Datasets:
Tasks:
Image Classification
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
annotations_creators: | |
- machine-generated | |
- expert-generated | |
language_creators: | |
- machine-generated | |
- expert-generated | |
language: | |
- en | |
license: | |
- unknown | |
multilinguality: | |
- monolingual | |
pretty_name: NIH-CXR14 | |
paperswithcode_id: chestx-ray14 | |
size_categories: | |
- 100K<n<1M | |
task_categories: | |
- image-classification | |
task_ids: | |
- multi-class-image-classification | |
# Dataset Card for NIH Chest X-ray dataset | |
## Table of Contents | |
- [Table of Contents](#table-of-contents) | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** [NIH Chest X-ray Dataset of 10 Common Thorax Disease Categories](https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345) | |
- **Repository:** | |
- **Paper:** [ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases](https://arxiv.org/abs/1705.02315) | |
- **Leaderboard:** | |
- **Point of Contact:** [email protected] | |
### Dataset Summary | |
_ChestX-ray dataset comprises 112,120 frontal-view X-ray images of 30,805 unique patients with the text-mined fourteen disease image labels (where each image can have multi-labels), mined from the associated radiological reports using natural language processing. Fourteen common thoracic pathologies include Atelectasis, Consolidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, Pneumonia, Pleural_thickening, Cardiomegaly, Nodule, Mass and Hernia, which is an extension of the 8 common disease patterns listed in our CVPR2017 paper. Note that original radiology reports (associated with these chest x-ray studies) are not meant to be publicly shared for many reasons. The text-mined disease labels are expected to have accuracy >90%.Please find more details and benchmark performance of trained models based on 14 disease labels in our arxiv paper: [1705.02315](https://arxiv.org/abs/1705.02315)_ | |
## Dataset Structure | |
### Data Instances | |
A sample from the training set is provided below: | |
``` | |
{'image_file_path': '/root/.cache/huggingface/datasets/downloads/extracted/95db46f21d556880cf0ecb11d45d5ba0b58fcb113c9a0fff2234eba8f74fe22a/images/00000798_022.png', | |
'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=1024x1024 at 0x7F2151B144D0>, | |
'labels': [9, 3]} | |
``` | |
### Data Fields | |
The data instances have the following fields: | |
- `image_file_path` a `str` with the image path | |
- `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`. | |
- `labels`: an `int` classification label. | |
<details> | |
<summary>Class Label Mappings</summary> | |
```json | |
{ | |
"No Finding": 0, | |
"Atelectasis": 1, | |
"Cardiomegaly": 2, | |
"Effusion": 3, | |
"Infiltration": 4, | |
"Mass": 5, | |
"Nodule": 6, | |
"Pneumonia": 7, | |
"Pneumothorax": 8, | |
"Consolidation": 9, | |
"Edema": 10, | |
"Emphysema": 11, | |
"Fibrosis": 12, | |
"Pleural_Thickening": 13, | |
"Hernia": 14 | |
} | |
``` | |
</details> | |
**Label distribution on the dataset:** | |
| labels | obs | freq | | |
|:-------------------|------:|-----------:| | |
| No Finding | 60361 | 0.426468 | | |
| Infiltration | 19894 | 0.140557 | | |
| Effusion | 13317 | 0.0940885 | | |
| Atelectasis | 11559 | 0.0816677 | | |
| Nodule | 6331 | 0.0447304 | | |
| Mass | 5782 | 0.0408515 | | |
| Pneumothorax | 5302 | 0.0374602 | | |
| Consolidation | 4667 | 0.0329737 | | |
| Pleural_Thickening | 3385 | 0.023916 | | |
| Cardiomegaly | 2776 | 0.0196132 | | |
| Emphysema | 2516 | 0.0177763 | | |
| Edema | 2303 | 0.0162714 | | |
| Fibrosis | 1686 | 0.0119121 | | |
| Pneumonia | 1431 | 0.0101104 | | |
| Hernia | 227 | 0.00160382 | | |
### Data Splits | |
| |train| test| | |
|-------------|----:|----:| | |
|# of examples|86524|25596| | |
**Label distribution by dataset split:** | |
| labels | ('Train', 'obs') | ('Train', 'freq') | ('Test', 'obs') | ('Test', 'freq') | | |
|:-------------------|-------------------:|--------------------:|------------------:|-------------------:| | |
| No Finding | 50500 | 0.483392 | 9861 | 0.266032 | | |
| Infiltration | 13782 | 0.131923 | 6112 | 0.164891 | | |
| Effusion | 8659 | 0.082885 | 4658 | 0.125664 | | |
| Atelectasis | 8280 | 0.0792572 | 3279 | 0.0884614 | | |
| Nodule | 4708 | 0.0450656 | 1623 | 0.0437856 | | |
| Mass | 4034 | 0.038614 | 1748 | 0.0471578 | | |
| Consolidation | 2852 | 0.0272997 | 1815 | 0.0489654 | | |
| Pneumothorax | 2637 | 0.0252417 | 2665 | 0.0718968 | | |
| Pleural_Thickening | 2242 | 0.0214607 | 1143 | 0.0308361 | | |
| Cardiomegaly | 1707 | 0.0163396 | 1069 | 0.0288397 | | |
| Emphysema | 1423 | 0.0136211 | 1093 | 0.0294871 | | |
| Edema | 1378 | 0.0131904 | 925 | 0.0249548 | | |
| Fibrosis | 1251 | 0.0119747 | 435 | 0.0117355 | | |
| Pneumonia | 876 | 0.00838518 | 555 | 0.0149729 | | |
| Hernia | 141 | 0.00134967 | 86 | 0.00232012 | | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed] | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed] | |
#### Who are the source language producers? | |
[More Information Needed] | |
### Annotations | |
#### Annotation process | |
[More Information Needed] | |
#### Who are the annotators? | |
[More Information Needed] | |
### Personal and Sensitive Information | |
[More Information Needed] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed] | |
### Discussion of Biases | |
[More Information Needed] | |
### Other Known Limitations | |
[More Information Needed] | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed] | |
### License and attribution | |
There are no restrictions on the use of the NIH chest x-ray images. However, the dataset has the following attribution requirements: | |
- Provide a link to the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC | |
- Include a citation to the CVPR 2017 paper (see Citation information section) | |
- Acknowledge that the NIH Clinical Center is the data provider | |
### Citation Information | |
``` | |
@inproceedings{Wang_2017, | |
doi = {10.1109/cvpr.2017.369}, | |
url = {https://doi.org/10.1109%2Fcvpr.2017.369}, | |
year = 2017, | |
month = {jul}, | |
publisher = {{IEEE} | |
}, | |
author = {Xiaosong Wang and Yifan Peng and Le Lu and Zhiyong Lu and Mohammadhadi Bagheri and Ronald M. Summers}, | |
title = {{ChestX}-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases}, | |
booktitle = {2017 {IEEE} Conference on Computer Vision and Pattern Recognition ({CVPR})} | |
} | |
``` | |
### Contributions | |
Thanks to [@alcazar90](https://github.com/alcazar90) for adding this dataset. | |