") # Determine output settings n_samples, self.n_features_ = X.shape is_classification = isinstance(self, ClassifierMixin) y = np.atleast_1d(y) expanded_class_weight = None if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if is_classification: y = np.copy(y) self.classes_ = [] self.n_classes_ = [] if self.class_weight is not None: y_original = np.copy(y) y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: expanded_class_weight = compute_sample_weight( self.class_weight, y_original) else: self.classes_ = [None] * self.n_outputs_ self.n_classes_ = [1] * self.n_outputs_ self.n_classes_ = np.array(self.n_classes_, dtype=np.intp) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters max_depth = ((2 ** 31) - 1 if self.max_depth is None else self.max_depth) max_leaf_nodes = (-1 if self.max_leaf_nodes is None else self.max_leaf_nodes) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": if is_classification: max_features = max(1, int(np.sqrt(self.n_features_))) else: max_features = self.n_features_ elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features_))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError( 'Invalid value for max_features. Allowed string ' 'values are "auto", "sqrt" or "log2".') elif self.max_features is None: max_features = self.n_features_ elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if self.max_features > 0.0: max_features = max(1, int(self.max_features * self.n_features_)) else: max_features = 0 self.max_features_ = max_features if len(y) != n_samples: raise ValueError("Number of labels=%d does not match " "number of samples=%d" % (len(y), n_samples)) if self.min_samples_split <= 0: raise ValueError("min_samples_split must be greater than zero.") if self.min_samples_leaf <= 0: raise ValueError("min_samples_leaf must be greater than zero.") if not 0 <= self.min_weight_fraction_leaf <= 0.5: raise ValueError("min_weight_fraction_leaf must in [0, 0.5]") if max_depth <= 0: raise ValueError("max_depth must be greater than zero. ") if not (0 < max_features <= self.n_features_): raise ValueError("max_features must be in (0, n_features]") if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)): raise ValueError("max_leaf_nodes must be integral number but was " "%r" % max_leaf_nodes) if -1 < max_leaf_nodes < 2: raise ValueError(("max_leaf_nodes {0} must be either smaller than " "0 or larger than 1").format(max_leaf_nodes)) if sample_weight is not None: if (getattr(sample_weight, "dtype", None) != DOUBLE or not sample_weight.flags.contiguous): sample_weight = np.ascontiguousarray( sample_weight, dtype=DOUBLE) if len(sample_weight.shape) > 1: raise ValueError("Sample weights array has more " "than one dimension: %d" % len(sample_weight.shape)) if len(sample_weight) != n_samples: raise ValueError("Number of weights=%d does not match " "number of samples=%d" % (len(sample_weight), n_samples)) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Set min_weight_leaf from min_weight_fraction_leaf if self.min_weight_fraction_leaf != 0. and sample_weight is not None: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) else: min_weight_leaf = 0. # Set min_samples_split sensibly min_samples_split = max(self.min_samples_split, 2 * self.min_samples_leaf) # Build tree criterion = self.criterion if not isinstance(criterion, Criterion): if is_classification: criterion = CRITERIA_CLF[self.criterion](self.n_outputs_, self.n_classes_) else: criterion = CRITERIA_REG[self.criterion](self.n_outputs_) SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS splitter = self.splitter if not isinstance(self.splitter, Splitter): splitter = SPLITTERS[self.splitter](criterion, self.max_features_, self.min_samples_leaf, min_weight_leaf, random_state) self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_) # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise if max_leaf_nodes < 0: builder = DepthFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth) else: builder = BestFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth, max_leaf_nodes) builder.build(self.tree_, X, y, sample_weight) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def _validate_X_predict(self, X, check_input): """Validate X whenever one tries to predict, apply, predict_proba""" if self.tree_ is None: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csr") if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc): raise ValueError("No support for np.int64 index based " "sparse matrices") n_features = X.shape[1] if self.n_features_ != n_features: raise ValueError("Number of features of the model must " " match the input. Model n_features is %s and " " input n_features is %s " % (self.n_features_, n_features)) return X def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes, or the predict values. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) n_samples = X.shape[0] # Classification if isinstance(self, ClassifierMixin): if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take( np.argmax(proba[:, k], axis=1), axis=0) return predictions # Regression else: if self.n_outputs_ == 1: return proba[:, 0] else: return proba[:, :, 0] def apply(self, X, check_input=True): """ Returns the index of the leaf that each sample is predicted as. Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- X_leaves : array_like, shape = [n_samples,] For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered within ``[0; self.tree_.node_count)``, possibly with gaps in the numbering. """ X = self._validate_X_predict(X, check_input) return self.tree_.apply(X) @property def feature_importances_(self): """Return the feature importances. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. Returns ------- feature_importances_ : array, shape = [n_features] """ if self.tree_ is None: raise NotFittedError("Estimator not fitted, call `fit` before" " `feature_importances_`.") return self.tree_.compute_feature_importances() # ============================================================================= # Public estimators # ============================================================================= class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin): """A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. class_weight : dict, list of dicts, "balanced" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_classes_ : int or list The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeRegressor References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ]) """ def __init__(self, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, class_weight=None): super(DecisionTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: proba = proba[:, :self.n_classes_] normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, :self.n_classes_[k]] normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer all_proba.append(proba_k) return all_proba def predict_log_proba(self, X): """Predict class log-probabilities of the input samples X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin): """A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeClassifier References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> boston = load_boston() >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, boston.data, boston.target, cv=10) ... # doctest: +SKIP ... array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75..., 0.07..., 0.29..., 0.33..., -1.42..., -1.77...]) """ def __init__(self, criterion="mse", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None): super(DecisionTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state) class ExtraTreeClassifier(DecisionTreeClassifier): """An extremely randomized tree classifier. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="gini", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None, class_weight=None): super(ExtraTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) class ExtraTreeRegressor(DecisionTreeRegressor): """An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="mse", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None): super(ExtraTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state)
bsd-3-clause
qifeigit/scikit-learn
sklearn/linear_model/tests/test_logistic.py
105
26588
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_raise_message from sklearn.utils import ConvergenceWarning from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_grad_hess, _multinomial_grad_hess, _logistic_loss, ) from sklearn.cross_validation import StratifiedKFold from sklearn.datasets import load_iris, make_classification X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): # Simple sanity check on a 2 classes dataset # Make sure it predicts the correct result on simple datasets. check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): # Test for appropriate exception on errors msg = "Penalty term must be positive" assert_raise_message(ValueError, msg, LogisticRegression(C=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LogisticRegression(C="test").fit, X, Y1) for LR in [LogisticRegression, LogisticRegressionCV]: msg = "Tolerance for stopping criteria must be positive" assert_raise_message(ValueError, msg, LR(tol=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(tol="test").fit, X, Y1) msg = "Maximum number of iteration must be positive" assert_raise_message(ValueError, msg, LR(max_iter=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(max_iter="test").fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): # Test logistic regression with the iris dataset n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial')]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_check_solver_option(): X, y = iris.data, iris.target for LR in [LogisticRegression, LogisticRegressionCV]: msg = ("Logistic Regression supports only liblinear, newton-cg and" " lbfgs solvers, got wrong_name") lr = LR(solver="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) msg = "multi_class should be either multinomial or ovr, got wrong_name" lr = LR(solver='newton-cg', multi_class="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) # all solver except 'newton-cg' and 'lfbgs' for solver in ['liblinear']: msg = ("Solver %s does not support a multinomial backend." % solver) lr = LR(solver=solver, multi_class='multinomial') assert_raise_message(ValueError, msg, lr.fit, X, y) # all solvers except 'liblinear' for solver in ['newton-cg', 'lbfgs']: msg = ("Solver %s supports only l2 penalties, got l1 penalty." % solver) lr = LR(solver=solver, penalty='l1') assert_raise_message(ValueError, msg, lr.fit, X, y) msg = ("Solver %s supports only dual=False, got dual=True" % solver) lr = LR(solver=solver, dual=True) assert_raise_message(ValueError, msg, lr.fit, X, y) def test_multinomial_binary(): # Test multinomial LR on a binary problem. target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): # Test sparsify and densify members. n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): # Test that an exception is raised on inconsistent input rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): # Test that we can write to coef_ and intercept_ clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): # Test proper NaN handling. # Regression test for Issue #252: fit used to go into an infinite loop. Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): # Test that the path algorithm is consistent rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for method in ('lbfgs', 'newton-cg', 'liblinear'): coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-16, solver=method) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-16) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4) # test for fit_intercept=True for method in ('lbfgs', 'newton-cg', 'liblinear'): Cs = [1e3] coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-4, solver=method) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4) def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr2.fit(X, y) lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15) lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" assert_raise_message(AssertionError, msg, assert_array_almost_equal, lr1.coef_, lr3.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_interp_2 = _logistic_loss(w, X, y, alpha=1.) grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): # test for LogisticRegressionCV object n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha) loss_interp = _logistic_loss(w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) grad, hess = _logistic_grad_hess(w, X_, y, alpha) loss = _logistic_loss(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): # Test that OvR and multinomial are correct using the iris dataset. train, target = iris.data, iris.target n_samples, n_features = train.shape # Use pre-defined fold as folds generated for different y cv = StratifiedKFold(target, 3) clf = LogisticRegressionCV(cv=cv) clf.fit(train, target) clf1 = LogisticRegressionCV(cv=cv) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=3) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=3) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) # Test the liblinear fails when class_weight of type dict is # provided, when it is multiclass. However it can handle # binary problems. clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=balanced X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='balanced') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='balanced') clf_lib.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regression_convergence_warnings(): # Test that warnings are raised if model does not converge X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): # Tests for the multinomial option in logistic regression # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=10, n_classes=n_classes, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[0] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): # Test negative prediction when decision_function values are zero. # Liblinear predicts the positive class when decision_function values # are zero. This is a test to verify that we do not do the same. # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y) def test_logreg_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: clf = LogisticRegression(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % clf.intercept_scaling) assert_raise_message(ValueError, msg, clf.fit, X, Y1) def test_logreg_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False clf = LogisticRegression(fit_intercept=False) clf.fit(X, Y1) assert_equal(clf.intercept_, 0.) def test_logreg_cv_penalty(): # Test that the correct penalty is passed to the final fit. X, y = make_classification(n_samples=50, n_features=20, random_state=0) lr_cv = LogisticRegressionCV(penalty="l1", Cs=[1.0], solver='liblinear') lr_cv.fit(X, y) lr = LogisticRegression(penalty="l1", C=1.0, solver='liblinear') lr.fit(X, y) assert_equal(np.count_nonzero(lr_cv.coef_), np.count_nonzero(lr.coef_))
bsd-3-clause
chrisburr/scikit-learn
examples/covariance/plot_covariance_estimation.py
99
5074
""" ======================================================================= Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood ======================================================================= When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as the :class:`sklearn.covariance.EmpiricalCovariance`. It is unbiased, i.e. it converges to the true (population) covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in :ref:`shrunk_covariance` estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the bias-variance trade-off. Here we compare 3 approaches: * Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage parameters. * A close formula proposed by Ledoit and Wolf to compute the asymptotically optimal regularization parameter (minimizing a MSE criterion), yielding the :class:`sklearn.covariance.LedoitWolf` covariance estimate. * An improvement of the Ledoit-Wolf shrinkage, the :class:`sklearn.covariance.OAS`, proposed by Chen et al. Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small samples. To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We also show the choices by cross-validation, or with the LedoitWolf and OAS estimates. Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most computationally costly. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \ log_likelihood, empirical_covariance from sklearn.model_selection import GridSearchCV ############################################################################### # Generate sample data n_features, n_samples = 40, 20 np.random.seed(42) base_X_train = np.random.normal(size=(n_samples, n_features)) base_X_test = np.random.normal(size=(n_samples, n_features)) # Color samples coloring_matrix = np.random.normal(size=(n_features, n_features)) X_train = np.dot(base_X_train, coloring_matrix) X_test = np.dot(base_X_test, coloring_matrix) ############################################################################### # Compute the likelihood on test data # spanning a range of possible shrinkage coefficient values shrinkages = np.logspace(-2, 0, 30) negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test) for s in shrinkages] # under the ground-truth model, which we would not have access to in real # settings real_cov = np.dot(coloring_matrix.T, coloring_matrix) emp_cov = empirical_covariance(X_train) loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov)) ############################################################################### # Compare different approaches to setting the parameter # GridSearch for an optimal shrinkage coefficient tuned_parameters = [{'shrinkage': shrinkages}] cv = GridSearchCV(ShrunkCovariance(), tuned_parameters) cv.fit(X_train) # Ledoit-Wolf optimal shrinkage coefficient estimate lw = LedoitWolf() loglik_lw = lw.fit(X_train).score(X_test) # OAS coefficient estimate oa = OAS() loglik_oa = oa.fit(X_train).score(X_test) ############################################################################### # Plot results fig = plt.figure() plt.title("Regularized covariance: likelihood and shrinkage coefficient") plt.xlabel('Regularizaton parameter: shrinkage coefficient') plt.ylabel('Error: negative log-likelihood on test data') # range shrinkage curve plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood") plt.plot(plt.xlim(), 2 * [loglik_real], '--r', label="Real covariance likelihood") # adjust view lik_max = np.amax(negative_logliks) lik_min = np.amin(negative_logliks) ymin = lik_min - 6. * np.log((plt.ylim()[1] - plt.ylim()[0])) ymax = lik_max + 10. * np.log(lik_max - lik_min) xmin = shrinkages[0] xmax = shrinkages[-1] # LW likelihood plt.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta', linewidth=3, label='Ledoit-Wolf estimate') # OAS likelihood plt.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple', linewidth=3, label='OAS estimate') # best CV estimator likelihood plt.vlines(cv.best_estimator_.shrinkage, ymin, -cv.best_estimator_.score(X_test), color='cyan', linewidth=3, label='Cross-validation best estimate') plt.ylim(ymin, ymax) plt.xlim(xmin, xmax) plt.legend() plt.show()
bsd-3-clause
wogsland/QSTK
build/lib.linux-x86_64-2.7/Bin/converter.py
5
2926
''' (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. Please see http://wiki.quantsoftware.org/index.php?title=QSTK_License for license details. Created on Jan 1, 2011 @author:Drew Bratcher @contact: [email protected] @summary: Contains tutorial for backtester and report. ''' # # fundsToPNG.py # # Short script which produces a graph of funds # over time from a pickle file. # # Drew Bratcher # from pylab import * from QSTK.qstkutil import DataAccess as da from QSTK.qstkutil import tsutil as tsu # from quicksim import quickSim from copy import deepcopy import math from pandas import * import matplotlib.pyplot as plt import cPickle def fundsToPNG(funds,output_file): plt.clf() if(type(funds)==type(list())): for i in range(0,len(funds)): plt.plot(funds[i].index,funds[i].values) else: plt.plot(funds.index,funds.values) plt.ylabel('Fund Value') plt.xlabel('Date') plt.gcf().autofmt_xdate(rotation=45) plt.draw() savefig(output_file, format='png') def fundsAnalysisToPNG(funds,output_file): plt.clf() if(type(funds)!=type(list())): print 'fundsmatrix only contains one timeseries, not able to analyze.' #convert to daily returns count=list() dates=list() sum=list() for i in range(0,len(funds)): ret=tsu.daily(funds[i].values) for j in range(0, len(ret)): if (funds[i].index[j] in dates): sum[dates.index(funds[i].index[j])]+=ret[j] count[dates.index(funds[i].index[j])]+=1 else: dates.append(funds[i].index[j]) count.append(1) sum.append(ret[j]) #compute average tot_ret=deepcopy(sum) for i in range(0,len(sum)): tot_ret[i]=sum[i]/count[i] #compute std std=zeros(len(sum)) for i in range(0,len(funds)): temp=tsu.daily(funds[i].values) for j in range(0,len(temp)): std[dates.index(funds[i].index[j])]=0 std[dates.index(funds[i].index[j])]+=math.pow(temp[j]-tot_ret[dates.index(funds[i].index[j])],2) for i in range(1, len(std)): # std[i]=math.sqrt(std[i]/count[i])+std[i-1] std[i]=math.sqrt(std[i]/count[i]) #compute total returns lower=deepcopy(tot_ret) upper=deepcopy(tot_ret) tot_ret[0]=funds[0].values[0] lower[0]=funds[0].values[0] upper[0]=lower[0] # for i in range(1,len(tot_ret)): # tot_ret[i]=tot_ret[i-1]+(tot_ret[i])*tot_ret[i-1] # lower[i]=tot_ret[i-1]-(std[i])*tot_ret[i-1] # upper[i]=tot_ret[i-1]+(std[i])*tot_ret[i-1] for i in range(1,len(tot_ret)): lower[i]=(tot_ret[i]-std[i]+1)*lower[i-1] upper[i]=(tot_ret[i]+std[i]+1)*upper[i-1] tot_ret[i]=(tot_ret[i]+1)*tot_ret[i-1] plt.clf() plt.plot(dates,tot_ret) plt.plot(dates,lower) plt.plot(dates,upper) plt.legend(('Tot_Ret','Lower','Upper'),loc='upper left') plt.ylabel('Fund Total Return') plt.ylim(ymin=0,ymax=2*tot_ret[0]) plt.draw() savefig(output_file, format='png')
bsd-3-clause
rahuldhote/scikit-learn
sklearn/utils/tests/test_fixes.py
281
1829
# Authors: Gael Varoquaux <[email protected]> # Justin Vincent # Lars Buitinck # License: BSD 3 clause import numpy as np from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true from numpy.testing import (assert_almost_equal, assert_array_almost_equal) from sklearn.utils.fixes import divide, expit from sklearn.utils.fixes import astype def test_expit(): # Check numerical stability of expit (logistic function). # Simulate our previous Cython implementation, based on #http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression assert_almost_equal(expit(1000.), 1. / (1. + np.exp(-1000.)), decimal=16) assert_almost_equal(expit(-1000.), np.exp(-1000.) / (1. + np.exp(-1000.)), decimal=16) x = np.arange(10) out = np.zeros_like(x, dtype=np.float32) assert_array_almost_equal(expit(x), expit(x, out=out)) def test_divide(): assert_equal(divide(.6, 1), .600000000000) def test_astype_copy_memory(): a_int32 = np.ones(3, np.int32) # Check that dtype conversion works b_float32 = astype(a_int32, dtype=np.float32, copy=False) assert_equal(b_float32.dtype, np.float32) # Changing dtype forces a copy even if copy=False assert_false(np.may_share_memory(b_float32, a_int32)) # Check that copy can be skipped if requested dtype match c_int32 = astype(a_int32, dtype=np.int32, copy=False) assert_true(c_int32 is a_int32) # Check that copy can be forced, and is the case by default: d_int32 = astype(a_int32, dtype=np.int32, copy=True) assert_false(np.may_share_memory(d_int32, a_int32)) e_int32 = astype(a_int32, dtype=np.int32) assert_false(np.may_share_memory(e_int32, a_int32))
bsd-3-clause
toobaz/pandas
pandas/tests/arithmetic/test_timedelta64.py
2
76159
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range, ) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range("2H", periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(["1 day", "2 days"]) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, "a"), ("a", tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex( [pd.Timedelta("1 days"), pd.NaT, pd.Timedelta("3 days")] ) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta("3 days")]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex( [ "1 day", pd.NaT, "1 day 00:00:01", pd.NaT, "1 day 00:00:01", "5 day 00:00:03", ] ) tdidx2 = pd.TimedeltaIndex( ["2 day", "2 day", pd.NaT, pd.NaT, "1 day 00:00:02", "5 days 00:00:03"] ) tdarr = np.array( [ np.timedelta64(2, "D"), np.timedelta64(2, "D"), np.timedelta64("nat"), np.timedelta64("nat"), np.timedelta64(1, "D") + np.timedelta64(2, "s"), np.timedelta64(5, "D") + np.timedelta64(3, "s"), ] ) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range("1 days", periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(["2H", "4H", "6H", "8H", "10H"], freq="2H", name="x") for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(["4H", "8H", "12H", "16H", "20H"], freq="4H", name="x") tm.assert_index_equal(result, exp) assert result.freq == "4H" for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(["1H", "2H", "3H", "4H", "5H"], freq="H", name="x") tm.assert_index_equal(result, exp) assert result.freq == "H" idx = TimedeltaIndex(["2H", "4H", "6H", "8H", "10H"], freq="2H", name="x") for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex( ["-2H", "-4H", "-6H", "-8H", "-10H"], freq="-2H", name="x" ) tm.assert_index_equal(result, exp) assert result.freq == "-2H" idx = TimedeltaIndex(["-2H", "-1H", "0H", "1H", "2H"], freq="H", name="x") for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(["2H", "1H", "0H", "1H", "2H"], freq=None, name="x") tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(["1 days", pd.NaT, "2 days"], name="foo") dti = pd.date_range("20130101", periods=3, name="bar") td = Timedelta("1 days") dt = Timestamp("20130101") msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = ( r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'" ) with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"], name="bar") tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(["0 days", "1 days", "2 days"], name="bar") tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(["0 days", pd.NaT, "1 days"], name="foo") tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(["0 days", pd.NaT, "-1 days"], name="foo") tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex(["20121231", "20130101", "20130102"], name="bar") tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(["20121231", pd.NaT, "20121230"], name="foo") tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range("20130101", periods=3) ts = Timestamp("20130101") dt = ts.to_pydatetime() dti_tz = pd.date_range("20130101", periods=3).tz_localize("US/Eastern") ts_tz = Timestamp("20130101").tz_localize("US/Eastern") ts_tz2 = Timestamp("20130101").tz_localize("CET") dt_tz = ts_tz.to_pydatetime() td = Timedelta("1 days") def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta("0 days") _check(result, expected) result = dt_tz - ts_tz expected = Timedelta("0 days") _check(result, expected) result = ts_tz - dt_tz expected = Timedelta("0 days") _check(result, expected) # tz mismatches msg = "Timestamp subtraction must have the same timezones or no timezones" with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = "Timestamp subtraction must have the same timezones or no timezones" with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = "Timestamp subtraction must have the same timezones or no timezones" with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(["0 days", "1 days", "2 days"]) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"]) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(["0 days", "1 days", "2 days"]) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"]) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta("0 days") _check(result, expected) result = dti_tz - td expected = DatetimeIndex(["20121231", "20130101", "20130102"], tz="US/Eastern") tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(["1 days", pd.NaT, "2 days"], name="foo") dti = pd.date_range("20130101", periods=3, name="bar") # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(["0 days", pd.NaT, "0 days"], name="foo") tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(["2 days", pd.NaT, "4 days"], name="foo") tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(["20121231", pd.NaT, "20130101"]) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(["1 days", pd.NaT, "2 days"], name="foo") dti = pd.date_range("20130101", periods=3, name="bar") td = Timedelta("1 days") dt = Timestamp("20130101") result = tdi + dt expected = DatetimeIndex(["20130102", pd.NaT, "20130103"], name="foo") tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(["20130102", pd.NaT, "20130103"], name="foo") tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(["2 days", pd.NaT, "3 days"], name="foo") tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(["2 days", pd.NaT, "3 days"], name="foo") tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(["20130102", pd.NaT, "20130105"]) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(["20130102", pd.NaT, "20130105"]) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp("20130102") assert result == expected result = td + dt expected = Timestamp("20130102") assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize("freq", ["D", "B"]) def test_timedelta(self, freq): index = pd.date_range("1/1/2000", periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == "D": expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range("2013", "2014") s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(["24658 days 11:15:00", "NaT"]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, "D") + Timestamp("2000") with pytest.raises(OutOfBoundsDatetime): Timestamp("2000") + pd.to_timedelta(106580, "D") _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], "D") + Timestamp("2000") with pytest.raises(OverflowError, match=msg): Timestamp("2000") + pd.to_timedelta([106580], "D") with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta("1 days") with pytest.raises(OverflowError, match=msg): pd.to_timedelta(["5 days", _NaT]) - Timedelta("1 days") with pytest.raises(OverflowError, match=msg): ( pd.to_timedelta([_NaT, "5 days", "1 hours"]) - pd.to_timedelta(["7 seconds", _NaT, "4 hours"]) ) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta("1 days") tm.assert_index_equal(result, exp) exp = TimedeltaIndex(["4 days", pd.NaT]) result = pd.to_timedelta(["5 days", pd.NaT]) - Timedelta("1 days") tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, "5 hours"]) result = pd.to_timedelta([pd.NaT, "5 days", "1 hours"]) + pd.to_timedelta( ["7 seconds", pd.NaT, "4 hours"] ) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range("1", periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(["00:00:01"])) s2 = pd.to_timedelta(Series(["00:00:02"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(["00:00:01"]).apply(pd.to_timedelta) df2 = pd.DataFrame(["00:00:02"]).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta("00:00:01") scalar2 = pd.to_timedelta("00:00:02") timedelta_NaT = pd.to_timedelta("NaT") actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) # TODO: moved from tests.series.test_operators, needs splitting, cleanup, # de-duplication, box-parametrization... def test_operators_timedelta64(self): # series ops v1 = pd.date_range("2012-1-1", periods=3, freq="D") v2 = pd.date_range("2012-1-2", periods=3, freq="D") rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype("int64").astype("timedelta64[ns]") tm.assert_series_equal(rs, xp) assert rs.dtype == "timedelta64[ns]" df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == "timedelta64[ns]" # series on the rhs result = df["A"] - df["A"].shift() assert result.dtype == "timedelta64[ns]" result = df["A"] + td assert result.dtype == "M8[ns]" # scalar Timestamp on rhs maxa = df["A"].max() assert isinstance(maxa, Timestamp) resultb = df["A"] - df["A"].max() assert resultb.dtype == "timedelta64[ns]" # timestamp on lhs result = resultb + df["A"] values = [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] expected = Series(values, name="A") tm.assert_series_equal(result, expected) # datetimes on rhs result = df["A"] - datetime(2001, 1, 1) expected = Series([timedelta(days=4017 + i) for i in range(3)], name="A") tm.assert_series_equal(result, expected) assert result.dtype == "m8[ns]" d = datetime(2001, 1, 1, 3, 4) resulta = df["A"] - d assert resulta.dtype == "m8[ns]" # roundtrip resultb = resulta + d tm.assert_series_equal(df["A"], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df["A"] + td resultb = resulta - td tm.assert_series_equal(resultb, df["A"]) assert resultb.dtype == "M8[ns]" # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df["A"] + td resultb = resulta - td tm.assert_series_equal(df["A"], resultb) assert resultb.dtype == "M8[ns]" # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) assert rs[2] == value def test_timedelta64_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta("1s")]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]") single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]") # subtraction tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal( timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta ) tm.assert_series_equal( -single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta ) # addition tm.assert_series_equal( nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta ) tm.assert_series_equal( NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta ) tm.assert_series_equal( nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta, ) tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal( timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta ) tm.assert_series_equal( single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta ) tm.assert_series_equal( nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta ) tm.assert_series_equal( NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta ) tm.assert_series_equal( nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta, ) # multiplication tm.assert_series_equal( nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta ) tm.assert_series_equal( 1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta ) tm.assert_series_equal(timedelta_series * 1, timedelta_series) tm.assert_series_equal(1 * timedelta_series, timedelta_series) tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta("1.5s")])) tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta("1.5s")])) tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) # division tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta("0.5s")])) tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta("0.5s")])) tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box_with_array): # GH#13624 tdi = TimedeltaIndex(["1 day", "2 days"]) tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi + "a" with pytest.raises(TypeError): "a" + tdi @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) def test_td64arr_add_sub_float(self, box_with_array, other): tdi = TimedeltaIndex(["-1 days", "-1 days"]) tdarr = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdarr + other with pytest.raises(TypeError): other + tdarr with pytest.raises(TypeError): tdarr - other with pytest.raises(TypeError): other - tdarr @pytest.mark.parametrize("freq", [None, "H"]) def test_td64arr_sub_period(self, box_with_array, freq): # GH#13078 # not supported, check TypeError p = pd.Period("2011-01-01", freq="D") idx = TimedeltaIndex(["1 hours", "2 hours"], freq=freq) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("tdi_freq", [None, "H"]) def test_td64arr_sub_pi(self, box_with_array, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq) dti = Timestamp("2018-03-07 17:16:40") + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box_with_array): idx = TimedeltaIndex(["1 day", "2 day"]) idx = tm.box_expected(idx, box_with_array) msg = ( "cannot subtract a datelike from|" "Could not operate|" "cannot perform operation" ) with pytest.raises(TypeError, match=msg): idx - Timestamp("2011-01-01") def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture): # GH#23215 # TODO: parametrize over scalar datetime types? tz = tz_naive_fixture other = Timestamp("2011-01-01", tz=tz) idx = TimedeltaIndex(["1 day", "2 day"]) expected = DatetimeIndex(["2011-01-02", "2011-01-03"], tz=tz) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx + other tm.assert_equal(result, expected) result = other + idx tm.assert_equal(result, expected) def test_td64arr_add_sub_timestamp(self, box_with_array): # GH#11925 ts = Timestamp("2012-01-01") # TODO: parametrize over types of datetime scalar? tdi = timedelta_range("1 day", periods=3) expected = pd.date_range("2012-01-02", periods=3) tdarr = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(ts + tdarr, expected) tm.assert_equal(tdarr + ts, expected) expected2 = pd.date_range("2011-12-31", periods=3, freq="-1D") expected2 = tm.box_expected(expected2, box_with_array) tm.assert_equal(ts - tdarr, expected2) tm.assert_equal(ts + (-tdarr), expected2) with pytest.raises(TypeError): tdarr - ts def test_tdi_sub_dt64_array(self, box_with_array): dti = pd.date_range("2016-01-01", periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_with_array): dti = pd.date_range("2016-01-01", periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) def test_td64arr_add_datetime64_nat(self, box_with_array): # GH#23215 other = np.datetime64("NaT") tdi = timedelta_range("1 day", periods=3) expected = pd.DatetimeIndex(["NaT", "NaT", "NaT"]) tdser = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(tdser + other, expected) tm.assert_equal(other + tdser, expected) # ------------------------------------------------------------------ # Operations with int-like others def test_td64arr_add_int_series_invalid(self, box): tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError int_ser = Series([2, 3, 4]) with pytest.raises(err): tdser + int_ser with pytest.raises(err): int_ser + tdser with pytest.raises(err): tdser - int_ser with pytest.raises(err): int_ser - tdser def test_td64arr_add_intlike(self, box_with_array): # GH#19123 tdi = TimedeltaIndex(["59 days", "59 days", "NaT"]) ser = tm.box_expected(tdi, box_with_array) err = TypeError if box_with_array in [pd.Index, tm.to_array]: err = NullFrequencyError other = Series([20, 30, 40], dtype="uint8") # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize("scalar", [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box_with_array, scalar): box = box_with_array tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") tdser = tm.box_expected(tdser, box) err = TypeError if box in [pd.Index, tm.to_array] and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize( "dtype", [ "int64", "int32", "int16", "uint64", "uint32", "uint16", "uint8", "float64", "float32", "float16", ], ) @pytest.mark.parametrize( "vec", [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__, ) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype): tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith("float"): err = NullFrequencyError vector = vec.astype(dtype) with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others # TODO: this was taken from tests.series.test_ops; de-duplicate @pytest.mark.parametrize( "scalar_td", [ timedelta(minutes=5, seconds=4), Timedelta(minutes=5, seconds=4), Timedelta("5m4s").to_timedelta64(), ], ) def test_operators_timedelta64_with_timedelta(self, scalar_td): # smoke tests td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 + scalar_td scalar_td + td1 td1 - scalar_td scalar_td - td1 td1 / scalar_td scalar_td / td1 # TODO: this was taken from tests.series.test_ops; de-duplicate def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series( [timedelta(seconds=1)] * 3 ) assert result.dtype == "m8[ns]" tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = Series([timedelta(seconds=1)] * 3) - Series( [timedelta(seconds=0)] * 3 ) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(["00:05:03"] * 3)) td2 = pd.to_timedelta("00:05:04") result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series( [timedelta(seconds=1)] * 3 ) assert result.dtype == "m8[ns]" tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = Series([timedelta(seconds=1)] * 3) - Series( [timedelta(seconds=0)] * 3 ) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) def test_td64arr_add_td64_array(self, box): dti = pd.date_range("2016-01-01", periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box): dti = pd.date_range("2016-01-01", periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize( "names", [ (None, None, None), ("Egon", "Venkman", None), ("NCC1701D", "NCC1701D", "NCC1701D"), ], ) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly if box is pd.DataFrame and names[1] == "Venkman": pytest.skip( "Name propagation for DataFrame does not behave like " "it does for Index/Series" ) tdi = TimedeltaIndex(["0 days", "1 day"], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series( [Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2] ) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == "timedelta64[ns]" else: assert result.dtypes[0] == "timedelta64[ns]" result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == "timedelta64[ns]" else: assert result.dtypes[0] == "timedelta64[ns]" expected = Series( [Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2] ) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == "timedelta64[ns]" else: assert result.dtypes[0] == "timedelta64[ns]" result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == "timedelta64[ns]" else: assert result.dtypes[0] == "timedelta64[ns]" def test_td64arr_add_sub_td64_nat(self, box): # GH#23320 special handling for timedelta64("NaT") tdi = pd.TimedeltaIndex([NaT, Timedelta("1s")]) other = np.timedelta64("NaT") expected = pd.TimedeltaIndex(["NaT"] * 2) obj = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) result = other - obj tm.assert_equal(result, expected) def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta("1s")]) expected = Series([NaT, NaT], dtype="timedelta64[ns]") ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, two_hours, box): # only test adding/sub offsets as + is now numeric rng = timedelta_range("1 days", "10 days") expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D") rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + two_hours tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, two_hours, box): # only test adding/sub offsets as - is now numeric rng = timedelta_range("1 days", "10 days") expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00") rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - two_hours tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets # TODO: this was taken from tests.series.test_operators; de-duplicate def test_timedelta64_operations_with_DateOffset(self): # GH#10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) tm.assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(PerformanceWarning): result = td + Series( [pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)] ) expected = Series( [ timedelta(minutes=6, seconds=3), timedelta(minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3), ] ) tm.assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) tm.assert_series_equal(result, expected) # valid DateOffsets for do in ["Hour", "Minute", "Second", "Day", "Micro", "Milli", "Nano"]: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td @pytest.mark.parametrize( "names", [(None, None, None), ("foo", "bar", None), ("foo", "foo", "foo")] ) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 if box is pd.DataFrame and names[1] == "bar": pytest.skip( "Name propagation for DataFrame does not behave like " "it does for Index/Series" ) tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex( [tdi[n] + other[n] for n in range(len(tdi))], freq="infer", name=names[2] ) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box): # GH#18849 tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"]) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex( [tdi[n] + other[n] for n in range(len(tdi))], freq="infer" ) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(warn): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize( "names", [(None, None, None), ("foo", "bar", None), ("foo", "foo", "foo")] ) def test_td64arr_sub_offset_index(self, names, box): # GH#18824, GH#19744 if box is pd.DataFrame and names[1] == "bar": pytest.skip( "Name propagation for DataFrame does not behave like " "it does for Index/Series" ) tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex( [tdi[n] - other[n] for n in range(len(tdi))], freq="infer", name=names[2] ) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = PerformanceWarning if box is not pd.DataFrame else None with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_with_array): # GH#18824 tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"]) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex( [tdi[n] - other[n] for n in range(len(tdi))], freq="infer" ) tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) # The DataFrame operation is transposed and so operates as separate # scalar operations, which do not issue a PerformanceWarning warn = None if box_with_array is pd.DataFrame else PerformanceWarning with tm.assert_produces_warning(warn): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize( "names", [(None, None, None), ("foo", "bar", None), ("foo", "foo", "foo")] ) def test_td64arr_with_offset_series(self, names, box_df_fail): # GH#18849 box = box_df_fail box2 = Series if box in [pd.Index, tm.to_array] else box tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series( [tdi[n] + other[n] for n in range(len(tdi))], name=names[2] ) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series( [tdi[n] - other[n] for n in range(len(tdi))], name=names[2] ) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize("obox", [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array): # GH#18824 tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"]) tdi = tm.box_expected(tdi, box_with_array) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps: # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # TODO: Moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize("m", [1, 3, 10]) @pytest.mark.parametrize("unit", ["D", "h", "m", "s", "ms", "us", "ns"]) def test_timedelta64_conversions(self, m, unit): startdate = Series(pd.date_range("2013-01-01", "2013-01-03")) enddate = Series(pd.date_range("2013-03-01", "2013-03-03")) ser = enddate - startdate ser[2] = np.nan # op expected = Series([x / np.timedelta64(m, unit) for x in ser]) result = ser / np.timedelta64(m, unit) tm.assert_series_equal(result, expected) # reverse op expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in ser]) result = np.timedelta64(m, unit) / ser tm.assert_series_equal(result, expected) # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype="int64")) idx = tm.box_expected(idx, box_with_array) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array): rng = timedelta_range("1 days", "10 days", name="foo") rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng * two_hours def test_tdi_mul_int_array_zerodim(self, box_with_array): rng5 = np.arange(5, dtype="int64") idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx * np.array(5, dtype="int64") tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_with_array): rng5 = np.arange(5, dtype="int64") idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 ** 2) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx * rng5 tm.assert_equal(result, expected) def test_tdi_mul_int_series(self, box_with_array): box = box_with_array xbox = pd.Series if box in [pd.Index, tm.to_array] else box idx = TimedeltaIndex(np.arange(5, dtype="int64")) expected = TimedeltaIndex(np.arange(5, dtype="int64") ** 2) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, xbox) result = idx * pd.Series(np.arange(5, dtype="int64")) tm.assert_equal(result, expected) def test_tdi_mul_float_series(self, box_with_array): box = box_with_array xbox = pd.Series if box in [pd.Index, tm.to_array] else box idx = TimedeltaIndex(np.arange(5, dtype="int64")) idx = tm.box_expected(idx, box) rng5f = np.arange(5, dtype="float64") expected = TimedeltaIndex(rng5f * (rng5f + 1.0)) expected = tm.box_expected(expected, xbox) result = idx * Series(rng5f + 1.0) tm.assert_equal(result, expected) # TODO: Put Series/DataFrame in others? @pytest.mark.parametrize( "other", [ np.arange(1, 11), pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11), ], ids=lambda x: type(x).__name__, ) def test_tdi_rmul_arraylike(self, other, box_with_array): box = box_with_array xbox = get_upcast_box(box, other) tdi = TimedeltaIndex(["1 Day"] * 10) expected = timedelta_range("1 days", "10 days") expected._data.freq = None tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, xbox) result = other * tdi tm.assert_equal(result, expected) commute = tdi * other tm.assert_equal(commute, expected) # ------------------------------------------------------------------ # __div__, __rdiv__ def test_td64arr_div_nat_invalid(self, box_with_array): # don't allow division by NaT (maybe could in the future) rng = timedelta_range("1 days", "10 days", name="foo") rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError, match="'?true_divide'? cannot use operands"): rng / pd.NaT with pytest.raises(TypeError, match="Cannot divide NaTType by"): pd.NaT / rng def test_td64arr_div_td64nat(self, box_with_array): # GH#23829 rng = timedelta_range("1 days", "10 days") rng = tm.box_expected(rng, box_with_array) other = np.timedelta64("NaT") expected = np.array([np.nan] * 10) expected = tm.box_expected(expected, box_with_array) result = rng / other tm.assert_equal(result, expected) result = other / rng tm.assert_equal(result, expected) def test_td64arr_div_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype="int64")) idx = tm.box_expected(idx, box_with_array) result = idx / 1 tm.assert_equal(result, idx) with pytest.raises(TypeError, match="Cannot divide"): # GH#23829 1 / idx def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array): # GH#20088, GH#22163 ensure DataFrame returns correct dtype rng = timedelta_range("1 days", "10 days", name="foo") expected = pd.Float64Index((np.arange(10) + 1) * 12, name="foo") rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng / two_hours tm.assert_equal(result, expected) result = two_hours / rng expected = 1 / expected tm.assert_equal(result, expected) def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array): rng = TimedeltaIndex(["1 days", pd.NaT, "2 days"], name="foo") expected = pd.Float64Index([12, np.nan, 24], name="foo") rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng / two_hours tm.assert_equal(result, expected) result = two_hours / rng expected = 1 / expected tm.assert_equal(result, expected) def test_td64arr_div_td64_ndarray(self, box_with_array): # GH#22631 rng = TimedeltaIndex(["1 days", pd.NaT, "2 days"]) expected = pd.Float64Index([12, np.nan, 24]) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) other = np.array([2, 4, 2], dtype="m8[h]") result = rng / other tm.assert_equal(result, expected) result = rng / tm.box_expected(other, box_with_array) tm.assert_equal(result, expected) result = rng / other.astype(object) tm.assert_equal(result, expected) result = rng / list(other) tm.assert_equal(result, expected) # reversed op expected = 1 / expected result = other / rng tm.assert_equal(result, expected) result = tm.box_expected(other, box_with_array) / rng tm.assert_equal(result, expected) result = other.astype(object) / rng tm.assert_equal(result, expected) result = list(other) / rng tm.assert_equal(result, expected) def test_tdarr_div_length_mismatch(self, box_with_array): rng = TimedeltaIndex(["1 days", pd.NaT, "2 days"]) mismatched = [1, 2, 3, 4] rng = tm.box_expected(rng, box_with_array) for obj in [mismatched, mismatched[:2]]: # one shorter, one longer for other in [obj, np.array(obj), pd.Index(obj)]: with pytest.raises(ValueError): rng / other with pytest.raises(ValueError): other / rng # ------------------------------------------------------------------ # __floordiv__, __rfloordiv__ def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([0, 0, np.nan]) td1 = tm.box_expected(td1, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = td1 // scalar_td tm.assert_equal(result, expected) def test_td64arr_rfloordiv_tdscalar(self, box_with_array, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = scalar_td // td1 tm.assert_equal(result, expected) def test_td64arr_rfloordiv_tdscalar_explicit(self, box_with_array, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) # We can test __rfloordiv__ using this syntax, # see `test_timedelta_rfloordiv` result = td1.__rfloordiv__(scalar_td) tm.assert_equal(result, expected) def test_td64arr_floordiv_int(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype="int64")) idx = tm.box_expected(idx, box_with_array) result = idx // 1 tm.assert_equal(result, idx) pattern = "floor_divide cannot use operands|Cannot divide int by Timedelta*" with pytest.raises(TypeError, match=pattern): 1 // idx def test_td64arr_floordiv_tdlike_scalar(self, two_hours, box_with_array): tdi = timedelta_range("1 days", "10 days", name="foo") expected = pd.Int64Index((np.arange(10) + 1) * 12, name="foo") tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi // two_hours tm.assert_equal(result, expected) # TODO: Is this redundant with test_td64arr_floordiv_tdlike_scalar? @pytest.mark.parametrize( "scalar_td", [ timedelta(minutes=10, seconds=7), Timedelta("10m7s"), Timedelta("10m7s").to_timedelta64(), ], ids=lambda x: type(x).__name__, ) def test_td64arr_rfloordiv_tdlike_scalar(self, scalar_td, box_with_array): # GH#19125 tdi = TimedeltaIndex(["00:05:03", "00:05:03", pd.NaT], freq=None) expected = pd.Index([2.0, 2.0, np.nan]) tdi = tm.box_expected(tdi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) res = tdi.__rfloordiv__(scalar_td) tm.assert_equal(res, expected) expected = pd.Index([0.0, 0.0, np.nan]) expected = tm.box_expected(expected, box_with_array, transpose=False) res = tdi // (scalar_td) tm.assert_equal(res, expected) # ------------------------------------------------------------------ # mod, divmod # TODO: operations with timedelta-like arrays, numeric arrays, # reversed ops def test_td64arr_mod_tdscalar(self, box_with_array, three_days): tdi = timedelta_range("1 Day", "9 days") tdarr = tm.box_expected(tdi, box_with_array) expected = TimedeltaIndex(["1 Day", "2 Days", "0 Days"] * 3) expected = tm.box_expected(expected, box_with_array) result = tdarr % three_days tm.assert_equal(result, expected) if box_with_array is pd.DataFrame: pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__") result = divmod(tdarr, three_days) tm.assert_equal(result[1], expected) tm.assert_equal(result[0], tdarr // three_days) def test_td64arr_mod_int(self, box_with_array): tdi = timedelta_range("1 ns", "10 ns", periods=10) tdarr = tm.box_expected(tdi, box_with_array) expected = TimedeltaIndex(["1 ns", "0 ns"] * 5) expected = tm.box_expected(expected, box_with_array) result = tdarr % 2 tm.assert_equal(result, expected) with pytest.raises(TypeError): 2 % tdarr if box_with_array is pd.DataFrame: pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__") result = divmod(tdarr, 2) tm.assert_equal(result[1], expected) tm.assert_equal(result[0], tdarr // 2) def test_td64arr_rmod_tdscalar(self, box_with_array, three_days): tdi = timedelta_range("1 Day", "9 days") tdarr = tm.box_expected(tdi, box_with_array) expected = ["0 Days", "1 Day", "0 Days"] + ["3 Days"] * 6 expected = TimedeltaIndex(expected) expected = tm.box_expected(expected, box_with_array) result = three_days % tdarr tm.assert_equal(result, expected) if box_with_array is pd.DataFrame: pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__") result = divmod(three_days, tdarr) tm.assert_equal(result[1], expected) tm.assert_equal(result[0], three_days // tdarr) # ------------------------------------------------------------------ # Operations with invalid others def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td): td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 = tm.box_expected(td1, box_with_array) # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined pattern = "operate|unsupported|cannot|not supported" with pytest.raises(TypeError, match=pattern): td1 * scalar_td with pytest.raises(TypeError, match=pattern): scalar_td * td1 def test_td64arr_mul_too_short_raises(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype="int64")) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx * idx[:3] with pytest.raises(ValueError): idx * np.array([1, 2]) def test_td64arr_mul_td64arr_raises(self, box_with_array): idx = TimedeltaIndex(np.arange(5, dtype="int64")) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx * idx # ------------------------------------------------------------------ # Operations with numeric others @pytest.mark.parametrize("one", [1, np.array(1), 1.0, np.array(1.0)]) def test_td64arr_mul_numeric_scalar(self, box_with_array, one): # GH#4521 # divide/multiply by integers tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") expected = Series(["-59 Days", "-59 Days", "NaT"], dtype="timedelta64[ns]") tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdser * (-one) tm.assert_equal(result, expected) result = (-one) * tdser tm.assert_equal(result, expected) expected = Series(["118 Days", "118 Days", "NaT"], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) result = tdser * (2 * one) tm.assert_equal(result, expected) result = (2 * one) * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)]) def test_td64arr_div_numeric_scalar(self, box_with_array, two): # GH#4521 # divide/multiply by integers tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]") tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdser / two tm.assert_equal(result, expected) with pytest.raises(TypeError, match="Cannot divide"): two / tdser @pytest.mark.parametrize( "dtype", [ "int64", "int32", "int16", "uint64", "uint32", "uint16", "uint8", "float64", "float32", "float16", ], ) @pytest.mark.parametrize( "vector", [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__, ) def test_td64arr_rmul_numeric_array(self, box_with_array, vector, dtype): # GH#4521 # divide/multiply by integers xbox = get_upcast_box(box_with_array, vector) tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") vector = vector.astype(dtype) expected = Series(["1180 Days", "1770 Days", "NaT"], dtype="timedelta64[ns]") tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, xbox) result = tdser * vector tm.assert_equal(result, expected) result = vector * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize( "dtype", [ "int64", "int32", "int16", "uint64", "uint32", "uint16", "uint8", "float64", "float32", "float16", ], ) @pytest.mark.parametrize( "vector", [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__, ) def test_td64arr_div_numeric_array(self, box_with_array, vector, dtype): # GH#4521 # divide/multiply by integers xbox = get_upcast_box(box_with_array, vector) tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") vector = vector.astype(dtype) expected = Series(["2.95D", "1D 23H 12m", "NaT"], dtype="timedelta64[ns]") tdser = tm.box_expected(tdser, box_with_array) expected = tm.box_expected(expected, xbox) result = tdser / vector tm.assert_equal(result, expected) pattern = ( "true_divide cannot use operands|" "cannot perform __div__|" "cannot perform __truediv__|" "unsupported operand|" "Cannot divide" ) with pytest.raises(TypeError, match=pattern): vector / tdser if not isinstance(vector, pd.Index): # Index.__rdiv__ won't try to operate elementwise, just raises result = tdser / vector.astype(object) if box_with_array is pd.DataFrame: expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))] else: expected = [tdser[n] / vector[n] for n in range(len(tdser))] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) with pytest.raises(TypeError, match=pattern): vector.astype(object) / tdser @pytest.mark.parametrize( "names", [ (None, None, None), ("Egon", "Venkman", None), ("NCC1701D", "NCC1701D", "NCC1701D"), ], ) def test_td64arr_mul_int_series(self, box_df_fail, names): # GH#19042 test for correct name attachment box = box_df_fail # broadcasts along wrong axis, but doesn't raise tdi = TimedeltaIndex( ["0days", "1day", "2days", "3days", "4days"], name=names[0] ) # TODO: Should we be parametrizing over types for `ser` too? ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1]) expected = Series( ["0days", "1day", "4days", "9days", "16days"], dtype="timedelta64[ns]", name=names[2], ) tdi = tm.box_expected(tdi, box) box = Series if (box is pd.Index and type(ser) is Series) else box expected = tm.box_expected(expected, box) result = ser * tdi tm.assert_equal(result, expected) # The direct operation tdi * ser still needs to be fixed. result = ser.__rmul__(tdi) tm.assert_equal(result, expected) # TODO: Should we be parametrizing over types for `ser` too? @pytest.mark.parametrize( "names", [ (None, None, None), ("Egon", "Venkman", None), ("NCC1701D", "NCC1701D", "NCC1701D"), ], ) def test_float_series_rdiv_td64arr(self, box_with_array, names): # GH#19042 test for correct name attachment # TODO: the direct operation TimedeltaIndex / Series still # needs to be fixed. box = box_with_array tdi = TimedeltaIndex( ["0days", "1day", "2days", "3days", "4days"], name=names[0] ) ser = Series([1.5, 3, 4.5, 6, 7.5], dtype=np.float64, name=names[1]) xname = names[2] if box is not tm.to_array else names[1] expected = Series( [tdi[n] / ser[n] for n in range(len(ser))], dtype="timedelta64[ns]", name=xname, ) xbox = box if box in [pd.Index, tm.to_array] and type(ser) is Series: xbox = Series tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, xbox) result = ser.__rdiv__(tdi) if box is pd.DataFrame: # TODO: Should we skip this case sooner or test something else? assert result is NotImplemented else: tm.assert_equal(result, expected) class TestTimedeltaArraylikeInvalidArithmeticOps: def test_td64arr_pow_invalid(self, scalar_td, box_with_array): td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 = tm.box_expected(td1, box_with_array) # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined pattern = "operate|unsupported|cannot|not supported" with pytest.raises(TypeError, match=pattern): scalar_td ** td1 with pytest.raises(TypeError, match=pattern): td1 ** scalar_td
bsd-3-clause
hansomesong/TracesAnalyzer
Plot/Plot_variable_time/Pie_Chart.py
1
3974
# -* coding:UTF-8 -* # __author__ = 'yueli' import numpy as np import matplotlib.pyplot as plt # All the codes in this python file can be referenced to # http://matplotlib.org/1.2.1/examples/pylab_examples/pie_demo.html # 由于此文件的input文件已不存在,所以此文件已被Pie_chart_v4.py替代 # Import the targeted raw CSV file rawCSV_file1 = "/Users/yueli/Documents/Codes/TracesAnalyzer/log/comparison_time_liege.csv" rawCSV_file2 = "/Users/yueli/Documents/Codes/TracesAnalyzer/log/comparison_time_temple.csv" rawCSV_file3 = "/Users/yueli/Documents/Codes/TracesAnalyzer/log/comparison_time_ucl.csv" rawCSV_file4 = "/Users/yueli/Documents/Codes/TracesAnalyzer/log/comparison_time_umass.csv" rawCSV_file5 = "/Users/yueli/Documents/Codes/TracesAnalyzer/log/comparison_time_wiilab.csv" rawCSV_files = [rawCSV_file1, rawCSV_file2, rawCSV_file3, rawCSV_file4, rawCSV_file5] negativeReplyCount = 0 printSkippedCount = 0 reConfiguration1 = 0 reConfiguration2 = 0 flapping1 = 0 flapping2 = 0 mobility1 = 0 mobility2 = 0 for rawCSV_file in rawCSV_files: for line in open(rawCSV_file): lines = line.split(";") if lines[0] == "Vantage": continue elif lines[4] == "True": continue else: if "NegativeReply" in lines[5]: print "Negative Reply", lines[1] negativeReplyCount = negativeReplyCount + 1 elif "PrintSkipped" in lines[5]: printSkippedCount = printSkippedCount + 1 else: # in the 5 comparison_time_vp.csv files, we find out that in the situation of flapping, the max locator_count is 2 and the max locators is 10. # So we use lines[6] == 2 and lines[8] == 10 as the boundaries between flappings and mobilities if int(lines[6]) <= 2: if int(lines[6]) == 1: if int(lines[8]) <= 11: if lines[11] == "False": reConfiguration1 = reConfiguration1 + 1 else: # print "flapping1 happens in:", lines[1] flapping1 = flapping1 + 1 else: mobility1 = mobility1 + 1 else: if lines[10] == "False": # print "reConfiguration2 happens in:", lines[1] reConfiguration2 = reConfiguration2 + 1 else: # print "flapping2 happens in:", lines[1] flapping2 = flapping2 + 1 else: mobility2 = mobility2 + 1 # The slices will be ordered and plotted counter-clockwise. labels = 'Negative + Normal Reply', 'PrintSkipped + Normal Reply', 'Reconfiguration I', 'Reconfiguration II',\ 'Flapping I', 'Flapping II', 'Mobility I', 'Mobility II' fracs = [negativeReplyCount, printSkippedCount, reConfiguration1, reConfiguration2, flapping1, flapping2, mobility1, mobility2] print fracs colors = ['red', 'orange', 'yellow', 'green', 'lightskyblue', 'blue', 'purple', 'yellowgreen'] explode=(0, 0, 0, 0, 0, 0, 0, 0) # autopct='%1.2f%%' means that the pie chart will display 2 decimal points plt.pie(fracs, explode=explode, labels=labels, colors=colors, autopct='%1.2f%%', startangle=345) # The default startangle is 0, which would start # the Frogs slice on the x-axis. With startangle=90, # everything is rotated counter-clockwise by 90 degrees, # so the plotting starts on the positive y-axis. # plt.title('Percentage of each False case', bbox={'facecolor':'0.8', 'pad':5}) plt.title('Percentage of each inconsistent case by the variable of time') #plt.savefig("/Users/yueli/Documents/Codes/TracesAnalyzer/Plot_new/Plot_variable_time/Pie_chart_2_11.pdf") plt.show()
gpl-2.0
ellisonbg/altair
altair/vegalite/v2/examples/stem_and_leaf.py
1
1273
""" Stem and Leaf Plot ------------------ This example shows how to make a stem and leaf plot. """ # category: other charts import altair as alt import pandas as pd import numpy as np np.random.seed(42) # Generating random data original_data = pd.DataFrame({'samples': np.array(np.random.normal(50, 15, 100), dtype=np.int)}) # Splitting stem and leaf original_data['stem'] = original_data['samples'].apply(lambda x: str(x)[:-1]) original_data['leaf'] = original_data['samples'].apply(lambda x: str(x)[-1]) original_data.sort_values(by=['stem', 'leaf'], inplace=True) original_data.reset_index(inplace=True, drop=True) # Determining leaf position get_position = lambda x: 1 + pd.Series(range(len(x))) original_data['position'] = original_data.groupby('stem')\ .apply(get_position)\ .reset_index(drop=True) # Creating stem and leaf plot alt.Chart(original_data).mark_text( align='left', baseline='middle', dx=-5 ).encode( alt.X('position:Q', axis=alt.Axis(title='', ticks=False, labels=False, grid=False) ), alt.Y('stem:N', axis=alt.Axis(title='', tickSize=0)), text='leaf:N' ).configure_axis( labelFontSize=20 ).configure_text( fontSize=20 )
bsd-3-clause
potash/scikit-learn
sklearn/grid_search.py
6
38777
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]> # Andreas Mueller <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin from .cross_validation import check_cv from .cross_validation import _fit_and_score from .externals.joblib import Parallel, delayed from .externals import six from .utils import check_random_state from .utils.random import sample_without_replacement from .utils.validation import _num_samples, indexable from .utils.metaestimators import if_delegate_has_method from .metrics.scorer import check_scoring from .exceptions import ChangedBehaviorWarning __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] warnings.warn("This module was deprecated in version 0.18 in favor of the " "model_selection module into which all the refactored classes " "and functions are moved. This module will be removed in 0.20.", DeprecationWarning) class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1} True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration Parameters ---------- ind : int The iteration index Returns ------- params : dict of string to any Equal to list(self)[ind] """ # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range') class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # look up sampled parameter settings in parameter grid param_grid = ParameterGrid(self.param_distributions) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in six.moves.range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for name, v in p.items(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values for parameter ({0}) need " "to be a sequence.".format(name)) if len(v) == 0: raise ValueError("Parameter values for parameter ({0}) need " "to be a non-empty sequence.".format(name)) class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit. This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y = indexable(X, y) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )( delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. .. versionchanged:: 0.17 Upgraded to joblib 0.9.3. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape=None, degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the :ref:`User Guide <randomized_parameter_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settings, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
bsd-3-clause
blbarker/spark-tk
regression-tests/sparktkregtests/testcases/graph/betweenness_centrality_test.py
4
5737
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Tests betweenness centrality algorithm for graphs""" import unittest from sparktkregtests.lib import sparktk_test class BetweennessCentrality(sparktk_test.SparkTKTestCase): def setUp(self): edges = self.context.frame.create( [(0, 1, 1), (0, 2, 1), (2, 3, 2), (2, 4, 4), (3, 4, 2), (3, 5, 4), (4, 5, 2), (4, 6, 1)], ["src", "dst", "weights"]) vertices = self.context.frame.create( [[0], [1], [2], [3], [4], [5], [6]], ["id"]) self.graph = self.context.graph.create(vertices, edges) def test_default(self): """Test default settings""" result_frame = self.graph.betweenness_centrality() result = result_frame.to_pandas() # validate centrality values expected_value = { 0: 0.333, 1: 0.0, 2: 0.533, 3: 0.1, 4: 0.433, 5: 0.0, 6: 0.0} for i, row in result.iterrows(): vertex_id = row['id'] self.assertAlmostEqual( row["betweenness_centrality"], expected_value[vertex_id], delta=0.001) def test_weights_single_shortest_path(self): """Tests weighted betweenness when only one shortest path present""" edges = self.context.frame.create( [(0, 1, 3), (0, 2, 2), (0, 3, 6), (0, 4, 4), (1, 3, 5), (1, 5, 5), (2, 4, 1), (3, 4, 2), (3, 5, 1), (4, 5, 4)], ["src", "dst", "weights"]) vertices = self.context.frame.create( [[0], [1], [2], [3], [4], [5]], ["id"]) graph = self.context.graph.create(vertices, edges) # validate against values from networkx betweenness centrality result_frame = graph.betweenness_centrality("weights", False) result = result_frame.to_pandas() expected_values = { 0: 2.0, 1: 0.0, 2: 4.0, 3: 3.0, 4: 4.0, 5: 0.0} for i, row in result.iterrows(): vertex_id = row['id'] self.assertAlmostEqual( row["betweenness_centrality"], expected_values[vertex_id], delta=0.1) def test_weights(self): """Test betweenness with weighted cost""" result_frame = self.graph.betweenness_centrality("weights", False) # validate betweenness centrality values expected_values = { 1: 0.0, 0: 5.0, 5: 0.0, 6: 0.0, 2: 8.0, 3: 5.0, 4: 7.5} result = result_frame.to_pandas() for i, row in result.iterrows(): vertex_id = row['id'] self.assertAlmostEqual( row["betweenness_centrality"], expected_values[vertex_id], delta=0.1) def test_disconnected_edges(self): """Test betweenness on graph with disconnected edges""" edges = self.context.frame.create( [['a', 'b'], ['a', 'c'], ['c', 'd'], ['c', 'e'], ['f', 'g'], ['g', 'h']], ['src', 'dst']) vertices = self.context.frame.create( [['a'], ['b'], ['c'], ['d'], ['e'], ['f'], ['g'], ['h']], ['id']) graph = self.context.graph.create(vertices, edges) result_frame = graph.betweenness_centrality(normalize=False) # validate betweenness centrality values expected_values = { 'a': 3.0, 'b': 0.0, 'c': 5.0, 'd': 0.0, 'e': 0.0, 'f': 0.0, 'g': 1.0, 'h': 0.0} result = result_frame.to_pandas() for i, row in result.iterrows(): vertex_id = row['id'] self.assertAlmostEqual( row["betweenness_centrality"], expected_values[vertex_id], delta=0.1) def test_normalize(self): """Test unnomallized betweenness crentrality""" result_frame = self.graph.betweenness_centrality(normalize=False) result = result_frame.to_pandas() # validate centrality values expected_values = { 0: 5.0, 1: 0.0, 2: 8.0, 3: 1.5, 4: 6.5, 5: 0.0, 6: 0.0} for i, row in result.iterrows(): vertex_id = row['id'] self.assertAlmostEqual( row["betweenness_centrality"], expected_values[vertex_id], delta=0.1) def test_bad_weights_column_name(self): """Should throw exception when bad weights column name given""" with self.assertRaisesRegexp( Exception, "Field \"BAD\" does not exist"): self.graph.betweenness_centrality("BAD") if __name__ == "__main__": unittest.main()
apache-2.0
sightmachine/SimpleCV2
SimpleCV/examples/machine-learning/machine-learning_nuts-vs-bolts.py
12
2782
''' This Example uses scikits-learn to do a binary classfication of images of nuts vs. bolts. Only the area, height, and width are used to classify the actual images but data is extracted from the images using blobs. This is a very crude example and could easily be built upon, but is just meant to give an introductory example for using machine learning The data set should auto download, if not you can get it from: https://github.com/downloads/sightmachine/SimpleCV/nuts_bolts.zip ''' print __doc__ from SimpleCV import * from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression import numpy as np #Download the dataset machine_learning_data_set = 'https://github.com/downloads/sightmachine/SimpleCV/nuts_bolts.zip' data_path = download_and_extract(machine_learning_data_set) print 'Test Images Downloaded at:', data_path display = Display((800,600)) #Display to show the images target_names = ['bolt', 'nut'] print 'Loading Bolts for Training' bolts = ImageSet(data_path + '/data/supervised/bolts') #Load Bolts for training bolt_blobs = [b.findBlobs()[0] for b in bolts] #exact the blobs for our features tmp_data = [] #array to store data features tmp_target = [] #array to store targets for b in bolt_blobs: #Format Data for SVM tmp_data.append([b.area(), b.height(), b.width()]) tmp_target.append(0) print 'Loading Nuts for Training' nuts = ImageSet(data_path + '/data/supervised/nuts') nut_blobs = [n.invert().findBlobs()[0] for n in nuts] for n in nut_blobs: tmp_data.append([n.area(), n.height(), n.width()]) tmp_target.append(1) dataset = np.array(tmp_data) targets = np.array(tmp_target) print 'Training Machine Learning' clf = LinearSVC() clf = clf.fit(dataset, targets) clf2 = LogisticRegression().fit(dataset, targets) print 'Running prediction on bolts now' untrained_bolts = ImageSet(data_path + '/data/unsupervised/bolts') unbolt_blobs = [b.findBlobs()[0] for b in untrained_bolts] for b in unbolt_blobs: ary = [b.area(), b.height(), b.width()] name = target_names[clf.predict(ary)[0]] probability = clf2.predict_proba(ary)[0] img = b.image img.drawText(name) img.save(display) print "Predicted:",name,", Guess:",probability[0], target_names[0],",", probability[1], target_names[1] print 'Running prediction on nuts now' untrained_nuts = ImageSet(data_path + '/data/unsupervised/nuts') unnut_blobs = [n.invert().findBlobs()[0] for n in untrained_nuts] for n in unnut_blobs: ary = [n.area(), n.height(), n.width()] name = target_names[clf.predict(ary)[0]] probability = clf2.predict_proba(ary)[0] img = n.image img.drawText(name) img.save(display) print "Predicted:",name,", Guess:",probability[0], target_names[0],",", probability[1], target_names[1]
bsd-3-clause
Gezerj/Data-Analysis
Task-Problems/TASK 6.py
1
1263
# -*- coding: utf-8 -*- """ Created on Wed Oct 04 10:57:34 2017 @author: Gerwyn """ from __future__ import division import numpy as np import scipy.stats as sc import matplotlib.pyplot as plt P = np.array([79, 82, 85, 88, 90]) T = np.array([8, 17, 30, 37, 52]) n = len(T) N = 5000 Tmin = -500 Tmax = 0 sigma_T = 2.0 A = np.linspace(Tmin, Tmax, N) B = np.linspace(3, 4, N) X_2 = np.zeros((len(A), len(B))) def X_sum(A, B): Num = (T - A - B*P)**2.0 Den = sigma_T**2.0 Sum = np.sum(Num/Den) return Sum for i in range(len(A)): for j in range(len(B)): X_2[i, j] = X_sum(A[i], B[j]) for i in range(len(A)): found = False for j in range(len(B)): if X_2[i, j] == np.min(X_2): print A[i] print B[j] found = True break else: continue if found: break Analytical_A = ((np.sum(P**2.0)*np.sum(T)) - (np.sum(P)*np.sum(P*T)))/((n*np.sum(P**2.0)) - (np.sum(P))**2.0) Analytical_B = ((n*np.sum(T*P)) - (np.sum(P)*np.sum(T)))/((n*np.sum(P**2.0)) - (np.sum(P))**2.0) print Analytical_A print Analytical_B plt.figure() plt.plot(P, T, '.') plt.ylabel('Temperature (C)') plt.xlabel('Pressure (mm)') plt.show()
gpl-3.0
CVML/scikit-learn
sklearn/cluster/mean_shift_.py
106
14056
"""Mean shift clustering algorithm. Mean shift clustering aims to discover *blobs* in a smooth density of samples. It is a centroid based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. """ # Authors: Conrad Lee <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> import numpy as np import warnings from collections import defaultdict from ..externals import six from ..utils.validation import check_is_fitted from ..utils import extmath, check_random_state, gen_batches, check_array from ..base import BaseEstimator, ClusterMixin from ..neighbors import NearestNeighbors from ..metrics.pairwise import pairwise_distances_argmin def estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0): """Estimate the bandwidth to use with the mean-shift algorithm. That this function takes time at least quadratic in n_samples. For large datasets, it's wise to set that parameter to a small value. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points. quantile : float, default 0.3 should be between [0, 1] 0.5 means that the median of all pairwise distances is used. n_samples : int, optional The number of samples to use. If not given, all samples are used. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Returns ------- bandwidth : float The bandwidth parameter. """ random_state = check_random_state(random_state) if n_samples is not None: idx = random_state.permutation(X.shape[0])[:n_samples] X = X[idx] nbrs = NearestNeighbors(n_neighbors=int(X.shape[0] * quantile)) nbrs.fit(X) bandwidth = 0. for batch in gen_batches(len(X), 500): d, _ = nbrs.kneighbors(X[batch, :], return_distance=True) bandwidth += np.max(d, axis=1).sum() return bandwidth / X.shape[0] def mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, max_iter=300, max_iterations=None): """Perform mean shift clustering of data using a flat kernel. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input data. bandwidth : float, optional Kernel bandwidth. If bandwidth is not given, it is determined using a heuristic based on the median of all pairwise distances. This will take quadratic time in the number of samples. The sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently. seeds : array-like, shape=[n_seeds, n_features] or None Point used as initial kernel locations. If None and bin_seeding=False, each data point is used as a seed. If None and bin_seeding=True, see bin_seeding. bin_seeding : boolean, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. Ignored if seeds argument is not None. min_bin_freq : int, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. max_iter : int, default 300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. Returns ------- cluster_centers : array, shape=[n_clusters, n_features] Coordinates of cluster centers. labels : array, shape=[n_samples] Cluster labels for each point. Notes ----- See examples/cluster/plot_meanshift.py for an example. """ # FIXME To be removed in 0.18 if max_iterations is not None: warnings.warn("The `max_iterations` parameter has been renamed to " "`max_iter` from version 0.16. The `max_iterations` " "parameter will be removed in 0.18", DeprecationWarning) max_iter = max_iterations if bandwidth is None: bandwidth = estimate_bandwidth(X) elif bandwidth <= 0: raise ValueError("bandwidth needs to be greater than zero or None, got %f" % bandwidth) if seeds is None: if bin_seeding: seeds = get_bin_seeds(X, bandwidth, min_bin_freq) else: seeds = X n_samples, n_features = X.shape stop_thresh = 1e-3 * bandwidth # when mean has converged center_intensity_dict = {} nbrs = NearestNeighbors(radius=bandwidth).fit(X) # For each seed, climb gradient until convergence or max_iter for my_mean in seeds: completed_iterations = 0 while True: # Find mean of points within bandwidth i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0] points_within = X[i_nbrs] if len(points_within) == 0: break # Depending on seeding strategy this condition may occur my_old_mean = my_mean # save the old mean my_mean = np.mean(points_within, axis=0) # If converged or at max_iter, adds the cluster if (extmath.norm(my_mean - my_old_mean) < stop_thresh or completed_iterations == max_iter): center_intensity_dict[tuple(my_mean)] = len(points_within) break completed_iterations += 1 if not center_intensity_dict: # nothing near seeds raise ValueError("No point was within bandwidth=%f of any seed." " Try a different seeding strategy or increase the bandwidth." % bandwidth) # POST PROCESSING: remove near duplicate points # If the distance between two kernels is less than the bandwidth, # then we have to remove one because it is a duplicate. Remove the # one with fewer points. sorted_by_intensity = sorted(center_intensity_dict.items(), key=lambda tup: tup[1], reverse=True) sorted_centers = np.array([tup[0] for tup in sorted_by_intensity]) unique = np.ones(len(sorted_centers), dtype=np.bool) nbrs = NearestNeighbors(radius=bandwidth).fit(sorted_centers) for i, center in enumerate(sorted_centers): if unique[i]: neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[0] unique[neighbor_idxs] = 0 unique[i] = 1 # leave the current point as unique cluster_centers = sorted_centers[unique] # ASSIGN LABELS: a point belongs to the cluster that it is closest to nbrs = NearestNeighbors(n_neighbors=1).fit(cluster_centers) labels = np.zeros(n_samples, dtype=np.int) distances, idxs = nbrs.kneighbors(X) if cluster_all: labels = idxs.flatten() else: labels.fill(-1) bool_selector = distances.flatten() <= bandwidth labels[bool_selector] = idxs.flatten()[bool_selector] return cluster_centers, labels def get_bin_seeds(X, bin_size, min_bin_freq=1): """Finds seeds for mean_shift. Finds seeds by first binning data onto a grid whose lines are spaced bin_size apart, and then choosing those bins with at least min_bin_freq points. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points, the same points that will be used in mean_shift. bin_size : float Controls the coarseness of the binning. Smaller values lead to more seeding (which is computationally more expensive). If you're not sure how to set this, set it to the value of the bandwidth used in clustering.mean_shift. min_bin_freq : integer, optional Only bins with at least min_bin_freq will be selected as seeds. Raising this value decreases the number of seeds found, which makes mean_shift computationally cheaper. Returns ------- bin_seeds : array-like, shape=[n_samples, n_features] Points used as initial kernel positions in clustering.mean_shift. """ # Bin points bin_sizes = defaultdict(int) for point in X: binned_point = np.round(point / bin_size) bin_sizes[tuple(binned_point)] += 1 # Select only those bins as seeds which have enough members bin_seeds = np.array([point for point, freq in six.iteritems(bin_sizes) if freq >= min_bin_freq], dtype=np.float32) if len(bin_seeds) == len(X): warnings.warn("Binning data failed with provided bin_size=%f, using data" " points as seeds." % bin_size) return X bin_seeds = bin_seeds * bin_size return bin_seeds class MeanShift(BaseEstimator, ClusterMixin): """Mean shift clustering using a flat kernel. Mean shift clustering aims to discover "blobs" in a smooth density of samples. It is a centroid-based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- bandwidth : float, optional Bandwidth used in the RBF kernel. If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see the documentation for that function for hints on scalability (see also the Notes, below). seeds : array, shape=[n_samples, n_features], optional Seeds used to initialize kernels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the grid size and default values for other parameters. bin_seeding : boolean, optional If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. default value: False Ignored if seeds argument is not None. min_bin_freq : int, optional To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. If not defined, set to 1. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers. labels_ : Labels of each point. Notes ----- Scalability: Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In higher dimensions the complexity will tend towards O(T*n^2). Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the get_bin_seeds function. Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the bottleneck if it is used. References ---------- Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ def __init__(self, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True): self.bandwidth = bandwidth self.seeds = seeds self.bin_seeding = bin_seeding self.cluster_all = cluster_all self.min_bin_freq = min_bin_freq def fit(self, X, y=None): """Perform clustering. Parameters ----------- X : array-like, shape=[n_samples, n_features] Samples to cluster. """ X = check_array(X) self.cluster_centers_, self.labels_ = \ mean_shift(X, bandwidth=self.bandwidth, seeds=self.seeds, min_bin_freq=self.min_bin_freq, bin_seeding=self.bin_seeding, cluster_all=self.cluster_all) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, "cluster_centers_") return pairwise_distances_argmin(X, self.cluster_centers_)
bsd-3-clause
andim/evolimmune
figSIaltphases/figure-SIaltphases.py
1
6607
# coding: utf-8 # # Influence of parameter choice on the phase diagram # To study to what extend the phase diagram depends on the cost of infection $c_{\rm inf}$, and on the trade-off shapes $c_{\rm def}(c_{\rm con}), c_{\rm uptake}(p_{\rm uptake})$ we plot the phase diagram for a number of different choices in the following. # Import packages. # In[6]: from cycler import cycler import sys sys.path.append('../lib') import numpy as np import matplotlib.colors import matplotlib.pyplot as plt from matplotlib import transforms, gridspec, ticker import palettable import shapely.ops import plotting import evolimmune import misc import analysis plt.style.use(['paper']) plt.rc('lines', linewidth=1.0) plt.rc('axes', labelpad=1.0) eps = 1e-8 # Read in and summarize data # In[7]: df = analysis.loadnpz('data/phases.npz') analysis.intelligent_describe(df, nunique=10) dfg = df.groupby(['lambda_', 'mus', 'cup']) nparams = len(dfg) # define colors used in plot and phasenames # In[8]: black = matplotlib.rcParams['text.color'] colors = np.asarray(palettable.colorbrewer.qualitative.Set3_6.mpl_colors)[[4, 0, 2, 3, 5, 1]] strategies_s = ['a', 'p', 'o', 'i', 'm', 'c'] color_dict = dict(zip(strategies_s, colors)) linecolors = palettable.colorbrewer.qualitative.Dark2_6.mpl_colors plt.rc('axes', prop_cycle=cycler('color', linecolors)) phasenames = misc.DefaultIdentityDict(o='$i$', i='$ib$') # Define plotting functions # In[9]: def plotmus(ax, musstr, alpha=1.0, label=True): epsilon = np.linspace(0.0, 1.0, 100) mus = evolimmune.mus_from_str(musstr) mu1, mu2 = mus(epsilon) if label: ax.plot(mu1, mu2, c=linecolors[1], alpha=alpha, label='defense') else: ax.plot(mu1, mu2, c=linecolors[1], alpha=alpha) ax.plot(mu1[0], mu2[0], 'o', markeredgecolor='none', markersize=3, c=linecolors[1], alpha=alpha) def plotstatecosts(ax, musstr, musstrref=None, lambda_=None): if lambda_: ax.text(1, 1, '${0}={1}$'.format(r'c_{\rm inf}', lambda_), transform=ax.transAxes, ha='right', va='top') if musstrref is not None: plotmus(ax, musstrref, alpha=0.25, label=False) plotmus(ax, musstr) ax.set_xlabel(evolimmune.varname_to_tex['cconstitutive']) ax.set_ylabel(evolimmune.varname_to_tex['cdefense']) ax.set_xlim(0, 1.5) ax.set_ylim(0, 2.7) ax.locator_params(nbins=3) def plotcup(ax, cupstr, cupstrref=None): pup = np.linspace(0.0, 0.2, 100) if cupstrref is not None: cup = evolimmune.cup_from_str(cupstrref) ax.plot(pup, cup(pup), c=linecolors[2], alpha=.25) cup = evolimmune.cup_from_str(cupstr) ax.plot(pup, cup(pup), c=linecolors[2]) ax.set_xlabel(evolimmune.varname_to_tex['pup']) ax.set_ylabel(evolimmune.varname_to_tex['cup']) ax.set_ylim(0, 0.1) ax.locator_params(nbins=1) # Putting it all together into one figure # In[10]: fig = plt.figure(figsize=(6, 7)) nrow = 4 nsubrow = 3 height_ratios = [1, 10, 10] gsglobal = gridspec.GridSpec(4, 2) import param1 lambdaref, musref, cupref = param1.lambda_, param1.mus, param1.cup label_axes = [] for i in range(1, 9): p = __import__('param{}'.format(i)) lambda_ = p.lambda_ mus = p.mus cup = p.cup dfg = df[(df.mus==mus)&(df.cup==cup)&(df.lambda_==lambda_)] print lambda_, mus, cup gs = gridspec.GridSpecFromSubplotSpec(3, 2, subplot_spec=gsglobal[(i-1)%nrow, (i-1)//nrow], width_ratios=[1, 2], height_ratios=[1, 30, 20], hspace=1.5, wspace=0.6) axlambda = fig.add_subplot(gs[0, 0]) axlambda.text(0.5, -3.0, '${0}={1}$'.format(r'c_{\rm inf}', lambda_), transform=axlambda.transAxes, ha='center', va='top') axlambda.axis('off') axmu = fig.add_subplot(gs[1, 0]) plotstatecosts(axmu, mus, musref) axcup = fig.add_subplot(gs[2, 0]) plotcup(axcup, cup, cupref) for ax in [axmu, axcup]: plotting.despine(ax) axm = fig.add_subplot(gs[:, 1]) try: polygons = evolimmune.polygons_from_boundaries(dfg, yconv=evolimmune.to_tau) phases = evolimmune.phases_from_polygons(polygons) except: pass else: for phasename, phase in phases.iteritems(): try: axm.add_patch(analysis.shapely_to_mpl(phase, ec='None', fc=color_dict[phasename], lw=1.0)) phaset = shapely.ops.transform(lambda x, y, z=None: (x, np.log(y+eps)), phase) axm.text(phaset.centroid.x, np.exp(phaset.centroid.y), r'$\mathbf{%s}$'%phasenames[phasename][1:-1], ha='center', va='center') except: pass axm.set_ylim(evolimmune.to_tau(df.aenv.min()), evolimmune.to_tau(df.aenv.max())) axm.set_yscale('log') axm.yaxis.set_major_formatter(ticker.ScalarFormatter()) axm.set_xlabel('$\pi_{env}$') axm.set_ylabel(r'$\tau_{env}$') axm.grid(which='major', alpha=0.75) axm.grid(which='minor', lw=0.4, alpha=0.5) axm.set_axisbelow(False) plotting.despine(axm, spines='all') label_axes.append((i, axlambda)) label_axes = [ax for i, ax in sorted(label_axes)] plotting.label_axes(label_axes, xy=(-0.6, 1.0), fontsize='large', va='top') gsglobal.tight_layout(fig, h_pad=1.0, w_pad=2.0) fig.savefig('SIaltphases.pdf') fig.savefig('SIaltphases.svg') # Fig.S2: **Influence of parameter choice on the phase diagram presented in Fig. 2.** # For every panel the parameter choices are shown on the left and the phase boundaries between **p**roto-adaptive, **i**nnate, **i**nnate **b**et hedging, **m**ixed and **C**RISPR-like strategies are shown on the right. As a reference, lines in lighter color show trade-off and uptake cost for parameter set used in Fig. 2. # **(A)** Phase diagram for parameters used in Fig. 2. # **(B)** More expensive active acquisition ($c_{\rm uptake}$ multiplied by a factor of two). # **(C)** Different functional form for cost of active acqusition: $c_{\rm uptake} = 0.05 \times p_{\rm uptake} + 2 \times p_{\rm uptake}^2$. # **(D)** More permissive state-dependent costs (costs multiplied by a factor of 0.5). # **(E)** Less permissive state-dependent costs (costs multiplied by a factor of 1.5). # **(F)** Higher cost of infection. # **(G)** Higher cost of immune protection. # **(H)** Different functional form for cost trade-off, $c_{\rm defense} = 1.4-0.6\times c_{\rm constitutive}+0.2 \times c_{\rm constitutive}^2$ # In[ ]:
mit
Clyde-fare/scikit-learn
sklearn/calibration.py
137
18876
"""Calibration of predicted probabilities.""" # Author: Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause from __future__ import division import inspect import warnings from math import log import numpy as np from scipy.optimize import fmin_bfgs from .base import BaseEstimator, ClassifierMixin, RegressorMixin, clone from .preprocessing import LabelBinarizer from .utils import check_X_y, check_array, indexable, column_or_1d from .utils.validation import check_is_fitted from .isotonic import IsotonicRegression from .svm import LinearSVC from .cross_validation import check_cv from .metrics.classification import _check_binary_probabilistic_predictions class CalibratedClassifierCV(BaseEstimator, ClassifierMixin): """Probability calibration with isotonic regression or sigmoid. With this class, the base_estimator is fit on the train set of the cross-validation generator and the test set is used for calibration. The probabilities for each of the folds are then averaged for prediction. In case that cv="prefit" is passed to __init__, it is it is assumed that base_estimator has been fitted already and all data is used for calibration. Note that data for fitting the classifier and for calibrating it must be disjpint. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. If cv=prefit, the classifier must have been fit already on data. method : 'sigmoid' | 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parameteric approach. It is not advised to use isotonic calibration with too few calibration samples (<<1000) since it tends to overfit. Use sigmoids (Platt's calibration) in this case. cv : integer or cross-validation generator or "prefit", optional If an integer is passed, it is the number of folds (default 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. If "prefit" is passed, it is assumed that base_estimator has been fitted already and all data is used for calibration. Attributes ---------- classes_ : array, shape (n_classes) The class labels. calibrated_classifiers_: list (len() equal to cv or 1 if cv == "prefit") The list of calibrated classifiers, one for each crossvalidation fold, which has been fitted on all but the validation fold and calibrated on the validation fold. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator=None, method='sigmoid', cv=3): self.base_estimator = base_estimator self.method = method self.cv = cv def fit(self, X, y, sample_weight=None): """Fit the calibrated model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) X, y = indexable(X, y) lb = LabelBinarizer().fit(y) self.classes_ = lb.classes_ # Check that we each cross-validation fold can have at least one # example per class n_folds = self.cv if isinstance(self.cv, int) \ else self.cv.n_folds if hasattr(self.cv, "n_folds") else None if n_folds and \ np.any([np.sum(y == class_) < n_folds for class_ in self.classes_]): raise ValueError("Requesting %d-fold cross-validation but provided" " less than %d examples for at least one class." % (n_folds, n_folds)) self.calibrated_classifiers_ = [] if self.base_estimator is None: # we want all classifiers that don't expose a random_state # to be deterministic (and we don't want to expose this one). base_estimator = LinearSVC(random_state=0) else: base_estimator = self.base_estimator if self.cv == "prefit": calibrated_classifier = _CalibratedClassifier( base_estimator, method=self.method) if sample_weight is not None: calibrated_classifier.fit(X, y, sample_weight) else: calibrated_classifier.fit(X, y) self.calibrated_classifiers_.append(calibrated_classifier) else: cv = check_cv(self.cv, X, y, classifier=True) arg_names = inspect.getargspec(base_estimator.fit)[0] estimator_name = type(base_estimator).__name__ if (sample_weight is not None and "sample_weight" not in arg_names): warnings.warn("%s does not support sample_weight. Samples" " weights are only used for the calibration" " itself." % estimator_name) base_estimator_sample_weight = None else: base_estimator_sample_weight = sample_weight for train, test in cv: this_estimator = clone(base_estimator) if base_estimator_sample_weight is not None: this_estimator.fit( X[train], y[train], sample_weight=base_estimator_sample_weight[train]) else: this_estimator.fit(X[train], y[train]) calibrated_classifier = _CalibratedClassifier( this_estimator, method=self.method) if sample_weight is not None: calibrated_classifier.fit(X[test], y[test], sample_weight[test]) else: calibrated_classifier.fit(X[test], y[test]) self.calibrated_classifiers_.append(calibrated_classifier) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) # Compute the arithmetic mean of the predictions of the calibrated # classfiers mean_proba = np.zeros((X.shape[0], len(self.classes_))) for calibrated_classifier in self.calibrated_classifiers_: proba = calibrated_classifier.predict_proba(X) mean_proba += proba mean_proba /= len(self.calibrated_classifiers_) return mean_proba def predict(self, X): """Predict the target of new samples. Can be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples,) The predicted class. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) return self.classes_[np.argmax(self.predict_proba(X), axis=1)] class _CalibratedClassifier(object): """Probability calibration with isotonic regression or sigmoid. It assumes that base_estimator has already been fit, and trains the calibration on the input set of the fit function. Note that this class should not be used as an estimator directly. Use CalibratedClassifierCV with cv="prefit" instead. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. No default value since it has to be an already fitted estimator. method : 'sigmoid' | 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parameteric approach based on isotonic regression. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator, method='sigmoid'): self.base_estimator = base_estimator self.method = method def _preproc(self, X): n_classes = len(self.classes_) if hasattr(self.base_estimator, "decision_function"): df = self.base_estimator.decision_function(X) if df.ndim == 1: df = df[:, np.newaxis] elif hasattr(self.base_estimator, "predict_proba"): df = self.base_estimator.predict_proba(X) if n_classes == 2: df = df[:, 1:] else: raise RuntimeError('classifier has no decision_function or ' 'predict_proba method.') idx_pos_class = np.arange(df.shape[1]) return df, idx_pos_class def fit(self, X, y, sample_weight=None): """Calibrate the fitted model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ lb = LabelBinarizer() Y = lb.fit_transform(y) self.classes_ = lb.classes_ df, idx_pos_class = self._preproc(X) self.calibrators_ = [] for k, this_df in zip(idx_pos_class, df.T): if self.method == 'isotonic': calibrator = IsotonicRegression(out_of_bounds='clip') elif self.method == 'sigmoid': calibrator = _SigmoidCalibration() else: raise ValueError('method should be "sigmoid" or ' '"isotonic". Got %s.' % self.method) calibrator.fit(this_df, Y[:, k], sample_weight) self.calibrators_.append(calibrator) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. Can be exact zeros. """ n_classes = len(self.classes_) proba = np.zeros((X.shape[0], n_classes)) df, idx_pos_class = self._preproc(X) for k, this_df, calibrator in \ zip(idx_pos_class, df.T, self.calibrators_): if n_classes == 2: k += 1 proba[:, k] = calibrator.predict(this_df) # Normalize the probabilities if n_classes == 2: proba[:, 0] = 1. - proba[:, 1] else: proba /= np.sum(proba, axis=1)[:, np.newaxis] # XXX : for some reason all probas can be 0 proba[np.isnan(proba)] = 1. / n_classes # Deal with cases where the predicted probability minimally exceeds 1.0 proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0 return proba def _sigmoid_calibration(df, y, sample_weight=None): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- df : ndarray, shape (n_samples,) The decision function or predict proba for the samples. y : ndarray, shape (n_samples,) The targets. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ df = column_or_1d(df) y = column_or_1d(y) F = df # F follows Platt's notations tiny = np.finfo(np.float).tiny # to avoid division by 0 warning # Bayesian priors (see Platt end of section 2.2) prior0 = float(np.sum(y <= 0)) prior1 = y.shape[0] - prior0 T = np.zeros(y.shape) T[y > 0] = (prior1 + 1.) / (prior1 + 2.) T[y <= 0] = 1. / (prior0 + 2.) T1 = 1. - T def objective(AB): # From Platt (beginning of Section 2.2) E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) l = -(T * np.log(P + tiny) + T1 * np.log(1. - P + tiny)) if sample_weight is not None: return (sample_weight * l).sum() else: return l.sum() def grad(AB): # gradient of the objective function E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) TEP_minus_T1P = P * (T * E - T1) if sample_weight is not None: TEP_minus_T1P *= sample_weight dA = np.dot(TEP_minus_T1P, F) dB = np.sum(TEP_minus_T1P) return np.array([dA, dB]) AB0 = np.array([0., log((prior0 + 1.) / (prior1 + 1.))]) AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False) return AB_[0], AB_[1] class _SigmoidCalibration(BaseEstimator, RegressorMixin): """Sigmoid regression model. Attributes ---------- a_ : float The slope. b_ : float The intercept. """ def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples,) Training data. y : array-like, shape (n_samples,) Training target. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X = column_or_1d(X) y = column_or_1d(y) X, y = indexable(X, y) self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight) return self def predict(self, T): """Predict new data by linear interpolation. Parameters ---------- T : array-like, shape (n_samples,) Data to predict from. Returns ------- T_ : array, shape (n_samples,) The predicted data. """ T = column_or_1d(T) return 1. / (1. + np.exp(self.a_ * T + self.b_)) def calibration_curve(y_true, y_prob, normalize=False, n_bins=5): """Compute true and predicted probabilities for a calibration curve. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. normalize : bool, optional, default=False Whether y_prob needs to be normalized into the bin [0, 1], i.e. is not a proper probability. If True, the smallest value in y_prob is mapped onto 0 and the largest one onto 1. n_bins : int Number of bins. A bigger number requires more data. Returns ------- prob_true : array, shape (n_bins,) The true probability in each bin (fraction of positives). prob_pred : array, shape (n_bins,) The mean predicted probability in each bin. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) if normalize: # Normalize predicted values into interval [0, 1] y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min()) elif y_prob.min() < 0 or y_prob.max() > 1: raise ValueError("y_prob has values outside [0, 1] and normalize is " "set to False.") y_true = _check_binary_probabilistic_predictions(y_true, y_prob) bins = np.linspace(0., 1. + 1e-8, n_bins + 1) binids = np.digitize(y_prob, bins) - 1 bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins)) bin_true = np.bincount(binids, weights=y_true, minlength=len(bins)) bin_total = np.bincount(binids, minlength=len(bins)) nonzero = bin_total != 0 prob_true = (bin_true[nonzero] / bin_total[nonzero]) prob_pred = (bin_sums[nonzero] / bin_total[nonzero]) return prob_true, prob_pred
bsd-3-clause
ottermegazord/ottermegazord.github.io
sortify-master/seaborn/rcmod.py
3
16173
"""Functions that alter the matplotlib rc dictionary on the fly.""" from distutils.version import LooseVersion import functools import numpy as np import matplotlib as mpl from . import palettes, _orig_rc_params mpl_ge_150 = LooseVersion(mpl.__version__) >= '1.5.0' __all__ = ["set", "reset_defaults", "reset_orig", "axes_style", "set_style", "plotting_context", "set_context", "set_palette"] _style_keys = ( "axes.facecolor", "axes.edgecolor", "axes.grid", "axes.axisbelow", "axes.linewidth", "axes.labelcolor", "figure.facecolor", "grid.color", "grid.linestyle", "text.color", "xtick.color", "ytick.color", "xtick.direction", "ytick.direction", "xtick.major.size", "ytick.major.size", "xtick.minor.size", "ytick.minor.size", "legend.frameon", "legend.numpoints", "legend.scatterpoints", "lines.solid_capstyle", "image.cmap", "font.family", "font.sans-serif", ) _context_keys = ( "figure.figsize", "font.size", "axes.labelsize", "axes.titlesize", "xtick.labelsize", "ytick.labelsize", "legend.fontsize", "grid.linewidth", "lines.linewidth", "patch.linewidth", "lines.markersize", "lines.markeredgewidth", "xtick.major.width", "ytick.major.width", "xtick.minor.width", "ytick.minor.width", "xtick.major.pad", "ytick.major.pad" ) def set(context="notebook", style="darkgrid", palette="deep", font="sans-serif", font_scale=1, color_codes=False, rc=None): """Set aesthetic parameters in one step. Each set of parameters can be set directly or temporarily, see the referenced functions below for more information. Parameters ---------- context : string or dict Plotting context parameters, see :func:`plotting_context` style : string or dict Axes style parameters, see :func:`axes_style` palette : string or sequence Color palette, see :func:`color_palette` font : string Font family, see matplotlib font manager. font_scale : float, optional Separate scaling factor to independently scale the size of the font elements. color_codes : bool If ``True`` and ``palette`` is a seaborn palette, remap the shorthand color codes (e.g. "b", "g", "r", etc.) to the colors from this palette. rc : dict or None Dictionary of rc parameter mappings to override the above. """ set_context(context, font_scale) set_style(style, rc={"font.family": font}) set_palette(palette, color_codes=color_codes) if rc is not None: mpl.rcParams.update(rc) def reset_defaults(): """Restore all RC params to default settings.""" mpl.rcParams.update(mpl.rcParamsDefault) def reset_orig(): """Restore all RC params to original settings (respects custom rc).""" mpl.rcParams.update(_orig_rc_params) def axes_style(style=None, rc=None): """Return a parameter dict for the aesthetic style of the plots. This affects things like the color of the axes, whether a grid is enabled by default, and other aesthetic elements. This function returns an object that can be used in a ``with`` statement to temporarily change the style parameters. Parameters ---------- style : dict, None, or one of {darkgrid, whitegrid, dark, white, ticks} A dictionary of parameters or the name of a preconfigured set. rc : dict, optional Parameter mappings to override the values in the preset seaborn style dictionaries. This only updates parameters that are considered part of the style definition. Examples -------- >>> st = axes_style("whitegrid") >>> set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8}) >>> import matplotlib.pyplot as plt >>> with axes_style("white"): ... f, ax = plt.subplots() ... ax.plot(x, y) # doctest: +SKIP See Also -------- set_style : set the matplotlib parameters for a seaborn theme plotting_context : return a parameter dict to to scale plot elements color_palette : define the color palette for a plot """ if style is None: style_dict = {k: mpl.rcParams[k] for k in _style_keys} elif isinstance(style, dict): style_dict = style else: styles = ["white", "dark", "whitegrid", "darkgrid", "ticks"] if style not in styles: raise ValueError("style must be one of %s" % ", ".join(styles)) # Define colors here dark_gray = ".15" light_gray = ".8" # Common parameters style_dict = { "figure.facecolor": "white", "text.color": dark_gray, "axes.labelcolor": dark_gray, "legend.frameon": False, "legend.numpoints": 1, "legend.scatterpoints": 1, "xtick.direction": "out", "ytick.direction": "out", "xtick.color": dark_gray, "ytick.color": dark_gray, "axes.axisbelow": True, "image.cmap": "Greys", "font.family": ["sans-serif"], "font.sans-serif": ["Arial", "Liberation Sans", "Bitstream Vera Sans", "sans-serif"], "grid.linestyle": "-", "lines.solid_capstyle": "round", } # Set grid on or off if "grid" in style: style_dict.update({ "axes.grid": True, }) else: style_dict.update({ "axes.grid": False, }) # Set the color of the background, spines, and grids if style.startswith("dark"): style_dict.update({ "axes.facecolor": "#EAEAF2", "axes.edgecolor": "white", "axes.linewidth": 0, "grid.color": "white", }) elif style == "whitegrid": style_dict.update({ "axes.facecolor": "white", "axes.edgecolor": light_gray, "axes.linewidth": 1, "grid.color": light_gray, }) elif style in ["white", "ticks"]: style_dict.update({ "axes.facecolor": "white", "axes.edgecolor": dark_gray, "axes.linewidth": 1.25, "grid.color": light_gray, }) # Show or hide the axes ticks if style == "ticks": style_dict.update({ "xtick.major.size": 6, "ytick.major.size": 6, "xtick.minor.size": 3, "ytick.minor.size": 3, }) else: style_dict.update({ "xtick.major.size": 0, "ytick.major.size": 0, "xtick.minor.size": 0, "ytick.minor.size": 0, }) # Override these settings with the provided rc dictionary if rc is not None: rc = {k: v for k, v in rc.items() if k in _style_keys} style_dict.update(rc) # Wrap in an _AxesStyle object so this can be used in a with statement style_object = _AxesStyle(style_dict) return style_object def set_style(style=None, rc=None): """Set the aesthetic style of the plots. This affects things like the color of the axes, whether a grid is enabled by default, and other aesthetic elements. Parameters ---------- style : dict, None, or one of {darkgrid, whitegrid, dark, white, ticks} A dictionary of parameters or the name of a preconfigured set. rc : dict, optional Parameter mappings to override the values in the preset seaborn style dictionaries. This only updates parameters that are considered part of the style definition. Examples -------- >>> set_style("whitegrid") >>> set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8}) See Also -------- axes_style : return a dict of parameters or use in a ``with`` statement to temporarily set the style. set_context : set parameters to scale plot elements set_palette : set the default color palette for figures """ style_object = axes_style(style, rc) mpl.rcParams.update(style_object) def plotting_context(context=None, font_scale=1, rc=None): """Return a parameter dict to scale elements of the figure. This affects things like the size of the labels, lines, and other elements of the plot, but not the overall style. The base context is "notebook", and the other contexts are "paper", "talk", and "poster", which are version of the notebook parameters scaled by .8, 1.3, and 1.6, respectively. This function returns an object that can be used in a ``with`` statement to temporarily change the context parameters. Parameters ---------- context : dict, None, or one of {paper, notebook, talk, poster} A dictionary of parameters or the name of a preconfigured set. font_scale : float, optional Separate scaling factor to independently scale the size of the font elements. rc : dict, optional Parameter mappings to override the values in the preset seaborn context dictionaries. This only updates parameters that are considered part of the context definition. Examples -------- >>> c = plotting_context("poster") >>> c = plotting_context("notebook", font_scale=1.5) >>> c = plotting_context("talk", rc={"lines.linewidth": 2}) >>> import matplotlib.pyplot as plt >>> with plotting_context("paper"): ... f, ax = plt.subplots() ... ax.plot(x, y) # doctest: +SKIP See Also -------- set_context : set the matplotlib parameters to scale plot elements axes_style : return a dict of parameters defining a figure style color_palette : define the color palette for a plot """ if context is None: context_dict = {k: mpl.rcParams[k] for k in _context_keys} elif isinstance(context, dict): context_dict = context else: contexts = ["paper", "notebook", "talk", "poster"] if context not in contexts: raise ValueError("context must be in %s" % ", ".join(contexts)) # Set up dictionary of default parameters base_context = { "figure.figsize": np.array([8, 5.5]), "font.size": 12, "axes.labelsize": 11, "axes.titlesize": 12, "xtick.labelsize": 10, "ytick.labelsize": 10, "legend.fontsize": 10, "grid.linewidth": 1, "lines.linewidth": 1.75, "patch.linewidth": .3, "lines.markersize": 7, "lines.markeredgewidth": 0, "xtick.major.width": 1, "ytick.major.width": 1, "xtick.minor.width": .5, "ytick.minor.width": .5, "xtick.major.pad": 7, "ytick.major.pad": 7, } # Scale all the parameters by the same factor depending on the context scaling = dict(paper=.8, notebook=1, talk=1.3, poster=1.6)[context] context_dict = {k: v * scaling for k, v in base_context.items()} # Now independently scale the fonts font_keys = ["axes.labelsize", "axes.titlesize", "legend.fontsize", "xtick.labelsize", "ytick.labelsize", "font.size"] font_dict = {k: context_dict[k] * font_scale for k in font_keys} context_dict.update(font_dict) # Implement hack workaround for matplotlib bug # See https://github.com/mwaskom/seaborn/issues/344 # There is a bug in matplotlib 1.4.2 that makes points invisible when # they don't have an edgewidth. It will supposedly be fixed in 1.4.3. if mpl.__version__ == "1.4.2": context_dict["lines.markeredgewidth"] = 0.01 # Override these settings with the provided rc dictionary if rc is not None: rc = {k: v for k, v in rc.items() if k in _context_keys} context_dict.update(rc) # Wrap in a _PlottingContext object so this can be used in a with statement context_object = _PlottingContext(context_dict) return context_object def set_context(context=None, font_scale=1, rc=None): """Set the plotting context parameters. This affects things like the size of the labels, lines, and other elements of the plot, but not the overall style. The base context is "notebook", and the other contexts are "paper", "talk", and "poster", which are version of the notebook parameters scaled by .8, 1.3, and 1.6, respectively. Parameters ---------- context : dict, None, or one of {paper, notebook, talk, poster} A dictionary of parameters or the name of a preconfigured set. font_scale : float, optional Separate scaling factor to independently scale the size of the font elements. rc : dict, optional Parameter mappings to override the values in the preset seaborn context dictionaries. This only updates parameters that are considered part of the context definition. Examples -------- >>> set_context("paper") >>> set_context("talk", font_scale=1.4) >>> set_context("talk", rc={"lines.linewidth": 2}) See Also -------- plotting_context : return a dictionary of rc parameters, or use in a ``with`` statement to temporarily set the context. set_style : set the default parameters for figure style set_palette : set the default color palette for figures """ context_object = plotting_context(context, font_scale, rc) mpl.rcParams.update(context_object) class _RCAesthetics(dict): def __enter__(self): rc = mpl.rcParams self._orig = {k: rc[k] for k in self._keys} self._set(self) def __exit__(self, exc_type, exc_value, exc_tb): self._set(self._orig) def __call__(self, func): @functools.wraps(func) def wrapper(*args, **kwargs): with self: return func(*args, **kwargs) return wrapper class _AxesStyle(_RCAesthetics): """Light wrapper on a dict to set style temporarily.""" _keys = _style_keys _set = staticmethod(set_style) class _PlottingContext(_RCAesthetics): """Light wrapper on a dict to set context temporarily.""" _keys = _context_keys _set = staticmethod(set_context) def set_palette(palette, n_colors=None, desat=None, color_codes=False): """Set the matplotlib color cycle using a seaborn palette. Parameters ---------- palette : hls | husl | matplotlib colormap | seaborn color palette Palette definition. Should be something that :func:`color_palette` can process. n_colors : int Number of colors in the cycle. The default number of colors will depend on the format of ``palette``, see the :func:`color_palette` documentation for more information. desat : float Proportion to desaturate each color by. color_codes : bool If ``True`` and ``palette`` is a seaborn palette, remap the shorthand color codes (e.g. "b", "g", "r", etc.) to the colors from this palette. Examples -------- >>> set_palette("Reds") >>> set_palette("Set1", 8, .75) See Also -------- color_palette : build a color palette or set the color cycle temporarily in a ``with`` statement. set_context : set parameters to scale plot elements set_style : set the default parameters for figure style """ colors = palettes.color_palette(palette, n_colors, desat) if mpl_ge_150: from cycler import cycler cyl = cycler('color', colors) mpl.rcParams['axes.prop_cycle'] = cyl else: mpl.rcParams["axes.color_cycle"] = list(colors) mpl.rcParams["patch.facecolor"] = colors[0] if color_codes: palettes.set_color_codes(palette)
mit
wdurhamh/statsmodels
statsmodels/examples/tsa/ex_var.py
33
1280
from __future__ import print_function import numpy as np import statsmodels.api as sm from statsmodels.tsa.api import VAR # some example data mdata = sm.datasets.macrodata.load().data mdata = mdata[['realgdp','realcons','realinv']] names = mdata.dtype.names data = mdata.view((float,3)) use_growthrate = False #True #False if use_growthrate: data = 100 * 4 * np.diff(np.log(data), axis=0) model = VAR(data, names=names) res = model.fit(4) nobs_all = data.shape[0] #in-sample 1-step ahead forecasts fc_in = np.array([np.squeeze(res.forecast(model.y[t-20:t], 1)) for t in range(nobs_all-6,nobs_all)]) print(fc_in - res.fittedvalues[-6:]) #out-of-sample 1-step ahead forecasts fc_out = np.array([np.squeeze(VAR(data[:t]).fit(2).forecast(data[t-20:t], 1)) for t in range(nobs_all-6,nobs_all)]) print(fc_out - data[nobs_all-6:nobs_all]) print(fc_out - res.fittedvalues[-6:]) #out-of-sample h-step ahead forecasts h = 2 fc_out = np.array([VAR(data[:t]).fit(2).forecast(data[t-20:t], h)[-1] for t in range(nobs_all-6-h+1,nobs_all-h+1)]) print(fc_out - data[nobs_all-6:nobs_all]) #out-of-sample forecast error print(fc_out - res.fittedvalues[-6:]) import matplotlib.pyplot as plt res.plot_forecast(20) #plt.show()
bsd-3-clause
QInfer/python-qinfer
doc/source/conf.py
3
12884
# -*- coding: utf-8 -*- # # QInfer documentation build configuration file, created by # sphinx-quickstart on Tue Aug 14 21:12:57 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # Monkey patch in a field type for columns. # try: from sphinx.util.docfields import Field, GroupedField, TypedField from sphinx.domains.python import PythonDomain, PyObject, l_, PyField, PyTypedField PyObject.doc_field_types += [ GroupedField('modelparam', label='Model Parameters', names=('modelparam', ), can_collapse=True, rolename='math' ), PyTypedField('expparam', label=l_('Experiment Parameters'), names=('expparam', ), can_collapse=False, rolename='obj' ), PyField('scalar-expparam', label=l_('Experiment Parameter'), names=('scalar-expparam', ), has_arg=True, rolename='obj' ), GroupedField('columns', label=l_('Columns'), names=('column', ), can_collapse=True), ] # except: # pass ############################################################################### import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../../src')) # The LaTeX preamble is placed here so that it can be used both by pngmath # and by the LaTeX output plugin. with open('abstract.txt', 'r') as f: abstract = f.read() preamble = r""" \usepackage{amsfonts} \usepackage{bbm} \usepackage[bold]{hhtensor} \newcommand{\T}{\mathrm{T}} \newcommand{\Tr}{\mathrm{Tr}} \newcommand{\ident}{\mathbbm{1}} \newcommand{\ave}{\mathrm{ave}} \newcommand{\ii}{\mathrm{i}} \newcommand{\expect}{\mathbb{E}} \usepackage{braket} \makeatletter \renewcommand{\maketitle}{% \begin{titlepage}% \let\footnotesize\small \let\footnoterule\relax \rule{\textwidth}{1pt}% \begingroup % These \defs are required to deal with multi-line authors; it % changes \\ to ', ' (comma-space), making it pass muster for % generating document info in the PDF file. \def\\{, } \def\and{and } \pdfinfo{ /Author (\@author) /Title (\@title) } \endgroup \begin{flushright}% \sphinxlogo% {\rm\Huge\py@HeaderFamily \@title \par}% % {\em\LARGE\py@HeaderFamily \py@release\releaseinfo \par} \vfill {\LARGE\py@HeaderFamily \begin{tabular}[t]{c} \@author \end{tabular} \par} \vfill {\large \@date \par \vfill \py@authoraddress \par }% {\bf\sffamily ABSTRACT } ABSTRACT_HERE% \vfill \end{flushright}%\par \@thanks \end{titlepage}% %\cleardoublepage% \setcounter{footnote}{0}% \let\thanks\relax\let\maketitle\relax %\gdef\@thanks{}\gdef\@author{}\gdef\@title{} } \makeatother """.replace("ABSTRACT_HERE", abstract) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.viewcode', 'sphinx.ext.mathjax', 'sphinx.ext.extlinks', 'matplotlib.sphinxext.only_directives', 'matplotlib.sphinxext.plot_directive' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'QInfer' copyright = u'2012, Christopher Ferrie and Christopher Granade' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.0' # The full version, including alpha/beta/rc tags. release = '1.0b4' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. default_role = "obj" # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['qinfer'] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'QInferdoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'QInfer.tex', u'QInfer: Bayesian Inference for Quantum Information', u'Christopher Granade and Christopher Ferrie', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Additional stuff for the LaTeX preamble. latex_preamble = preamble # In Sphinx 1.5, this now appears as latex_elements, so we pack the # preamble that way, too. latex_elements = { 'preamble': preamble } # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False # latex_elements = { # 'maketitle': r""" # \begin{abstract} # Lorem ipsum # \end{abstract} # \maketitle # """ # } # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'qinfer', u'QInfer Documentation', [u'Christopher Ferrie and Christopher Granade'], 1) ] # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'QInfer' epub_author = u'Christopher Ferrie and Christopher Granade' epub_publisher = u'Christopher Ferrie and Christopher Granade' epub_copyright = u'2012, Christopher Ferrie and Christopher Granade' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True ## EXTLINKS CONFIGURATION ###################################################### extlinks = { 'arxiv': ('http://arxiv.org/abs/%s', 'arXiv:'), 'doi': ('https://dx.doi.org/%s', 'doi:'), 'example_nb': ('https://nbviewer.jupyter.org/github/qinfer/qinfer-examples/blob/master/%s.ipynb', ''), 'hdl': ('https://hdl.handle.net/%s', 'hdl:') } ## OTHER CONFIGURATION PARAMETERS ############################################## plot_pre_code = """ import numpy as np from qinfer import * import matplotlib.pyplot as plt try: plt.style.use('ggplot') except: pass """ plot_include_source = True plot_formats = [ 'svg', 'pdf', ('hires.png', 250), ('png', 125) ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'https://docs.python.org/3/': None, 'numpy': ('https://docs.scipy.org/doc/numpy',None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference',None), 'IPython': ('https://ipython.org/ipython-doc/stable/', None), 'ipyparallel': ('https://ipyparallel.readthedocs.io/en/latest/', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable/', None), # NB: change this to 3.2.0 when that is released, as we will need random object # support from that version. 'qutip': ('http://qutip.org/docs/3.1.0/', None) } autodoc_member_order = 'bysource' autodoc_default_flags = ['show-inheritance', 'undoc-members'] pngmath_latex_preamble = preamble doctest_global_setup = ''' from __future__ import division, print_function import numpy as np '''
bsd-3-clause
soundcloud/essentia
src/examples/tutorial/essentia_tutorial.py
10
6577
# Copyright (C) 2006-2013 Music Technology Group - Universitat Pompeu Fabra # # This file is part of Essentia # # Essentia is free software: you can redistribute it and/or modify it under # the terms of the GNU Affero General Public License as published by the Free # Software Foundation (FSF), either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the Affero GNU General Public License # version 3 along with this program. If not, see http://www.gnu.org/licenses/ """Demo of Essentia 'standard' mode. This first demo will show how to use Essentia in standard mode. This will require a little bit of knowledge of python (not that much!) and will look like an interactive session in matlab. We will have a look at some basic functionality: - how to load an audio - how to perform some numerical operations, such as FFT et al. - how to plot results - how to output results to a file To run this demo interactively, open IPython and type in the following commands: from IPython.lib.demo import Demo essentia_demo = Demo('essentia_tutorial.py') Type command essentia_demo() to show and execute each block of the demo. Each block of code will be printed to the screen before it is run. This is another nifty feature of the IPython interpreter. As we go along the demo, we will also be looking at a few IPython features that make your life easier. So, let's start! """ # <demo> --- stop --- # first, we need to import our essentia module. It is aptly named 'essentia'! import essentia # as there are 2 operating modes in essentia which have the same algorithms, # these latter are dispatched into 2 submodules: import essentia.standard import essentia.streaming # let's have a look at what's in there print dir(essentia.standard) # <demo> --- stop --- # let's define a small utility function def play(audiofile): import os, sys # NB: this only works with linux!! mplayer rocks! if sys.platform == 'linux2': os.system('mplayer %s' % audiofile) else: print 'Not playing audio...' # So, first things first, let's load an audio # to make sure it's not a trick, let's show the original "audio" to you: play('../../../test/audio/recorded/dubstep.wav') # <demo> --- stop --- # Essentia has a selection of audio loaders: # # - AudioLoader: the basic one, returns the audio samples, sampling rate and number of channels # - MonoLoader: which returns audio, down-mixed and resampled to a given sampling rate # - EasyLoader: a MonoLoader which can optionally trim start/end slices and rescale according # to a ReplayGain value # - EqloudLoader: an EasyLoader that applies an equal-loudness filtering on the audio # # we start by instantiating the audio loader: loader = essentia.standard.MonoLoader(filename = '../../../test/audio/recorded/dubstep.wav') # and then we actually perform the loading: audio = loader() # <demo> --- stop --- # OK, let's make sure the loading process actually worked from pylab import * plot(audio[1*44100:2*44100]) show() # <demo> --- stop --- # So, let's get down to business: # Let's say we want to analyze the audio frame by frame, and we want to compute # the MFCC for each frame. We will need the following algorithms: # Windowing, FFT, MFCC from essentia.standard import * w = Windowing(type = 'hann') spectrum = Spectrum() # FFT() would give the complex FFT, here we just want the magnitude spectrum mfcc = MFCC() help(MFCC) # <demo> --- stop --- # once algorithms have been instantiated, they work like functions: frame = audio[5*44100 : 5*44100 + 1024] spec = spectrum(w(frame)) plot(spec) show() # <demo> --- stop --- # let's try to compute the MFCCs for all the frames in the audio: mfccs = [] frameSize = 1024 hopSize = 512 for fstart in range(0, len(audio)-frameSize, hopSize): frame = audio[fstart:fstart+frameSize] mfcc_bands, mfcc_coeffs = mfcc(spectrum(w(frame))) mfccs.append(mfcc_coeffs) # and plot them... # as this is a 2D array, we need to use imshow() instead of plot() imshow(mfccs, aspect = 'auto') show() # <demo> --- stop --- # and let's do it in a more essentia-like way: mfccs = [] for frame in FrameGenerator(audio, frameSize = 1024, hopSize = 512): mfcc_bands, mfcc_coeffs = mfcc(spectrum(w(frame))) mfccs.append(mfcc_coeffs) # transpose to have it in a better shape mfccs = essentia.array(mfccs).T imshow(mfccs[1:,:], aspect = 'auto') show() # <demo> --- stop --- # Introducing the Pool: a good-for-all container # # A Pool can contain any type of values (easy in Python, not as much in C++ :-) ) # They need to be given a name, which represent the full path to these values; # dot '.' characters are used as separators. You can think of it as a directory # tree, or as namespace(s) + local name. # # Examples of valid names are: bpm, lowlevel.mfcc, highlevel.genre.rock.probability, etc... # So let's redo the previous using a Pool pool = essentia.Pool() for frame in FrameGenerator(audio, frameSize = 1024, hopSize = 512): mfcc_bands, mfcc_coeffs = mfcc(spectrum(w(frame))) pool.add('lowlevel.mfcc', mfcc_coeffs) pool.add('lowlevel.mfcc_bands', mfcc_bands) imshow(pool['lowlevel.mfcc'].T[1:,:], aspect = 'auto') figure() # Let's plot mfcc bands on a log-scale so that the energy values will be better # differentiated by color from matplotlib.colors import LogNorm imshow(pool['lowlevel.mfcc_bands'].T, aspect = 'auto', interpolation = 'nearest', norm = LogNorm()) show() # <demo> --- stop --- # In essentia there is mostly 1 way to output your data in a file: the YamlOutput # although, as all of this is done in python, it should be pretty easy to output to # any type of data format. output = YamlOutput(filename = 'mfcc.sig') output(pool) # <demo> --- stop --- # Say we're not interested in all the MFCC frames, but just their mean & variance. # To this end, we have the PoolAggregator algorithm, that can do all sorts of # aggregation: mean, variance, min, max, etc... aggrPool = PoolAggregator(defaultStats = [ 'mean', 'var' ])(pool) print 'Original pool descriptor names:' print pool.descriptorNames() print print 'Aggregated pool descriptor names:' print aggrPool.descriptorNames() output = YamlOutput(filename = 'mfccaggr.sig') output(aggrPool)
agpl-3.0
zaxtax/scikit-learn
sklearn/preprocessing/tests/test_label.py
12
17807
import numpy as np from scipy.sparse import issparse from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.multiclass import type_of_target from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.preprocessing.label import LabelBinarizer from sklearn.preprocessing.label import MultiLabelBinarizer from sklearn.preprocessing.label import LabelEncoder from sklearn.preprocessing.label import label_binarize from sklearn.preprocessing.label import _inverse_binarize_thresholding from sklearn.preprocessing.label import _inverse_binarize_multiclass from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_label_binarizer(): lb = LabelBinarizer() # one-class case defaults to negative label inp = ["pos", "pos", "pos", "pos"] expected = np.array([[0, 0, 0, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) # two-class case inp = ["neg", "pos", "pos", "neg"] expected = np.array([[0, 1, 1, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["neg", "pos"]) assert_array_equal(expected, got) to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) assert_array_equal(lb.inverse_transform(to_invert), inp) # multi-class case inp = ["spam", "ham", "eggs", "ham", "0"] expected = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]) got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam']) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) def test_label_binarizer_unseen_labels(): lb = LabelBinarizer() expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) got = lb.fit_transform(['b', 'd', 'e']) assert_array_equal(expected, got) expected = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f']) assert_array_equal(expected, got) def test_label_binarizer_set_label_encoding(): lb = LabelBinarizer(neg_label=-2, pos_label=0) # two-class case with pos_label=0 inp = np.array([0, 1, 1, 0]) expected = np.array([[-2, 0, 0, -2]]).T got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) lb = LabelBinarizer(neg_label=-2, pos_label=2) # multi-class case inp = np.array([3, 2, 1, 2, 0]) expected = np.array([[-2, -2, -2, +2], [-2, -2, +2, -2], [-2, +2, -2, -2], [-2, -2, +2, -2], [+2, -2, -2, -2]]) got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) @ignore_warnings def test_label_binarizer_errors(): # Check that invalid arguments yield ValueError one_class = np.array([0, 0, 0, 0]) lb = LabelBinarizer().fit(one_class) multi_label = [(2, 3), (0,), (0, 2)] assert_raises(ValueError, lb.transform, multi_label) lb = LabelBinarizer() assert_raises(ValueError, lb.transform, []) assert_raises(ValueError, lb.inverse_transform, []) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=1) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=2) assert_raises(ValueError, LabelBinarizer, neg_label=1, pos_label=2, sparse_output=True) # Fail on y_type assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2], threshold=0) # Sequence of seq type should raise ValueError y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] assert_raises(ValueError, LabelBinarizer().fit_transform, y_seq_of_seqs) # Fail on the number of classes assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2, 3], threshold=0) # Fail on the dimension of 'binary' assert_raises(ValueError, _inverse_binarize_thresholding, y=np.array([[1, 2, 3], [2, 1, 3]]), output_type="binary", classes=[1, 2, 3], threshold=0) # Fail on multioutput data assert_raises(ValueError, LabelBinarizer().fit, np.array([[1, 3], [2, 1]])) assert_raises(ValueError, label_binarize, np.array([[1, 3], [2, 1]]), [1, 2, 3]) def test_label_encoder(): # Test LabelEncoder's transform and inverse_transform methods le = LabelEncoder() le.fit([1, 1, 4, 5, -1, 0]) assert_array_equal(le.classes_, [-1, 0, 1, 4, 5]) assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0]) assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]) assert_raises(ValueError, le.transform, [0, 6]) le.fit(["apple", "orange"]) msg = "bad input shape" assert_raise_message(ValueError, msg, le.transform, "apple") def test_label_encoder_fit_transform(): # Test fit_transform le = LabelEncoder() ret = le.fit_transform([1, 1, 4, 5, -1, 0]) assert_array_equal(ret, [2, 2, 3, 4, 0, 1]) le = LabelEncoder() ret = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"]) assert_array_equal(ret, [1, 1, 2, 0]) def test_label_encoder_errors(): # Check that invalid arguments yield ValueError le = LabelEncoder() assert_raises(ValueError, le.transform, []) assert_raises(ValueError, le.inverse_transform, []) # Fail on unseen labels le = LabelEncoder() le.fit([1, 2, 3, 1, -1]) assert_raises(ValueError, le.inverse_transform, [-1]) def test_sparse_output_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for sparse_output in [True, False]: for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit_transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit(inp()).transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) assert_raises(ValueError, mlb.inverse_transform, csr_matrix(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]]))) def test_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer() got = mlb.fit_transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer() got = mlb.fit(inp()).transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) def test_multilabel_binarizer_empty_sample(): mlb = MultiLabelBinarizer() y = [[1, 2], [1], []] Y = np.array([[1, 1], [1, 0], [0, 0]]) assert_array_equal(mlb.fit_transform(y), Y) def test_multilabel_binarizer_unknown_class(): mlb = MultiLabelBinarizer() y = [[1, 2]] assert_raises(KeyError, mlb.fit(y).transform, [[0]]) mlb = MultiLabelBinarizer(classes=[1, 2]) assert_raises(KeyError, mlb.fit_transform, [[0]]) def test_multilabel_binarizer_given_classes(): inp = [(2, 3), (1,), (1, 2)] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # fit().transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # ensure works with extra class mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))) assert_array_equal(mlb.classes_, [4, 1, 3, 2]) # ensure fit is no-op as iterable is not consumed inp = iter(inp) mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) def test_multilabel_binarizer_same_length_sequence(): # Ensure sequences of the same length are not interpreted as a 2-d array inp = [[1], [0], [2]] indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) def test_multilabel_binarizer_non_integer_labels(): tuple_classes = np.empty(3, dtype=object) tuple_classes[:] = [(1,), (2,), (3,)] inputs = [ ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']), ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']), ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) for inp, classes in inputs: # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) mlb = MultiLabelBinarizer() assert_raises(TypeError, mlb.fit_transform, [({}), ({}, {'a': 'b'})]) def test_multilabel_binarizer_non_unique(): inp = [(1, 1, 1, 0)] indicator_mat = np.array([[1, 1]]) mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) def test_multilabel_binarizer_inverse_validation(): inp = [(1, 1, 1, 0)] mlb = MultiLabelBinarizer() mlb.fit_transform(inp) # Not binary assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 3]])) # The following binary cases are fine, however mlb.inverse_transform(np.array([[0, 0]])) mlb.inverse_transform(np.array([[1, 1]])) mlb.inverse_transform(np.array([[1, 0]])) # Wrong shape assert_raises(ValueError, mlb.inverse_transform, np.array([[1]])) assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 1, 1]])) def test_label_binarize_with_class_order(): out = label_binarize([1, 6], classes=[1, 2, 4, 6]) expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]]) assert_array_equal(out, expected) # Modified class order out = label_binarize([1, 6], classes=[1, 6, 4, 2]) expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) assert_array_equal(out, expected) out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1]) expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]]) assert_array_equal(out, expected) def check_binarized_results(y, classes, pos_label, neg_label, expected): for sparse_output in [True, False]: if ((pos_label == 0 or neg_label != 0) and sparse_output): assert_raises(ValueError, label_binarize, y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) continue # check label_binarize binarized = label_binarize(y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) # check inverse y_type = type_of_target(y) if y_type == "multiclass": inversed = _inverse_binarize_multiclass(binarized, classes=classes) else: inversed = _inverse_binarize_thresholding(binarized, output_type=y_type, classes=classes, threshold=((neg_label + pos_label) / 2.)) assert_array_equal(toarray(inversed), toarray(y)) # Check label binarizer lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) binarized = lb.fit_transform(y) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) inverse_output = lb.inverse_transform(binarized) assert_array_equal(toarray(inverse_output), toarray(y)) assert_equal(issparse(inverse_output), issparse(y)) def test_label_binarize_binary(): y = [0, 1, 0] classes = [0, 1] pos_label = 2 neg_label = -1 expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected # Binary case where sparse_output = True will not result in a ValueError y = [0, 1, 0] classes = [0, 1] pos_label = 3 neg_label = 0 expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected def test_label_binarize_multiclass(): y = [0, 1, 2] classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = 2 * np.eye(3) yield check_binarized_results, y, classes, pos_label, neg_label, expected assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_label_binarize_multilabel(): y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]]) classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = pos_label * y_ind y_sparse = [sparse_matrix(y_ind) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for y in [y_ind] + y_sparse: yield (check_binarized_results, y, classes, pos_label, neg_label, expected) assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_invalid_input_label_binarize(): assert_raises(ValueError, label_binarize, [0, 2], classes=[0, 2], pos_label=0, neg_label=1) def test_inverse_binarize_multiclass(): got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)) assert_array_equal(got, np.array([1, 1, 0]))
bsd-3-clause
kernc/scikit-learn
benchmarks/bench_plot_ward.py
290
1260
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import pylab as pl from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time pl.figure("scikit-learn Ward's method benchmark results") pl.imshow(np.log(ratio), aspect='auto', origin="lower") pl.colorbar() pl.contour(ratio, levels=[1, ], colors='k') pl.yticks(range(len(n_features)), n_features.astype(np.int)) pl.ylabel('N features') pl.xticks(range(len(n_samples)), n_samples.astype(np.int)) pl.xlabel('N samples') pl.title("Scikit's time, in units of scipy time (log)") pl.show()
bsd-3-clause
laurentgo/arrow
dev/archery/archery/lang/python.py
3
7570
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import inspect import tokenize from contextlib import contextmanager try: from numpydoc.validate import Docstring, validate except ImportError: have_numpydoc = False else: have_numpydoc = True from ..utils.command import Command, capture_stdout, default_bin class Flake8(Command): def __init__(self, flake8_bin=None): self.bin = default_bin(flake8_bin, "flake8") class Autopep8(Command): def __init__(self, autopep8_bin=None): self.bin = default_bin(autopep8_bin, "autopep8") @capture_stdout() def run_captured(self, *args, **kwargs): return self.run(*args, **kwargs) def _tokenize_signature(s): lines = s.encode('ascii').splitlines() generator = iter(lines).__next__ return tokenize.tokenize(generator) def _convert_typehint(tokens): names = [] opening_bracket_reached = False for token in tokens: # omit the tokens before the opening bracket if not opening_bracket_reached: if token.string == '(': opening_bracket_reached = True else: continue if token.type == 1: # type 1 means NAME token names.append(token) else: if len(names) == 1: yield (names[0].type, names[0].string) elif len(names) == 2: # two "NAME" tokens follow each other which means a cython # typehint like `bool argument`, so remove the typehint # note that we could convert it to python typehints, but hints # are not supported by _signature_fromstr yield (names[1].type, names[1].string) elif len(names) > 2: raise ValueError('More than two NAME tokens follow each other') names = [] yield (token.type, token.string) def inspect_signature(obj): """ Custom signature inspection primarily for cython generated callables. Cython puts the signatures to the first line of the docstrings, which we can reuse to parse the python signature from, but some gymnastics are required, like removing the cython typehints. It converts the cython signature: array(obj, type=None, mask=None, size=None, from_pandas=None, bool safe=True, MemoryPool memory_pool=None) To: <Signature (obj, type=None, mask=None, size=None, from_pandas=None, safe=True, memory_pool=None)> """ cython_signature = obj.__doc__.splitlines()[0] cython_tokens = _tokenize_signature(cython_signature) python_tokens = _convert_typehint(cython_tokens) python_signature = tokenize.untokenize(python_tokens) return inspect._signature_fromstr(inspect.Signature, obj, python_signature) class NumpyDoc: def __init__(self, symbols=None): if not have_numpydoc: raise RuntimeError( 'Numpydoc is not available, install the development version ' 'with command: pip install ' 'git+https://github.com/numpy/numpydoc' ) self.symbols = set(symbols or {'pyarrow'}) def traverse(self, fn, obj, from_package): """Apply a function on publicly exposed API components. Recursively iterates over the members of the passed object. It omits any '_' prefixed and thirdparty (non pyarrow) symbols. Parameters ---------- obj : Any from_package : string, default 'pyarrow' Predicate to only consider objects from this package. """ todo = [obj] seen = set() while todo: obj = todo.pop() if obj in seen: continue else: seen.add(obj) fn(obj) for name in dir(obj): if name.startswith('_'): continue member = getattr(obj, name) module = getattr(member, '__module__', None) if not (module and module.startswith(from_package)): continue todo.append(member) @contextmanager def _apply_patches(self): """ Patch Docstring class to bypass loading already loaded python objects. """ orig_load_obj = Docstring._load_obj orig_signature = inspect.signature @staticmethod def _load_obj(obj): # By default it expects a qualname and import the object, but we # have already loaded object after the API traversal. if isinstance(obj, str): return orig_load_obj(obj) else: return obj def signature(obj): # inspect.signature tries to parse __text_signature__ if other # properties like __signature__ doesn't exists, but cython # doesn't set that property despite that embedsignature cython # directive is set. The only way to inspect a cython compiled # callable's signature to parse it from __doc__ while # embedsignature directive is set during the build phase. # So path inspect.signature function to attempt to parse the first # line of callable.__doc__ as a signature. try: return orig_signature(obj) except Exception as orig_error: try: return inspect_signature(obj) except Exception: raise orig_error try: Docstring._load_obj = _load_obj inspect.signature = signature yield finally: Docstring._load_obj = orig_load_obj inspect.signature = orig_signature def validate(self, from_package='', allow_rules=None, disallow_rules=None): results = [] def callback(obj): result = validate(obj) errors = [] for errcode, errmsg in result.get('errors', []): if allow_rules and errcode not in allow_rules: continue if disallow_rules and errcode in disallow_rules: continue errors.append((errcode, errmsg)) if len(errors): result['errors'] = errors results.append((obj, result)) with self._apply_patches(): for symbol in self.symbols: try: obj = Docstring._load_obj(symbol) except (ImportError, AttributeError): print('{} is not available for import'.format(symbol)) else: self.traverse(callback, obj, from_package=from_package) return results
apache-2.0
chetan51/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/bezier.py
70
14387
""" A module providing some utility functions regarding bezier path manipulation. """ import numpy as np from math import sqrt from matplotlib.path import Path from operator import xor # some functions def get_intersection(cx1, cy1, cos_t1, sin_t1, cx2, cy2, cos_t2, sin_t2): """ return a intersecting point between a line through (cx1, cy1) and having angle t1 and a line through (cx2, cy2) and angle t2. """ # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0. # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1 line1_rhs = sin_t1 * cx1 - cos_t1 * cy1 line2_rhs = sin_t2 * cx2 - cos_t2 * cy2 # rhs matrix a, b = sin_t1, -cos_t1 c, d = sin_t2, -cos_t2 ad_bc = a*d-b*c if ad_bc == 0.: raise ValueError("Given lines do not intersect") #rhs_inverse a_, b_ = d, -b c_, d_ = -c, a a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]] x = a_* line1_rhs + b_ * line2_rhs y = c_* line1_rhs + d_ * line2_rhs return x, y def get_normal_points(cx, cy, cos_t, sin_t, length): """ For a line passing through (*cx*, *cy*) and having a angle *t*, return locations of the two points located along its perpendicular line at the distance of *length*. """ if length == 0.: return cx, cy, cx, cy cos_t1, sin_t1 = sin_t, -cos_t cos_t2, sin_t2 = -sin_t, cos_t x1, y1 = length*cos_t1 + cx, length*sin_t1 + cy x2, y2 = length*cos_t2 + cx, length*sin_t2 + cy return x1, y1, x2, y2 ## BEZIER routines # subdividing bezier curve # http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html def _de_casteljau1(beta, t): next_beta = beta[:-1] * (1-t) + beta[1:] * t return next_beta def split_de_casteljau(beta, t): """split a bezier segment defined by its controlpoints *beta* into two separate segment divided at *t* and return their control points. """ beta = np.asarray(beta) beta_list = [beta] while True: beta = _de_casteljau1(beta, t) beta_list.append(beta) if len(beta) == 1: break left_beta = [beta[0] for beta in beta_list] right_beta = [beta[-1] for beta in reversed(beta_list)] return left_beta, right_beta def find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, t0=0., t1=1., tolerence=0.01): """ Find a parameter t0 and t1 of the given bezier path which bounds the intersecting points with a provided closed path(*inside_closedpath*). Search starts from *t0* and *t1* and it uses a simple bisecting algorithm therefore one of the end point must be inside the path while the orther doesn't. The search stop when |t0-t1| gets smaller than the given tolerence. value for - bezier_point_at_t : a function which returns x, y coordinates at *t* - inside_closedpath : return True if the point is insed the path """ # inside_closedpath : function start = bezier_point_at_t(t0) end = bezier_point_at_t(t1) start_inside = inside_closedpath(start) end_inside = inside_closedpath(end) if not xor(start_inside, end_inside): raise ValueError("the segment does not seemed to intersect with the path") while 1: # return if the distance is smaller than the tolerence if (start[0]-end[0])**2 + (start[1]-end[1])**2 < tolerence**2: return t0, t1 # calculate the middle point middle_t = 0.5*(t0+t1) middle = bezier_point_at_t(middle_t) middle_inside = inside_closedpath(middle) if xor(start_inside, middle_inside): t1 = middle_t end = middle end_inside = middle_inside else: t0 = middle_t start = middle start_inside = middle_inside class BezierSegment: """ A simple class of a 2-dimensional bezier segment """ # Highrt order bezier lines can be supported by simplying adding # correcponding values. _binom_coeff = {1:np.array([1., 1.]), 2:np.array([1., 2., 1.]), 3:np.array([1., 3., 3., 1.])} def __init__(self, control_points): """ *control_points* : location of contol points. It needs have a shpae of n * 2, where n is the order of the bezier line. 1<= n <= 3 is supported. """ _o = len(control_points) self._orders = np.arange(_o) _coeff = BezierSegment._binom_coeff[_o - 1] _control_points = np.asarray(control_points) xx = _control_points[:,0] yy = _control_points[:,1] self._px = xx * _coeff self._py = yy * _coeff def point_at_t(self, t): "evaluate a point at t" one_minus_t_powers = np.power(1.-t, self._orders)[::-1] t_powers = np.power(t, self._orders) tt = one_minus_t_powers * t_powers _x = sum(tt * self._px) _y = sum(tt * self._py) return _x, _y def split_bezier_intersecting_with_closedpath(bezier, inside_closedpath, tolerence=0.01): """ bezier : control points of the bezier segment inside_closedpath : a function which returns true if the point is inside the path """ bz = BezierSegment(bezier) bezier_point_at_t = bz.point_at_t t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, tolerence=tolerence) _left, _right = split_de_casteljau(bezier, (t0+t1)/2.) return _left, _right def find_r_to_boundary_of_closedpath(inside_closedpath, xy, cos_t, sin_t, rmin=0., rmax=1., tolerence=0.01): """ Find a radius r (centered at *xy*) between *rmin* and *rmax* at which it intersect with the path. inside_closedpath : function cx, cy : center cos_t, sin_t : cosine and sine for the angle rmin, rmax : """ cx, cy = xy def _f(r): return cos_t*r + cx, sin_t*r + cy find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath, t0=rmin, t1=rmax, tolerence=tolerence) ## matplotlib specific def split_path_inout(path, inside, tolerence=0.01, reorder_inout=False): """ divide a path into two segment at the point where inside(x, y) becomes False. """ path_iter = path.iter_segments() ctl_points, command = path_iter.next() begin_inside = inside(ctl_points[-2:]) # true if begin point is inside bezier_path = None ctl_points_old = ctl_points concat = np.concatenate iold=0 i = 1 for ctl_points, command in path_iter: iold=i i += len(ctl_points)/2 if inside(ctl_points[-2:]) != begin_inside: bezier_path = concat([ctl_points_old[-2:], ctl_points]) break ctl_points_old = ctl_points if bezier_path is None: raise ValueError("The path does not seem to intersect with the patch") bp = zip(bezier_path[::2], bezier_path[1::2]) left, right = split_bezier_intersecting_with_closedpath(bp, inside, tolerence) if len(left) == 2: codes_left = [Path.LINETO] codes_right = [Path.MOVETO, Path.LINETO] elif len(left) == 3: codes_left = [Path.CURVE3, Path.CURVE3] codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3] elif len(left) == 4: codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4] codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] else: raise ValueError() verts_left = left[1:] verts_right = right[:] #i += 1 if path.codes is None: path_in = Path(concat([path.vertices[:i], verts_left])) path_out = Path(concat([verts_right, path.vertices[i:]])) else: path_in = Path(concat([path.vertices[:iold], verts_left]), concat([path.codes[:iold], codes_left])) path_out = Path(concat([verts_right, path.vertices[i:]]), concat([codes_right, path.codes[i:]])) if reorder_inout and begin_inside == False: path_in, path_out = path_out, path_in return path_in, path_out def inside_circle(cx, cy, r): r2 = r**2 def _f(xy): x, y = xy return (x-cx)**2 + (y-cy)**2 < r2 return _f # quadratic bezier lines def get_cos_sin(x0, y0, x1, y1): dx, dy = x1-x0, y1-y0 d = (dx*dx + dy*dy)**.5 return dx/d, dy/d def get_parallels(bezier2, width): """ Given the quadraitc bezier control points *bezier2*, returns control points of quadrativ bezier lines roughly parralel to given one separated by *width*. """ # The parallel bezier lines constructed by following ways. # c1 and c2 are contol points representing the begin and end of the bezier line. # cm is the middle point c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c2x, c2y = bezier2[2] # t1 and t2 is the anlge between c1 and cm, cm, c2. # They are also a angle of the tangential line of the path at c1 and c2 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y) # find c1_left, c1_right which are located along the lines # throught c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c2_left and # c2_right with respect to c2. c1x_left, c1y_left, c1x_right, c1y_right = \ get_normal_points(c1x, c1y, cos_t1, sin_t1, width) c2x_left, c2y_left, c2x_right, c2y_right = \ get_normal_points(c2x, c2y, cos_t2, sin_t2, width) # find cm_left which is the intersectng point of a line through # c1_left with angle t1 and a line throught c2_left with angle # t2. Same with cm_right. cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1, sin_t1, c2x_left, c2y_left, cos_t2, sin_t2) cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1, sin_t1, c2x_right, c2y_right, cos_t2, sin_t2) # the parralel bezier lines are created with control points of # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right] path_left = [(c1x_left, c1y_left), (cmx_left, cmy_left), (c2x_left, c2y_left)] path_right = [(c1x_right, c1y_right), (cmx_right, cmy_right), (c2x_right, c2y_right)] return path_left, path_right def make_wedged_bezier2(bezier2, length, shrink_factor=0.5): """ Being similar to get_parallels, returns control points of two quadrativ bezier lines having a width roughly parralel to given one separated by *width*. """ xx1, yy1 = bezier2[2] xx2, yy2 = bezier2[1] xx3, yy3 = bezier2[0] cx, cy = xx3, yy3 x0, y0 = xx2, yy2 dist = sqrt((x0-cx)**2 + (y0-cy)**2) cos_t, sin_t = (x0-cx)/dist, (y0-cy)/dist, x1, y1, x2, y2 = get_normal_points(cx, cy, cos_t, sin_t, length) xx12, yy12 = (xx1+xx2)/2., (yy1+yy2)/2., xx23, yy23 = (xx2+xx3)/2., (yy2+yy3)/2., dist = sqrt((xx12-xx23)**2 + (yy12-yy23)**2) cos_t, sin_t = (xx12-xx23)/dist, (yy12-yy23)/dist, xm1, ym1, xm2, ym2 = get_normal_points(xx2, yy2, cos_t, sin_t, length*shrink_factor) l_plus = [(x1, y1), (xm1, ym1), (xx1, yy1)] l_minus = [(x2, y2), (xm2, ym2), (xx1, yy1)] return l_plus, l_minus def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y): """ Find control points of the bezier line throught c1, mm, c2. We simply assume that c1, mm, c2 which have parameteric value 0, 0.5, and 1. """ cmx = .5 * (4*mmx - (c1x + c2x)) cmy = .5 * (4*mmy - (c1y + c2y)) return [(c1x, c1y), (cmx, cmy), (c2x, c2y)] def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.): """ Being similar to get_parallels, returns control points of two quadrativ bezier lines having a width roughly parralel to given one separated by *width*. """ # c1, cm, c2 c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c3x, c3y = bezier2[2] # t1 and t2 is the anlge between c1 and cm, cm, c3. # They are also a angle of the tangential line of the path at c1 and c3 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y) # find c1_left, c1_right which are located along the lines # throught c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c3_left and # c3_right with respect to c3. c1x_left, c1y_left, c1x_right, c1y_right = \ get_normal_points(c1x, c1y, cos_t1, sin_t1, width*w1) c3x_left, c3y_left, c3x_right, c3y_right = \ get_normal_points(c3x, c3y, cos_t2, sin_t2, width*w2) # find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and c12-c23 c12x, c12y = (c1x+cmx)*.5, (c1y+cmy)*.5 c23x, c23y = (cmx+c3x)*.5, (cmy+c3y)*.5 c123x, c123y = (c12x+c23x)*.5, (c12y+c23y)*.5 # tangential angle of c123 (angle between c12 and c23) cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y) c123x_left, c123y_left, c123x_right, c123y_right = \ get_normal_points(c123x, c123y, cos_t123, sin_t123, width*wm) path_left = find_control_points(c1x_left, c1y_left, c123x_left, c123y_left, c3x_left, c3y_left) path_right = find_control_points(c1x_right, c1y_right, c123x_right, c123y_right, c3x_right, c3y_right) return path_left, path_right if 0: path = Path([(0, 0), (1, 0), (2, 2)], [Path.MOVETO, Path.CURVE3, Path.CURVE3]) left, right = divide_path_inout(path, inside) clf() ax = gca()
gpl-3.0
gclenaghan/scikit-learn
examples/cluster/plot_digits_linkage.py
369
2959
""" ============================================================================= Various Agglomerative Clustering on a 2D embedding of digits ============================================================================= An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset. The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits. This is why the example works on a 2D embedding. What this example shows us is the behavior "rich getting richer" of agglomerative clustering that tends to create uneven cluster sizes. This behavior is especially pronounced for the average linkage strategy, that ends up with a couple of singleton clusters. """ # Authors: Gael Varoquaux # License: BSD 3 clause (C) INRIA 2014 print(__doc__) from time import time import numpy as np from scipy import ndimage from matplotlib import pyplot as plt from sklearn import manifold, datasets digits = datasets.load_digits(n_class=10) X = digits.data y = digits.target n_samples, n_features = X.shape np.random.seed(0) def nudge_images(X, y): # Having a larger dataset shows more clearly the behavior of the # methods, but we multiply the size of the dataset only by 2, as the # cost of the hierarchical clustering methods are strongly # super-linear in n_samples shift = lambda x: ndimage.shift(x.reshape((8, 8)), .3 * np.random.normal(size=2), mode='constant', ).ravel() X = np.concatenate([X, np.apply_along_axis(shift, 1, X)]) Y = np.concatenate([y, y], axis=0) return X, Y X, y = nudge_images(X, y) #---------------------------------------------------------------------- # Visualize the clustering def plot_clustering(X_red, X, labels, title=None): x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0) X_red = (X_red - x_min) / (x_max - x_min) plt.figure(figsize=(6, 4)) for i in range(X_red.shape[0]): plt.text(X_red[i, 0], X_red[i, 1], str(y[i]), color=plt.cm.spectral(labels[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) plt.xticks([]) plt.yticks([]) if title is not None: plt.title(title, size=17) plt.axis('off') plt.tight_layout() #---------------------------------------------------------------------- # 2D embedding of the digits dataset print("Computing embedding") X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X) print("Done.") from sklearn.cluster import AgglomerativeClustering for linkage in ('ward', 'average', 'complete'): clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10) t0 = time() clustering.fit(X_red) print("%s : %.2fs" % (linkage, time() - t0)) plot_clustering(X_red, X, clustering.labels_, "%s linkage" % linkage) plt.show()
bsd-3-clause
nikitasingh981/scikit-learn
sklearn/ensemble/tests/test_forest.py
9
43013
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import combinations from itertools import product import numpy as np from scipy.misc import comb from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import skip_if_32bit from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.fixes import bincount from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also make a hastie_10_2 dataset hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1) hastie_X = hastie_X.astype(np.float32) FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): # Check consistency on dataset boston house prices. ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.94, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", "mae", "friedman_mse")): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(name, criterion, X, y): ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=20, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parrallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parrallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert_true(np.all(importances >= 0.0)) for scale in [0.5, 10, 100]: est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert_less(np.abs(importances - importances_bis).mean(), 0.001) @skip_if_32bit def test_importances(): X, y = datasets.make_classification(n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]): yield check_importances, name, criterion, X, y for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse", "mae"]): yield check_importances, name, criterion, X, y def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0. for count in bincount(samples): p = 1. * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0. for k in range(n_features): # Weight of each B of size k coef = 1. / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=np.bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += (coef * (1. * n_samples_b / n_samples) # P(B=b) * (entropy(y_) - sum([entropy(c) * len(c) / n_samples_b for c in children]))) return imp data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier(n_estimators=500, max_features=1, criterion="entropy", random_state=0).fit(X, y) importances = sum(tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_) / clf.n_estimators # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert_less(np.abs(true_importances - importances).mean(), 0.01) def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): # Check that oob prediction is a good estimation of the generalization # error. # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # csc matrix yield check_oob_score, name, csc_matrix(iris.data), iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 # csc matrix yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): # Check that base trees can be grid-searched. for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): # Check estimators on multi-output problems. X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) # Ignore warnings from switching to more power iterations in randomized_svd @ignore_warnings def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name): X, y = hastie_X, hastie_y # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name def check_min_samples_split(name): X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=0).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=1.1).fit, X, y) est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) def test_min_samples_split(): for name in FOREST_ESTIMATORS: yield check_min_samples_split, name def check_min_samples_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_leaf=0).fit, X, y) est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), len(X) * 0.25 - 1, "Failed with {0}".format(name)) def test_min_samples_leaf(): for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name def check_min_weight_fraction_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, n_estimators=1, random_state=0) if "RandomForest" in name: est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(n_estimators=1, random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) @ignore_warnings def test_1d_input(): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Using a Python 2.x list as the sample_weight parameter used to raise # an exception. This test makes sure such code will now run correctly. clf = ForestClassifier() sample_weight = [1.] * len(iris.data) clf.fit(iris.data, iris.target, sample_weight=sample_weight) def test_class_weights(): for name in FOREST_CLASSIFIERS: yield check_class_weights, name def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight='balanced', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}], random_state=0) clf.fit(X, _y) # smoke test for balanced subsample clf = ForestClassifier(class_weight='balanced_subsample', random_state=0) clf.fit(X, _y) def test_class_weight_balanced_and_bootstrap_multi_output(): for name in FOREST_CLASSIFIERS: yield check_class_weight_balanced_and_bootstrap_multi_output, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight='balanced', warm_start=True, random_state=0) assert_warns(UserWarning, clf.fit, X, y) assert_warns(UserWarning, clf.fit, X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in FOREST_CLASSIFIERS: yield check_class_weight_errors, name def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y) def check_decision_path(name): X, y = hastie_X, hastie_y n_samples = X.shape[0] ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) est.fit(X, y) indicator, n_nodes_ptr = est.decision_path(X) assert_equal(indicator.shape[1], n_nodes_ptr[-1]) assert_equal(indicator.shape[0], n_samples) assert_array_equal(np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_]) # Assert that leaves index are correct leaves = est.apply(X) for est_id in range(leaves.shape[1]): leave_indicator = [indicator[i, n_nodes_ptr[est_id] + j] for i, j in enumerate(leaves[:, est_id])] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) def test_decision_path(): for name in FOREST_CLASSIFIERS: yield check_decision_path, name for name in FOREST_REGRESSORS: yield check_decision_path, name def test_min_impurity_split(): # Test if min_impurity_split of base estimators is set # Regression test for #8006 X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [RandomForestClassifier, RandomForestRegressor, ExtraTreesClassifier, ExtraTreesRegressor] for Estimator in all_estimators: est = Estimator(min_impurity_split=0.1) est = assert_warns_message(DeprecationWarning, "min_impurity_decrease", est.fit, X, y) for tree in est.estimators_: assert_equal(tree.min_impurity_split, 0.1) def test_min_impurity_decrease(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [RandomForestClassifier, RandomForestRegressor, ExtraTreesClassifier, ExtraTreesRegressor] for Estimator in all_estimators: est = Estimator(min_impurity_decrease=0.1) est.fit(X, y) for tree in est.estimators_: # Simply check if the parameter is passed on correctly. Tree tests # will suffice for the actual working of this param assert_equal(tree.min_impurity_decrease, 0.1)
bsd-3-clause
alphacsc/alphacsc
examples/csc/plot_simulate_randomstate.py
1
3040
""" ============================== Selecting random state for CSC ============================== The CSC problem is non-convex. Therefore, the solution depends on the initialization. Here, we show how to select the best atoms amongst different initializations. """ # Authors: Mainak Jas <[email protected]> # Tom Dupre La Tour <[email protected]> # Umut Simsekli <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) ############################################################################### # As before, let us first define the parameters of our model. n_times_atom = 64 # L n_times = 512 # T n_atoms = 2 # K n_trials = 100 # N n_iter = 50 reg = 0.1 ############################################################################### # Here, we simulate the data from alphacsc.simulate import simulate_data # noqa from scipy.stats import levy_stable # noqa from alphacsc import check_random_state # noqa random_state_simulate = 1 X, ds_true, z_true = simulate_data(n_trials, n_times, n_times_atom, n_atoms, random_state_simulate) # Add stationary noise: fraction_corrupted = 0.02 n_corrupted_trials = int(fraction_corrupted * n_trials) rng = check_random_state(random_state_simulate) X += 0.01 * rng.randn(*X.shape) idx_corrupted = rng.randint(0, n_trials, size=n_corrupted_trials) ############################################################################### # Now, we run vanilla CSC on the data but with different initializations. from alphacsc import learn_d_z # noqa pobjs, d_hats = list(), list() for random_state in range(5): print('\nRandom state: %d' % random_state) pobj, times, d_hat, z_hat, reg = learn_d_z( X, n_atoms, n_times_atom, reg=reg, n_iter=n_iter, solver_d_kwargs=dict(factr=100), random_state=random_state, n_jobs=1, verbose=1) pobjs.append(pobj[-1]) d_hats.append(d_hat) ############################################################################### # As we loop through the random states, we save the objective value `pobj` # at the last iteration of the algorithm. # # Now, let us look at the atoms for different initializations. import matplotlib.pyplot as plt # noqa fig, axes = plt.subplots(1, 5, figsize=(17, 3), sharex=True, sharey=True) for ax, this_pobjs, d_hat in zip(axes, pobjs, d_hats): ax.plot(d_hat.T) ax.plot(ds_true.T, 'k--') ax.set_title('pobj: %0.2f' % this_pobjs) ############################################################################### # Note that lower the objective value, the better is the recovered atom. # This is one reason why using a concrete mathematical objective function as in # convolutional sparse coding is superior to heuristic methods. # Now, we select the best atom amongst them. import numpy as np # noqa plt.figure() plt.plot(d_hats[np.argmin(pobjs)].T) plt.plot(ds_true.T, 'k--') plt.show()
bsd-3-clause