|
--- |
|
license: odc-by |
|
task_categories: |
|
- text-generation |
|
language: |
|
- en |
|
tags: |
|
- biology |
|
- chemistry |
|
- engineering |
|
- computer science |
|
- physics |
|
- material science |
|
- math |
|
- psychology |
|
- economics |
|
- political science |
|
- business |
|
- geology |
|
- sociology |
|
- geography |
|
- environmental science |
|
- art |
|
- history |
|
- philosophy |
|
pretty_name: PES2O |
|
size_categories: |
|
- 10B<n<100B |
|
--- |
|
|
|
# PES2O ๐ฟ๐ |
|
|
|
*Pretraining Efficiently on [S2ORC][2]!* |
|
|
|
The PES2O dataset is a collection of ~40M creative commmon licensed academic papers, |
|
cleaned, filtered, and formatted for pre-training of language models. It is derived from |
|
the [Semantic Scholar Open Research Corpus][2]([Lo et al, 2020][1]), or S2ORC. |
|
|
|
We release multiple version of PES2O, each with different processing and knowledge cutoff |
|
date. We recommend you to use the latest version available. |
|
|
|
## Document Format |
|
|
|
TODO |
|
|
|
## PES2O V1 |
|
|
|
### Key Facts |
|
|
|
- *Knowledge cutoff*: 2023-01-03 |
|
- *Number of documents*: 67.56M |
|
- *Number of whitespace-separated tokens**: 47,3M |
|
|
|
### Processing |
|
|
|
TODO |
|
|
|
| Dataset | Split | # Documents | # Words | |
|
|:-------:|:-------:|:-----------:|:--------------:| |
|
|s2orc | train | 8,242,162 | 36,088,195,908 | |
|
|s2orc | valid | 51,323 | 255,139,074 | |
|
|s2ag | train | 59,382,301 | 11,009,123,378 | |
|
|s2ag | valid | 111,228 | 24,398,512 | |
|
|
|
|
|
## PES2O V2 |
|
|
|
|
|
### Key Facts |
|
|
|
- *Knowledge cutoff*: 2023-01-03 |
|
- *Number of documents*: 38.97M |
|
- *Number of whitespace-separated tokens**: 42,28 |
|
|
|
### Processing |
|
|
|
TODO |
|
|
|
| Dataset | Split | # Documents | # Words | |
|
|:-------:|:-----:|------------:|---------------:| |
|
| s2orc | train | 8,242,162 | 36,088,195,908 | |
|
| s2orc | valid | 51,323 | 255,139,074 | |
|
| s2ag | train | 30,569,017 | 5,920,099,207 | |
|
| s2ag | valid | 109,709 | 24,029,459 | |
|
|
|
[1]: https://aclanthology.org/2020.acl-main.447/ |
|
[2]: https://github.com/allenai/s2orc |
|
|
|
|