Unnamed: 0
int64
0
16k
text_prompt
stringlengths
110
62.1k
code_prompt
stringlengths
37
152k
500
Given the following text description, write Python code to implement the functionality described below step by step Description: Widgets Demo IPython widgets allow you to quickly and easily create interactive APIs with Python. To run this notebook, you'll first have to install ipywidgets using, e.g. $ conda install ipywidgets You can find a full set of documentation notebooks here. Troubleshooting If the widgets below do not show up in the notebook, try closing the notebook and running the following command in your shell Step1: Specifying Ranges Using a tuple for the input, we can specify a range for our data Step2: Interact with Plotting This can become very powerful when interacting with a plotting command
Python Code: from ipywidgets import interact def times_ten(x): return 10 * x interact(times_ten, x=10); interact(times_ten, x='(^_^)') interact(times_ten, x=True) Explanation: Widgets Demo IPython widgets allow you to quickly and easily create interactive APIs with Python. To run this notebook, you'll first have to install ipywidgets using, e.g. $ conda install ipywidgets You can find a full set of documentation notebooks here. Troubleshooting If the widgets below do not show up in the notebook, try closing the notebook and running the following command in your shell: $ jupyter nbextension enable --py widgetsnbextension Then open the notebook again. This enables the widgets notebook extension in the case that it's disabled. interact: simple interactive widgets The main idea of ipywidgets is to allow you to transform simple Python functions into interactive widgets. For example End of explanation interact(times_ten, x=(100, 200)) Explanation: Specifying Ranges Using a tuple for the input, we can specify a range for our data: End of explanation %matplotlib inline import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 1000) def plot_sine(amplitude, frequency, phase): y = amplitude * np.sin(frequency * x - phase) plt.plot(x, y) plt.ylim(-6, 6) interact(plot_sine, amplitude=(0.0, 5.0), frequency=(0.1, 10), phase=(-5.0, 5.0)); Explanation: Interact with Plotting This can become very powerful when interacting with a plotting command: End of explanation
501
Given the following text description, write Python code to implement the functionality described below step by step Description: <font color='blue'>Data Science Academy - Python Fundamentos - Capítulo 4</font> Download Step1: ** ATENÇÃO **** Caso você tenha problemas com acentos nos arquivos Step2: Usando a expressão with O método close() é executado automaticamente Step3: Manipulando Arquivos CSV (comma-separated values ) Step4: Manipulando Arquivos JSON (Java Script Object Notation ) JSON (JavaScript Object Notation) é uma maneira de armazenar informações de forma organizada e de fácil acesso. Em poucas palavras, ele nos dá uma coleção legível de dados que podem ser acessados de forma muito lógica. Pode ser uma fonte de Big Data.
Python Code: # Versão da Linguagem Python from platform import python_version print('Versão da Linguagem Python Usada Neste Jupyter Notebook:', python_version()) Explanation: <font color='blue'>Data Science Academy - Python Fundamentos - Capítulo 4</font> Download: http://github.com/dsacademybr End of explanation texto = "Cientista de Dados é a profissão que mais tem crescido em todo mundo.\n" texto = texto + "Esses profissionais precisam se especializar em Programação, Estatística e Machine Learning.\n" texto += "E claro, em Big Data." print(texto) # Importando o módulo os import os # Criando um arquivo arquivo = open(os.path.join('arquivos/cientista.txt'),'w') # Gravando os dados no arquivo for palavra in texto.split(): arquivo.write(palavra+' ') # Fechando o arquivo arquivo.close() # Lendo o arquivo arquivo = open('arquivos/cientista.txt','r') conteudo = arquivo.read() arquivo.close() print(conteudo) Explanation: ** ATENÇÃO **** Caso você tenha problemas com acentos nos arquivos: Primeiro, recomendamos a leitura do material sobre Formato Unicode, ao final do capítulo 4. Uma forma de resolver esse problema, é abrir o arquivo em um editor de texto como o Sublime Text, clicar em File - Save with Encoding e então salvar com encoding UTF-8. Outra opção é incluir o parâmetro encoding='utf8' ao abrir o arquivo para leitura ou escrita. Manipulação de Arquivos Arquivos TXT Arquivos CSV Arquivos JSON Manipulando Arquivos TXT End of explanation with open('arquivos/cientista.txt','r') as arquivo: conteudo = arquivo.read() print(len(conteudo)) print(conteudo) with open('arquivos/cientista.txt','w') as arquivo: arquivo.write(texto[:21]) arquivo.write('\n') arquivo.write(texto[:33]) # Lendo o arquivo arquivo = open('arquivos/cientista.txt','r') conteudo = arquivo.read() arquivo.close() print (conteudo) Explanation: Usando a expressão with O método close() é executado automaticamente End of explanation # Importando o módulo csv import csv with open('arquivos/numeros.csv','w') as arquivo: writer = csv.writer(arquivo) writer.writerow(('primeira','segunda','terceira')) writer.writerow((55,93,76)) writer.writerow((62,14,86)) # Leitura de arquivos csv with open('arquivos/numeros.csv','r') as arquivo: leitor = csv.reader(arquivo) for x in leitor: print ('Número de colunas:', len(x)) print(x) # Código alternativo para eventuais problemas com linhas em branco no arquivo with open('arquivos/numeros.csv','r', encoding='utf8', newline = '\r\n') as arquivo: leitor = csv.reader(arquivo) for x in leitor: print ('Número de colunas:', len(x)) print(x) # Gerando uma lista com dados do arquivo csv with open('arquivos/numeros.csv','r') as arquivo: leitor = csv.reader(arquivo) dados = list(leitor) print (dados) # Impriminfo a partir da segunda linha for linha in dados[1:]: print (linha) Explanation: Manipulando Arquivos CSV (comma-separated values ) End of explanation # Criando um dicionário dict = {'nome': 'Guido van Rossum', 'linguagem': 'Python', 'similar': ['c','Modula-3','lisp'], 'users': 1000000} for k,v in dict.items(): print (k,v) # Importando o módulo Json import json # Convertendo o dicionário para um objeto json json.dumps(dict) # Criando um arquivo Json with open('arquivos/dados.json','w') as arquivo: arquivo.write(json.dumps(dict)) # Leitura de arquivos Json with open('arquivos/dados.json','r') as arquivo: texto = arquivo.read() data = json.loads(texto) print (data) print (data['nome']) # Imprimindo um arquivo Json copiado da internet from urllib.request import urlopen response = urlopen("http://vimeo.com/api/v2/video/57733101.json").read().decode('utf8') data = json.loads(response)[0] print ('Título: ', data['title']) print ('URL: ', data['url']) print ('Duração: ', data['duration']) print ('Número de Visualizações: ', data['stats_number_of_plays']) # Copiando o conteúdo de um arquivo para outro import os arquivo_fonte = 'arquivos/dados.json' arquivo_destino = 'arquivos/json_data.txt' # Método 1 with open(arquivo_fonte,'r') as infile: text = infile.read() with open(arquivo_destino,'w') as outfile: outfile.write(text) # Método 2 open(arquivo_destino,'w').write(open(arquivo_fonte,'r').read()) # Leitura de arquivos Json with open('arquivos/json_data.txt','r') as arquivo: texto = arquivo.read() data = json.loads(texto) print(data) Explanation: Manipulando Arquivos JSON (Java Script Object Notation ) JSON (JavaScript Object Notation) é uma maneira de armazenar informações de forma organizada e de fácil acesso. Em poucas palavras, ele nos dá uma coleção legível de dados que podem ser acessados de forma muito lógica. Pode ser uma fonte de Big Data. End of explanation
502
Given the following text description, write Python code to implement the functionality described below step by step Description: general Step1: fw_ids for user-submitted workflows Step2: pause controller, defuse/fizzle workflows with >20 nodes Step3: prioritized user-submitted "Add to SNL" tasks to get duplicate checking done Step4: percentage of workflows in each state Step5: list of first fizzled fw_id in each workflow Step6: list of incomplete fireworks in RUNNING workflows for fworker query Step7: list of first fireworks for fizzled workflows Step8: list of uniform tasks/fw_ids for projections in BoltzTraP builder (VASP DB insertion reruns) Step9: launch directories for XSEDE Step10: analyze log output of fizzled workflows scan for error messages Step11: categorize errors Step12: debugging Step13: Kitchaev submissions Step14: fw_ids for list of mp-ids to fix DOS offset Step15: Projections for BoltzTraP builder Step16: SNL and Task Collections for atomate transition
Python Code: user_remarks = [ "new ICSD batch", "Pauling file", "Heusler ABC2 phases", "proton conducting materials for fuel cells", "solid solution metal", "solid solution oxide", "intermetallic", "CNGMD Nitrides", "MAGICS calculation of band structures of 2D TMDC stacked heterostructures" ] Explanation: general: fizzled workflows and according list of fireworks End of explanation #user_query = {"spec.task_type": "Add to SNL database", "spec.snl.about.remarks": "MP user submission"} user_query = {"spec.task_type": "Add to SNL database", "spec.snl.about.remarks": user_remarks[-3]} fw_ids_user = lpad.fireworks.find(user_query, {'fw_id': 1, '_id': 0}).distinct('fw_id') print(len(fw_ids_user), 'user-submitted workflows') Explanation: fw_ids for user-submitted workflows End of explanation counter = Counter() for root_fw_id in fw_ids_user: # print(root_fw_id) wflows = list(lpad.workflows.find({'nodes': root_fw_id}, ['nodes', 'state', 'links'])) if len(wflows) > 1: print('\tmultiple workflows for', root_fw_id) continue wf = wflows[0] fws = {} for fw in lpad.fireworks.find( {'fw_id': {'$in': wf['nodes']}}, {'fw_id': 1, 'spec.task_type': 1, 'state': 1, '_id': 0} ): fw_id = fw.pop('fw_id') fws[fw_id] = fw for fw_id, fw in fws.items(): # pause controller tasks (problems with band structure calcs) # if fw['spec']['task_type'] == 'Controller: add Electronic Structure v2' and \ # fw['state'] in ['WAITING', 'READY']: # lpad.pause_fw(fw_id) # fws[fw_id]['state'] = 'PAUSED' # print('\tpaused', fw_id) # defuse workflows with more than 20 tasks (endless SO?) if wf['state'] != 'COMPLETED' and len(wf['nodes']) > 20 and \ fw['state'] not in ['COMPLETED', 'DEFUSED', 'PAUSED']: try: lpad.defuse_fw(fw_id) fws[fw_id]['state'] = 'DEFUSED' print('\tdefused', fw_id) except Exception as ex: print('\tdefusing', fw_id, 'failed:', str(ex)) lpad.fireworks.update_one({'fw_id': fw_id}, {"$set":{"state":"FIZZLED"}}) print('\t', fw_id, 'set to FIZZLED') if fws[root_fw_id]['state'] == 'COMPLETED': current_fw_id = root_fw_id while 1: daughters = wf['links'][str(current_fw_id)] if not daughters: raise ValueError('why did I get here?') if len(daughters) == 1: #print('daughter:', current_fw_id, daughters[0], fws[daughters[0]]['spec']['task_type']) if fws[daughters[0]]['spec']['task_type'] == 'Controller: add Electronic Structure v2': counter[fws[current_fw_id]['state']] += 1 break else: current_fw_id = daughters[0] else: so_task_found = False for daughter in daughters: if fws[daughter]['spec']['task_type'] == 'GGA optimize structure (2x)': current_fw_id = daughter so_task_found = True break if not so_task_found: raise ValueError('SO task not found!') else: counter[fws[root_fw_id]['state']] += 1 print(counter) print('total =', sum(counter.values())) vw_fws = {} for state in states: vw_fws[state] = list(lpad.fireworks.find({ "state": state, "$or": [ {"spec.snl.about.remarks": "solid solution metal"}, {"spec.mpsnl.about.remarks": "solid solution metal"} ] }, ['spec.task_type', 'fw_id'])) if vw_fws[state]: print(state, len(vw_fws[state])) if state in ['RUNNING', 'READY', 'RESERVED']: print(Counter(fw['spec']['task_type'] for fw in vw_fws[state])) Explanation: pause controller, defuse/fizzle workflows with >20 nodes End of explanation priority_user_query = { "$and": [ {"$or": [ {"spec.snl.about.remarks": {"$in": ["MP user submission"], "$nin": user_remarks}}, {"spec.mpsnl.about.remarks": {"$in": ["MP user submission"], "$nin": user_remarks}}, ]}, {"$or": [ {"spec.prev_vasp_dir": {"$exists": 0}}, {"spec.prev_vasp_dir": {"$regex": "/oasis/"}}, ]} ] } priority_user_fws = {} for state in states: if state == 'READY': state_query = {'state': state} state_query.update(priority_user_query) priority_user_fws[state] = list(lpad.fireworks.find(state_query, { "fw_id": 1, "spec.task_type": 1, "spec.prev_vasp_dir": 1, "_id": 0})) nr_fws = len(priority_user_fws[state]) if nr_fws > 0: add_to_snl = [] for d in priority_user_fws[state]: if d['spec']['task_type'] == 'Add to SNL database': add_to_snl.append(d['fw_id']) print(' '.join(map(str, add_to_snl))) print('{} {} user-submitted XSEDE tasks'.format(nr_fws, state)) print('DONE') Explanation: prioritized user-submitted "Add to SNL" tasks to get duplicate checking done End of explanation # 118151 = {Ti,Zr,Hf}-Zn-N piezoelectricity study -> ALL COMPLETED 2017-01-24 # 114781 = Kitchaev Workflows # 115780 = Heusler ABC2 phases # 89070 = Silvana Botti Perovskite Structures submission_group_id = 89070 query = {'nodes': {'$in': fw_ids_user}} # if user_query["spec.snl.about.remarks"] == "MP user submission": # print('FYI: only looking at workflows with submission_group_id', submission_group_id) # query.update({'metadata.submission_group_id': submission_group_id}) wflows = {} total_wflows = float(lpad.workflows.find(query).count()) wflows_projection = {'fw_states': 1, 'parent_links': 1, 'links': 1, 'nodes': 1, '_id': 0, 'state': 1} for state in states: state_query = {'state': state} state_query.update(query) wflows[state] = list(lpad.workflows.find(state_query, wflows_projection)) nr_wflows = len(wflows[state]) if nr_wflows > 0: if state == 'FIZZLED': print([wf['nodes'][0] for wf in wflows[state]]) wflows_fraction = nr_wflows / total_wflows print('{} {} workflows ({:.1f}%)'.format(nr_wflows, state, wflows_fraction*100.)) print(int(total_wflows), 'workflows in total') Explanation: percentage of workflows in each state End of explanation def find_root_node(wflow): # wflow['nodes'][0] is not necessarily the root node! parent_links_keys = wflow['parent_links'].keys() for node in wflow['nodes']: if str(node) in parent_links_keys: continue return node state = 'FIZZLED' # workflow state rerun_fws = [] fw_ids_state = {} for wflow in wflows[state]: root_fw_id = find_root_node(wflow) # decend links until fizzled firework found fw_id = root_fw_id check_states = [state] if state != 'RUNNING' else ['READY', 'RESERVED'] while 1: current_state = wflow['fw_states'][str(fw_id)] if current_state == 'RUNNING': print(fw_id, 'is RUNNING -> probably need to do `lpad rerun_fws -i {}`'.format(fw_id)) break if current_state in check_states: task_type = lpad.fireworks.find_one({'fw_id': fw_id}, {'spec.task_type': 1})['spec']['task_type'] if task_type not in fw_ids_state: fw_ids_state[task_type] = [int(fw_id)] else: fw_ids_state[task_type].append(int(fw_id)) alt_state = lpad.fireworks.find_one({'fw_id': fw_id}, {'state': 1, '_id': 0})['state'] if alt_state == 'RESERVED': rerun_fws.append(str(fw_id)) break # if multiple children use non-waiting fw children = wflow['links'][str(fw_id)] for child in children: if wflow['fw_states'][str(child)] != 'WAITING': fw_id = child if rerun_fws: print('lpad rerun_fws -i', ' '.join(rerun_fws)) for k,v in fw_ids_state.items(): #if 'GGA' not in k: continue print(k, v) # for fw_id in v: # launches = lpad.launches.find({'fw_id': fw_id}, {'launch_dir': 1}) # for launch in launches: # if not 'oasis' in launch['launch_dir']: # print ('\t', fw_id, launch['launch_dir']) Explanation: list of first fizzled fw_id in each workflow End of explanation fw_ids_incomplete = {} for wflow in wflows['RUNNING']: for fw_id, fw_state in wflow['fw_states'].items(): if fw_state != 'COMPLETED': if fw_state not in fw_ids_incomplete: fw_ids_incomplete[fw_state] = [int(fw_id)] else: fw_ids_incomplete[fw_state].append(int(fw_id)) print(fw_ids_incomplete) nodes = [] for d in lpad.workflows.find({'nodes': {'$in':[1370872,1566138,1566120,1566104,1566099,1567504,1567491,1563287,1652717]}}, {'_id': 0, 'nodes': 1}): nodes += d['nodes'] print(nodes) Explanation: list of incomplete fireworks in RUNNING workflows for fworker query End of explanation query = {'fw_id': {'$in': [fw_id for fw_id in fw_ids_state.values()]}} # FIXME projection = {'fw_id': 1, 'launches': 1, '_id': 0} fws = list(lpad.fireworks.find(query, projection)) assert(len(fws) == len(wflows[state])) Explanation: list of first fireworks for fizzled workflows End of explanation with open('task_fw_ids_wBS.json', 'r') as f: task_fw_ids_wBS = json.loads(f.read()) print(len(task_fw_ids_wBS), 'tasks already checked for projections') vasp_fw_ids = [] for fw_id in task_fw_ids_wBS.itervalues(): wf = lpad.workflows.find_one({'nodes': fw_id}, {'_id': 0, 'links': 1}) for daughter in wf['links'][str(fw_id)]: fw = lpad.fireworks.find_one( {'fw_id': daughter, 'spec.task_type': 'VASP db insertion'}, {'fw_id': 1, '_id': 0} ) if fw: vasp_fw_ids.append(fw['fw_id']) break len(vasp_fw_ids) lpad.fireworks.update_many( {'fw_id': {'$in': vasp_fw_ids}}, {'$unset' : {'spec._tasks.0.update_duplicates' : 1}} ).raw_result print( lpad.fireworks.find({'state': 'READY', 'spec.task_type': 'VASP db insertion'}).count(), 'VASP db insertion tasks ready to run' ) with open('task_fw_ids_woBS.json', 'r') as f: task_fw_ids_woBS = json.loads(f.read()) print(len(task_fw_ids_woBS), 'tasks without BS') fws = lpad.fireworks.find( {'fw_id': {'$in': task_fw_ids_woBS.values()}, 'state': 'COMPLETED'}, {'launches': 1, 'fw_id': 1, '_id': 0} ) print('{}/{} fireworks found'.format(fws.count(), len(task_fw_ids_woBS))) Explanation: list of uniform tasks/fw_ids for projections in BoltzTraP builder (VASP DB insertion reruns) End of explanation fws_info = {} no_launches_found = [] for fw in fws: if not fw['launches']: no_launches_found.append(fw['fw_id']) continue launch_id = fw['launches'][-1] launch = lpad.launches.find_one({'launch_id': launch_id}, {'launch_dir': 1, '_id': 0}) launch_dir = launch['launch_dir'] launch_dir_exists = False for fw_id, fw_info in fws_info.items(): if launch_dir == fw_info['launch_dir']: launch_dir_exists = True break if launch_dir_exists: if 'duplicates' in fws_info[fw_id]: fws_info[fw_id]['duplicates'].append(fw['fw_id']) else: fws_info[fw_id]['duplicates'] = [fw['fw_id']] continue fws_info[fw['fw_id']] = {'launch_dir': launch_dir.strip()} if len(no_launches_found) > 0: print('launches not found for', len(no_launches_found), 'fireworks') nr_duplicates = 0 for fw_id, fw_info in fws_info.iteritems(): if 'duplicates' in fw_info: nr_duplicates += len(fw_info['duplicates']) print(nr_duplicates, '/', len(fws), 'workflows have duplicate launch_dirs =>', len(fws)-nr_duplicates, 'unique launch_dirs') def get_dest_blocks(s): a = s.strip().split('/block_') if len(a) == 2: return [a[0], 'block_'+a[1]] a = s.strip().split('/launcher_') return [a[0], 'launcher_'+a[1]] def parse_launchdirs(): for fw_id, fw_info in fws_info.iteritems(): launch_dir = fw_info['launch_dir'] if not os.path.exists(launch_dir): dest, block = get_dest_blocks(launch_dir) launch_dir = os.path.join(GARDEN, block) fw_info['launch_dir'] = launch_dir if os.path.exists(launch_dir) else None # 'compgen -G "$i/*.out" >> ~/launchdirs_exist_outfiles.txt; ' # 'compgen -G "$i/*.error" >> ~/launchdirs_exist_outfiles.txt; ' print('found {}/{} launch directories'.format( sum([bool(fw_info['launch_dir']) for fw_info in fws_info.itervalues()]), len(fws_info) )) parse_launchdirs() Explanation: launch directories for XSEDE: rsync to Mendel from /oasis/projects/nsf/csd436/phuck/garden /oasis/scratch/comet/phuck/temp_project rsync -avz block_* mendel:/global/projecta/projectdirs/matgen/garden/ End of explanation def get_file_path(extension, dirlist): for fstr in dirlist: fn, ext = os.path.splitext(os.path.basename(fstr)) if fn+ext == 'vasp.out': continue if ext == extension: return fstr return None def scan_errors_warnings(f): for line in f.readlines(): line_lower = line.strip().lower() if 'error:' in line_lower or 'warning:' in line_lower: return line.strip() for fw_id, fw_info in tqdm(fws_info.items()): fw_info['errors'] = [] if 'remote_dir' not in fw_info: fw_info['errors'].append('remote_dir not found') continue local_dir = fw_info['local_dir'] if not os.path.exists(local_dir): fw_info['errors'].append('local_dir not found') continue ls = glob.glob(os.path.join(local_dir, '*')) if not ls: fw_info['errors'].append('no files found in local_dir') continue error_file = get_file_path('.error', ls) if error_file is not None: # look for a traceback in *.error with open(error_file, 'r') as f: fcontent = f.read() match = re.search('Traceback((.+\n)+)Traceback', fcontent) if not match: match = re.search('Traceback((.+\n)+)INFO', fcontent) if not match: match = re.search('Traceback((.+\n)+)$', fcontent) if match: fw_info['errors'].append('Traceback'+match.group(1)) else: scan = scan_errors_warnings(f) if scan: fw_info['errors'].append(scan) # look into .out file out_file = get_file_path('.out', ls) with open(out_file, 'r') as f: scan = scan_errors_warnings(f) if scan: fw_info['errors'].append(scan) # look into vasp.out vasp_out = os.path.join(local_dir, 'vasp.out') if os.path.exists(vasp_out): with open(vasp_out, 'r') as f: vasp_out_tail = f.readlines()[-1].strip() fw_info['errors'].append(' -- '.join(['vasp.out', vasp_out_tail])) # FIXME .out and .error for non-reservation mode one directory up Explanation: analyze log output of fizzled workflows scan for error messages End of explanation def add_fw_to_category(fw_id, key, cats): if key in cats: cats[key].append(fw_id) else: cats[key] = [fw_id] categories = {} for fw_id, fw_info in fws_info.iteritems(): if not fw_info['errors']: add_fw_to_category(fw_id, 'no errors parsed', categories) continue for error in fw_info['errors']: if 'remote_dir' in error or 'local_dir' in error: add_fw_to_category(fw_id, error, categories) elif error.startswith('Traceback'): exc = ParsedException.from_string(error) msg = exc.exc_msg[:50] match = re.search('errors reached: (.*)', msg) if match: msg = match.group(1) key = ' -- '.join([exc.exc_type, msg]) lineno = exc.frames[-1]['lineno'] key = ' -- '.join([key, os.path.basename(exc.source_file) + '#' + lineno]) add_fw_to_category(fw_id, key, categories) else: match = re.search('{(.*)}', error) # matches dictionary if match: dstr = '{' + match.group(1) + '}' dstr = dstr.replace("u'", '"').replace("'", '"') dstr = re.sub('{"handler": (.*), "errors"', '{"handler": "\g<1>", "errors"', dstr) try: d = json.loads(dstr) except: add_fw_to_category(fw_id, 'looks like dict but could not decode', categories) else: if 'handler' in d and 'errors' in d: if '<' in d['handler']: match = re.search('custodian\.vasp\.handlers\.(.*) object', d['handler']) if match: d['handler'] = match.group(1) else: raise ValueError('custodian.vasp.handlers not matched') add_fw_to_category(fw_id, d['handler'], categories) elif 'action' in d: add_fw_to_category(fw_id, 'action', categories) else: add_fw_to_category(fw_id, 'found dict but not handler or action error', categories) else: add_fw_to_category(fw_id, error, categories) break # only look at first error print_categories(categories) Explanation: categorize errors End of explanation fws_info[1564191]['remote_dir'] lpad.fireworks.find_one({'fw_id': 1564191}, {'spec._priority': 1, 'state': 1}) lpad.fireworks.find_one({'fw_id': 1285769}, {'spec._priority': 1, 'state': 1}) lpad.fireworks.find_one({'fw_id': 1399045}, {'spec._priority': 1, 'state': 1}) Explanation: debugging End of explanation f = open('mpcomplete_kitchaev.json', 'r') import json d = json.load(f) def find_last_node(wflow): for node in wflow['links'].keys(): if not wflow['links'][node]: return node raise ValueError('last node not found!') for cif, info in d.items(): submission_id = info['submission_id'] wflow = lpad.workflows.find_one({'metadata.submission_id': submission_id}, wflows_projection) if wflow['state'] != 'COMPLETED': continue fw_id = find_root_node(wflow) task_ids = [None] while 1: launch_id = lpad.fireworks.find_one({'fw_id': fw_id}, {'launches': 1, '_id': 0})['launches'][-1] launch = lpad.launches.find_one( {'launch_id': launch_id, 'action.stored_data.task_id': {'$exists': 1}}, {'action.stored_data.task_id': 1, '_id': 0} ) if launch: task_ids.append(launch['action']['stored_data']['task_id']) children = wflow['links'][str(fw_id)] if not children: break fw_id = children[-1] mat = db_jp.materials.find_one({'task_ids': {'$in': task_ids}}, {'task_id': 1, 'task_ids': 1, '_id': 0}) info['fw_id'] = fw_id info['mp_id'] = mat['task_id'] print(d[cif]) #break print('DONE') fout = open('mpcomplete_kitchaev_mpids.json', 'w') json.dump(d, fout) Explanation: Kitchaev submissions: mp-ids End of explanation # mp_ids = ['mp-27187','mp-695866','mp-25732','mp-770957','mp-770953','mp-685168','mp-672214','mp-561549','mp-679630', # 'mp-7323','mp-772665','mp-17895','mp-770566','mp-25772','mp-3009','mp-625837','mp-12797','mp-28588', # 'mp-770887','mp-776836','mp-5185','mp-24570','mp-723049','mp-657176','mp-25766','mp-19548','mp-625823', # 'mp-684950','mp-557613','mp-704536','mp-722237','mp-676950'] mp_ids = ['mp-5229'] snlgroup_ids = db_jp.materials.find({'task_ids': {'$in': mp_ids}}).distinct('snlgroup_id') fw_ids_dosfix = lpad.fireworks.find({"spec.snlgroup_id": {'$in': snlgroup_ids}}).distinct('fw_id') wflows_dosfix = list(lpad.workflows.find({'nodes': {'$in': fw_ids_dosfix}})) fw_ids_rerun = [] fw_ids_defuse = [] task_ids = set() for wflow in wflows_dosfix: print('wf:', wflow['nodes'][0]) fw_ids_uniform = [] for fw in list(lpad.fireworks.find({'fw_id': {'$in': wflow['nodes']}})): if 'Uniform' in fw['spec']['task_type']: fw_ids_uniform.append(fw['fw_id']) elif 'Boltztrap' in fw['spec']['task_type']: fw_ids_defuse.append(fw['fw_id']) elif 'VASP db' in fw['spec']['task_type']: print(fw['fw_id'], fw['launches'][-1]) launch = lpad.launches.find_one({'launch_id': fw['launches'][-1]}, {'_id': 0, 'action.stored_data': 1}) task_ids.add(launch['action']['stored_data'].get('task_id')) if not fw_ids_uniform: continue fw_ids_rerun.append(max(fw_ids_uniform)) len(fw_ids_rerun) fw_ids_rerun task_ids ' '.join(map(str, fw_ids_rerun)) fw_ids_defuse fw_ids_run = [] for wflow in lpad.workflows.find({'nodes': {'$in': fw_ids_rerun}}): for fw_id, fw_state in wflow['fw_states'].items(): if fw_state != 'COMPLETED' and fw_state != 'DEFUSED': fw_ids_run.append(fw_id) ','.join(map(str, fw_ids_run)) ' '.join(map(str, fw_ids_defuse)) fw_ids_dos_offset = [] for doc in list(lpad.workflows.find({'nodes': {'$in': fw_ids_gga}}, {'fw_states': 1, '_id': 0})): for fw_id, fw_state in doc['fw_states'].items(): if fw_state == 'READY' or fw_state == 'WAITING': fw_ids_dos_offset.append(fw_id) len(fw_ids_dos_offset) map(int, fw_ids_dos_offset) Explanation: fw_ids for list of mp-ids to fix DOS offset End of explanation fw_ids_vasp_db_rerun = [] for fw_id, fw_info in fws_info.items(): if fw_info['launch_dir']: # GGA Uniform launch_dir exists wf = lpad.workflows.find_one({'nodes': fw_id}, {'_id': 0, 'links': 1}) for daughter in wf['links'][str(fw_id)]: fw = lpad.fireworks.find_one( {'fw_id': daughter, 'spec.task_type': 'VASP db insertion'}, {'fw_id': 1, '_id': 0} ) if fw: fw_ids_vasp_db_rerun.append(fw['fw_id']) break len(fw_ids_vasp_db_rerun) lpad.fireworks.update_many( {'fw_id': {'$in': fw_ids_vasp_db_rerun}}, {"$set":{"state":"READY", "spec._tasks.0.update_duplicates": True}} ).raw_result Explanation: Projections for BoltzTraP builder: set to READY and update_duplicates End of explanation with open('snl_tasks_atomate.json', 'r') as f: data = json.load(f) query = {} if not data else {'task_id': {'$nin': data.keys()}} has_bs_piezo_dos = {'has_bandstructure': True, 'piezo': {'$exists': 1}, 'dos': {'$exists': 1}} #query.update(has_bs_piezo_dos) has_bs_dos = {'has_bandstructure': True, 'dos': {'$exists': 1}} query.update(has_bs_dos) docs = db_jp.materials.find(query, {'task_ids': 1, '_id': 0, 'task_id': 1, 'snl.snl_id': 1}) for idx,doc in tqdm(enumerate(docs), total=docs.count()): mpid = doc['task_id'] data[mpid] = {'tasks': {}} if set(has_bs_piezo_dos.keys()).issubset(query.keys()): data[mpid]['tags'] = ['has_bs_piezo_dos'] if set(has_bs_dos.keys()).issubset(query.keys()): data[mpid]['tags'] = ['has_bs_dos'] for task_id in doc['task_ids']: tasks = list(db_vasp.tasks.find({'task_id': task_id}, {'dir_name': 1, '_id': 0})) if len(tasks) > 1: data[mpid]['error'] = 'found {} tasks'.format(len(tasks)) continue elif not tasks: data[mpid]['error'] = 'no task found' continue dir_name = tasks[0]['dir_name'] launch_dir = os.path.join(GARDEN, dir_name) if not os.path.exists(launch_dir): data[mpid]['error'] = '{} not found'.format(dir_name) break data[mpid]['tasks'][task_id] = launch_dir data[mpid]['snl_id'] = doc['snl']['snl_id'] if not idx%2000: with open('snl_tasks_atomate.json', 'w') as f: json.dump(data, f) #break with open('snl_tasks_atomate.json', 'w') as f: json.dump(data, f) Explanation: SNL and Task Collections for atomate transition End of explanation
503
Given the following text description, write Python code to implement the functionality described below step by step Description: Content-Based Filtering Using Neural Networks This notebook relies on files created in the content_based_preproc.ipynb notebook. Be sure to run the code in there before completing this notebook. Also, you'll be using the python3 kernel from here on out so don't forget to change the kernel if it's still Python2. Learning objectives This notebook illustrates Step1: Let's make sure you install the necessary version of tensorflow-hub. After doing the pip install below, click "Restart the kernel" on the notebook so that the Python environment picks up the new packages. Step2: Note Step3: Build the feature columns for the model To start, you'll load the list of categories, authors and article ids you created in the previous Create Datasets notebook. Step4: In the cell below you'll define the feature columns to use in your model. If necessary, remind yourself the various feature columns to use. For the embedded_title_column feature column, use a Tensorflow Hub Module to create an embedding of the article title. Since the articles and titles are in German, you'll want to use a German language embedding module. Explore the text embedding Tensorflow Hub modules available here. Filter by setting the language to 'German'. The 50 dimensional embedding should be sufficient for your purposes. Step5: Create the input function Next you'll create the input function for your model. This input function reads the data from the csv files you created in the previous notebook. Step6: Create the model and train/evaluate Next, you'll build your model which recommends an article for a visitor to the Kurier.at website. Look through the code below. You use the input_layer feature column to create the dense input layer to your network. This is just a single layer network where you can adjust the number of hidden units as a parameter. Currently, you compute the accuracy between your predicted 'next article' and the actual 'next article' read next by the visitor. You'll also add an additional performance metric of top 10 accuracy to assess your model. To accomplish this, you compute the top 10 accuracy metric, add it to the metrics dictionary below and add it to the tf.summary so that this value is reported to Tensorboard as well. Step7: Train and Evaluate Step8: This takes a while to complete but in the end, you will get about 30% top 10 accuracies. Make predictions with the trained model With the model now trained, you can make predictions by calling the predict method on the estimator. Let's look at how your model predicts on the first five examples of the training set. To start, You'll create a new file 'first_5.csv' which contains the first five elements of your training set. You'll also save the target values to a file 'first_5_content_ids' so you can compare your results. Step9: Recall, to make predictions on the trained model you pass a list of examples through the input function. Complete the code below to make predictions on the examples contained in the "first_5.csv" file you created above. Step12: Finally, you map the content id back to the article title. Let's compare your model's recommendation for the first example. This can be done in BigQuery. Look through the query below and make sure it is clear what is being returned.
Python Code: %%bash pip freeze | grep tensor Explanation: Content-Based Filtering Using Neural Networks This notebook relies on files created in the content_based_preproc.ipynb notebook. Be sure to run the code in there before completing this notebook. Also, you'll be using the python3 kernel from here on out so don't forget to change the kernel if it's still Python2. Learning objectives This notebook illustrates: 1. How to build feature columns for a model using tf.feature_column. 2. How to create custom evaluation metrics and add them to Tensorboard. 3. How to train a model and make predictions with the saved model. Each learning objective will correspond to a #TODO in the notebook, where you will complete the notebook cell's code before running the cell. Refer to the solution notebook for reference. Tensorflow Hub should already be installed. You can check that it is by using "pip freeze". End of explanation !pip3 install tensorflow-hub==0.7.0 !pip3 install --upgrade tensorflow==1.15.3 !pip3 install google-cloud-bigquery==1.10 Explanation: Let's make sure you install the necessary version of tensorflow-hub. After doing the pip install below, click "Restart the kernel" on the notebook so that the Python environment picks up the new packages. End of explanation import os import tensorflow as tf import numpy as np import tensorflow_hub as hub import shutil PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR PROJECT ID BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR BUCKET NAME REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1 # do not change these os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION os.environ['TFVERSION'] = '1.15.3' %%bash gcloud config set project $PROJECT gcloud config set compute/region $REGION Explanation: Note: Please ignore any incompatibility warnings and errors and re-run the cell to view the installed tensorflow version. End of explanation categories_list = open("categories.txt").read().splitlines() authors_list = open("authors.txt").read().splitlines() content_ids_list = open("content_ids.txt").read().splitlines() mean_months_since_epoch = 523 Explanation: Build the feature columns for the model To start, you'll load the list of categories, authors and article ids you created in the previous Create Datasets notebook. End of explanation embedded_title_column = hub.text_embedding_column( key="title", module_spec="https://tfhub.dev/google/nnlm-de-dim50/1", trainable=False) content_id_column = tf.feature_column.categorical_column_with_hash_bucket( key="content_id", hash_bucket_size= len(content_ids_list) + 1) embedded_content_column = tf.feature_column.embedding_column( categorical_column=content_id_column, dimension=10) author_column = tf.feature_column.categorical_column_with_hash_bucket(key="author", hash_bucket_size=len(authors_list) + 1) embedded_author_column = tf.feature_column.embedding_column( categorical_column=author_column, dimension=3) category_column_categorical = tf.feature_column.categorical_column_with_vocabulary_list( key="category", vocabulary_list=categories_list, num_oov_buckets=1) category_column = tf.feature_column.indicator_column(category_column_categorical) months_since_epoch_boundaries = list(range(400,700,20)) months_since_epoch_column = tf.feature_column.numeric_column( key="months_since_epoch") months_since_epoch_bucketized = tf.feature_column.bucketized_column( source_column = months_since_epoch_column, boundaries = months_since_epoch_boundaries) crossed_months_since_category_column = tf.feature_column.indicator_column(tf.feature_column.crossed_column( keys = [category_column_categorical, months_since_epoch_bucketized], hash_bucket_size = len(months_since_epoch_boundaries) * (len(categories_list) + 1))) feature_columns = [embedded_content_column, embedded_author_column, category_column, embedded_title_column, crossed_months_since_category_column] Explanation: In the cell below you'll define the feature columns to use in your model. If necessary, remind yourself the various feature columns to use. For the embedded_title_column feature column, use a Tensorflow Hub Module to create an embedding of the article title. Since the articles and titles are in German, you'll want to use a German language embedding module. Explore the text embedding Tensorflow Hub modules available here. Filter by setting the language to 'German'. The 50 dimensional embedding should be sufficient for your purposes. End of explanation record_defaults = [["Unknown"], ["Unknown"],["Unknown"],["Unknown"],["Unknown"],[mean_months_since_epoch],["Unknown"]] column_keys = ["visitor_id", "content_id", "category", "title", "author", "months_since_epoch", "next_content_id"] label_key = "next_content_id" def read_dataset(filename, mode, batch_size = 512): def _input_fn(): def decode_csv(value_column): columns = tf.decode_csv(value_column,record_defaults=record_defaults) features = dict(zip(column_keys, columns)) label = features.pop(label_key) return features, label # Create list of files that match pattern file_list = tf.io.gfile.glob(filename) # Create dataset from file list dataset = # TODO 1: Your code here if mode == tf.estimator.ModeKeys.TRAIN: num_epochs = None # indefinitely dataset = dataset.shuffle(buffer_size = 10 * batch_size) else: num_epochs = 1 # end-of-input after this dataset = dataset.repeat(num_epochs).batch(batch_size) return dataset.make_one_shot_iterator().get_next() return _input_fn Explanation: Create the input function Next you'll create the input function for your model. This input function reads the data from the csv files you created in the previous notebook. End of explanation def model_fn(features, labels, mode, params): net = tf.feature_column.input_layer(features, params['feature_columns']) for units in params['hidden_units']: net = tf.layers.dense(net, units=units, activation=tf.nn.relu) # Compute logits (1 per class). logits = tf.layers.dense(net, params['n_classes'], activation=None) predicted_classes = tf.argmax(logits, 1) from tensorflow.python.lib.io import file_io with file_io.FileIO('content_ids.txt', mode='r') as ifp: content = tf.constant([x.rstrip() for x in ifp]) predicted_class_names = tf.gather(content, predicted_classes) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { 'class_ids': predicted_classes[:, tf.newaxis], 'class_names' : predicted_class_names[:, tf.newaxis], 'probabilities': tf.nn.softmax(logits), 'logits': logits, } return tf.estimator.EstimatorSpec(mode, predictions=predictions) table = tf.contrib.lookup.index_table_from_file(vocabulary_file="content_ids.txt") labels = table.lookup(labels) # Compute loss. loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) # Compute evaluation metrics. accuracy = # TODO 2: Your code here top_10_accuracy = tf.metrics.mean(tf.nn.in_top_k(predictions=logits, targets=labels, k=10)) metrics = { 'accuracy': accuracy, 'top_10_accuracy' : top_10_accuracy} tf.summary.scalar('accuracy', accuracy[1]) tf.summary.scalar('top_10_accuracy', top_10_accuracy[1]) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=metrics) # Create training op. assert mode == tf.estimator.ModeKeys.TRAIN optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) Explanation: Create the model and train/evaluate Next, you'll build your model which recommends an article for a visitor to the Kurier.at website. Look through the code below. You use the input_layer feature column to create the dense input layer to your network. This is just a single layer network where you can adjust the number of hidden units as a parameter. Currently, you compute the accuracy between your predicted 'next article' and the actual 'next article' read next by the visitor. You'll also add an additional performance metric of top 10 accuracy to assess your model. To accomplish this, you compute the top 10 accuracy metric, add it to the metrics dictionary below and add it to the tf.summary so that this value is reported to Tensorboard as well. End of explanation outdir = 'content_based_model_trained' shutil.rmtree(outdir, ignore_errors = True) # start fresh each time #tf.summary.FileWriterCache.clear() # ensure filewriter cache is clear for TensorBoard events file estimator = tf.estimator.Estimator( model_fn=model_fn, model_dir = outdir, params={ 'feature_columns': feature_columns, 'hidden_units': [200, 100, 50], 'n_classes': len(content_ids_list) }) # Provide input data for training train_spec = tf.estimator.TrainSpec( input_fn = # TODO 3: Your code here max_steps = 2000) eval_spec = tf.estimator.EvalSpec( input_fn = read_dataset("test_set.csv", tf.estimator.ModeKeys.EVAL), steps = None, start_delay_secs = 30, throttle_secs = 60) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) Explanation: Train and Evaluate End of explanation %%bash head -5 training_set.csv > first_5.csv head first_5.csv awk -F "\"*,\"*" '{print $2}' first_5.csv > first_5_content_ids Explanation: This takes a while to complete but in the end, you will get about 30% top 10 accuracies. Make predictions with the trained model With the model now trained, you can make predictions by calling the predict method on the estimator. Let's look at how your model predicts on the first five examples of the training set. To start, You'll create a new file 'first_5.csv' which contains the first five elements of your training set. You'll also save the target values to a file 'first_5_content_ids' so you can compare your results. End of explanation output = list(estimator.predict(input_fn=read_dataset("first_5.csv", tf.estimator.ModeKeys.PREDICT))) import numpy as np recommended_content_ids = [np.asscalar(d["class_names"]).decode('UTF-8') for d in output] content_ids = open("first_5_content_ids").read().splitlines() Explanation: Recall, to make predictions on the trained model you pass a list of examples through the input function. Complete the code below to make predictions on the examples contained in the "first_5.csv" file you created above. End of explanation from google.cloud import bigquery recommended_title_sql= #standardSQL SELECT (SELECT MAX(IF(index=6, value, NULL)) FROM UNNEST(hits.customDimensions)) AS title FROM `cloud-training-demos.GA360_test.ga_sessions_sample`, UNNEST(hits) AS hits WHERE # only include hits on pages hits.type = "PAGE" AND (SELECT MAX(IF(index=10, value, NULL)) FROM UNNEST(hits.customDimensions)) = \"{}\" LIMIT 1.format(recommended_content_ids[0]) current_title_sql= #standardSQL SELECT (SELECT MAX(IF(index=6, value, NULL)) FROM UNNEST(hits.customDimensions)) AS title FROM `cloud-training-demos.GA360_test.ga_sessions_sample`, UNNEST(hits) AS hits WHERE # only include hits on pages hits.type = "PAGE" AND (SELECT MAX(IF(index=10, value, NULL)) FROM UNNEST(hits.customDimensions)) = \"{}\" LIMIT 1.format(content_ids[0]) recommended_title = bigquery.Client().query(recommended_title_sql).to_dataframe()['title'].tolist()[0].encode('utf-8').strip() current_title = bigquery.Client().query(current_title_sql).to_dataframe()['title'].tolist()[0].encode('utf-8').strip() print("Current title: {} ".format(current_title)) print("Recommended title: {}".format(recommended_title)) Explanation: Finally, you map the content id back to the article title. Let's compare your model's recommendation for the first example. This can be done in BigQuery. Look through the query below and make sure it is clear what is being returned. End of explanation
504
Given the following text description, write Python code to implement the functionality described below step by step Description: A Simple Autoencoder We'll start off by building a simple autoencoder to compress the MNIST dataset. With autoencoders, we pass input data through an encoder that makes a compressed representation of the input. Then, this representation is passed through a decoder to reconstruct the input data. Generally the encoder and decoder will be built with neural networks, then trained on example data. In this notebook, we'll be build a simple network architecture for the encoder and decoder. Let's get started by importing our libraries and getting the dataset. Step1: Below I'm plotting an example image from the MNIST dataset. These are 28x28 grayscale images of handwritten digits. Step2: We'll train an autoencoder with these images by flattening them into 784 length vectors. The images from this dataset are already normalized such that the values are between 0 and 1. Let's start by building basically the simplest autoencoder with a single ReLU hidden layer. This layer will be used as the compressed representation. Then, the encoder is the input layer and the hidden layer. The decoder is the hidden layer and the output layer. Since the images are normalized between 0 and 1, we need to use a sigmoid activation on the output layer to get values matching the input. Exercise Step3: Training Step4: Here I'll write a bit of code to train the network. I'm not too interested in validation here, so I'll just monitor the training loss and the test loss afterwards. Calling mnist.train.next_batch(batch_size) will return a tuple of (images, labels). We're not concerned with the labels here, we just need the images. Otherwise this is pretty straightfoward training with TensorFlow. We initialize the variables with sess.run(tf.global_variables_initializer()). Then, run the optimizer and get the loss with batch_cost, _ = sess.run([cost, opt], feed_dict=feed). Step5: Checking out the results Below I've plotted some of the test images along with their reconstructions. For the most part these look pretty good except for some blurriness in some parts.
Python Code: %matplotlib inline import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', validation_size=0) Explanation: A Simple Autoencoder We'll start off by building a simple autoencoder to compress the MNIST dataset. With autoencoders, we pass input data through an encoder that makes a compressed representation of the input. Then, this representation is passed through a decoder to reconstruct the input data. Generally the encoder and decoder will be built with neural networks, then trained on example data. In this notebook, we'll be build a simple network architecture for the encoder and decoder. Let's get started by importing our libraries and getting the dataset. End of explanation img = mnist.train.images[2] plt.imshow(img.reshape((28, 28)), cmap='Greys_r') Explanation: Below I'm plotting an example image from the MNIST dataset. These are 28x28 grayscale images of handwritten digits. End of explanation # Size of the encoding layer (the hidden layer) encoding_dim = 32 image_size = mnist.train.images.shape[1] inputs_ = tf.placeholder(tf.float32, (None, image_size), name='inputs') targets_ = tf.placeholder(tf.float32, (None, image_size), name='targets') # Output of hidden layer encoded = tf.layers.dense(inputs_, encoding_dim, activation=tf.nn.relu) # Output layer logits logits = tf.layers.dense(encoded, image_size, activation=None) # Sigmoid output from decoded = tf.nn.sigmoid(logits, name='output') loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits) cost = tf.reduce_mean(loss) opt = tf.train.AdamOptimizer(0.001).minimize(cost) Explanation: We'll train an autoencoder with these images by flattening them into 784 length vectors. The images from this dataset are already normalized such that the values are between 0 and 1. Let's start by building basically the simplest autoencoder with a single ReLU hidden layer. This layer will be used as the compressed representation. Then, the encoder is the input layer and the hidden layer. The decoder is the hidden layer and the output layer. Since the images are normalized between 0 and 1, we need to use a sigmoid activation on the output layer to get values matching the input. Exercise: Build the graph for the autoencoder in the cell below. The input images will be flattened into 784 length vectors. The targets are the same as the inputs. And there should be one hidden layer with a ReLU activation and an output layer with a sigmoid activation. Feel free to use TensorFlow's higher level API, tf.layers. For instance, you would use tf.layers.dense(inputs, units, activation=tf.nn.relu) to create a fully connected layer with a ReLU activation. The loss should be calculated with the cross-entropy loss, there is a convenient TensorFlow function for this tf.nn.sigmoid_cross_entropy_with_logits (documentation). You should note that tf.nn.sigmoid_cross_entropy_with_logits takes the logits, but to get the reconstructed images you'll need to pass the logits through the sigmoid function. End of explanation # Create the session sess = tf.Session() Explanation: Training End of explanation epochs = 20 batch_size = 200 sess.run(tf.global_variables_initializer()) for e in range(epochs): for ii in range(mnist.train.num_examples//batch_size): batch = mnist.train.next_batch(batch_size) feed = {inputs_: batch[0], targets_: batch[0]} batch_cost, _ = sess.run([cost, opt], feed_dict=feed) print("Epoch: {}/{}...".format(e+1, epochs), "Training loss: {:.4f}".format(batch_cost)) Explanation: Here I'll write a bit of code to train the network. I'm not too interested in validation here, so I'll just monitor the training loss and the test loss afterwards. Calling mnist.train.next_batch(batch_size) will return a tuple of (images, labels). We're not concerned with the labels here, we just need the images. Otherwise this is pretty straightfoward training with TensorFlow. We initialize the variables with sess.run(tf.global_variables_initializer()). Then, run the optimizer and get the loss with batch_cost, _ = sess.run([cost, opt], feed_dict=feed). End of explanation fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4)) in_imgs = mnist.test.images[:10] reconstructed, compressed = sess.run([decoded, encoded], feed_dict={inputs_: in_imgs, targets_: in_imgs}) for images, row in zip([in_imgs, reconstructed], axes): for img, ax in zip(images, row): ax.imshow(img.reshape((28, 28)), cmap='Greys_r') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) fig.tight_layout(pad=0.1) sess.close() Explanation: Checking out the results Below I've plotted some of the test images along with their reconstructions. For the most part these look pretty good except for some blurriness in some parts. End of explanation
505
Given the following text description, write Python code to implement the functionality described below step by step Description: Esta será una microentrada para presentar una extensión para el notebook que estoy usando en un curso interno que estoy dando en mi empresa. Si a alguno más os puede valer para mostrar cosas básicas de Python (2 y 3, además de Java y Javascript) para muy principiantes me alegro. Nombre en clave Step1: Una vez hecho esto ya deberiamos tener disponible la cell magic para ser usada Step2: Ahora un ejemplo con javascript
Python Code: %load_ext jupytor Explanation: Esta será una microentrada para presentar una extensión para el notebook que estoy usando en un curso interno que estoy dando en mi empresa. Si a alguno más os puede valer para mostrar cosas básicas de Python (2 y 3, además de Java y Javascript) para muy principiantes me alegro. Nombre en clave: Jupytor Esta extensión lo único que hace es embeber dentro de un IFrame la página de pythontutor usando el código que hayamos definido en una celda de código precedida de la cell magic %%jupytor. Como he comentado anteriormente, se puede escribir código Python2, Python3, Java y Javascript, que son los lenguajes soportados por pythontutor. Ejemplo Primero deberemos instalar la extensión. Está disponible en pypi por lo que la podéis instalar usando pip install jupytor. Una vez instalada, dentro de un notebook de IPython la deberías cargar usando: End of explanation %%jupytor --lang python3 a = 1 b = 2 def add(x, y): return x + y c = add(a, b) Explanation: Una vez hecho esto ya deberiamos tener disponible la cell magic para ser usada: End of explanation %%jupytor --lang javascript var a = 1; var b = 1; console.log(a + b); Explanation: Ahora un ejemplo con javascript: End of explanation
506
Given the following text description, write Python code to implement the functionality described below step by step Description: Nonlinear Dimensionality Reduction G. Richards (2016), based on materials from Ivezic, Connolly, Miller, Leighly, and VanderPlas. Today we will talk about the concepts of * manifold learning * nonlinear dimensionality reduction Specifically using the following algorithms * local linear embedding (LLE) * isometric mapping (IsoMap) * t-distributed Stochastic Neighbor Embedding (t-SNE) Let's start by my echoing the brief note of caution given in Adam Miller's notebook Step1: See what LLE does for the digits data, using the 7 nearest neighbors and 2 components. Step2: Isometric Mapping is based on multi-dimensional scaling (MDS) framework. It was introduced in the same volume of science as the article above. See Tenenbaum, de Silva, & Langford (2000). Geodestic curves are used to recover non-linear structure. In Scikit-Learn IsoMap is implemented as follows Step3: Try 7 neighbors and 2 dimensions on the digits data. Step4: t-SNE t-distributed Stochastic Neighbor Embedding (t-SNE) is not discussed in the book, Scikit-Learn does have a t-SNE implementation and it is well worth mentioning this manifold learning algorithm too. SNE itself was developed by Hinton & Roweis with the "$t$" part being added by van der Maaten & Hinton. It works like the other manifold learning algorithms. Try it on the digits data. Step5: You'll know if you have done it right if you understand Adam Miller's comment "Holy freakin' smokes. That is magic. (It's possible we just solved science)." Personally, I think that some exclamation points may be needed in there! What's even more illuminating is to make the plot using the actual digits to plot the points. Then you can see why certain digits are alike or split into multiple regions. Can you explain the patterns you see here?
Python Code: import numpy as np from sklearn.manifold import LocallyLinearEmbedding X = np.random.normal(size=(1000,2)) # 1000 points in 2D R = np.random.random((2,10)) # projection matrix X = np.dot(X,R) # now a 2D linear manifold in 10D space k = 5 # Number of neighbors to use in fit n = 2 # Number of dimensions to fit lle = LocallyLinearEmbedding(k,n) lle.fit(X) proj = lle.transform(X) # 100x2 projection of the data Explanation: Nonlinear Dimensionality Reduction G. Richards (2016), based on materials from Ivezic, Connolly, Miller, Leighly, and VanderPlas. Today we will talk about the concepts of * manifold learning * nonlinear dimensionality reduction Specifically using the following algorithms * local linear embedding (LLE) * isometric mapping (IsoMap) * t-distributed Stochastic Neighbor Embedding (t-SNE) Let's start by my echoing the brief note of caution given in Adam Miller's notebook: "astronomers will often try to derive physical insight from PCA eigenspectra or eigentimeseries, but this is not advisable as there is no physical reason for the data to be linearly and orthogonally separable". Moreover, physical components are (generally) positive definite. So, PCA is great for dimensional reduction, but for doing physics there are generally better choices. While NMF "solves" the issue of negative components, it is still a linear process. For data with non-linear correlations, an entire field, known as Manifold Learning and nonlinear dimensionality reduction, has been developed, with several algorithms available via the sklearn.manifold module. For example, if your data set looks like this: Then PCA is going to give you something like this. Clearly not very helpful! What you really want is something more like the results below. For more examples see Vanderplas & Connolly 2009 Local Linear Embedding Local Linear Embedding attempts to embed high-$D$ data in a lower-$D$ space. Crucially it also seeks to preserve the geometry of the local "neighborhoods" around each point. In the case of the "S" curve, it seeks to unroll the data. The steps are Step 1: define local geometry - local neighborhoods determined from $k$ nearest neighbors. - for each point calculate weights that reconstruct a point from its $k$ nearest neighbors via $$ \begin{equation} \mathcal{E}_1(W) = \left|X - WX\right|^2, \end{equation} $$ where $X$ is an $N\times K$ matrix and $W$ is an $N\times N$ matrix that minimizes the reconstruction error. Essentially this is finding the hyperplane that describes the local surface at each point within the data set. So, imagine that you have a bunch of square tiles and you are trying to tile the surface with them. Step 2: embed within a lower dimensional space - set all $W_{ij}=0$ except when point $j$ is one of the $k$ nearest neighbors of point $i$. - $W$ becomes very sparse for $k \ll N$ (only $Nk$ entries in $W$ are non-zero). - minimize $\begin{equation} \mathcal{E}_2(Y) = \left|Y - W Y\right|^2, \end{equation} $ with $W$ fixed to find an $N$ by $d$ matrix ($d$ is the new dimensionality). Step 1 requires a nearest-neighbor search. Step 2 requires an eigenvalue decomposition of the matrix $C_W \equiv (I-W)^T(I-W)$. LLE has been applied to data as diverse as galaxy spectra, stellar spectra, and photometric light curves. It was introduced by Roweis & Saul (2000). Skikit-Learn's call to LLE is as follows, with a more detailed example already being given above. End of explanation # Execute this cell to load the digits sample %matplotlib inline import numpy as np from sklearn.datasets import load_digits from matplotlib import pyplot as plt digits = load_digits() grid_data = np.reshape(digits.data[0], (8,8)) #reshape to 8x8 plt.imshow(grid_data, interpolation = "nearest", cmap = "bone_r") print grid_data X = digits.data y = digits.target #LLE from sklearn.manifold import LocallyLinearEmbedding # Complete Explanation: See what LLE does for the digits data, using the 7 nearest neighbors and 2 components. End of explanation # Execute this cell import numpy as np from sklearn.manifold import Isomap XX = np.random.normal(size=(1000,2)) # 1000 points in 2D R = np.random.random((2,10)) # projection matrix XX = np.dot(XX,R) # X is a 2D manifold in 10D space k = 5 # number of neighbors n = 2 # number of dimensions iso = Isomap(k,n) iso.fit(XX) proj = iso.transform(XX) # 1000x2 projection of the data Explanation: Isometric Mapping is based on multi-dimensional scaling (MDS) framework. It was introduced in the same volume of science as the article above. See Tenenbaum, de Silva, & Langford (2000). Geodestic curves are used to recover non-linear structure. In Scikit-Learn IsoMap is implemented as follows: End of explanation # IsoMap from sklearn.manifold import Isomap # Complete Explanation: Try 7 neighbors and 2 dimensions on the digits data. End of explanation # t-SNE from sklearn.manifold import TSNE # Complete Explanation: t-SNE t-distributed Stochastic Neighbor Embedding (t-SNE) is not discussed in the book, Scikit-Learn does have a t-SNE implementation and it is well worth mentioning this manifold learning algorithm too. SNE itself was developed by Hinton & Roweis with the "$t$" part being added by van der Maaten & Hinton. It works like the other manifold learning algorithms. Try it on the digits data. End of explanation # Execute this cell from matplotlib import offsetbox #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): #plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.nipy_spectral(y[i]/9.)) shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox(offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) plot_embedding(X_reduced) plt.show() Explanation: You'll know if you have done it right if you understand Adam Miller's comment "Holy freakin' smokes. That is magic. (It's possible we just solved science)." Personally, I think that some exclamation points may be needed in there! What's even more illuminating is to make the plot using the actual digits to plot the points. Then you can see why certain digits are alike or split into multiple regions. Can you explain the patterns you see here? End of explanation
507
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2020 The TensorFlow Authors. Step1: 你好,量子世界 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https Step2: 安装 TensorFlow Quantum: Step3: 现在,导入 TensorFlow 和模块依赖项: Step4: 1. 基础知识 1.1 Cirq 和参数化量子电路 在研究 TensorFlow Quantum (TFQ) 之前,我们先来了解 <a target="_blank" href="https Step5: 下面的代码可以使用您的参数创建一个双量子位电路: Step6: 要评估电路,您可以使用 cirq.Simulator 接口。通过传入 cirq.ParamResolver 对象,您可以将电路中的自由参数替换为具体的数字。下面的代码可以计算参数化电路的原始状态向量输出: Step7: 如果脱离模拟环境,您将无法直接访问状态向量(请注意上面的输出中的复杂数字)。为了达到物理真实感,您必须指定一个测量值,将状态向量转换为经典计算机可以理解的实数。Cirq 使用 <a target="_blank" href="https Step8: 1.2 作为向量的量子电路 TensorFlow Quantum (TFQ) 提供了 tfq.convert_to_tensor,后者是一个可以将 Cirq 对象转换为张量的函数。这样,您可以将 Cirq 对象发送到我们的<a target="_blank" href="https Step9: 这可以将 Cirq 对象编码为 tf.string 张量,tfq 运算在需要时可以对这些张量进行解码。 Step10: 1.3 电路模拟批处理 TFQ 提供了计算期望值、样本和状态向量的方法。目前,我们先重点介绍期望值。 计算期望值的最高级接口是 tfq.layers.Expectation 层,它是一个 tf.keras.Layer。简而言之,该层等效于通过许多 cirq.ParamResolvers 模拟参数化电路;不过,TFQ 允许对随后的 TensorFlow 语义进行批处理,而电路则使用高效的 C++ 代码进行模拟。 创建一组替代 a 和 b 参数的值: Step11: 在 Cirq 中通过参数值对电路执行进行批处理需要一个循环: Step12: TFQ 中简化了同一运算: Step13: 2. 混合量子-经典优化 现在,您已经了解基础知识。接下来,我们使用 TensorFlow Quantum 构造一个混合量子-经典神经网络。您将训练一个经典神经网络来控制单个量子位。我们将优化控制,以便将量子位正确准备为 0 或 1 状态,克服模拟系统校准误差。下面是架构图: <img src="./images/nn_control1.png" width="1000"> 即使没有神经网络,这也是一个很容易解决的问题,但主题与您使用 TFQ 可能解决的实际量子控制问题类似。它使用 tf.keras.Model 中的 tfq.layers.ControlledPQC(参数化量子电路)层演示了一个端到端量子-经典计算示例。 对于本教程中的实现,此架构分为以下三部分: 输入电路或数据点电路:前三个 $R$ 门。 受控电路:另外三个 $R$ 门。 控制器:设置受控电路参数的经典神经网络。 2.1 受控电路定义 如上图所示,定义可学习的单个位旋转。这与我们的受控电路对应。 Step14: 2.2 控制器 现在,定义控制器网络: Step15: 给定一批命令,控制器就会输出受控电路的一批控制信号。 控制器是随机初始化的,所以这些输出目前没有用处。 Step16: 2.3 将控制器连接到电路 使用 tfq 将控制器作为单个 keras.Model 连接到受控电路。 请参阅 Keras 函数式 API 指南详细了解这种样式的模型定义。 首先,定义模型的输入: Step17: 接着,将运算应用到这些输入来定义计算。 Step18: 现在,将此计算打包成 tf.keras.Model: Step19: 该网络架构如下面的模型图所示。将模型图与架构图进行对比可验证其正确性。 注:可能需要安装了 graphviz 软件包的系统。 Step20: 此模型需要两个输入:控制器的命令,以及控制器尝试纠正其输出的输入电路。 2.4 数据集 该模型会尝试为每个命令的 $\hat{Z}$ 输出正确的测量值。命令和正确值的定义如下。 Step21: 这并不是此任务的完整训练数据集。数据集中的每个数据点还需要一个输入电路。 2.4 输入电路定义 下面的输入电路定义该模型将学习纠正的随机校准误差。 Step22: 电路有两个副本,每个数据点一个。 Step23: 2.5 训练 利用定义的输入,您可以试运行 tfq 模型。 Step24: 现在,请运行标准训练流程,针对 expected_outputs 调整这些值。 Step26: 从此图中您可以看到,神经网络已经学会解决系统校准错误。 2.6 验证输出 现在,使用训练的模型来纠正量子位校准误差。对于 Cirq: Step27: 在训练期间,损失函数的值可提供模型学习效果的大致情况。损失值越小,以上代码单元中的期望值就越接近 desired_values。如果您不太关心参数值,则随时可以使用 tfq 检查上面的输出: Step28: 3 学习准备不同算子的本征态 您可以随意将 $\pm \hat{Z}$ 本征态与 1 和 0 对应。但为了简便起见,您可以让 1 与 $+ \hat{Z}$ 本征态对应,而让 0 与 $-\hat{X}$ 本征态对应。一种实现方式是为每个命令指定一个不同的测量算子,如下图所示: <img src="./images/nn_control2.png" width="1000"> 这要求使用 <code>tfq.layers.Expectation</code>。现在,您的输入已经包括三个对象:电路、命令和算子。输出仍为期望值。 3.1 新模型定义 我们来看看完成此任务的模型: Step29: 下面是控制器网络: Step30: 使用 tfq 将电路与控制器合并到单个 keras.Model 中: Step31: 3.2 数据集 现在,对于为 model_circuit 提供的每个数据点,还要包括要测量的算子: Step32: 3.3 训练 现在,您已经有了新的输入和输出,可以使用 Keras 重新进行训练。 Step33: 损失函数的值已降为零。 controller 可作为独立模型提供。您可以调用控制器,并检查其对每个命令信号的响应。要正确对比这些输出与 random_rotations 的内容,您可能需要花些功夫。
Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Explanation: Copyright 2020 The TensorFlow Authors. End of explanation !pip install tensorflow==2.4.1 Explanation: 你好,量子世界 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https://tensorflow.google.cn/quantum/tutorials/hello_many_worlds"><img src="https://tensorflow.google.cn/images/tf_logo_32px.png">在 TensorFlow.org 上查看</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/zh-cn/quantum/tutorials/hello_many_worlds.ipynb"><img src="https://tensorflow.google.cn/images/colab_logo_32px.png">在 Google Colab 中运行</a></td> <td><a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/zh-cn/quantum/tutorials/hello_many_worlds.ipynb"><img src="https://tensorflow.google.cn/images/GitHub-Mark-32px.png">在 GitHub 上查看源代码</a></td> <td><a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/zh-cn/quantum/tutorials/hello_many_worlds.ipynb"><img src="https://tensorflow.google.cn/images/download_logo_32px.png">下载笔记本</a></td> </table> 本教程介绍经典神经网络如何学习纠正量子位校准误差。其中介绍了 <a target="_blank" href="https://github.com/quantumlib/Cirq" class="external">Cirq</a>(一个用于创建、编辑和调用嘈杂中型量子 (NISQ) 电路的 Python 框架),并演示了 Cirq 如何通过接口与 TensorFlow Quantum 连接。 设置 End of explanation !pip install tensorflow-quantum # Update package resources to account for version changes. import importlib, pkg_resources importlib.reload(pkg_resources) Explanation: 安装 TensorFlow Quantum: End of explanation import tensorflow as tf import tensorflow_quantum as tfq import cirq import sympy import numpy as np # visualization tools %matplotlib inline import matplotlib.pyplot as plt from cirq.contrib.svg import SVGCircuit Explanation: 现在,导入 TensorFlow 和模块依赖项: End of explanation a, b = sympy.symbols('a b') Explanation: 1. 基础知识 1.1 Cirq 和参数化量子电路 在研究 TensorFlow Quantum (TFQ) 之前,我们先来了解 <a target="_blank" href="https://github.com/quantumlib/Cirq" class="external">Cirq</a> 的一些基础知识。Cirq 是 Google 开发的一个用于量子计算的 Python 库。您可以使用它定义电路,包括静态和参数化门。 Cirq 使用 <a target="_blank" href="https://www.sympy.org" class="external">SymPy</a> 符号表示自由参数。 End of explanation # Create two qubits q0, q1 = cirq.GridQubit.rect(1, 2) # Create a circuit on these qubits using the parameters you created above. circuit = cirq.Circuit( cirq.rx(a).on(q0), cirq.ry(b).on(q1), cirq.CNOT(control=q0, target=q1)) SVGCircuit(circuit) Explanation: 下面的代码可以使用您的参数创建一个双量子位电路: End of explanation # Calculate a state vector with a=0.5 and b=-0.5. resolver = cirq.ParamResolver({a: 0.5, b: -0.5}) output_state_vector = cirq.Simulator().simulate(circuit, resolver).final_state_vector output_state_vector Explanation: 要评估电路,您可以使用 cirq.Simulator 接口。通过传入 cirq.ParamResolver 对象,您可以将电路中的自由参数替换为具体的数字。下面的代码可以计算参数化电路的原始状态向量输出: End of explanation z0 = cirq.Z(q0) qubit_map={q0: 0, q1: 1} z0.expectation_from_state_vector(output_state_vector, qubit_map).real z0x1 = 0.5 * z0 + cirq.X(q1) z0x1.expectation_from_state_vector(output_state_vector, qubit_map).real Explanation: 如果脱离模拟环境,您将无法直接访问状态向量(请注意上面的输出中的复杂数字)。为了达到物理真实感,您必须指定一个测量值,将状态向量转换为经典计算机可以理解的实数。Cirq 使用 <a target="_blank" href="https://en.wikipedia.org/wiki/Pauli_matrices" class="external">Pauli 算子</a> $\hat{X}$、$\hat{Y}$ 和 $\hat{Z}$ 的组合指定测量值。例如,以下代码可在您刚刚模拟的状态向量上测量 $\hat{Z}_0$ 和 $\frac{1}{2}\hat{Z}_0 + \hat{X}_1$。 End of explanation # Rank 1 tensor containing 1 circuit. circuit_tensor = tfq.convert_to_tensor([circuit]) print(circuit_tensor.shape) print(circuit_tensor.dtype) Explanation: 1.2 作为向量的量子电路 TensorFlow Quantum (TFQ) 提供了 tfq.convert_to_tensor,后者是一个可以将 Cirq 对象转换为张量的函数。这样,您可以将 Cirq 对象发送到我们的<a target="_blank" href="https://tensorflow.google.cn/quantum/api_docs/python/tfq/layers">量子层</a>和<a target="_blank" href="https://tensorflow.google.cn/quantum/api_docs/python/tfq/get_expectation_op">量子运算</a>。可以在 Cirq Circuit 和 Cirq Paulis 的列表或数组中调用该函数: End of explanation # Rank 1 tensor containing 2 Pauli operators. pauli_tensor = tfq.convert_to_tensor([z0, z0x1]) pauli_tensor.shape Explanation: 这可以将 Cirq 对象编码为 tf.string 张量,tfq 运算在需要时可以对这些张量进行解码。 End of explanation batch_vals = np.array(np.random.uniform(0, 2 * np.pi, (5, 2)), dtype=np.float32) Explanation: 1.3 电路模拟批处理 TFQ 提供了计算期望值、样本和状态向量的方法。目前,我们先重点介绍期望值。 计算期望值的最高级接口是 tfq.layers.Expectation 层,它是一个 tf.keras.Layer。简而言之,该层等效于通过许多 cirq.ParamResolvers 模拟参数化电路;不过,TFQ 允许对随后的 TensorFlow 语义进行批处理,而电路则使用高效的 C++ 代码进行模拟。 创建一组替代 a 和 b 参数的值: End of explanation cirq_results = [] cirq_simulator = cirq.Simulator() for vals in batch_vals: resolver = cirq.ParamResolver({a: vals[0], b: vals[1]}) final_state_vector = cirq_simulator.simulate(circuit, resolver).final_state_vector cirq_results.append( [z0.expectation_from_state_vector(final_state_vector, { q0: 0, q1: 1 }).real]) print('cirq batch results: \n {}'.format(np.array(cirq_results))) Explanation: 在 Cirq 中通过参数值对电路执行进行批处理需要一个循环: End of explanation tfq.layers.Expectation()(circuit, symbol_names=[a, b], symbol_values=batch_vals, operators=z0) Explanation: TFQ 中简化了同一运算: End of explanation # Parameters that the classical NN will feed values into. control_params = sympy.symbols('theta_1 theta_2 theta_3') # Create the parameterized circuit. qubit = cirq.GridQubit(0, 0) model_circuit = cirq.Circuit( cirq.rz(control_params[0])(qubit), cirq.ry(control_params[1])(qubit), cirq.rx(control_params[2])(qubit)) SVGCircuit(model_circuit) Explanation: 2. 混合量子-经典优化 现在,您已经了解基础知识。接下来,我们使用 TensorFlow Quantum 构造一个混合量子-经典神经网络。您将训练一个经典神经网络来控制单个量子位。我们将优化控制,以便将量子位正确准备为 0 或 1 状态,克服模拟系统校准误差。下面是架构图: <img src="./images/nn_control1.png" width="1000"> 即使没有神经网络,这也是一个很容易解决的问题,但主题与您使用 TFQ 可能解决的实际量子控制问题类似。它使用 tf.keras.Model 中的 tfq.layers.ControlledPQC(参数化量子电路)层演示了一个端到端量子-经典计算示例。 对于本教程中的实现,此架构分为以下三部分: 输入电路或数据点电路:前三个 $R$ 门。 受控电路:另外三个 $R$ 门。 控制器:设置受控电路参数的经典神经网络。 2.1 受控电路定义 如上图所示,定义可学习的单个位旋转。这与我们的受控电路对应。 End of explanation # The classical neural network layers. controller = tf.keras.Sequential([ tf.keras.layers.Dense(10, activation='elu'), tf.keras.layers.Dense(3) ]) Explanation: 2.2 控制器 现在,定义控制器网络: End of explanation controller(tf.constant([[0.0],[1.0]])).numpy() Explanation: 给定一批命令,控制器就会输出受控电路的一批控制信号。 控制器是随机初始化的,所以这些输出目前没有用处。 End of explanation # This input is the simulated miscalibration that the model will learn to correct. circuits_input = tf.keras.Input(shape=(), # The circuit-tensor has dtype `tf.string` dtype=tf.string, name='circuits_input') # Commands will be either `0` or `1`, specifying the state to set the qubit to. commands_input = tf.keras.Input(shape=(1,), dtype=tf.dtypes.float32, name='commands_input') Explanation: 2.3 将控制器连接到电路 使用 tfq 将控制器作为单个 keras.Model 连接到受控电路。 请参阅 Keras 函数式 API 指南详细了解这种样式的模型定义。 首先,定义模型的输入: End of explanation dense_2 = controller(commands_input) # TFQ layer for classically controlled circuits. expectation_layer = tfq.layers.ControlledPQC(model_circuit, # Observe Z operators = cirq.Z(qubit)) expectation = expectation_layer([circuits_input, dense_2]) Explanation: 接着,将运算应用到这些输入来定义计算。 End of explanation # The full Keras model is built from our layers. model = tf.keras.Model(inputs=[circuits_input, commands_input], outputs=expectation) Explanation: 现在,将此计算打包成 tf.keras.Model: End of explanation tf.keras.utils.plot_model(model, show_shapes=True, dpi=70) Explanation: 该网络架构如下面的模型图所示。将模型图与架构图进行对比可验证其正确性。 注:可能需要安装了 graphviz 软件包的系统。 End of explanation # The command input values to the classical NN. commands = np.array([[0], [1]], dtype=np.float32) # The desired Z expectation value at output of quantum circuit. expected_outputs = np.array([[1], [-1]], dtype=np.float32) Explanation: 此模型需要两个输入:控制器的命令,以及控制器尝试纠正其输出的输入电路。 2.4 数据集 该模型会尝试为每个命令的 $\hat{Z}$ 输出正确的测量值。命令和正确值的定义如下。 End of explanation random_rotations = np.random.uniform(0, 2 * np.pi, 3) noisy_preparation = cirq.Circuit( cirq.rx(random_rotations[0])(qubit), cirq.ry(random_rotations[1])(qubit), cirq.rz(random_rotations[2])(qubit) ) datapoint_circuits = tfq.convert_to_tensor([ noisy_preparation ] * 2) # Make two copied of this circuit Explanation: 这并不是此任务的完整训练数据集。数据集中的每个数据点还需要一个输入电路。 2.4 输入电路定义 下面的输入电路定义该模型将学习纠正的随机校准误差。 End of explanation datapoint_circuits.shape Explanation: 电路有两个副本,每个数据点一个。 End of explanation model([datapoint_circuits, commands]).numpy() Explanation: 2.5 训练 利用定义的输入,您可以试运行 tfq 模型。 End of explanation optimizer = tf.keras.optimizers.Adam(learning_rate=0.05) loss = tf.keras.losses.MeanSquaredError() model.compile(optimizer=optimizer, loss=loss) history = model.fit(x=[datapoint_circuits, commands], y=expected_outputs, epochs=30, verbose=0) plt.plot(history.history['loss']) plt.title("Learning to Control a Qubit") plt.xlabel("Iterations") plt.ylabel("Error in Control") plt.show() Explanation: 现在,请运行标准训练流程,针对 expected_outputs 调整这些值。 End of explanation def check_error(command_values, desired_values): Based on the value in `command_value` see how well you could prepare the full circuit to have `desired_value` when taking expectation w.r.t. Z. params_to_prepare_output = controller(command_values).numpy() full_circuit = noisy_preparation + model_circuit # Test how well you can prepare a state to get expectation the expectation # value in `desired_values` for index in [0, 1]: state = cirq_simulator.simulate( full_circuit, {s:v for (s,v) in zip(control_params, params_to_prepare_output[index])} ).final_state_vector expt = cirq.Z(qubit).expectation_from_state_vector(state, {qubit: 0}).real print(f'For a desired output (expectation) of {desired_values[index]} with' f' noisy preparation, the controller\nnetwork found the following ' f'values for theta: {params_to_prepare_output[index]}\nWhich gives an' f' actual expectation of: {expt}\n') check_error(commands, expected_outputs) Explanation: 从此图中您可以看到,神经网络已经学会解决系统校准错误。 2.6 验证输出 现在,使用训练的模型来纠正量子位校准误差。对于 Cirq: End of explanation model([datapoint_circuits, commands]) Explanation: 在训练期间,损失函数的值可提供模型学习效果的大致情况。损失值越小,以上代码单元中的期望值就越接近 desired_values。如果您不太关心参数值,则随时可以使用 tfq 检查上面的输出: End of explanation # Define inputs. commands_input = tf.keras.layers.Input(shape=(1), dtype=tf.dtypes.float32, name='commands_input') circuits_input = tf.keras.Input(shape=(), # The circuit-tensor has dtype `tf.string` dtype=tf.dtypes.string, name='circuits_input') operators_input = tf.keras.Input(shape=(1,), dtype=tf.dtypes.string, name='operators_input') Explanation: 3 学习准备不同算子的本征态 您可以随意将 $\pm \hat{Z}$ 本征态与 1 和 0 对应。但为了简便起见,您可以让 1 与 $+ \hat{Z}$ 本征态对应,而让 0 与 $-\hat{X}$ 本征态对应。一种实现方式是为每个命令指定一个不同的测量算子,如下图所示: <img src="./images/nn_control2.png" width="1000"> 这要求使用 <code>tfq.layers.Expectation</code>。现在,您的输入已经包括三个对象:电路、命令和算子。输出仍为期望值。 3.1 新模型定义 我们来看看完成此任务的模型: End of explanation # Define classical NN. controller = tf.keras.Sequential([ tf.keras.layers.Dense(10, activation='elu'), tf.keras.layers.Dense(3) ]) Explanation: 下面是控制器网络: End of explanation dense_2 = controller(commands_input) # Since you aren't using a PQC or ControlledPQC you must append # your model circuit onto the datapoint circuit tensor manually. full_circuit = tfq.layers.AddCircuit()(circuits_input, append=model_circuit) expectation_output = tfq.layers.Expectation()(full_circuit, symbol_names=control_params, symbol_values=dense_2, operators=operators_input) # Contruct your Keras model. two_axis_control_model = tf.keras.Model( inputs=[circuits_input, commands_input, operators_input], outputs=[expectation_output]) Explanation: 使用 tfq 将电路与控制器合并到单个 keras.Model 中: End of explanation # The operators to measure, for each command. operator_data = tfq.convert_to_tensor([[cirq.X(qubit)], [cirq.Z(qubit)]]) # The command input values to the classical NN. commands = np.array([[0], [1]], dtype=np.float32) # The desired expectation value at output of quantum circuit. expected_outputs = np.array([[1], [-1]], dtype=np.float32) Explanation: 3.2 数据集 现在,对于为 model_circuit 提供的每个数据点,还要包括要测量的算子: End of explanation optimizer = tf.keras.optimizers.Adam(learning_rate=0.05) loss = tf.keras.losses.MeanSquaredError() two_axis_control_model.compile(optimizer=optimizer, loss=loss) history = two_axis_control_model.fit( x=[datapoint_circuits, commands, operator_data], y=expected_outputs, epochs=30, verbose=1) plt.plot(history.history['loss']) plt.title("Learning to Control a Qubit") plt.xlabel("Iterations") plt.ylabel("Error in Control") plt.show() Explanation: 3.3 训练 现在,您已经有了新的输入和输出,可以使用 Keras 重新进行训练。 End of explanation controller.predict(np.array([0,1])) Explanation: 损失函数的值已降为零。 controller 可作为独立模型提供。您可以调用控制器,并检查其对每个命令信号的响应。要正确对比这些输出与 random_rotations 的内容,您可能需要花些功夫。 End of explanation
508
Given the following text description, write Python code to implement the functionality described below step by step Description: Ordinary Differential Equations Exercise 2 Imports Step2: Lorenz system The Lorenz system is one of the earliest studied examples of a system of differential equations that exhibits chaotic behavior, such as bifurcations, attractors, and sensitive dependence on initial conditions. The differential equations read Step4: Write a function solve_lorenz that solves the Lorenz system above for a particular initial condition $[x(0),y(0),z(0)]$. Your function should return a tuple of the solution array and time array. Step6: Write a function plot_lorentz that Step7: Use interact to explore your plot_lorenz function with
Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint from IPython.html.widgets import interact, fixed Explanation: Ordinary Differential Equations Exercise 2 Imports End of explanation def lorentz_derivs(yvec, t, sigma, rho, beta): Compute the the derivatives for the Lorentz system at yvec(t). x=yvec[0] y=yvec[1] z=yvec[2] dx=sigma*(y-x) dy=x*(rho-z)-y dz=x*y-beta*z return np.array([dx,dy,dz]) assert np.allclose(lorentz_derivs((1,1,1),0, 1.0, 1.0, 2.0),[0.0,-1.0,-1.0]) Explanation: Lorenz system The Lorenz system is one of the earliest studied examples of a system of differential equations that exhibits chaotic behavior, such as bifurcations, attractors, and sensitive dependence on initial conditions. The differential equations read: $$ \frac{dx}{dt} = \sigma(y-x) $$ $$ \frac{dy}{dt} = x(\rho-z) - y $$ $$ \frac{dz}{dt} = xy - \beta z $$ The solution vector is $[x(t),y(t),z(t)]$ and $\sigma$, $\rho$, and $\beta$ are parameters that govern the behavior of the solutions. Write a function lorenz_derivs that works with scipy.integrate.odeint and computes the derivatives for this system. End of explanation def solve_lorentz(ic, max_time=4.0, sigma=10.0, rho=28.0, beta=8.0/3.0): Solve the Lorenz system for a single initial condition. Parameters ---------- ic : array, list, tuple Initial conditions [x,y,z]. max_time: float The max time to use. Integrate with 250 points per time unit. sigma, rho, beta: float Parameters of the differential equation. Returns ------- soln : np.ndarray The array of the solution. Each row will be the solution vector at that time. t : np.ndarray The array of time points used. t=np.linspace(0,max_time,int(250.0*max_time)) soln=odeint(lorentz_derivs,ic,t,args=(sigma,rho,beta)) return soln,t assert True # leave this to grade solve_lorenz Explanation: Write a function solve_lorenz that solves the Lorenz system above for a particular initial condition $[x(0),y(0),z(0)]$. Your function should return a tuple of the solution array and time array. End of explanation N = 5 colors = plt.cm.hot(np.linspace(0,1,N)) for i in range(N): # To use these colors with plt.plot, pass them as the color argument print(colors[i]) def plot_lorentz(N=10, max_time=4.0, sigma=10.0, rho=28.0, beta=8.0/3.0): Plot [x(t),z(t)] for the Lorenz system. Parameters ---------- N : int Number of initial conditions and trajectories to plot. max_time: float Maximum time to use. sigma, rho, beta: float Parameters of the differential equation. np.random.seed(1) ic=np.random.rand(N,3)*30-15 plt.figure(figsize=(9,6)) # This takes the solutions of solve_lorentz in the x and z position of the # array and uses the initial conditions of their respective positions. for i in ic: plt.plot(solve_lorentz(i,max_time,sigma,rho,beta)[0][:,0],solve_lorentz(i,max_time,sigma,rho,beta)[0][:,2]); # I could not find a way to make the color mapping work plt.xlabel('x(t)'),plt.ylabel('z(t)'); plt.title('Lorentz Parametric System') plot_lorentz(); assert True # leave this to grade the plot_lorenz function Explanation: Write a function plot_lorentz that: Solves the Lorenz system for N different initial conditions. To generate your initial conditions, draw uniform random samples for x, y and z in the range $[-15,15]$. Call np.random.seed(1) a single time at the top of your function to use the same seed each time. Plot $[x(t),z(t)]$ using a line to show each trajectory. Color each line using the hot colormap from Matplotlib. Label your plot and choose an appropriate x and y limit. The following cell shows how to generate colors that can be used for the lines: End of explanation interact(plot_lorentz, max_time=[1,10], N=[1,50], sigma=[0.0,50.0], rho=[0.0,50.0], beta=fixed(8/3)); Explanation: Use interact to explore your plot_lorenz function with: max_time an integer slider over the interval $[1,10]$. N an integer slider over the interval $[1,50]$. sigma a float slider over the interval $[0.0,50.0]$. rho a float slider over the interval $[0.0,50.0]$. beta fixed at a value of $8/3$. End of explanation
509
Given the following text description, write Python code to implement the functionality described below step by step Description: Cervix EDA In this competition we have a multi-class classification problem with three classes. We are asked, given an image, to identify the cervix type. From the data description Step1: We are given training images for each of cervix types. Lets first count them for each class. Step2: Image types Now that we have the data in a handy dataframe we can do a few aggregations on the data. Let us first see how many images there are for each cervix type and which file types they have. All files are in JPG format and Type 2 is the most common one with a little bit more than 50% in the training data in total, Type 1 on the other hand has a little bit less than 20% in the training data. Step3: Now, lets read the files for each type to get an idea about how the images look like. The images seem to vary alot in they formats, the first two samples have only a circular area with the actual image, the last sample has the image in a rectangle. Step4: Additional images Step5: All images
Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from skimage.io import imread, imshow import cv2 %matplotlib inline import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls from subprocess import check_output print(check_output(["ls", "../input/train"]).decode("utf8")) Explanation: Cervix EDA In this competition we have a multi-class classification problem with three classes. We are asked, given an image, to identify the cervix type. From the data description: In this competition, you will develop algorithms to correctly classify cervix types based on cervical images. These different types of cervix in our data set are all considered normal (not cancerous), but since the transformation zones aren't always visible, some of the patients require further testing while some don't. This decision is very important for the healthcare provider and critical for the patient. Identifying the transformation zones is not an easy task for the healthcare providers, therefore, an algorithm-aided decision will significantly improve the quality and efficiency of cervical cancer screening for these patients. The submission format is asking for a probability for each of the three different cervix types. In this notebook we will be looking at: basic dataset stats like number of samples per class, image sizes different embeddings of RGB image space pairwise distances and a clustermap of images in RGB space (linear) model selection with basic multi class evaluation metrics. If you like this kernel, please give an upvote, thanks! :) End of explanation from glob import glob basepath = '../input/train/' all_cervix_images = [] for path in sorted(glob(basepath + "*")): cervix_type = path.split("/")[-1] cervix_images = sorted(glob(basepath + cervix_type + "/*")) all_cervix_images = all_cervix_images + cervix_images all_cervix_images = pd.DataFrame({'imagepath': all_cervix_images}) all_cervix_images['filetype'] = all_cervix_images.apply(lambda row: row.imagepath.split(".")[-1], axis=1) all_cervix_images['type'] = all_cervix_images.apply(lambda row: row.imagepath.split("/")[-2], axis=1) all_cervix_images.head() Explanation: We are given training images for each of cervix types. Lets first count them for each class. End of explanation print('We have a total of {} images in the whole dataset'.format(all_cervix_images.shape[0])) type_aggregation = all_cervix_images.groupby(['type', 'filetype']).agg('count') type_aggregation_p = type_aggregation.apply(lambda row: 1.0*row['imagepath']/all_cervix_images.shape[0], axis=1) fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10, 8)) type_aggregation.plot.barh(ax=axes[0]) axes[0].set_xlabel("image count") type_aggregation_p.plot.barh(ax=axes[1]) axes[1].set_xlabel("training size fraction") Explanation: Image types Now that we have the data in a handy dataframe we can do a few aggregations on the data. Let us first see how many images there are for each cervix type and which file types they have. All files are in JPG format and Type 2 is the most common one with a little bit more than 50% in the training data in total, Type 1 on the other hand has a little bit less than 20% in the training data. End of explanation fig = plt.figure(figsize=(12,8)) i = 1 for t in all_cervix_images['type'].unique(): ax = fig.add_subplot(1,3,i) i+=1 f = all_cervix_images[all_cervix_images['type'] == t]['imagepath'].values[0] plt.imshow(plt.imread(f)) plt.title('sample for cervix {}'.format(t)) Explanation: Now, lets read the files for each type to get an idea about how the images look like. The images seem to vary alot in they formats, the first two samples have only a circular area with the actual image, the last sample has the image in a rectangle. End of explanation print(check_output(["ls", "../input/additional"]).decode("utf8")) basepath = '../input/additional/' all_cervix_images_a = [] for path in sorted(glob(basepath + "*")): cervix_type = path.split("/")[-1] cervix_images = sorted(glob(basepath + cervix_type + "/*")) all_cervix_images_a = all_cervix_images_a + cervix_images all_cervix_images_a = pd.DataFrame({'imagepath': all_cervix_images_a}) all_cervix_images_a['filetype'] = all_cervix_images_a.apply(lambda row: row.imagepath.split(".")[-1], axis=1) all_cervix_images_a['type'] = all_cervix_images_a.apply(lambda row: row.imagepath.split("/")[-2], axis=1) all_cervix_images_a.head() print('We have a total of {} images in the whole dataset'.format(all_cervix_images_a.shape[0])) type_aggregation = all_cervix_images_a.groupby(['type', 'filetype']).agg('count') type_aggregation_p = type_aggregation.apply(lambda row: 1.0*row['imagepath']/all_cervix_images_a.shape[0], axis=1) fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10, 8)) type_aggregation.plot.barh(ax=axes[0]) axes[0].set_xlabel("image count") type_aggregation_p.plot.barh(ax=axes[1]) axes[1].set_xlabel("training size fraction") fig = plt.figure(figsize=(12,8)) i = 1 for t in all_cervix_images_a['type'].unique(): ax = fig.add_subplot(1,3,i) i+=1 f = all_cervix_images_a[all_cervix_images_a['type'] == t]['imagepath'].values[0] plt.imshow(plt.imread(f)) plt.title('sample for cervix {}'.format(t)) Explanation: Additional images End of explanation all_cervix_images_ = pd.concat( [all_cervix_images, all_cervix_images_a], join='outer' ) #all_cervix_images_ = all_cervix_images.append(all_cervix_images_a) #all_cervix_images_a.merge(all_cervix_images,how='left') #all_cervix_images_ = pd.DataFrame({'imagepath': all_cervix_images_}) #all_cervix_images_['filetype'] = all_cervix_images_.apply(lambda row: row.imagepath.split(".")[-1], axis=1) #all_cervix_images_['type'] = all_cervix_images_.apply(lambda row: row.imagepath.split("/")[-2], axis=1) #all_cervix_images_.head() print(all_cervix_images_) print('We have a total of {} images in the whole dataset'.format(all_cervix_images_.shape[0])) type_aggregation = all_cervix_images_.groupby(['type', 'filetype']).agg('count') type_aggregation_p = type_aggregation.apply(lambda row: 1.0*row['imagepath']/all_cervix_images_a.shape[0], axis=1) fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10, 8)) type_aggregation.plot.barh(ax=axes[0]) axes[0].set_xlabel("image count") type_aggregation_p.plot.barh(ax=axes[1]) axes[1].set_xlabel("training size fraction") fig = plt.figure(figsize=(12,8)) i = 1 for t in all_cervix_images_['type'].unique(): ax = fig.add_subplot(1,3,i) i+=1 f = all_cervix_images_[all_cervix_images_['type'] == t]['imagepath'].values[0] plt.imshow(plt.imread(f)) plt.title('sample for cervix {}'.format(t)) Explanation: All images End of explanation
510
Given the following text description, write Python code to implement the functionality described below step by step Description: <a href="https Step1: Building the LSTM model for Language Modeling Now that we know exactly what we are doing, we can start building our model using TensorFlow. The very first thing we need to do is download and extract the simple-examples dataset, which can be done by executing the code cell below. Step2: Additionally, for the sake of making it easy to play around with the model's hyperparameters, we can declare them beforehand. Feel free to change these -- you will see a difference in performance each time you change those! Step3: Some clarifications for LSTM architecture based on the argumants Step4: Lets just read one mini-batch now and feed our network Step5: Lets look at 3 sentences of our input x Step6: we define 2 place holders to feed them with mini-batchs, that is x and y Step7: lets defin a dictionary, and use it later to feed the placeholders with our first mini-batch Step8: For example, we can use it to feed _input_data Step9: In this step, we create the stacked LSTM, which is a 2 layer LSTM network Step10: Also, we initialize the states of the nework Step11: lets look at the states, though they are all zero for now Step12: Embeddings We create the embeddings for our input data. embedding is dictionary of [10000x200] for all 10000 unique words. Step13: embedding_lookup goes to each row of input_data, and for each word in the row/sentence, finds the correspond vector in embedding. It creates a [3020200] matrix, so, the first elemnt of inputs (the first sentence), is a matrix of 20x200, which each row of it is vector representing a word in the sentence. Step14: Constructing Recurrent Neural Networks tf.nn.dynamicrnn() creates a recurrent neural network using stacked_lstm which is an instance of RNNCell. The input should be a Tensor of shape Step15: so, lets look at the outputs. The output of the stackedLSTM comes from 200 hidden_layer, and in each time step(=20), one of them get activated. we use the linear activation to map the 200 hidden layer to a [?x10 matrix] Step16: Lets reshape the output tensor from [30 x 20 x 200] to [600 x 200] Step17: logistic unit Now, we create a logistic unit to return the probability of the output word. That is, mapping the 600 Softmax = [600 x 200]* [200 x 1000]+ [1 x 1000] -> [600 x 1000] Step18: Prediction The maximum probablity Step19: So, what is the ground truth for the first word of first sentence? Step20: Also, you can get it from target tensor, if you want to find the embedding vector Step21: It is time to compare logit with target Step22: Objective function Now we want to define our objective function. Our objective is to minimize loss function, that is, to minimize the average negative log probability of the target words Step23: loss is a 1D batch-sized float Tensor [600x1] Step24: Now, lets store the new state as final state Step25: Training To do gradient clipping in TensorFlow we have to take the following steps Step26: 2. Trainable Variables Definining a variable, if you passed trainable=True, the Variable() constructor automatically adds new variables to the graph collection GraphKeys.TRAINABLE_VARIABLES. Now, using tf.trainable_variables() you can get all variables created with trainable=True. Step27: we can find the name and scope of all variables Step28: 3. Calculate the gradients based on the loss function Step29: Gradient Step30: The tf.gradients() function allows you to compute the symbolic gradient of one tensor with respect to one or more other tensors—including variables. tf.gradients(func,xs) constructs symbolic partial derivatives of sum of func w.r.t. x in xs. Now, lets look at the derivitive w.r.t. var_x Step31: the derivitive w.r.t. var_y Step32: Now, we can look at gradients w.r.t all variables Step33: now, we have a list of tensors, t-list. We can use it to find clipped tensors. clip_by_global_norm clips values of multiple tensors by the ratio of the sum of their norms. clip_by_global_norm get t-list as input and returns 2 things Step34: 4. Apply the optimizer to the variables / gradients tuple. Step35: We learned how the model is build step by step. Noe, let's then create a Class that represents our model. This class needs a few things Step36: With that, the actual structure of our Recurrent Neural Network with Long Short-Term Memory is finished. What remains for us to do is to actually create the methods to run through time -- that is, the run_epoch method to be run at each epoch and a main script which ties all of this together. What our run_epoch method should do is take our input data and feed it to the relevant operations. This will return at the very least the current result for the cost function. Step37: Now, we create the main method to tie everything together. The code here reads the data from the directory, using the reader helper module, and then trains and evaluates the model on both a testing and a validating subset of data.
Python Code: import time import numpy as np import tensorflow as tf import os print('TensorFlow version: ', tf.__version__) tf.reset_default_graph() if not os.path.isfile('./penn_treebank_reader.py'): print('Downloading penn_treebank_reader.py...') !wget -q -O ../../data/Penn_Treebank/ptb.zip https://ibm.box.com/shared/static/z2yvmhbskc45xd2a9a4kkn6hg4g4kj5r.zip !unzip -o ../../data/Penn_Treebank/ptb.zip -d ../data/Penn_Treebank !cp ../../data/Penn_Treebank/ptb/reader.py ./penn_treebank_reader.py else: print('Using local penn_treebank_reader.py...') import penn_treebank_reader as reader Explanation: <a href="https://www.bigdatauniversity.com"><img src = "https://ibm.box.com/shared/static/jvcqp2iy2jlx2b32rmzdt0tx8lvxgzkp.png" width = 300, align = "center"></a> <h1 align=center><font size = 5>RECURRENT NETWORKS and LSTM IN DEEP LEARNING</font></h1> Applying Recurrent Neural Networks/LSTM for Language Modelling Hello and welcome to this part. In this notebook, we will go over the topic of what Language Modelling is and create a Recurrent Neural Network model based on the Long Short-Term Memory unit to train and be benchmarked by the Penn Treebank. By the end of this notebook, you should be able to understand how TensorFlow builds and executes a RNN model for Language Modelling. The Objective By now, you should have an understanding of how Recurrent Networks work -- a specialized model to process sequential data by keeping track of the "state" or context. In this notebook, we go over a TensorFlow code snippet for creating a model focused on Language Modelling -- a very relevant task that is the cornerstone of many different linguistic problems such as Speech Recognition, Machine Translation and Image Captioning. For this, we will be using the Penn Treebank, which is an often-used dataset for benchmarking Language Modelling models. What exactly is Language Modelling? Language Modelling, to put it simply, is the task of assigning probabilities to sequences of words. This means that, given a context of one or a few words in the language the model was trained on, the model should have a knowledge of what are the most probable words or sequence of words for the sentence. Language Modelling is one of the tasks under Natural Language Processing, and one of the most important. <img src=https://ibm.box.com/shared/static/1d1i5gub6wljby2vani2vzxp0xsph702.png width="768"/> <center>Example of a sentence being predicted</center> In this example, one can see the predictions for the next word of a sentence, given the context "This is an". As you can see, this boils down to a sequential data analysis task -- you are given a word or a sequence of words (the input data), and, given the context (the state), you need to find out what is the next word (the prediction). This kind of analysis is very important for language-related tasks such as Speech Recognition, Machine Translation, Image Captioning, Text Correction and many other very relevant problems. <img src=https://ibm.box.com/shared/static/az39idf9ipfdpc5ugifpgxnydelhyf3i.png width="1080"/> <center>The above example schematized as an RNN in execution</center> As the above image shows, Recurrent Network models fit this problem like a glove. Alongside LSTM and its capacity to maintain the model's state for over one thousand time steps, we have all the tools we need to undertake this problem. The goal for this notebook is to create a model that can reach low levels of perplexity on our desired dataset. For Language Modelling problems, perplexity is the way to gauge efficiency. Perplexity is simply a measure of how well a probabilistic model is able to predict its sample. A higher-level way to explain this would be saying that low perplexity means a higher degree of trust in the predictions the model makes. Therefore, the lower perplexity is, the better. The Penn Treebank dataset Historically, datasets big enough for Natural Language Processing are hard to come by. This is in part due to the necessity of the sentences to be broken down and tagged with a certain degree of correctness -- or else the models trained on it won't be able to be correct at all. This means that we need a large amount of data, annotated by or at least corrected by humans. This is, of course, not an easy task at all. The Penn Treebank, or PTB for short, is a dataset maintained by the University of Pennsylvania. It is huge -- there are over four million and eight hundred thousand annotated words in it, all corrected by humans. It is composed of many different sources, from abstracts of Department of Energy papers to texts from the Library of America. Since it is verifiably correct and of such a huge size, the Penn Treebank has been used time and time again as a benchmark dataset for Language Modelling. The dataset is divided in different kinds of annotations, such as Piece-of-Speech, Syntactic and Semantic skeletons. For this example, we will simply use a sample of clean, non-annotated words (with the exception of one tag -- &lt;unk&gt;, which is used for rare words such as uncommon proper nouns) for our model. This means that we just want to predict what the next words would be, not what they mean in context or their classes on a given sentence. <br/> <div class="alert alert-block alert-info" style="margin-top: 20px"> <center>the percentage of lung cancer deaths among the workers at the west `<unk>` mass. paper factory appears to be the highest for any asbestos workers studied in western industrialized countries he said the plant which is owned by `<unk>` & `<unk>` co. was under contract with `<unk>` to make the cigarette filters the finding probably will support those who argue that the u.s. should regulate the class of asbestos including `<unk>` more `<unk>` than the common kind of asbestos `<unk>` found in most schools and other buildings dr. `<unk>` said</center> </div> <center>Example of text from the dataset we are going to use, ptb.train</center> <br/> <h2>Word Embeddings</h2> For better processing, in this example, we will make use of word embeddings, which are a way of representing sentence structures or words as n-dimensional vectors (where n is a reasonably high number, such as 200 or 500) of real numbers. Basically, we will assign each word a randomly-initialized vector, and input those into the network to be processed. After a number of iterations, these vectors are expected to assume values that help the network to correctly predict what it needs to -- in our case, the probable next word in the sentence. This is shown to be very effective in Natural Language Processing tasks, and is a commonplace practice. <br/><br/> <font size = 4><strong> $$Vec("Example") = [0.02, 0.00, 0.00, 0.92, 0.30,...]$$ </font></strong> <br/> Word Embedding tends to group up similarly used words reasonably together in the vectorial space. For example, if we use T-SNE (a dimensional reduction visualization algorithm) to flatten the dimensions of our vectors into a 2-dimensional space and use the words these vectors represent as their labels, we might see something like this: <img src=https://ibm.box.com/shared/static/bqhc5dg879gcoabzhxra1w8rkg3od1cu.png width="800"/> <center>T-SNE Mockup with clusters marked for easier visualization</center> As you can see, words that are frequently used together, in place of each other, or in the same places as them tend to be grouped together -- being closer together the higher these correlations are. For example, "None" is pretty semantically close to "Zero", while a phrase that uses "Italy" can probably also fit "Germany" in it, with little damage to the sentence structure. A vectorial "closeness" for similar words like this is a great indicator of a well-built model. We need to import the necessary modules for our code. We need numpy and tensorflow, obviously. Additionally, we can import directly the tensorflow.models.rnn.rnn model, which includes the function for building RNNs, and tensorflow.models.rnn.ptb.reader which is the helper module for getting the input data from the dataset we just downloaded. If you want to learm more take a look at https://www.tensorflow.org/versions/r0.11/api_docs/python/rnn_cell/ <br/> End of explanation if not os.path.isfile('../data/Penn_Treebank/simple_examples.tgz'): !wget -O ../../data/Penn_Treebank/simple_examples.tgz http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz !tar xzf ../../data/Penn_Treebank/simple_examples.tgz -C ../data/Penn_Treebank/ Explanation: Building the LSTM model for Language Modeling Now that we know exactly what we are doing, we can start building our model using TensorFlow. The very first thing we need to do is download and extract the simple-examples dataset, which can be done by executing the code cell below. End of explanation #Initial weight scale init_scale = 0.1 #Initial learning rate learning_rate = 1.0 #Maximum permissible norm for the gradient (For gradient clipping -- another measure against Exploding Gradients) max_grad_norm = 5 #The number of layers in our model num_layers = 2 #The total number of recurrence steps, also known as the number of layers when our RNN is "unfolded" num_steps = 20 #The number of processing units (neurons) in the hidden layers hidden_size = 200 #The maximum number of epochs trained with the initial learning rate max_epoch = 4 #The total number of epochs in training max_max_epoch = 13 #The probability for keeping data in the Dropout Layer (This is an optimization, but is outside our scope for this notebook!) #At 1, we ignore the Dropout Layer wrapping. keep_prob = 1 #The decay for the learning rate decay = 0.5 #The size for each batch of data batch_size = 30 #The size of our vocabulary vocab_size = 10000 #Training flag to separate training from testing is_training = 1 #Data directory for our dataset data_dir = "../../data/Penn_Treebank/simple-examples/data/" Explanation: Additionally, for the sake of making it easy to play around with the model's hyperparameters, we can declare them beforehand. Feel free to change these -- you will see a difference in performance each time you change those! End of explanation session=tf.InteractiveSession() # Reads the data and separates it into training data, validation data and testing data raw_data = reader.ptb_raw_data(data_dir) train_data, valid_data, test_data, _ = raw_data Explanation: Some clarifications for LSTM architecture based on the argumants: Network structure: - In this network, the number of LSTM cells are 2. To give the model more expressive power, we can add multiple layers of LSTMs to process the data. The output of the first layer will become the input of the second and so on. - The recurrence steps is 20, that is, when our RNN is "Unfolded", the recurrence step is 20. - the structure is like: - 200 input units -> [200x200] Weight -> 200 Hidden units (first layer) -> [200x200] Weight matrix -> 200 Hidden units (second layer) -> [200] weight Matrix -> 200 unit output Hidden layer: - Each LSTM has 200 hidden units which is equivalant to the dimensianality of the embedding words and output. Input layer: - The network has 200 input units. - Suppose each word is represented by an embedding vector of dimensionality e=200. The input layer of each cell will have 200 linear units. These e=200 linear units are connected to each of the h=200 LSTM units in the hidden layer (assuming there is only one hidden layer, though our case has 2 layers). - The input shape is [batch_size, num_steps], that is [30x20]. It will turn into [30x20x200] after embedding, and then 20x[30x200] There is a lot to be done and a ton of information to process at the same time, so go over this code slowly. It may seem complex at first, but if you try to ally what you just learned about language modelling to the code you see, you should be able to understand it. This code is adapted from the PTBModel example bundled with the TensorFlow source code. Train data The story starts from data: - Train data is a list of words, represented by numbers - N=929589 numbers, e.g. [9971, 9972, 9974, 9975,...] - We read data as mini-batch of size b=30. Assume the size of each sentence is 20 words (num_steps = 20). Then it will take int(N/b*h)+1=1548 iterations for the learner to go through all sentences once. So, the number of iterators is 1548 - Each batch data is read from train dataset of size 600, and shape of [30x20] First we start an interactive session: End of explanation itera = reader.ptb_iterator(train_data, batch_size, num_steps) first_touple=next(itera) x=first_touple[0] y=first_touple[1] x.shape Explanation: Lets just read one mini-batch now and feed our network: End of explanation x[0:3] size = hidden_size Explanation: Lets look at 3 sentences of our input x: End of explanation _input_data = tf.placeholder(tf.int32, [batch_size, num_steps]) #[30#20] _targets = tf.placeholder(tf.int32, [batch_size, num_steps]) #[30#20] Explanation: we define 2 place holders to feed them with mini-batchs, that is x and y: End of explanation feed_dict={_input_data:x, _targets:y} Explanation: lets defin a dictionary, and use it later to feed the placeholders with our first mini-batch: End of explanation session.run(_input_data,feed_dict) Explanation: For example, we can use it to feed _input_data: End of explanation stacked_lstm = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(hidden_size, forget_bias=0.0) for _ in range(num_layers)] ) Explanation: In this step, we create the stacked LSTM, which is a 2 layer LSTM network: End of explanation _initial_state = stacked_lstm.zero_state(batch_size, tf.float32) _initial_state Explanation: Also, we initialize the states of the nework: _initial_state For each LCTM, there are 2 state matrics, c_state and m_state. c_state and m_state represent "Memory State" and "Cell State". Each hidden layer, has a vector of size 30, which keeps the states. so, for 200 hidden units in each LSTM, we have a matrix of size [30x200] End of explanation session.run(_initial_state,feed_dict) Explanation: lets look at the states, though they are all zero for now: End of explanation try: embedding = tf.get_variable("embedding", [vocab_size, hidden_size]) #[10000x200] except ValueError: pass embedding.get_shape().as_list() session.run(tf.global_variables_initializer()) session.run(embedding, feed_dict) Explanation: Embeddings We create the embeddings for our input data. embedding is dictionary of [10000x200] for all 10000 unique words. End of explanation # Define where to get the data for our embeddings from inputs = tf.nn.embedding_lookup(embedding, _input_data) #shape=(30, 20, 200) inputs session.run(inputs[0], feed_dict) Explanation: embedding_lookup goes to each row of input_data, and for each word in the row/sentence, finds the correspond vector in embedding. It creates a [3020200] matrix, so, the first elemnt of inputs (the first sentence), is a matrix of 20x200, which each row of it is vector representing a word in the sentence. End of explanation outputs, new_state = tf.nn.dynamic_rnn(stacked_lstm, inputs, initial_state=_initial_state) Explanation: Constructing Recurrent Neural Networks tf.nn.dynamicrnn() creates a recurrent neural network using stacked_lstm which is an instance of RNNCell. The input should be a Tensor of shape: [batch_size, max_time, ...], in our case it would be (30, 20, 200) This method, returns a pair (outputs, new_state) where: - outputs is a length T list of outputs (one for each input), or a nested tuple of such elements. - new_state is the final state End of explanation outputs session.run(tf.global_variables_initializer()) session.run(outputs[0], feed_dict) Explanation: so, lets look at the outputs. The output of the stackedLSTM comes from 200 hidden_layer, and in each time step(=20), one of them get activated. we use the linear activation to map the 200 hidden layer to a [?x10 matrix] End of explanation output = tf.reshape(outputs, [-1, size]) output session.run(output[0], feed_dict) Explanation: Lets reshape the output tensor from [30 x 20 x 200] to [600 x 200] End of explanation softmax_w = tf.get_variable("softmax_w", [size, vocab_size]) #[200x1000] softmax_b = tf.get_variable("softmax_b", [vocab_size]) #[1x1000] logits = tf.matmul(output, softmax_w) + softmax_b session.run(tf.global_variables_initializer()) logi = session.run(logits, feed_dict) logi.shape First_word_output_probablity = logi[0] First_word_output_probablity.shape Explanation: logistic unit Now, we create a logistic unit to return the probability of the output word. That is, mapping the 600 Softmax = [600 x 200]* [200 x 1000]+ [1 x 1000] -> [600 x 1000] End of explanation embedding_array= session.run(embedding, feed_dict) np.argmax(First_word_output_probablity) Explanation: Prediction The maximum probablity End of explanation y[0][0] Explanation: So, what is the ground truth for the first word of first sentence? End of explanation _targets Explanation: Also, you can get it from target tensor, if you want to find the embedding vector: End of explanation targ = session.run(tf.reshape(_targets, [-1]), feed_dict) first_word_target_code= targ[0] first_word_target_code first_word_target_vec = session.run( tf.nn.embedding_lookup(embedding, targ[0])) first_word_target_vec Explanation: It is time to compare logit with target End of explanation loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [tf.reshape(_targets, [-1])],[tf.ones([batch_size * num_steps])]) Explanation: Objective function Now we want to define our objective function. Our objective is to minimize loss function, that is, to minimize the average negative log probability of the target words: loss=−1N∑i=1Nln⁡ptargeti This function is already implimented and available in TensorFlow through sequence_loss_by_example so we can just use it here. sequence_loss_by_example is weighted cross-entropy loss for a sequence of logits (per example). Its arguments: logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols]. targets: List of 1D batch-sized int32 Tensors of the same length as logits. weights: List of 1D batch-sized float-Tensors of the same length as logits. End of explanation session.run(loss, feed_dict) cost = tf.reduce_sum(loss) / batch_size session.run(tf.global_variables_initializer()) session.run(cost, feed_dict) Explanation: loss is a 1D batch-sized float Tensor [600x1]: The log-perplexity for each sequence. End of explanation # final_state = new_state Explanation: Now, lets store the new state as final state End of explanation # Create a variable for the learning rate lr = tf.Variable(0.0, trainable=False) # Create the gradient descent optimizer with our learning rate optimizer = tf.train.GradientDescentOptimizer(lr) Explanation: Training To do gradient clipping in TensorFlow we have to take the following steps: Define the optimizer. Extract variables that are trainable. Calculate the gradients based on the loss function. Apply the optimizer to the variables / gradients tuple. 1. Define Optimizer GradientDescentOptimizer constructs a new gradient descent optimizer. Later, we use constructed optimizer to compute gradients for a loss and apply gradients to variables. End of explanation # Get all TensorFlow variables marked as "trainable" (i.e. all of them except _lr, which we just created) tvars = tf.trainable_variables() tvars Explanation: 2. Trainable Variables Definining a variable, if you passed trainable=True, the Variable() constructor automatically adds new variables to the graph collection GraphKeys.TRAINABLE_VARIABLES. Now, using tf.trainable_variables() you can get all variables created with trainable=True. End of explanation tvars=tvars[3:] [v.name for v in tvars] Explanation: we can find the name and scope of all variables: End of explanation cost tvars Explanation: 3. Calculate the gradients based on the loss function End of explanation var_x = tf.placeholder(tf.float32) var_y = tf.placeholder(tf.float32) func_test = 2.0*var_x*var_x + 3.0*var_x*var_y session.run(tf.global_variables_initializer()) feed={var_x:1.0,var_y:2.0} session.run(func_test, feed) Explanation: Gradient: The gradient of a function (line) is the slope of the line, or the rate of change of a function. It's a vector (a direction to move) that points in the direction of greatest increase of the function, and calculated by derivative operation. First lets recall the gradient function using an toy example: $$ z=\left(2x^2+3xy\right)$$ End of explanation var_grad = tf.gradients(func_test, [var_x]) session.run(var_grad,feed) Explanation: The tf.gradients() function allows you to compute the symbolic gradient of one tensor with respect to one or more other tensors—including variables. tf.gradients(func,xs) constructs symbolic partial derivatives of sum of func w.r.t. x in xs. Now, lets look at the derivitive w.r.t. var_x: $$ \frac{\partial \:}{\partial \:x}\left(2x^2+3xy\right)=4x+3y $$ End of explanation var_grad = tf.gradients(func_test, [var_y]) session.run(var_grad,feed) Explanation: the derivitive w.r.t. var_y: $$ \frac{\partial \:}{\partial \:x}\left(2x^2+3xy\right)=3x $$ End of explanation tf.gradients(cost, tvars) grad_t_list = tf.gradients(cost, tvars) #sess.run(grad_t_list,feed_dict) Explanation: Now, we can look at gradients w.r.t all variables: End of explanation max_grad_norm # Define the gradient clipping threshold grads, _ = tf.clip_by_global_norm(grad_t_list, max_grad_norm) grads session.run(grads,feed_dict) Explanation: now, we have a list of tensors, t-list. We can use it to find clipped tensors. clip_by_global_norm clips values of multiple tensors by the ratio of the sum of their norms. clip_by_global_norm get t-list as input and returns 2 things: - a list of clipped tensors, so called list_clipped - the global norm (global_norm) of all tensors in t_list End of explanation # Create the training TensorFlow Operation through our optimizer train_op = optimizer.apply_gradients(zip(grads, tvars)) session.run(tf.global_variables_initializer()) session.run(train_op,feed_dict) Explanation: 4. Apply the optimizer to the variables / gradients tuple. End of explanation class PTBModel(object): def __init__(self, is_training): ###################################### # Setting parameters for ease of use # ###################################### self.batch_size = batch_size self.num_steps = num_steps size = hidden_size self.vocab_size = vocab_size ############################################################################### # Creating placeholders for our input data and expected outputs (target data) # ############################################################################### self._input_data = tf.placeholder(tf.int32, [batch_size, num_steps]) #[30#20] self._targets = tf.placeholder(tf.int32, [batch_size, num_steps]) #[30#20] ########################################################################## # Creating the LSTM cell structure and connect it with the RNN structure # ########################################################################## # Create the LSTM unit. # This creates only the structure for the LSTM and has to be associated with a RNN unit still. # The argument n_hidden(size=200) of BasicLSTMCell is size of hidden layer, that is, the number of hidden units of the LSTM (inside A). # Size is the same as the size of our hidden layer, and no bias is added to the Forget Gate. # LSTM cell processes one word at a time and computes probabilities of the possible continuations of the sentence. lstm_cells = [] reuse = tf.get_variable_scope().reuse for _ in range(num_layers): cell = tf.contrib.rnn.BasicLSTMCell(size, forget_bias=0.0, reuse=reuse) if is_training and keep_prob < 1: # Unless you changed keep_prob, this won't actually execute -- this is a dropout wrapper for our LSTM unit # This is an optimization of the LSTM output, but is not needed at all cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob) lstm_cells.append(cell) # By taking in the LSTM cells as parameters, the MultiRNNCell function junctions the LSTM units to the RNN units. # RNN cell composed sequentially of multiple simple cells. stacked_lstm = tf.contrib.rnn.MultiRNNCell(lstm_cells) # Define the initial state, i.e., the model state for the very first data point # It initialize the state of the LSTM memory. The memory state of the network is initialized with a vector of zeros and gets updated after reading each word. self._initial_state = stacked_lstm.zero_state(batch_size, tf.float32) #################################################################### # Creating the word embeddings and pointing them to the input data # #################################################################### with tf.device("/cpu:0"): # Create the embeddings for our input data. Size is hidden size. # Uses default variable initializer embedding = tf.get_variable("embedding", [vocab_size, size]) #[10000x200] # Define where to get the data for our embeddings from inputs = tf.nn.embedding_lookup(embedding, self._input_data) # Unless you changed keep_prob, this won't actually execute -- this is a dropout addition for our inputs # This is an optimization of the input processing and is not needed at all if is_training and keep_prob < 1: inputs = tf.nn.dropout(inputs, keep_prob) ############################################ # Creating the input structure for our RNN # ############################################ # Input structure is 20x[30x200] # Considering each word is represended by a 200 dimentional vector, and we have 30 batchs, we create 30 word-vectors of size [30xx2000] #inputs = [tf.squeeze(input_, [1]) for input_ in tf.split(1, num_steps, inputs)] # The input structure is fed from the embeddings, which are filled in by the input data # Feeding a batch of b sentences to a RNN: # In step 1, first word of each of the b sentences (in a batch) is input in parallel. # In step 2, second word of each of the b sentences is input in parallel. # The parallelism is only for efficiency. # Each sentence in a batch is handled in parallel, but the network sees one word of a sentence at a time and does the computations accordingly. # All the computations involving the words of all sentences in a batch at a given time step are done in parallel. #################################################################################################### # Instanciating our RNN model and retrieving the structure for returning the outputs and the state # #################################################################################################### outputs, state = tf.nn.dynamic_rnn(stacked_lstm, inputs, initial_state=self._initial_state) ######################################################################### # Creating a logistic unit to return the probability of the output word # ######################################################################### output = tf.reshape(outputs, [-1, size]) softmax_w = tf.get_variable("softmax_w", [size, vocab_size]) #[200x1000] softmax_b = tf.get_variable("softmax_b", [vocab_size]) #[1x1000] logits = tf.matmul(output, softmax_w) + softmax_b ######################################################################### # Defining the loss and cost functions for the model's learning to work # ######################################################################### loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [tf.reshape(self._targets, [-1])], [tf.ones([batch_size * num_steps])]) self._cost = cost = tf.reduce_sum(loss) / batch_size # Store the final state self._final_state = state #Everything after this point is relevant only for training if not is_training: return ################################################# # Creating the Training Operation for our Model # ################################################# # Create a variable for the learning rate self._lr = tf.Variable(0.0, trainable=False) # Get all TensorFlow variables marked as "trainable" (i.e. all of them except _lr, which we just created) tvars = tf.trainable_variables() # Define the gradient clipping threshold grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), max_grad_norm) # Create the gradient descent optimizer with our learning rate optimizer = tf.train.GradientDescentOptimizer(self.lr) # Create the training TensorFlow Operation through our optimizer self._train_op = optimizer.apply_gradients(zip(grads, tvars)) # Helper functions for our LSTM RNN class # Assign the learning rate for this model def assign_lr(self, session, lr_value): session.run(tf.assign(self.lr, lr_value)) # Returns the input data for this model at a point in time @property def input_data(self): return self._input_data # Returns the targets for this model at a point in time @property def targets(self): return self._targets # Returns the initial state for this model @property def initial_state(self): return self._initial_state # Returns the defined Cost @property def cost(self): return self._cost # Returns the final state for this model @property def final_state(self): return self._final_state # Returns the current learning rate for this model @property def lr(self): return self._lr # Returns the training operation defined for this model @property def train_op(self): return self._train_op Explanation: We learned how the model is build step by step. Noe, let's then create a Class that represents our model. This class needs a few things: - We have to create the model in accordance with our defined hyperparameters - We have to create the placeholders for our input data and expected outputs (the real data) - We have to create the LSTM cell structure and connect them with our RNN structure - We have to create the word embeddings and point them to the input data - We have to create the input structure for our RNN - We have to instanciate our RNN model and retrieve the variable in which we should expect our outputs to appear - We need to create a logistic structure to return the probability of our words - We need to create the loss and cost functions for our optimizer to work, and then create the optimizer - And finally, we need to create a training operation that can be run to actually train our model End of explanation ########################################################################################################################## # run_epoch takes as parameters the current session, the model instance, the data to be fed, and the operation to be run # ########################################################################################################################## def run_epoch(session, m, data, eval_op, verbose=False): #Define the epoch size based on the length of the data, batch size and the number of steps epoch_size = ((len(data) // m.batch_size) - 1) // m.num_steps start_time = time.time() costs = 0.0 iters = 0 #state = m.initial_state.eval() #m.initial_state = tf.convert_to_tensor(m.initial_state) #state = m.initial_state.eval() state = session.run(m.initial_state) #For each step and data point for step, (x, y) in enumerate(reader.ptb_iterator(data, m.batch_size, m.num_steps)): #Evaluate and return cost, state by running cost, final_state and the function passed as parameter cost, state, _ = session.run([m.cost, m.final_state, eval_op], {m.input_data: x, m.targets: y, m.initial_state: state}) #Add returned cost to costs (which keeps track of the total costs for this epoch) costs += cost #Add number of steps to iteration counter iters += m.num_steps if verbose and (step % 10) == 0: print("({:.2%}) Perplexity={:.3f} Speed={:.0f} wps".format( step * 1.0 / epoch_size, np.exp(costs / iters), iters * m.batch_size / (time.time() - start_time)) ) # Returns the Perplexity rating for us to keep track of how the model is evolving return np.exp(costs / iters) Explanation: With that, the actual structure of our Recurrent Neural Network with Long Short-Term Memory is finished. What remains for us to do is to actually create the methods to run through time -- that is, the run_epoch method to be run at each epoch and a main script which ties all of this together. What our run_epoch method should do is take our input data and feed it to the relevant operations. This will return at the very least the current result for the cost function. End of explanation # Reads the data and separates it into training data, validation data and testing data raw_data = reader.ptb_raw_data(data_dir) train_data, valid_data, test_data, _ = raw_data #Initializes the Execution Graph and the Session with tf.Graph().as_default(), tf.Session() as session: initializer = tf.random_uniform_initializer(-init_scale,init_scale) # Instantiates the model for training # tf.variable_scope add a prefix to the variables created with tf.get_variable with tf.variable_scope("model", reuse=None, initializer=initializer): m = PTBModel(is_training=True) # Reuses the trained parameters for the validation and testing models # They are different instances but use the same variables for weights and biases, # they just don't change when data is input with tf.variable_scope("model", reuse=True, initializer=initializer): mvalid = PTBModel(is_training=False) mtest = PTBModel(is_training=False) #Initialize all variables tf.global_variables_initializer().run() # Set initial learning rate m.assign_lr(session=session, lr_value=learning_rate) for i in range(max_max_epoch): print("Epoch %d : Learning rate: %.3f" % (i + 1, session.run(m.lr))) # Run the loop for this epoch in the training model train_perplexity = run_epoch(session, m, train_data, m.train_op, verbose=True) print("Epoch %d : Train Perplexity: %.3f" % (i + 1, train_perplexity)) # Run the loop for this epoch in the validation model valid_perplexity = run_epoch(session, mvalid, valid_data, tf.no_op()) print("Epoch %d : Valid Perplexity: %.3f" % (i + 1, valid_perplexity)) # Define the decay for the next epoch lr_decay = decay * ((max_max_epoch - i) / max_max_epoch) # Set the decayed learning rate as the learning rate for the next epoch m.assign_lr(session, learning_rate * lr_decay) # Run the loop in the testing model to see how effective was our training test_perplexity = run_epoch(session, mtest, test_data, tf.no_op()) print("Test Perplexity: %.3f" % test_perplexity) Explanation: Now, we create the main method to tie everything together. The code here reads the data from the directory, using the reader helper module, and then trains and evaluates the model on both a testing and a validating subset of data. End of explanation
511
Given the following text description, write Python code to implement the functionality described below step by step Description: Web-Scraping Sous ce nom se cache une pratique très utile pour toute personne souhaitant travailler sur des informations disponibles en ligne, mais n'existant pas forcément sous la forme d'un tableau Excel ... Le webscraping est une technique d'extraction du contenu des sites internet, via un programme informatique Step1: Un détour par le Web Step2: 1ere page HTML On va commencer facilement, prenons une page wikipedia, par exemple celle de la Ligue 1 de football Step3: Si on print l'objet, page créée avec BeautifulSoup, on voit que ce n'est plus une chaine de caractères mais bien une page HTML avec des balises. On peut à présenter chercher des élements à l'intérieur de ces balises. par exemple, si on veut connaire le titre de la page, on utilise la méthode .find et on lui demande "title" Step4: la methode .find ne renvoie que la première occurence de l'élément Step5: Pour trouver toutes les occurences, on utilise .findAll() Step6: Exercice guidé Step7: On n'a pas envie de prendre le premier élément qui ne correspond pas à un club mais à une image. Or cet élément est le seul qui n'ait pas de title = "". Il est conseillé d'exclure les élements qui ne nous intéressent pas en indiquant les éléments que la ligne doit avoir au lieu de les exclure en fonction de leur place dans la liste Step8: Enfin la dernière étape, consiste à obtenir les informations souhaitées, c'est à dire dans notre cas, le nom et l'url des 20 clubs. Pour cela, nous allons utiliser deux méthodes de l'élement item Step9: Toutes ces informations, on souhaite les conserver dans un tableau Excel pour pouvoir les réuitiliser à l'envie Step10: Exercice de web scraping avec BeautifulSoup Pour cet exercice, nous vous demandons d'obtenir 1) les informations personnelles des 721 pokemons sur le site internet http Step11: Obtenir des informations datant de moins d'une heure sur Google News Step12: Obtenir des nouvelles sur un sujet entre deux dates données En réalité, l'exemple de Google News aurait pu se passer de Selenium et être utilisé directement avec BeautifulSoup et les url qu'on réussit à deviner de Google. Ici, on utilise l'url de Google News pour créer une petite fonction qui donne pour chaque ensemble de (sujet, debut d'une période, fin d'une période) des liens pertinents issus de la recherche Google. Step13: Utiliser selenium pour jouer à 2048 Dans cet exemple, on utilise le module pour que python appuie lui même sur les touches du clavier afin de jouer à 2048. Note
Python Code: from jyquickhelper import add_notebook_menu add_notebook_menu() Explanation: Web-Scraping Sous ce nom se cache une pratique très utile pour toute personne souhaitant travailler sur des informations disponibles en ligne, mais n'existant pas forcément sous la forme d'un tableau Excel ... Le webscraping est une technique d'extraction du contenu des sites internet, via un programme informatique : nous allons aujourd'hui vous présenter comme créer et exécuter ces robots afin de recupérer rapidement des informations utiles à vos projets actuels ou futurs. End of explanation import urllib import bs4 #help(bs4) Explanation: Un détour par le Web : comment fonctionne un site ? Même si nous n'allons pas aujourd'hui faire un cours de web, il vous faut néanmoins certaines bases pour comprendre comment un site internet fonctionne et comment sont structurées les informations sur une page. Un site Web est un ensemble de pages codées en HTML qui permet de décrire à la fois le contenu et la forme d'une page Web. HTML Les balises Sur une page web, vous trouverez toujours à coup sûr des éléments comme < head>, < title>, etc. Il s'agit des codes qui vous permettent de structurer le contenu d'une page HTML et qui s'appellent des balises. Citons, par exemple, les balises < p>, < h1>, < h2>, < h3>, < strong> ou < em>. Le symbole < > est une balise : il sert à indiquer le début d'une partie. Le symbole <\ > indique la fin de cette partie. La plupart des balises vont par paires, avec une «balise ouvrante» et une «balise fermante». (par exemple < p> et < /p>). Exemple : les balise des tableaux $$\begin{array}{rr} \hline Balise & \text{Description} \ \hline < table> & \text{Tableau} \ < caption>& \text{Titre du tableau} \ < tr> & \text{Ligne de tableau} \ < th> & \text{Cellule d'en-tête}\ < td> & \text{Cellule} \ < thead> & \text{Section de l'en-tête du tableau} \ < tbody> & \text{Section du corps du tableau} \ < tfoot> & \text{Section du pied du tableau} \ \end{array}$$ Application : un tableau en HTML Le code HTML du tableau suivant Donnera dans le navigateur $$\begin{array}{rrr} Prénom & Mike & Mister \ Nom & Stuntman & Pink \ Profession & Cascadeur & Gangster \ \end{array}$$ Parent et enfant Dans le cadre du langage HTML, les termes de parents (parent) et enfants (child) servent à désigner des élements emboîtés les uns dans les autres. Dans la construction suivante, par exemple : On dira que l'élément < div> est le parent de l'élément < p> tandis que l'élément < p> est l'enfant de l'élément < div>. Mais pourquoi apprendre ça pour scraper me direz-vous ? Pour bien récupérer les informations d'un site internet, il faut pouvoir comprendre sa structure et donc son code HTML. Les fonctions python qui servent au scrapping sont principalement construites pour vous permettre de naviguer entre les balises Optionnel - CSS - le style de la page WEB Quand le bout de code html est écrit, il apaprait sous la forme d'un texte noir sur un fond blanc. Une manière simple de rendre la page plus belle, c'est d'y ajouter de la couleur. La feuille de style qui permet de rendre la page plus belle correspond au(x) fichier(s) CSS. Toutes les pages HTML qui font référence à cette feuille de style externe hériteront de toutes ses définitions. Nous y reviendrons plus en détail dans le TD sur Flask (module Python de création de site internet). Scrapper avec python Nous allons essentiellement utiliser le package BeautifulSoup4 pour ce cours, mais d'autres packages existent (Selenium, Scrapy...). BeautifulSoup sera suffisant quand vous voudrez travailler sur des pages HTML statiques, dès que les informations que vous recherchez sont générées via l'exécution de scripts Javascipt, il vous faudra passer par des outils comme Selenium. De même, si vous ne connaissez pas l'URL, il faudra passer par un framework comme Scrapy, qui passe facilement d'une page à une autre ("crawl"). Scrapy est plus complexe à manipuler que BeautifulSoup : si vous voulez plus de détails, rendez-vous sur la page du tutorial https://doc.scrapy.org/en/latest/intro/tutorial.html. Utiliser BeautifulSoup Les packages pour scrapper des pages HTML : - BeautifulSoup (pip install bs4) - urllib End of explanation # Etape 1 : se connecter à la page wikipedia et obtenir le code source url_ligue_1 = "https://fr.wikipedia.org/wiki/Championnat_de_France_de_football_2016-2017" from urllib import request request_text = request.urlopen(url_ligue_1).read() print(request_text[:1000]) # Etape 2 : utiliser le package BeautifulSoup # qui "comprend" les balises contenues dans la chaine de caractères renvoyée par la fonction request page = bs4.BeautifulSoup(request_text, "lxml") #print(page) Explanation: 1ere page HTML On va commencer facilement, prenons une page wikipedia, par exemple celle de la Ligue 1 de football : https://fr.wikipedia.org/wiki/Championnat_de_France_de_football_2016-2017 On va souhaiter récupérer la liste des équipes, ainsi que les url des pages Wikipedia de ces équipes. End of explanation print(page.find("title")) Explanation: Si on print l'objet, page créée avec BeautifulSoup, on voit que ce n'est plus une chaine de caractères mais bien une page HTML avec des balises. On peut à présenter chercher des élements à l'intérieur de ces balises. par exemple, si on veut connaire le titre de la page, on utilise la méthode .find et on lui demande "title" End of explanation print(page.find("table")) Explanation: la methode .find ne renvoie que la première occurence de l'élément End of explanation print("Il y a", len(page.findAll("table")), "éléments dans la page qui sont des <table>") print(" Le 2eme tableau de la page : Hiérarchie \n", page.findAll("table")[1]) print("--------------------------------------------------------") print("Le 3eme tableau de la page : Palmarès \n",page.findAll("table")[2]) Explanation: Pour trouver toutes les occurences, on utilise .findAll() End of explanation for item in page.find('table', {'class' : 'DebutCarte'}).findAll({'a'})[0:5] : print(item, "\n-------") Explanation: Exercice guidé : obtenir la liste des équipes de Ligue 1 La liste des équipes est dans le tableau "Participants" : dans le code source, on voit que ce tableau est celui qui a class = "DebutCarte" On voit également que les balises qui encerclent les noms et les urls des clubs sont de la forme suivante End of explanation ### condition sur la place dans la liste >>>> MAUVAIS for e, item in enumerate(page.find('table', {'class' : 'DebutCarte'}).findAll({'a'})[0:5]) : if e == 0: pass else : print(item) #### condition sur les éléments que doit avoir la ligne >>>> BIEN for item in page.find('table', {'class' : 'DebutCarte'}).findAll({'a'})[0:5] : if item.get("title") : print(item) Explanation: On n'a pas envie de prendre le premier élément qui ne correspond pas à un club mais à une image. Or cet élément est le seul qui n'ait pas de title = "". Il est conseillé d'exclure les élements qui ne nous intéressent pas en indiquant les éléments que la ligne doit avoir au lieu de les exclure en fonction de leur place dans la liste End of explanation for item in page.find('table', {'class' : 'DebutCarte'}).findAll({'a'})[0:5] : if item.get("title") : print(item.get("href")) print(item.getText()) # pour avoir le nom officiel, on aurait utiliser l'élément <title> for item in page.find('table', {'class' : 'DebutCarte'}).findAll({'a'})[0:5] : if item.get("title") : print(item.get("title")) Explanation: Enfin la dernière étape, consiste à obtenir les informations souhaitées, c'est à dire dans notre cas, le nom et l'url des 20 clubs. Pour cela, nous allons utiliser deux méthodes de l'élement item : - getText() qui permet d'obtenir le texte qui est sur la page web et dans la balise < a> - get('xxxx') qui permet d'obtenir l'élément qui est égal à xxxx Dans notre cas, nous allons vouloir le nom du club ainsi que l'url : on va donc utiliser getText et get("href") End of explanation import pandas liste_noms = [] liste_urls = [] for item in page.find('table', {'class' : 'DebutCarte'}).findAll({'a'}) : if item.get("title") : liste_urls.append(item.get("href")) liste_noms.append(item.getText()) df = pandas.DataFrame.from_dict( {"clubs" : liste_noms, 'url' : liste_urls}) df.head() Explanation: Toutes ces informations, on souhaite les conserver dans un tableau Excel pour pouvoir les réuitiliser à l'envie : pour cela, rien de plus simple, on va passer par pandas, parce qu'on le maitrise parfaitement à ce stade de la formation. End of explanation import selenium #pip install selenium # télécharger le chrome driver http://chromedriver.storage.googleapis.com/index.html?path=2.24/ path_to_web_driver = "./chromedriver" import time from selenium import webdriver from selenium.webdriver.common.keys import Keys browser = webdriver.Chrome(path_to_web_driver) browser.get('https://news.google.com/') # on cherche l'endroit où on peut remplir un formulaire en utilisant les outils du navigateur > inspecter les éléments de la page # on voit que la barre de recherche est un élement du code appelé 'q' comme query # on lui demande de chercher cet élément search = browser.find_element_by_name('q') # on envoie à cet endroit le mot qu'on aurait tapé dans la barre de recherche search.send_keys("alstom") # on appuie sur le bouton "Entrée" Return en anglais search.send_keys(Keys.RETURN) links = browser.find_elements_by_xpath("//h3[@class='r _U6c']/a[@href]") results = [] for link in links: url = link.get_attribute('href') results.append(url) ### on a une pause de 10 secondes pour aller voir ce qui se passe sur la page internet time.sleep(10) # on demande de quitter le navigateur quand tout est fini browser.quit() print(results) Explanation: Exercice de web scraping avec BeautifulSoup Pour cet exercice, nous vous demandons d'obtenir 1) les informations personnelles des 721 pokemons sur le site internet http://pokemondb.net/pokedex/national Les informations que nous aimerions obtenir au final pour les pokemons sont celles contenues dans 4 tableaux : - Pokédex data - Training - Breeding - Base stats Pour exemple : http://pokemondb.net/pokedex/nincada 2) Nous aimerions que vous récupériez également les images de chacun des pokémons et que vous les enregistriez dans un dossier (indice : utilisez les modules request et shutil) pour cette question ci, il faut que vous cherchiez de vous même certains éléments, tout n'est pas présent dans le TD Aller sur internet avec Selenium L'avantage du package Selenium est d'obtenir des informations du site qui ne sont pas dans le code html mais qui apparaissent uniquement à la suite de l'exécution de script javascript en arrière plan. Selenium se comporte comme un utilisateur qui surfe sur internet : il clique sur des liens, il remplit des formulaires etc. Dans cet exemple, nous allons essayer de aller sur le site de Google Actualités et entrer dans la barre de recherche un sujet donné. End of explanation from selenium import webdriver from selenium.webdriver.common.keys import Keys browser = webdriver.Chrome(path_to_web_driver) browser.get('https://news.google.com/') search = browser.find_element_by_name('q') # on envoie à cet endroit le mot qu'on aurait tapé dans la barre de recherche search.send_keys("alstom") # on appuie sur le bouton "Rechercher" search.send_keys(Keys.RETURN) #pour obtenir le lien vers les articles d'il y a moins d'une heure : # on utilise ce qu'on a trouvé dans le code source à savoir l'url pour les articles de moins d'une heure link = browser.find_element_by_xpath("//li[@id='qdr_h']/a[@href]").get_attribute('href') print(link) browser.get(link) links = browser.find_elements_by_xpath("//h3[@class='r _U6c']/a[@href]") results = [] for link in links: url = link.get_attribute('href') results.append(url) #################################" #print(results) #time.sleep(5) browser.quit() print(results) Explanation: Obtenir des informations datant de moins d'une heure sur Google News End of explanation import time from selenium import webdriver def get_news_specific_dates (beg_date, end_date, subject, hl = "fr", gl = "fr", tbm = "nws", authuser = "0") : '''Permet d obtenir pour une requete donnée et un intervalle temporel précis les 10 premiers résultats d articles de presse parus sur le sujet''' get_string = 'https://www.google.com/search?hl={}&gl={}&tbm={}&authuser={}&q={}&tbs=cdr%3A1%2Ccd_min%3A{}%2Ccd_max%3A{}&tbm={}'.format(hl,gl,tbm,authuser,subject,beg_date,end_date,tbm) browser.get(get_string) links = browser.find_elements_by_xpath("//h3[@class='r _U6c']/a[@href]") results = [] for link in links: url = link.get_attribute('href') results.append(url) browser.quit() return results ### On appelle la fonction créée à l'instant browser = webdriver.Chrome(path_to_web_driver) articles_mai_2015 = get_news_specific_dates("01/05/2015","31/05/2015","société générale jerome kerviel",hl="fr") print(articles_mai_2015) Explanation: Obtenir des nouvelles sur un sujet entre deux dates données En réalité, l'exemple de Google News aurait pu se passer de Selenium et être utilisé directement avec BeautifulSoup et les url qu'on réussit à deviner de Google. Ici, on utilise l'url de Google News pour créer une petite fonction qui donne pour chaque ensemble de (sujet, debut d'une période, fin d'une période) des liens pertinents issus de la recherche Google. End of explanation from selenium import webdriver from selenium.webdriver.common.keys import Keys # on ouvre la page internet du jeu 2048 browser = webdriver.Chrome(path_to_web_driver) browser.get('https://gabrielecirulli.github.io/2048/') # Ce qu'on va faire : une boucle qui répète inlassablement la même chose : haut / droite / bas / gauche # on commence par cliquer sur la page pour que les touches sachent browser.find_element_by_class_name('grid-container').click() grid = browser.find_element_by_tag_name('body') # pour savoir quels coups faire à quel moment, on crée un dictionnaire direction = {0: Keys.UP, 1: Keys.RIGHT, 2: Keys.DOWN, 3: Keys.LEFT} count = 0 while True: try: # on vérifie que le bouton "Try again" n'est pas là - sinon ça veut dire que le jeu est fini retryButton = browser.find_element_by_link_text('Try again') scoreElem = browser.find_element_by_class_name('score-container') break except: #Do nothing. Game is not over yet pass # on continue le jeu - on appuie sur la touche suivante pour le coup d'après count += 1 grid.send_keys(direction[count % 4]) time.sleep(0.1) print('Score final : {} en {} coups'.format(scoreElem.text, count)) browser.quit() Explanation: Utiliser selenium pour jouer à 2048 Dans cet exemple, on utilise le module pour que python appuie lui même sur les touches du clavier afin de jouer à 2048. Note : ce bout de code ne donne pas une solution à 2048, il permet juste de voir ce qu'on peut faire avec selenium End of explanation
512
Given the following text description, write Python code to implement the functionality described below step by step Description: Sentiment Classification & How To "Frame Problems" for a Neural Network by Andrew Trask Twitter Step1: Note Step2: Lesson Step3: Project 1 Step4: We'll create three Counter objects, one for words from postive reviews, one for words from negative reviews, and one for all the words. Step5: TODO Step6: Run the following two cells to list the words used in positive reviews and negative reviews, respectively, ordered from most to least commonly used. Step7: As you can see, common words like "the" appear very often in both positive and negative reviews. Instead of finding the most common words in positive or negative reviews, what you really want are the words found in positive reviews more often than in negative reviews, and vice versa. To accomplish this, you'll need to calculate the ratios of word usage between positive and negative reviews. TODO Step8: Examine the ratios you've calculated for a few words Step9: Looking closely at the values you just calculated, we see the following Step10: Examine the new ratios you've calculated for the same words from before Step11: If everything worked, now you should see neutral words with values close to zero. In this case, "the" is near zero but slightly positive, so it was probably used in more positive reviews than negative reviews. But look at "amazing"'s ratio - it's above 1, showing it is clearly a word with positive sentiment. And "terrible" has a similar score, but in the opposite direction, so it's below -1. It's now clear that both of these words are associated with specific, opposing sentiments. Now run the following cells to see more ratios. The first cell displays all the words, ordered by how associated they are with postive reviews. (Your notebook will most likely truncate the output so you won't actually see all the words in the list.) The second cell displays the 30 words most associated with negative reviews by reversing the order of the first list and then looking at the first 30 words. (If you want the second cell to display all the words, ordered by how associated they are with negative reviews, you could just write reversed(pos_neg_ratios.most_common()).) You should continue to see values similar to the earlier ones we checked – neutral words will be close to 0, words will get more positive as their ratios approach and go above 1, and words will get more negative as their ratios approach and go below -1. That's why we decided to use the logs instead of the raw ratios. Step12: End of Project 1. Watch the next video to see Andrew's solution, then continue on to the next lesson. Transforming Text into Numbers<a id='lesson_3'></a> The cells here include code Andrew shows in the next video. We've included it so you can run the code along with the video without having to type in everything. Step13: Project 2 Step14: Run the following cell to check your vocabulary size. If everything worked correctly, it should print 74074 Step15: Take a look at the following image. It represents the layers of the neural network you'll be building throughout this notebook. layer_0 is the input layer, layer_1 is a hidden layer, and layer_2 is the output layer. Step16: TODO Step17: Run the following cell. It should display (1, 74074) Step18: layer_0 contains one entry for every word in the vocabulary, as shown in the above image. We need to make sure we know the index of each word, so run the following cell to create a lookup table that stores the index of every word. Step20: TODO Step21: Run the following cell to test updating the input layer with the first review. The indices assigned may not be the same as in the solution, but hopefully you'll see some non-zero values in layer_0. Step23: TODO Step24: Run the following two cells. They should print out'POSITIVE' and 1, respectively. Step25: Run the following two cells. They should print out 'NEGATIVE' and 0, respectively. Step29: End of Project 2. Watch the next video to see Andrew's solution, then continue on to the next lesson. Project 3 Step30: Run the following cell to create a SentimentNetwork that will train on all but the last 1000 reviews (we're saving those for testing). Here we use a learning rate of 0.1. Step31: Run the following cell to test the network's performance against the last 1000 reviews (the ones we held out from our training set). We have not trained the model yet, so the results should be about 50% as it will just be guessing and there are only two possible values to choose from. Step32: Run the following cell to actually train the network. During training, it will display the model's accuracy repeatedly as it trains so you can see how well it's doing. Step33: That most likely didn't train very well. Part of the reason may be because the learning rate is too high. Run the following cell to recreate the network with a smaller learning rate, 0.01, and then train the new network. Step34: That probably wasn't much different. Run the following cell to recreate the network one more time with an even smaller learning rate, 0.001, and then train the new network. Step35: With a learning rate of 0.001, the network should finall have started to improve during training. It's still not very good, but it shows that this solution has potential. We will improve it in the next lesson. End of Project 3. Watch the next video to see Andrew's solution, then continue on to the next lesson. Understanding Neural Noise<a id='lesson_4'></a> The following cells include includes the code Andrew shows in the next video. We've included it here so you can run the cells along with the video without having to type in everything. Project3에서의 모델은 너무 학습이 느렸음. 우리는 이럴 때 다양한 해결책을 강구할 수 있지만, 기본은 data를 다시 한번 살펴보는 것이다. Step36: 아래의 결과를 보면 첫번째 요소의 수가 18이나 되는데, 우리의 network는 위의 구조와 같이 하나의 큰 input element가 다른 모든 input element의 요소를 dominant하고, 또한 모든 hidden layer unit들에게 영향을 미치는 구조다. Step37: 심지어 위의 벡터에서 18은 '' 같은 아무 의미 없는 값이다. 아마도 다른 경우도 띄어쓰기나 조사같은 의미없는 값이 많을 것이다. Step38: Dominant한 값들은 대부분 ' ', '', 'the' 같은 단어임. 즉, 단순한 count는 data가 가진 signal을 highlight 해주지 않는다. 이는 단순한 count는 noise를 많이 내포하고 있음을 의미한다. Step42: Project 4 Step43: Run the following cell to recreate the network and train it. Notice we've gone back to the higher learning rate of 0.1. 만일 이것을 위의 Project 3 에서처럼 learning rate 같은 것으로 발전시키려고 했다면 아주 고생하고 별 성과도 없었을 것. 하지만 데이터와 네트워크의 구조를 보면서 접근하면 아주 빠르게 모델을 발전시킬 수 있음. Step44: That should have trained much better than the earlier attempts. It's still not wonderful, but it should have improved dramatically. Run the following cell to test your model with 1000 predictions. Step45: End of Project 4. Andrew's solution was actually in the previous video, so rewatch that video if you had any problems with that project. Then continue on to the next lesson. Analyzing Inefficiencies in our Network<a id='lesson_5'></a> The following cells include the code Andrew shows in the next video. We've included it here so you can run the cells along with the video without having to type in everything. Step46: Project 4 에서 개선한 네트워크도 사실 학습 속도는 매우 느린 편인데, 그 이유는 위의 그림처럼 대부분의 값이 sparse 하기 때문인 것으로 생각됨. Step47: 위에서의 과정을 통해 알 수 있는 것은 우리가 이제까지 사용했던 matrix multiplication 과정이 사실상 그냥 일부 index의 값을 더한 것일 뿐이라는 것이다. 즉, sparse 한 네트워크에서 굳이 대부분이 곱하고 더하는 연산을 하는 과정을 단순히 몇 개 숫자의 합을 구하는 연산으로 간추릴 수 있다는 것. Step51: Project 5 Step52: Run the following cell to recreate the network and train it once again. Step53: That should have trained much better than the earlier attempts. Run the following cell to test your model with 1000 predictions. Step54: End of Project 5. Watch the next video to see Andrew's solution, then continue on to the next lesson. Further Noise Reduction<a id='lesson_6'></a> Step58: 위의 통계들을 보면, 필요없는 중립적인 단어가 매우 많은데, 이런 것들을 잘라냄으로써 더 중요한 자료에 집중하고, 필요없는 연산의 횟수를 줄일 수 있다. 또 많이 사용되지 않는 단어들을 제거함으로써 패턴에 영향을 덜 끼치는 아웃라이어도 줄일 수 있다. Project 6 Step59: Run the following cell to train your network with a small polarity cutoff. Step60: And run the following cell to test it's performance. It should be Step61: Run the following cell to train your network with a much larger polarity cutoff. 이 경우 속도는 7배 정도 빨라지고, 정확도는 3% 정도 떨어졌는데, 실제로 문제를 푸는 경우 나쁘지 않은 trade-off. 실제 문제 중에서 training data가 아주 많은 경우, 속도를 높이는 것이 중요하기 때문. Step62: And run the following cell to test it's performance. Step63: End of Project 6. Watch the next video to see Andrew's solution, then continue on to the next lesson. Analysis Step64: 위의 두 결과를 보면 network가 서로 비슷한 단어들을 잘 detect함. 즉, 제대로 학습되었음을 볼 수 있음.
Python Code: def pretty_print_review_and_label(i): print(labels[i] + "\t:\t" + reviews[i][:80] + "...") g = open('reviews.txt','r') # What we know! reviews = list(map(lambda x:x[:-1],g.readlines())) g.close() g = open('labels.txt','r') # What we WANT to know! labels = list(map(lambda x:x[:-1].upper(),g.readlines())) g.close() Explanation: Sentiment Classification & How To "Frame Problems" for a Neural Network by Andrew Trask Twitter: @iamtrask Blog: http://iamtrask.github.io What You Should Already Know neural networks, forward and back-propagation stochastic gradient descent mean squared error and train/test splits Where to Get Help if You Need it Re-watch previous Udacity Lectures Leverage the recommended Course Reading Material - Grokking Deep Learning (Check inside your classroom for a discount code) Shoot me a tweet @iamtrask Tutorial Outline: Intro: The Importance of "Framing a Problem" (this lesson) Curate a Dataset Developing a "Predictive Theory" PROJECT 1: Quick Theory Validation Transforming Text to Numbers PROJECT 2: Creating the Input/Output Data Putting it all together in a Neural Network (video only - nothing in notebook) PROJECT 3: Building our Neural Network Understanding Neural Noise PROJECT 4: Making Learning Faster by Reducing Noise Analyzing Inefficiencies in our Network PROJECT 5: Making our Network Train and Run Faster Further Noise Reduction PROJECT 6: Reducing Noise by Strategically Reducing the Vocabulary Analysis: What's going on in the weights? Lesson: Curate a Dataset<a id='lesson_1'></a> The cells from here until Project 1 include code Andrew shows in the videos leading up to mini project 1. We've included them so you can run the code along with the videos without having to type in everything. End of explanation len(reviews) reviews[0] labels[0] Explanation: Note: The data in reviews.txt we're using has already been preprocessed a bit and contains only lower case characters. If we were working from raw data, where we didn't know it was all lower case, we would want to add a step here to convert it. That's so we treat different variations of the same word, like The, the, and THE, all the same way. End of explanation print("labels.txt \t : \t reviews.txt\n") pretty_print_review_and_label(2137) pretty_print_review_and_label(12816) pretty_print_review_and_label(6267) pretty_print_review_and_label(21934) pretty_print_review_and_label(5297) pretty_print_review_and_label(4998) Explanation: Lesson: Develop a Predictive Theory<a id='lesson_2'></a> 데이터를 들여다보면서 가설을 세워보자 End of explanation from collections import Counter import numpy as np Explanation: Project 1: Quick Theory Validation<a id='project_1'></a> There are multiple ways to implement these projects, but in order to get your code closer to what Andrew shows in his solutions, we've provided some hints and starter code throughout this notebook. You'll find the Counter class to be useful in this exercise, as well as the numpy library. End of explanation # Create three Counter objects to store positive, negative and total counts positive_counts = Counter() negative_counts = Counter() total_counts = Counter() Explanation: We'll create three Counter objects, one for words from postive reviews, one for words from negative reviews, and one for all the words. End of explanation # TODO: Loop over all the words in all the reviews and increment the counts in the appropriate counter objects for i in range(len(reviews)): words = reviews[i].split(' ') if (labels[i] == 'POSITIVE'): for word in words: positive_counts[word] += 1 total_counts[word] += 1 else: for word in words: negative_counts[word] += 1 total_counts[word] += 1 Explanation: TODO: Examine all the reviews. For each word in a positive review, increase the count for that word in both your positive counter and the total words counter; likewise, for each word in a negative review, increase the count for that word in both your negative counter and the total words counter. Note: Throughout these projects, you should use split(' ') to divide a piece of text (such as a review) into individual words. If you use split() instead, you'll get slightly different results than what the videos and solutions show. End of explanation # Examine the counts of the most common words in positive reviews positive_counts.most_common() # Examine the counts of the most common words in negative reviews negative_counts.most_common() Explanation: Run the following two cells to list the words used in positive reviews and negative reviews, respectively, ordered from most to least commonly used. End of explanation # Create Counter object to store positive/negative ratios pos_neg_ratios = Counter() # TODO: Calculate the ratios of positive and negative uses of the most common words # Consider words to be "common" if they've been used at least 100 times for word, cnt in total_counts.most_common(): if(cnt >= 100): pos_neg_ratios[word] = positive_counts[word] / float(negative_counts[word] + 1) Explanation: As you can see, common words like "the" appear very often in both positive and negative reviews. Instead of finding the most common words in positive or negative reviews, what you really want are the words found in positive reviews more often than in negative reviews, and vice versa. To accomplish this, you'll need to calculate the ratios of word usage between positive and negative reviews. TODO: Check all the words you've seen and calculate the ratio of postive to negative uses and store that ratio in pos_neg_ratios. Hint: the positive-to-negative ratio for a given word can be calculated with positive_counts[word] / float(negative_counts[word]+1). Notice the +1 in the denominator – that ensures we don't divide by zero for words that are only seen in positive reviews. End of explanation print("Pos-to-neg ratio for 'the' = {}".format(pos_neg_ratios["the"])) print("Pos-to-neg ratio for 'amazing' = {}".format(pos_neg_ratios["amazing"])) print("Pos-to-neg ratio for 'terrible' = {}".format(pos_neg_ratios["terrible"])) Explanation: Examine the ratios you've calculated for a few words: End of explanation # TODO: Convert ratios to logs for word, ratio in pos_neg_ratios.items(): if(ratio >= 1.): pos_neg_ratios[word] = np.log(ratio) else: pos_neg_ratios[word] = -np.log(1 / (ratio + 0.01)) Explanation: Looking closely at the values you just calculated, we see the following: Words that you would expect to see more often in positive reviews – like "amazing" – have a ratio greater than 1. The more skewed a word is toward postive, the farther from 1 its positive-to-negative ratio will be. Words that you would expect to see more often in negative reviews – like "terrible" – have positive values that are less than 1. The more skewed a word is toward negative, the closer to zero its positive-to-negative ratio will be. Neutral words, which don't really convey any sentiment because you would expect to see them in all sorts of reviews – like "the" – have values very close to 1. A perfectly neutral word – one that was used in exactly the same number of positive reviews as negative reviews – would be almost exactly 1. The +1 we suggested you add to the denominator slightly biases words toward negative, but it won't matter because it will be a tiny bias and later we'll be ignoring words that are too close to neutral anyway. Ok, the ratios tell us which words are used more often in postive or negative reviews, but the specific values we've calculated are a bit difficult to work with. A very positive word like "amazing" has a value above 4, whereas a very negative word like "terrible" has a value around 0.18. Those values aren't easy to compare for a couple of reasons: Right now, 1 is considered neutral, but the absolute value of the postive-to-negative rations of very postive words is larger than the absolute value of the ratios for the very negative words. So there is no way to directly compare two numbers and see if one word conveys the same magnitude of positive sentiment as another word conveys negative sentiment. So we should center all the values around netural so the absolute value fro neutral of the postive-to-negative ratio for a word would indicate how much sentiment (positive or negative) that word conveys. When comparing absolute values it's easier to do that around zero than one. To fix these issues, we'll convert all of our ratios to new values using logarithms. TODO: Go through all the ratios you calculated and convert them to logarithms. (i.e. use np.log(ratio)) In the end, extremely positive and extremely negative words will have positive-to-negative ratios with similar magnitudes but opposite signs. End of explanation print("Pos-to-neg ratio for 'the' = {}".format(pos_neg_ratios["the"])) print("Pos-to-neg ratio for 'amazing' = {}".format(pos_neg_ratios["amazing"])) print("Pos-to-neg ratio for 'terrible' = {}".format(pos_neg_ratios["terrible"])) Explanation: Examine the new ratios you've calculated for the same words from before: End of explanation # words most frequently seen in a review with a "POSITIVE" label pos_neg_ratios.most_common() # words most frequently seen in a review with a "NEGATIVE" label list(reversed(pos_neg_ratios.most_common()))[0:30] # Note: Above is the code Andrew uses in his solution video, # so we've included it here to avoid confusion. # If you explore the documentation for the Counter class, # you will see you could also find the 30 least common # words like this: pos_neg_ratios.most_common()[:-31:-1] Explanation: If everything worked, now you should see neutral words with values close to zero. In this case, "the" is near zero but slightly positive, so it was probably used in more positive reviews than negative reviews. But look at "amazing"'s ratio - it's above 1, showing it is clearly a word with positive sentiment. And "terrible" has a similar score, but in the opposite direction, so it's below -1. It's now clear that both of these words are associated with specific, opposing sentiments. Now run the following cells to see more ratios. The first cell displays all the words, ordered by how associated they are with postive reviews. (Your notebook will most likely truncate the output so you won't actually see all the words in the list.) The second cell displays the 30 words most associated with negative reviews by reversing the order of the first list and then looking at the first 30 words. (If you want the second cell to display all the words, ordered by how associated they are with negative reviews, you could just write reversed(pos_neg_ratios.most_common()).) You should continue to see values similar to the earlier ones we checked – neutral words will be close to 0, words will get more positive as their ratios approach and go above 1, and words will get more negative as their ratios approach and go below -1. That's why we decided to use the logs instead of the raw ratios. End of explanation from IPython.display import Image review = "This was a horrible, terrible movie." Image(filename='sentiment_network.png') review = "The movie was excellent" Image(filename='sentiment_network_pos.png') Explanation: End of Project 1. Watch the next video to see Andrew's solution, then continue on to the next lesson. Transforming Text into Numbers<a id='lesson_3'></a> The cells here include code Andrew shows in the next video. We've included it so you can run the code along with the video without having to type in everything. End of explanation # TODO: Create set named "vocab" containing all of the words from all of the reviews vocab = set(total_counts.keys()) Explanation: Project 2: Creating the Input/Output Data<a id='project_2'></a> TODO: Create a set named vocab that contains every word in the vocabulary. End of explanation vocab_size = len(vocab) print(vocab_size) Explanation: Run the following cell to check your vocabulary size. If everything worked correctly, it should print 74074 End of explanation from IPython.display import Image Image(filename='sentiment_network_2.png') Explanation: Take a look at the following image. It represents the layers of the neural network you'll be building throughout this notebook. layer_0 is the input layer, layer_1 is a hidden layer, and layer_2 is the output layer. End of explanation # TODO: Create layer_0 matrix with dimensions 1 by vocab_size, initially filled with zeros layer_0 = np.zeros((1, vocab_size)) Explanation: TODO: Create a numpy array called layer_0 and initialize it to all zeros. You will find the zeros function particularly helpful here. Be sure you create layer_0 as a 2-dimensional matrix with 1 row and vocab_size columns. End of explanation layer_0.shape from IPython.display import Image Image(filename='sentiment_network.png') Explanation: Run the following cell. It should display (1, 74074) End of explanation # Create a dictionary of words in the vocabulary mapped to index positions # (to be used in layer_0) word2index = {} for i,word in enumerate(vocab): word2index[word] = i # display the map of words to indices word2index Explanation: layer_0 contains one entry for every word in the vocabulary, as shown in the above image. We need to make sure we know the index of each word, so run the following cell to create a lookup table that stores the index of every word. End of explanation def update_input_layer(review): Modify the global layer_0 to represent the vector form of review. The element at a given index of layer_0 should represent how many times the given word occurs in the review. Args: review(string) - the string of the review Returns: None global layer_0 # clear out previous state by resetting the layer to be all 0s layer_0 *= 0 # TODO: count how many times each word is used in the given review and store the results in layer_0 for word in review.split(' '): layer_0[0][word2index[word]] += 1 Explanation: TODO: Complete the implementation of update_input_layer. It should count how many times each word is used in the given review, and then store those counts at the appropriate indices inside layer_0. End of explanation update_input_layer(reviews[0]) layer_0 Explanation: Run the following cell to test updating the input layer with the first review. The indices assigned may not be the same as in the solution, but hopefully you'll see some non-zero values in layer_0. End of explanation def get_target_for_label(label): Convert a label to `0` or `1`. Args: label(string) - Either "POSITIVE" or "NEGATIVE". Returns: `0` or `1`. # TODO: Your code here if(label == 'POSITIVE'): return 1 else: return 0 Explanation: TODO: Complete the implementation of get_target_for_labels. It should return 0 or 1, depending on whether the given label is NEGATIVE or POSITIVE, respectively. End of explanation labels[0] get_target_for_label(labels[0]) Explanation: Run the following two cells. They should print out'POSITIVE' and 1, respectively. End of explanation labels[1] get_target_for_label(labels[1]) Explanation: Run the following two cells. They should print out 'NEGATIVE' and 0, respectively. End of explanation import time import sys import numpy as np # Encapsulate our neural network in a class class SentimentNetwork: def __init__(self, reviews, labels, hidden_nodes = 10, learning_rate = 0.1): Create a SentimenNetwork with the given settings Args: reviews(list) - List of reviews used for training labels(list) - List of POSITIVE/NEGATIVE labels associated with the given reviews hidden_nodes(int) - Number of nodes to create in the hidden layer learning_rate(float) - Learning rate to use while training # Assign a seed to our random number generator to ensure we get # reproducable results during development np.random.seed(1) # process the reviews and their associated labels so that everything # is ready for training self.pre_process_data(reviews, labels) # Build the network to have the number of hidden nodes and the learning rate that # were passed into this initializer. Make the same number of input nodes as # there are vocabulary words and create a single output node. self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate) def pre_process_data(self, reviews, labels): review_vocab = set() # TODO: populate review_vocab with all of the words in the given reviews # Remember to split reviews into individual words # using "split(' ')" instead of "split()". for review in reviews: for word in review.split(' '): review_vocab.add(word) # Convert the vocabulary set to a list so we can access words via indices self.review_vocab = list(review_vocab) label_vocab = set() # TODO: populate label_vocab with all of the words in the given labels. # There is no need to split the labels because each one is a single word. for label in labels: label_vocab.add(label) # Convert the label vocabulary set to a list so we can access labels via indices self.label_vocab = list(label_vocab) # Store the sizes of the review and label vocabularies. self.review_vocab_size = len(self.review_vocab) self.label_vocab_size = len(self.label_vocab) # Create a dictionary of words in the vocabulary mapped to index positions self.word2index = {} # TODO: populate self.word2index with indices for all the words in self.review_vocab # like you saw earlier in the notebook for i, word in enumerate(self.review_vocab): self.word2index[word] = i # Create a dictionary of labels mapped to index positions self.label2index = {} # TODO: do the same thing you did for self.word2index and self.review_vocab, # but for self.label2index and self.label_vocab instead for i, label in enumerate(self.label_vocab): self.label2index[label] = i def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Store the number of nodes in input, hidden, and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Store the learning rate self.learning_rate = learning_rate # Initialize weights # TODO: initialize self.weights_0_1 as a matrix of zeros. These are the weights between # the input layer and the hidden layer. self.weights_0_1 = np.zeros((self.input_nodes, self.hidden_nodes)) # TODO: initialize self.weights_1_2 as a matrix of random values. # These are the weights between the hidden layer and the output layer. self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) # TODO: Create the input layer, a two-dimensional matrix with shape # 1 x input_nodes, with all values initialized to zero self.layer_0 = np.zeros((1,input_nodes)) def update_input_layer(self,review): # TODO: You can copy most of the code you wrote for update_input_layer # earlier in this notebook. # # However, MAKE SURE YOU CHANGE ALL VARIABLES TO REFERENCE # THE VERSIONS STORED IN THIS OBJECT, NOT THE GLOBAL OBJECTS. # For example, replace "layer_0 *= 0" with "self.layer_0 *= 0" self.layer_0 *= 0 # TODO: count how many times each word is used in the given review and store the results in layer_0 for word in review.split(' '): if(word in self.word2index.keys()): self.layer_0[0][self.word2index[word]] += 1 def get_target_for_label(self,label): # TODO: Copy the code you wrote for get_target_for_label # earlier in this notebook. if(label == 'POSITIVE'): return 1 else: return 0 def sigmoid(self,x): # TODO: Return the result of calculating the sigmoid activation function # shown in the lectures return 1 / (1 + np.exp(-x)) def sigmoid_output_2_derivative(self,output): # TODO: Return the derivative of the sigmoid activation function, # where "output" is the original output from the sigmoid fucntion return output * (1 - output) def train(self, training_reviews, training_labels): # make sure out we have a matching number of reviews and labels assert(len(training_reviews) == len(training_labels)) # Keep track of correct predictions to display accuracy during training correct_so_far = 0 # Remember when we started for printing time statistics start = time.time() # loop through all the given reviews and run a forward and backward pass, # updating weights for every item for i in range(len(training_reviews)): # TODO: Get the next review and its correct label review = training_reviews[i] label = training_labels[i] # TODO: Implement the forward pass through the network. # That means use the given review to update the input layer, # then calculate values for the hidden layer, # and finally calculate the output layer. # # Do not use an activation function for the hidden layer, # but use the sigmoid activation function for the output layer. self.update_input_layer(review) layer_1 = np.dot(self.layer_0, self.weights_0_1) layer_2 = self.sigmoid(np.dot(layer_1, self.weights_1_2)) # TODO: Implement the back propagation pass here. # That means calculate the error for the forward pass's prediction # and update the weights in the network according to their # contributions toward the error, as calculated via the # gradient descent and back propagation algorithms you # learned in class. layer_2_error = self.get_target_for_label(label) - layer_2 layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2) layer_1_error = np.dot(layer_2_delta, self.weights_1_2.T) layer_1_delta = layer_1_error self.weights_1_2 += self.learning_rate * np.dot(layer_1.T, layer_2_delta) self.weights_0_1 += self.learning_rate * np.dot(self.layer_0.T, layer_1_delta) # TODO: Keep track of correct predictions. To determine if the prediction was # correct, check that the absolute value of the output error # is less than 0.5. If so, add one to the correct_so_far count. if(layer_2 >= 0.5 and label == 'POSITIVE'): correct_so_far += 1 elif(layer_2 < 0.5 and label == 'NEGATIVE'): correct_so_far += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the training process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) \ + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%") if(i % 2500 == 0): print("") def test(self, testing_reviews, testing_labels): Attempts to predict the labels for the given testing_reviews, and uses the test_labels to calculate the accuracy of those predictions. # keep track of how many correct predictions we make correct = 0 # we'll time how many predictions per second we make start = time.time() # Loop through each of the given reviews and call run to predict # its label. for i in range(len(testing_reviews)): pred = self.run(testing_reviews[i]) if(pred == testing_labels[i]): correct += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the prediction process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct) + " #Tested:" + str(i+1) \ + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%") def run(self, review): Returns a POSITIVE or NEGATIVE prediction for the given review. # TODO: Run a forward pass through the network, like you did in the # "train" function. That means use the given review to # update the input layer, then calculate values for the hidden layer, # and finally calculate the output layer. # # Note: The review passed into this function for prediction # might come from anywhere, so you should convert it # to lower case prior to using it. self.update_input_layer(review.lower()) layer_1 = np.dot(self.layer_0, self.weights_0_1) layer_2 = self.sigmoid(np.dot(layer_1, self.weights_1_2)) # TODO: The output layer should now contain a prediction. # Return `POSITIVE` for predictions greater-than-or-equal-to `0.5`, # and `NEGATIVE` otherwise. if(layer_2 >= 0.5): return "POSITIVE" else: return "NEGATIVE" Explanation: End of Project 2. Watch the next video to see Andrew's solution, then continue on to the next lesson. Project 3: Building a Neural Network<a id='project_3'></a> TODO: We've included the framework of a class called SentimentNetork. Implement all of the items marked TODO in the code. These include doing the following: - Create a basic neural network much like the networks you've seen in earlier lessons and in Project 1, with an input layer, a hidden layer, and an output layer. - Do not add a non-linearity in the hidden layer. That is, do not use an activation function when calculating the hidden layer outputs. - Re-use the code from earlier in this notebook to create the training data (see TODOs in the code) - Implement the pre_process_data function to create the vocabulary for our training data generating functions - Ensure train trains over the entire corpus Where to Get Help if You Need it Re-watch earlier Udacity lectures Chapters 3-5 - Grokking Deep Learning - (Check inside your classroom for a discount code) End of explanation mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1) Explanation: Run the following cell to create a SentimentNetwork that will train on all but the last 1000 reviews (we're saving those for testing). Here we use a learning rate of 0.1. End of explanation mlp.test(reviews[-1000:],labels[-1000:]) Explanation: Run the following cell to test the network's performance against the last 1000 reviews (the ones we held out from our training set). We have not trained the model yet, so the results should be about 50% as it will just be guessing and there are only two possible values to choose from. End of explanation mlp.train(reviews[:-1000],labels[:-1000]) Explanation: Run the following cell to actually train the network. During training, it will display the model's accuracy repeatedly as it trains so you can see how well it's doing. End of explanation mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.01) mlp.train(reviews[:-1000],labels[:-1000]) Explanation: That most likely didn't train very well. Part of the reason may be because the learning rate is too high. Run the following cell to recreate the network with a smaller learning rate, 0.01, and then train the new network. End of explanation mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.001) mlp.train(reviews[:-1000],labels[:-1000]) Explanation: That probably wasn't much different. Run the following cell to recreate the network one more time with an even smaller learning rate, 0.001, and then train the new network. End of explanation from IPython.display import Image Image(filename='sentiment_network.png') def update_input_layer(review): global layer_0 # clear out previous state, reset the layer to be all 0s layer_0 *= 0 for word in review.split(" "): layer_0[0][word2index[word]] += 1 update_input_layer(reviews[0]) Explanation: With a learning rate of 0.001, the network should finall have started to improve during training. It's still not very good, but it shows that this solution has potential. We will improve it in the next lesson. End of Project 3. Watch the next video to see Andrew's solution, then continue on to the next lesson. Understanding Neural Noise<a id='lesson_4'></a> The following cells include includes the code Andrew shows in the next video. We've included it here so you can run the cells along with the video without having to type in everything. Project3에서의 모델은 너무 학습이 느렸음. 우리는 이럴 때 다양한 해결책을 강구할 수 있지만, 기본은 data를 다시 한번 살펴보는 것이다. End of explanation layer_0 Explanation: 아래의 결과를 보면 첫번째 요소의 수가 18이나 되는데, 우리의 network는 위의 구조와 같이 하나의 큰 input element가 다른 모든 input element의 요소를 dominant하고, 또한 모든 hidden layer unit들에게 영향을 미치는 구조다. End of explanation list(vocab)[0] review_counter = Counter() for word in reviews[0].split(" "): review_counter[word] += 1 Explanation: 심지어 위의 벡터에서 18은 '' 같은 아무 의미 없는 값이다. 아마도 다른 경우도 띄어쓰기나 조사같은 의미없는 값이 많을 것이다. End of explanation review_counter.most_common() Explanation: Dominant한 값들은 대부분 ' ', '', 'the' 같은 단어임. 즉, 단순한 count는 data가 가진 signal을 highlight 해주지 않는다. 이는 단순한 count는 noise를 많이 내포하고 있음을 의미한다. End of explanation # TODO: -Copy the SentimentNetwork class from Projet 3 lesson # -Modify it to reduce noise, like in the video import time import sys import numpy as np # Encapsulate our neural network in a class class SentimentNetwork: def __init__(self, reviews, labels, hidden_nodes = 10, learning_rate = 0.1): Create a SentimenNetwork with the given settings Args: reviews(list) - List of reviews used for training labels(list) - List of POSITIVE/NEGATIVE labels associated with the given reviews hidden_nodes(int) - Number of nodes to create in the hidden layer learning_rate(float) - Learning rate to use while training # Assign a seed to our random number generator to ensure we get # reproducable results during development np.random.seed(1) # process the reviews and their associated labels so that everything # is ready for training self.pre_process_data(reviews, labels) # Build the network to have the number of hidden nodes and the learning rate that # were passed into this initializer. Make the same number of input nodes as # there are vocabulary words and create a single output node. self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate) def pre_process_data(self, reviews, labels): review_vocab = set() # TODO: populate review_vocab with all of the words in the given reviews # Remember to split reviews into individual words # using "split(' ')" instead of "split()". for review in reviews: for word in review.split(' '): review_vocab.add(word) # Convert the vocabulary set to a list so we can access words via indices self.review_vocab = list(review_vocab) label_vocab = set() # TODO: populate label_vocab with all of the words in the given labels. # There is no need to split the labels because each one is a single word. for label in labels: label_vocab.add(label) # Convert the label vocabulary set to a list so we can access labels via indices self.label_vocab = list(label_vocab) # Store the sizes of the review and label vocabularies. self.review_vocab_size = len(self.review_vocab) self.label_vocab_size = len(self.label_vocab) # Create a dictionary of words in the vocabulary mapped to index positions self.word2index = {} # TODO: populate self.word2index with indices for all the words in self.review_vocab # like you saw earlier in the notebook for i, word in enumerate(self.review_vocab): self.word2index[word] = i # Create a dictionary of labels mapped to index positions self.label2index = {} # TODO: do the same thing you did for self.word2index and self.review_vocab, # but for self.label2index and self.label_vocab instead for i, label in enumerate(self.label_vocab): self.label2index[label] = i def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Store the number of nodes in input, hidden, and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Store the learning rate self.learning_rate = learning_rate # Initialize weights # TODO: initialize self.weights_0_1 as a matrix of zeros. These are the weights between # the input layer and the hidden layer. self.weights_0_1 = np.zeros((self.input_nodes, self.hidden_nodes)) # TODO: initialize self.weights_1_2 as a matrix of random values. # These are the weights between the hidden layer and the output layer. self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) # TODO: Create the input layer, a two-dimensional matrix with shape # 1 x input_nodes, with all values initialized to zero self.layer_0 = np.zeros((1,input_nodes)) def update_input_layer(self,review): # TODO: You can copy most of the code you wrote for update_input_layer # earlier in this notebook. self.layer_0 *= 0 # JUST SET CORRESPONDENT ELEMENT for word in review.split(' '): if(word in self.word2index.keys()): self.layer_0[0][self.word2index[word]] = 1 def get_target_for_label(self,label): # TODO: Copy the code you wrote for get_target_for_label # earlier in this notebook. if(label == 'POSITIVE'): return 1 else: return 0 def sigmoid(self,x): # TODO: Return the result of calculating the sigmoid activation function # shown in the lectures return 1 / (1 + np.exp(-x)) def sigmoid_output_2_derivative(self,output): # TODO: Return the derivative of the sigmoid activation function, # where "output" is the original output from the sigmoid fucntion return output * (1 - output) def train(self, training_reviews, training_labels): # make sure out we have a matching number of reviews and labels assert(len(training_reviews) == len(training_labels)) # Keep track of correct predictions to display accuracy during training correct_so_far = 0 # Remember when we started for printing time statistics start = time.time() # loop through all the given reviews and run a forward and backward pass, # updating weights for every item for i in range(len(training_reviews)): # TODO: Get the next review and its correct label review = training_reviews[i] label = training_labels[i] # TODO: Implement the forward pass through the network. self.update_input_layer(review) layer_1 = np.dot(self.layer_0, self.weights_0_1) layer_2 = self.sigmoid(np.dot(layer_1, self.weights_1_2)) # TODO: Implement the back propagation pass here. layer_2_error = self.get_target_for_label(label) - layer_2 layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2) layer_1_error = np.dot(layer_2_delta, self.weights_1_2.T) layer_1_delta = layer_1_error self.weights_1_2 += self.learning_rate * np.dot(layer_1.T, layer_2_delta) self.weights_0_1 += self.learning_rate * np.dot(self.layer_0.T, layer_1_delta) # TODO: Keep track of correct predictions. To determine if the prediction was # correct, check that the absolute value of the output error # is less than 0.5. If so, add one to the correct_so_far count. if(layer_2 >= 0.5 and label == 'POSITIVE'): correct_so_far += 1 elif(layer_2 < 0.5 and label == 'NEGATIVE'): correct_so_far += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the training process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) \ + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%") if(i % 2500 == 0): print("") def test(self, testing_reviews, testing_labels): Attempts to predict the labels for the given testing_reviews, and uses the test_labels to calculate the accuracy of those predictions. # keep track of how many correct predictions we make correct = 0 # we'll time how many predictions per second we make start = time.time() # Loop through each of the given reviews and call run to predict # its label. for i in range(len(testing_reviews)): pred = self.run(testing_reviews[i]) if(pred == testing_labels[i]): correct += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the prediction process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct) + " #Tested:" + str(i+1) \ + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%") def run(self, review): Returns a POSITIVE or NEGATIVE prediction for the given review. # TODO: Run a forward pass through the network, like you did in the # "train" function. That means use the given review to # update the input layer, then calculate values for the hidden layer, # and finally calculate the output layer. # # Note: The review passed into this function for prediction # might come from anywhere, so you should convert it # to lower case prior to using it. self.update_input_layer(review.lower()) layer_1 = np.dot(self.layer_0, self.weights_0_1) layer_2 = self.sigmoid(np.dot(layer_1, self.weights_1_2)) # TODO: The output layer should now contain a prediction. # Return `POSITIVE` for predictions greater-than-or-equal-to `0.5`, # and `NEGATIVE` otherwise. if(layer_2 >= 0.5): return "POSITIVE" else: return "NEGATIVE" Explanation: Project 4: Reducing Noise in Our Input Data<a id='project_4'></a> TODO: Attempt to reduce the noise in the input data like Andrew did in the previous video. Specifically, do the following: * Copy the SentimentNetwork class you created earlier into the following cell. * Modify update_input_layer so it does not count how many times each word is used, but rather just stores whether or not a word was used. End of explanation mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1) mlp.train(reviews[:-1000],labels[:-1000]) Explanation: Run the following cell to recreate the network and train it. Notice we've gone back to the higher learning rate of 0.1. 만일 이것을 위의 Project 3 에서처럼 learning rate 같은 것으로 발전시키려고 했다면 아주 고생하고 별 성과도 없었을 것. 하지만 데이터와 네트워크의 구조를 보면서 접근하면 아주 빠르게 모델을 발전시킬 수 있음. End of explanation mlp.test(reviews[-1000:],labels[-1000:]) Explanation: That should have trained much better than the earlier attempts. It's still not wonderful, but it should have improved dramatically. Run the following cell to test your model with 1000 predictions. End of explanation Image(filename='sentiment_network_sparse.png') Explanation: End of Project 4. Andrew's solution was actually in the previous video, so rewatch that video if you had any problems with that project. Then continue on to the next lesson. Analyzing Inefficiencies in our Network<a id='lesson_5'></a> The following cells include the code Andrew shows in the next video. We've included it here so you can run the cells along with the video without having to type in everything. End of explanation layer_0 = np.zeros(10) layer_0 layer_0[4] = 1 layer_0[9] = 1 layer_0 weights_0_1 = np.random.randn(10,5) layer_0.dot(weights_0_1) indices = [4,9] layer_1 = np.zeros(5) for index in indices: layer_1 += (1 * weights_0_1[index]) layer_1 Explanation: Project 4 에서 개선한 네트워크도 사실 학습 속도는 매우 느린 편인데, 그 이유는 위의 그림처럼 대부분의 값이 sparse 하기 때문인 것으로 생각됨. End of explanation Image(filename='sentiment_network_sparse_2.png') layer_1 = np.zeros(5) for index in indices: layer_1 += (weights_0_1[index]) layer_1 Explanation: 위에서의 과정을 통해 알 수 있는 것은 우리가 이제까지 사용했던 matrix multiplication 과정이 사실상 그냥 일부 index의 값을 더한 것일 뿐이라는 것이다. 즉, sparse 한 네트워크에서 굳이 대부분이 곱하고 더하는 연산을 하는 과정을 단순히 몇 개 숫자의 합을 구하는 연산으로 간추릴 수 있다는 것. End of explanation # TODO: -Copy the SentimentNetwork class from Project 4 lesson # -Modify it according to the above instructions import time import sys import numpy as np # Encapsulate our neural network in a class class SentimentNetwork: def __init__(self, reviews, labels, hidden_nodes = 10, learning_rate = 0.1): Create a SentimenNetwork with the given settings Args: reviews(list) - List of reviews used for training labels(list) - List of POSITIVE/NEGATIVE labels associated with the given reviews hidden_nodes(int) - Number of nodes to create in the hidden layer learning_rate(float) - Learning rate to use while training # Assign a seed to our random number generator to ensure we get # reproducable results during development np.random.seed(1) # process the reviews and their associated labels so that everything # is ready for training self.pre_process_data(reviews, labels) # Build the network to have the number of hidden nodes and the learning rate that # were passed into this initializer. Make the same number of input nodes as # there are vocabulary words and create a single output node. self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate) def pre_process_data(self, reviews, labels): review_vocab = set() # TODO: populate review_vocab with all of the words in the given reviews # Remember to split reviews into individual words # using "split(' ')" instead of "split()". for review in reviews: for word in review.split(' '): review_vocab.add(word) # Convert the vocabulary set to a list so we can access words via indices self.review_vocab = list(review_vocab) label_vocab = set() # TODO: populate label_vocab with all of the words in the given labels. # There is no need to split the labels because each one is a single word. for label in labels: label_vocab.add(label) # Convert the label vocabulary set to a list so we can access labels via indices self.label_vocab = list(label_vocab) # Store the sizes of the review and label vocabularies. self.review_vocab_size = len(self.review_vocab) self.label_vocab_size = len(self.label_vocab) # Create a dictionary of words in the vocabulary mapped to index positions self.word2index = {} # TODO: populate self.word2index with indices for all the words in self.review_vocab # like you saw earlier in the notebook for i, word in enumerate(self.review_vocab): self.word2index[word] = i # Create a dictionary of labels mapped to index positions self.label2index = {} # TODO: do the same thing you did for self.word2index and self.review_vocab, # but for self.label2index and self.label_vocab instead for i, label in enumerate(self.label_vocab): self.label2index[label] = i def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Store the number of nodes in input, hidden, and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Store the learning rate self.learning_rate = learning_rate # Initialize weights # TODO: initialize self.weights_0_1 as a matrix of zeros. These are the weights between # the input layer and the hidden layer. self.weights_0_1 = np.zeros((self.input_nodes, self.hidden_nodes)) # TODO: initialize self.weights_1_2 as a matrix of random values. # These are the weights between the hidden layer and the output layer. self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.layer_1 = np.zeros((1, self.hidden_nodes)) def get_target_for_label(self,label): # TODO: Copy the code you wrote for get_target_for_label # earlier in this notebook. if(label == 'POSITIVE'): return 1 else: return 0 def sigmoid(self,x): # TODO: Return the result of calculating the sigmoid activation function # shown in the lectures return 1 / (1 + np.exp(-x)) def sigmoid_output_2_derivative(self,output): # TODO: Return the derivative of the sigmoid activation function, # where "output" is the original output from the sigmoid fucntion return output * (1 - output) def train(self, training_reviews_raw, training_labels): training_reviews = list() for review in training_reviews_raw: indices = set() for word in review.split(' '): if(word in self.word2index.keys()): indices.add(self.word2index[word]) training_reviews.append(list(indices)) # make sure out we have a matching number of reviews and labels assert(len(training_reviews) == len(training_labels)) # Keep track of correct predictions to display accuracy during training correct_so_far = 0 # Remember when we started for printing time statistics start = time.time() # loop through all the given reviews and run a forward and backward pass, # updating weights for every item for i in range(len(training_reviews)): # TODO: Get the next review and its correct label review = training_reviews[i] label = training_labels[i] # TODO: Implement the forward pass through the network. self.layer_1 *= 0 for index in review: self.layer_1 += self.weights_0_1[index] layer_2 = self.sigmoid(np.dot(self.layer_1, self.weights_1_2)) # TODO: Implement the back propagation pass here. layer_2_error = self.get_target_for_label(label) - layer_2 layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2) layer_1_error = np.dot(layer_2_delta, self.weights_1_2.T) layer_1_delta = layer_1_error self.weights_1_2 += self.learning_rate * np.dot(self.layer_1.T, layer_2_delta) for index in review: self.weights_0_1[index] += self.learning_rate * layer_1_delta[0] # TODO: Keep track of correct predictions. To determine if the prediction was # correct, check that the absolute value of the output error # is less than 0.5. If so, add one to the correct_so_far count. if(layer_2 >= 0.5 and label == 'POSITIVE'): correct_so_far += 1 elif(layer_2 < 0.5 and label == 'NEGATIVE'): correct_so_far += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the training process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) \ + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%") if(i % 2500 == 0): print("") def test(self, testing_reviews, testing_labels): Attempts to predict the labels for the given testing_reviews, and uses the test_labels to calculate the accuracy of those predictions. # keep track of how many correct predictions we make correct = 0 # we'll time how many predictions per second we make start = time.time() # Loop through each of the given reviews and call run to predict # its label. for i in range(len(testing_reviews)): pred = self.run(testing_reviews[i]) if(pred == testing_labels[i]): correct += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the prediction process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct) + " #Tested:" + str(i+1) \ + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%") def run(self, review): Returns a POSITIVE or NEGATIVE prediction for the given review. # TODO: Run a forward pass through the network, like you did in the # "train" function. layer_0 = set() for word in review.lower().split(' '): if(word in self.word2index.keys()): layer_0.add(self.word2index[word]) self.layer_1 *= 0 for index in layer_0: self.layer_1 += self.weights_0_1[index] layer_2 = self.sigmoid(np.dot(self.layer_1, self.weights_1_2)) # TODO: The output layer should now contain a prediction. # Return `POSITIVE` for predictions greater-than-or-equal-to `0.5`, # and `NEGATIVE` otherwise. if(layer_2 >= 0.5): return "POSITIVE" else: return "NEGATIVE" Explanation: Project 5: Making our Network More Efficient<a id='project_5'></a> TODO: Make the SentimentNetwork class more efficient by eliminating unnecessary multiplications and additions that occur during forward and backward propagation. To do that, you can do the following: * Copy the SentimentNetwork class from the previous project into the following cell. * Remove the update_input_layer function - you will not need it in this version. * Modify init_network: You no longer need a separate input layer, so remove any mention of self.layer_0 You will be dealing with the old hidden layer more directly, so create self.layer_1, a two-dimensional matrix with shape 1 x hidden_nodes, with all values initialized to zero Modify train: Change the name of the input parameter training_reviews to training_reviews_raw. This will help with the next step. At the beginning of the function, you'll want to preprocess your reviews to convert them to a list of indices (from word2index) that are actually used in the review. This is equivalent to what you saw in the video when Andrew set specific indices to 1. Your code should create a local list variable named training_reviews that should contain a list for each review in training_reviews_raw. Those lists should contain the indices for words found in the review. Remove call to update_input_layer Use self's layer_1 instead of a local layer_1 object. In the forward pass, replace the code that updates layer_1 with new logic that only adds the weights for the indices used in the review. When updating weights_0_1, only update the individual weights that were used in the forward pass. Modify run: Remove call to update_input_layer Use self's layer_1 instead of a local layer_1 object. Much like you did in train, you will need to pre-process the review so you can work with word indices, then update layer_1 by adding weights for the indices used in the review. End of explanation mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1) mlp.train(reviews[:-1000],labels[:-1000]) Explanation: Run the following cell to recreate the network and train it once again. End of explanation mlp.test(reviews[-1000:],labels[-1000:]) Explanation: That should have trained much better than the earlier attempts. Run the following cell to test your model with 1000 predictions. End of explanation Image(filename='sentiment_network_sparse_2.png') # words most frequently seen in a review with a "POSITIVE" label pos_neg_ratios.most_common() # words most frequently seen in a review with a "NEGATIVE" label list(reversed(pos_neg_ratios.most_common()))[0:30] from bokeh.models import ColumnDataSource, LabelSet from bokeh.plotting import figure, show, output_file from bokeh.io import output_notebook output_notebook() hist, edges = np.histogram(list(map(lambda x:x[1],pos_neg_ratios.most_common())), density=True, bins=100, normed=True) p = figure(tools="pan,wheel_zoom,reset,save", toolbar_location="above", title="Word Positive/Negative Affinity Distribution") p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], line_color="#555555") show(p) frequency_frequency = Counter() for word, cnt in total_counts.most_common(): frequency_frequency[cnt] += 1 hist, edges = np.histogram(list(map(lambda x:x[1],frequency_frequency.most_common())), density=True, bins=100, normed=True) p = figure(tools="pan,wheel_zoom,reset,save", toolbar_location="above", title="The frequency distribution of the words in our corpus") p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], line_color="#555555") show(p) Explanation: End of Project 5. Watch the next video to see Andrew's solution, then continue on to the next lesson. Further Noise Reduction<a id='lesson_6'></a> End of explanation # TODO: -Copy the SentimentNetwork class from Project 5 lesson # -Modify it according to the above instructions import time import sys import numpy as np # Encapsulate our neural network in a class class SentimentNetwork: def __init__(self, reviews, labels, min_count = 10, polarity_cutoff = 0.1, hidden_nodes = 10, learning_rate = 0.1): Create a SentimenNetwork with the given settings Args: reviews(list) - List of reviews used for training labels(list) - List of POSITIVE/NEGATIVE labels associated with the given reviews min_count - polarity_cutoff - hidden_nodes(int) - Number of nodes to create in the hidden layer learning_rate(float) - Learning rate to use while training # Assign a seed to our random number generator to ensure we get # reproducable results during development np.random.seed(1) # process the reviews and their associated labels so that everything # is ready for training self.pre_process_data(reviews, labels, polarity_cutoff, min_count) # Build the network to have the number of hidden nodes and the learning rate that # were passed into this initializer. Make the same number of input nodes as # there are vocabulary words and create a single output node. self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate) def pre_process_data(self, reviews, labels, polarity_cutoff, min_count): positive_counts = Counter() negative_counts = Counter() total_counts = Counter() for i in range(len(reviews)): if(labels[i] == 'POSITIVE'): for word in reviews[i].split(" "): positive_counts[word] += 1 total_counts[word] += 1 else: for word in reviews[i].split(" "): negative_counts[word] += 1 total_counts[word] += 1 pos_neg_ratios = Counter() for term,cnt in list(total_counts.most_common()): if(cnt >= 50): pos_neg_ratio = positive_counts[term] / float(negative_counts[term]+1) pos_neg_ratios[term] = pos_neg_ratio for word,ratio in pos_neg_ratios.most_common(): if(ratio > 1): pos_neg_ratios[word] = np.log(ratio) else: pos_neg_ratios[word] = -np.log((1 / (ratio + 0.01))) # TODO: populate review_vocab with all of the words in the given reviews # Remember to split reviews into individual words # using "split(' ')" instead of "split()". review_vocab = set() for review in reviews: for word in review.split(' '): if(total_counts[word] > min_count): if(word in pos_neg_ratios.keys()): if(pos_neg_ratios[word] >= polarity_cutoff or pos_neg_ratios[word] <= -polarity_cutoff): review_vocab.add(word) # Convert the vocabulary set to a list so we can access words via indices self.review_vocab = list(review_vocab) label_vocab = set() # TODO: populate label_vocab with all of the words in the given labels. # There is no need to split the labels because each one is a single word. for label in labels: label_vocab.add(label) # Convert the label vocabulary set to a list so we can access labels via indices self.label_vocab = list(label_vocab) # Store the sizes of the review and label vocabularies. self.review_vocab_size = len(self.review_vocab) self.label_vocab_size = len(self.label_vocab) # Create a dictionary of words in the vocabulary mapped to index positions self.word2index = {} # TODO: populate self.word2index with indices for all the words in self.review_vocab # like you saw earlier in the notebook for i, word in enumerate(self.review_vocab): self.word2index[word] = i # Create a dictionary of labels mapped to index positions self.label2index = {} # TODO: do the same thing you did for self.word2index and self.review_vocab, # but for self.label2index and self.label_vocab instead for i, label in enumerate(self.label_vocab): self.label2index[label] = i def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Store the number of nodes in input, hidden, and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Store the learning rate self.learning_rate = learning_rate # Initialize weights # TODO: initialize self.weights_0_1 as a matrix of zeros. These are the weights between # the input layer and the hidden layer. self.weights_0_1 = np.zeros((self.input_nodes, self.hidden_nodes)) # TODO: initialize self.weights_1_2 as a matrix of random values. # These are the weights between the hidden layer and the output layer. self.weights_1_2 = np.random.normal(0.0, self.output_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.layer_1 = np.zeros((1, self.hidden_nodes)) def get_target_for_label(self,label): # TODO: Copy the code you wrote for get_target_for_label # earlier in this notebook. if(label == 'POSITIVE'): return 1 else: return 0 def sigmoid(self,x): # TODO: Return the result of calculating the sigmoid activation function # shown in the lectures return 1 / (1 + np.exp(-x)) def sigmoid_output_2_derivative(self,output): # TODO: Return the derivative of the sigmoid activation function, # where "output" is the original output from the sigmoid fucntion return output * (1 - output) def train(self, training_reviews_raw, training_labels): training_reviews = list() for review in training_reviews_raw: indices = set() for word in review.split(' '): if(word in self.word2index.keys()): indices.add(self.word2index[word]) training_reviews.append(list(indices)) # make sure out we have a matching number of reviews and labels assert(len(training_reviews) == len(training_labels)) # Keep track of correct predictions to display accuracy during training correct_so_far = 0 # Remember when we started for printing time statistics start = time.time() # loop through all the given reviews and run a forward and backward pass, # updating weights for every item for i in range(len(training_reviews)): # TODO: Get the next review and its correct label review = training_reviews[i] label = training_labels[i] # TODO: Implement the forward pass through the network. self.layer_1 *= 0 for index in review: self.layer_1 += self.weights_0_1[index] layer_2 = self.sigmoid(np.dot(self.layer_1, self.weights_1_2)) # TODO: Implement the back propagation pass here. layer_2_error = self.get_target_for_label(label) - layer_2 layer_2_delta = layer_2_error * self.sigmoid_output_2_derivative(layer_2) layer_1_error = np.dot(layer_2_delta, self.weights_1_2.T) layer_1_delta = layer_1_error self.weights_1_2 += self.learning_rate * np.dot(self.layer_1.T, layer_2_delta) for index in review: self.weights_0_1[index] += self.learning_rate * layer_1_delta[0] # TODO: Keep track of correct predictions. To determine if the prediction was # correct, check that the absolute value of the output error # is less than 0.5. If so, add one to the correct_so_far count. if(layer_2 >= 0.5 and label == 'POSITIVE'): correct_so_far += 1 elif(layer_2 < 0.5 and label == 'NEGATIVE'): correct_so_far += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the training process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(training_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct_so_far) + " #Trained:" + str(i+1) \ + " Training Accuracy:" + str(correct_so_far * 100 / float(i+1))[:4] + "%") if(i % 2500 == 0): print("") def test(self, testing_reviews, testing_labels): Attempts to predict the labels for the given testing_reviews, and uses the test_labels to calculate the accuracy of those predictions. # keep track of how many correct predictions we make correct = 0 # we'll time how many predictions per second we make start = time.time() # Loop through each of the given reviews and call run to predict # its label. for i in range(len(testing_reviews)): pred = self.run(testing_reviews[i]) if(pred == testing_labels[i]): correct += 1 # For debug purposes, print out our prediction accuracy and speed # throughout the prediction process. elapsed_time = float(time.time() - start) reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0 sys.stdout.write("\rProgress:" + str(100 * i/float(len(testing_reviews)))[:4] \ + "% Speed(reviews/sec):" + str(reviews_per_second)[0:5] \ + " #Correct:" + str(correct) + " #Tested:" + str(i+1) \ + " Testing Accuracy:" + str(correct * 100 / float(i+1))[:4] + "%") def run(self, review): Returns a POSITIVE or NEGATIVE prediction for the given review. # TODO: Run a forward pass through the network, like you did in the # "train" function. layer_0 = set() for word in review.lower().split(' '): if(word in self.word2index.keys()): layer_0.add(self.word2index[word]) self.layer_1 *= 0 for index in layer_0: self.layer_1 += self.weights_0_1[index] layer_2 = self.sigmoid(np.dot(self.layer_1, self.weights_1_2)) # TODO: The output layer should now contain a prediction. # Return `POSITIVE` for predictions greater-than-or-equal-to `0.5`, # and `NEGATIVE` otherwise. if(layer_2 >= 0.5): return "POSITIVE" else: return "NEGATIVE" Explanation: 위의 통계들을 보면, 필요없는 중립적인 단어가 매우 많은데, 이런 것들을 잘라냄으로써 더 중요한 자료에 집중하고, 필요없는 연산의 횟수를 줄일 수 있다. 또 많이 사용되지 않는 단어들을 제거함으로써 패턴에 영향을 덜 끼치는 아웃라이어도 줄일 수 있다. Project 6: Reducing Noise by Strategically Reducing the Vocabulary<a id='project_6'></a> TODO: Improve SentimentNetwork's performance by reducing more noise in the vocabulary. Specifically, do the following: * Copy the SentimentNetwork class from the previous project into the following cell. * Modify pre_process_data: Add two additional parameters: min_count and polarity_cutoff Calculate the positive-to-negative ratios of words used in the reviews. (You can use code you've written elsewhere in the notebook, but we are moving it into the class like we did with other helper code earlier.) Andrew's solution only calculates a postive-to-negative ratio for words that occur at least 50 times. This keeps the network from attributing too much sentiment to rarer words. You can choose to add this to your solution if you would like. Change so words are only added to the vocabulary if they occur in the vocabulary more than min_count times. Change so words are only added to the vocabulary if the absolute value of their postive-to-negative ratio is at least polarity_cutoff Modify __init__: Add the same two parameters (min_count and polarity_cutoff) and use them when you call pre_process_data End of explanation mlp = SentimentNetwork(reviews[:-1000],labels[:-1000],min_count=20,polarity_cutoff=0.05,learning_rate=0.01) mlp.train(reviews[:-1000],labels[:-1000]) Explanation: Run the following cell to train your network with a small polarity cutoff. End of explanation mlp.test(reviews[-1000:],labels[-1000:]) Explanation: And run the following cell to test it's performance. It should be End of explanation mlp = SentimentNetwork(reviews[:-1000],labels[:-1000],min_count=20,polarity_cutoff=0.8,learning_rate=0.01) mlp.train(reviews[:-1000],labels[:-1000]) Explanation: Run the following cell to train your network with a much larger polarity cutoff. 이 경우 속도는 7배 정도 빨라지고, 정확도는 3% 정도 떨어졌는데, 실제로 문제를 푸는 경우 나쁘지 않은 trade-off. 실제 문제 중에서 training data가 아주 많은 경우, 속도를 높이는 것이 중요하기 때문. End of explanation mlp.test(reviews[-1000:],labels[-1000:]) Explanation: And run the following cell to test it's performance. End of explanation mlp_full = SentimentNetwork(reviews[:-1000],labels[:-1000],min_count=0,polarity_cutoff=0,learning_rate=0.01) mlp_full.train(reviews[:-1000],labels[:-1000]) Image(filename='sentiment_network_sparse.png') def get_most_similar_words(focus = "horrible"): most_similar = Counter() for word in mlp_full.word2index.keys(): most_similar[word] = np.dot(mlp_full.weights_0_1[mlp_full.word2index[word]],mlp_full.weights_0_1[mlp_full.word2index[focus]]) return most_similar.most_common() get_most_similar_words("excellent") get_most_similar_words("terrible") Explanation: End of Project 6. Watch the next video to see Andrew's solution, then continue on to the next lesson. Analysis: What's Going on in the Weights?<a id='lesson_7'></a> End of explanation import matplotlib.colors as colors words_to_visualize = list() for word, ratio in pos_neg_ratios.most_common(500): if(word in mlp_full.word2index.keys()): words_to_visualize.append(word) for word, ratio in list(reversed(pos_neg_ratios.most_common()))[0:500]: if(word in mlp_full.word2index.keys()): words_to_visualize.append(word) pos = 0 neg = 0 colors_list = list() vectors_list = list() for word in words_to_visualize: if word in pos_neg_ratios.keys(): vectors_list.append(mlp_full.weights_0_1[mlp_full.word2index[word]]) if(pos_neg_ratios[word] > 0): pos+=1 colors_list.append("#00ff00") else: neg+=1 colors_list.append("#000000") from sklearn.manifold import TSNE tsne = TSNE(n_components=2, random_state=0) words_top_ted_tsne = tsne.fit_transform(vectors_list) p = figure(tools="pan,wheel_zoom,reset,save", toolbar_location="above", title="vector T-SNE for most polarized words") source = ColumnDataSource(data=dict(x1=words_top_ted_tsne[:,0], x2=words_top_ted_tsne[:,1], names=words_to_visualize, color=colors_list)) p.scatter(x="x1", y="x2", size=8, source=source, fill_color="color") word_labels = LabelSet(x="x1", y="x2", text="names", y_offset=6, text_font_size="8pt", text_color="#555555", source=source, text_align='center') p.add_layout(word_labels) show(p) # green indicates positive words, black indicates negative words Explanation: 위의 두 결과를 보면 network가 서로 비슷한 단어들을 잘 detect함. 즉, 제대로 학습되었음을 볼 수 있음. End of explanation
513
Given the following text description, write Python code to implement the functionality described below step by step Description: Tutorial Step1: Note Step2: Definition of the layers So let us define the layers for the convolutional net. In general, layers are assembled in a list. Each element of the list is a tuple -- first a Lasagne layer, next a dictionary containing the arguments of the layer. We will explain the layer definitions in a moment, but in general, you should look them up in the Lasagne documenation. Nolearn allows you to skip Lasagne's incoming keyword, which specifies how the layers are connected. Instead, nolearn will automatically assume that layers are connected in the order they appear in the list. Note Step3: Definition of the neural network We now define the neural network itself. But before we do this, we want to add L2 regularization to the net (see here for more). This is achieved in the little helper function below. If you don't understand exactly what this about, just ignore this. Step4: Now we initialize nolearn's neural net itself. We will explain each argument shortly Step5: Training the neural network To train the net, we call its fit method with our X and y data, as we would with any scikit learn classifier. Step6: As we set the verbosity to 1, nolearn will print some useful information for us Step7: Train and validation loss progress With nolearn's visualization tools, it is possible to get some further insights into the working of the CNN. First of all, we will simply plot the log loss of the training and validation data over each epoch, as shown below Step8: This kind of visualization can be helpful in determining whether we want to continue training or not. For instance, here we see that both loss functions still are still decreasing and that more training will pay off. This graph can also help determine if we are overfitting Step9: As can be seen above, in our case, the results are not too interesting. If the weights just look like noise, we might have to do something (e.g. use more filters so that each can specialize better). Visualizing the layers' activities To see through the "eyes" of the net, we can plot the activities produced by different layers. The plot_conv_activity function is made for that. The first argument, again, is a layer, the second argument an image in the bc01 format (which is why we use X[0 Step10: Here we can see that depending on the learned filters, the neural net represents the image in different ways, which is what we should expect. If, e.g., some images were completely black, that could indicate that the corresponding filters have not learned anything useful. When you find yourself in such a situation, training longer or initializing the weights differently might do the trick. Plot occlusion images A possibility to check if the net, for instance, overfits or learns important features is to occlude part of the image. Then we can check whether the net still makes correct predictions. The idea behind that is the following Step11: Here we see which parts of the number are most important for correct classification. We ses that the critical parts are all directly above the numbers, so this seems to work out. For more complex images with different objects in the scene, this function should be more useful, though. Finding a good architecture This section tries to help you go deep with your convolutional neural net. To do so, one cannot simply increase the number of convolutional layers at will. It is important that the layers have a sufficiently high learning capacity while they should cover approximately 100% of the incoming image (Xudong Cao, 2015). The usual approach is to try to go deep with convolutional layers. If you chain too many convolutional layers, though, the learning capacity of the layers falls too low. At this point, you have to add a max pooling layer. Use too many max pooling layers, and your image coverage grows larger than the image, which is clearly pointless. Striking the right balance while maximizing the depth of your layer is the final goal. It is generally a good idea to use small filter sizes for your convolutional layers, generally <b>3x3</b>. The reason for this is that this allows to cover the same receptive field of the image while using less parameters that would be required if a larger filter size were used. Moreover, deeper stacks of convolutional layers are more expressive (see here for more). Step12: A shallow net Let us try out a simple architecture and see how we fare. Step13: To see information about the capacity and coverage of each layer, we need to set the verbosity of the net to a value of 2 and then initialize the net. We next pass the initialized net to PrintLayerInfo to see some useful information. By the way, we could also just call the fit method of the net to get the same outcome, but since we don't want to fit just now, we proceed as shown below. Step14: This net is fine. The capacity never falls below 1/6, which would be 16.7%, and the coverage of the image never exceeds 100%. However, with only 4 convolutional layers, this net is not very deep and will properly not achieve the best possible results. What we also see is the role of max pooling. If we look at 'maxpool2d1', after this layer, the capacity of the net is increased. Max pooling thus helps to increase capacity should it dip too low. However, max pooling also significantly increases the coverage of the image. So if we use max pooling too often, the coverage will quickly exceed 100% and we cannot go sufficiently deep. Too little maxpooling Now let us try an architecture that uses a lot of convolutional layers but only one maxpooling layer. Step15: Here we have a very deep net but we have a problem Step16: This net uses too much maxpooling for too small an image. The later layers, colored in cyan, would cover more than 100% of the image. So this network is clearly also suboptimal. A good compromise Now let us have a look at a reasonably deep architecture that satisfies the criteria we set out to meet Step17: With 10 convolutional layers, this network is rather deep, given the small image size. Yet the learning capacity is always suffiently large and never are is than 100% of the image covered. This could just be a good solution. Maybe you would like to give this architecture a spin? Note 1
Python Code: import os import matplotlib.pyplot as plt %matplotlib inline import numpy as np from lasagne.layers import DenseLayer from lasagne.layers import InputLayer from lasagne.layers import DropoutLayer from lasagne.layers import Conv2DLayer from lasagne.layers import MaxPool2DLayer from lasagne.nonlinearities import softmax from lasagne.updates import adam from lasagne.layers import get_all_params from nolearn.lasagne import NeuralNet from nolearn.lasagne import TrainSplit from nolearn.lasagne import objective Explanation: Tutorial: Training convolutional neural networks with nolearn Author: Benjamin Bossan This tutorial's goal is to teach you how to use nolearn to train convolutional neural networks (CNNs). The nolearn documentation can be found here. We assume that you have some general knowledge about machine learning in general or neural nets specifically, but want to learn more about convolutional neural networks and nolearn. We well cover several points in this notebook. How to load image data such that we can use it for our purpose. For this tutorial, we will use the MNIST data set, which consists of images of the numbers from 0 to 9. How to properly define layers of the net. A good choice of layers, i.e. a good network architecture, is most important to get nice results out of a neural net. The definition of the neural network itself. Here we define important hyper-parameters. Next we will see how visualizations may help us to further refine the network. Finally, we will show you how nolearn can help us find better architectures for our neural network. Imports End of explanation def load_mnist(path): X = [] y = [] with open(path, 'rb') as f: next(f) # skip header for line in f: yi, xi = line.split(',', 1) y.append(yi) X.append(xi.split(',')) # Theano works with fp32 precision X = np.array(X).astype(np.float32) y = np.array(y).astype(np.int32) # apply some very simple normalization to the data X -= X.mean() X /= X.std() # For convolutional layers, the default shape of data is bc01, # i.e. batch size x color channels x image dimension 1 x image dimension 2. # Therefore, we reshape the X data to -1, 1, 28, 28. X = X.reshape( -1, # number of samples, -1 makes it so that this number is determined automatically 1, # 1 color channel, since images are only black and white 28, # first image dimension (vertical) 28, # second image dimension (horizontal) ) return X, y # here you should enter the path to your MNIST data #path = os.path.join(os.path.expanduser('~'), 'data/mnist/train.csv') #X, y = load_mnist(path) from sklearn.datasets import load_digits d=load_digits() X=d.images y=d.target figs, axes = plt.subplots(4, 4, figsize=(6, 6)) for i in range(4): for j in range(4): axes[i, j].imshow(-X[i + 4 * j].reshape(28, 28), cmap='gray', interpolation='none') axes[i, j].set_xticks([]) axes[i, j].set_yticks([]) axes[i, j].set_title("Label: {}".format(y[i + 4 * j])) axes[i, j].axis('off') Explanation: Note: If your GPU supports it, you should try using lasagne.cuda_convnet.Conv2DCCLayer and lasagne.cuda_convnet.MaxPool2DCCLayer, which could give you a nice speed up. Loading MNIST data This little helper function loads the MNIST data available here. End of explanation layers0 = [ # layer dealing with the input data (InputLayer, {'shape': (None, X.shape[1], X.shape[2], X.shape[3])}), # first stage of our convolutional layers (Conv2DLayer, {'num_filters': 96, 'filter_size': 5}), (Conv2DLayer, {'num_filters': 96, 'filter_size': 3}), (Conv2DLayer, {'num_filters': 96, 'filter_size': 3}), (Conv2DLayer, {'num_filters': 96, 'filter_size': 3}), (Conv2DLayer, {'num_filters': 96, 'filter_size': 3}), (MaxPool2DLayer, {'pool_size': 2}), # second stage of our convolutional layers (Conv2DLayer, {'num_filters': 128, 'filter_size': 3}), (Conv2DLayer, {'num_filters': 128, 'filter_size': 3}), (Conv2DLayer, {'num_filters': 128, 'filter_size': 3}), (MaxPool2DLayer, {'pool_size': 2}), # two dense layers with dropout (DenseLayer, {'num_units': 64}), (DropoutLayer, {}), (DenseLayer, {'num_units': 64}), # the output layer (DenseLayer, {'num_units': 10, 'nonlinearity': softmax}), ] Explanation: Definition of the layers So let us define the layers for the convolutional net. In general, layers are assembled in a list. Each element of the list is a tuple -- first a Lasagne layer, next a dictionary containing the arguments of the layer. We will explain the layer definitions in a moment, but in general, you should look them up in the Lasagne documenation. Nolearn allows you to skip Lasagne's incoming keyword, which specifies how the layers are connected. Instead, nolearn will automatically assume that layers are connected in the order they appear in the list. Note: Of course you can manually set the incoming parameter if your neural net's layers are connected differently. To do so, you have to give the corresponding layer a name (e.g. 'name': 'my layer') and use that name as a reference ('incoming': 'my layer'). The layers we use are the following: InputLayer: We have to specify the shape of the data. For image data, it is batch size x color channels x image dimension 1 x image dimension 2 (aka bc01). Here you should generally just leave the batch size as None, so that it is taken care off automatically. The other dimensions are given by X. Conv2DLayer: The most important keywords are num_filters and filter_size. The former indicates the number of channels -- the more you choose, the more different filters can be learned by the CNN. Generally, the first convolutional layers will learn simple features, such as edges, while deeper layers can learn more abstract features. Therefore, you should increase the number of filters the deeper you go. The filter_size is the size of the filter/kernel. The current consensus is to always use 3x3 filters, as these allow to cover the same number of image pixels with fewer parameters than larger filters do. MaxPool2DLayer: This layer performs max pooling and hopefully provides translation invariance. We need to indicate the region over which it pools, with 2x2 being the default of most users. DenseLayer: This is your vanilla fully-connected layer; you should indicate the number of 'neurons' with the num_units argument. The very last layer is assumed to be the output layer. We thus set the number of units to be the number of classes, 10, and choose softmax as the output nonlinearity, as we are dealing with a classification task. DropoutLayer: Dropout is a common technique to regularize neural networks. It is almost always a good idea to include dropout between your dense layers. Apart from these arguments, the Lasagne layers have very reasonable defaults concerning weight initialization, nonlinearities (rectified linear units), etc. End of explanation def regularization_objective(layers, lambda1=0., lambda2=0., *args, **kwargs): # default loss losses = objective(layers, *args, **kwargs) # get the layers' weights, but only those that should be regularized # (i.e. not the biases) weights = get_all_params(layers[-1], regularizable=True) # sum of absolute weights for L1 sum_abs_weights = sum([abs(w).sum() for w in weights]) # sum of squared weights for L2 sum_squared_weights = sum([(w ** 2).sum() for w in weights]) # add weights to regular loss losses += lambda1 * sum_abs_weights + lambda2 * sum_squared_weights return losses Explanation: Definition of the neural network We now define the neural network itself. But before we do this, we want to add L2 regularization to the net (see here for more). This is achieved in the little helper function below. If you don't understand exactly what this about, just ignore this. End of explanation net0 = NeuralNet( layers=layers0, max_epochs=10, update=adam, update_learning_rate=0.0002, objective=regularization_objective, objective_lambda2=0.0025, train_split=TrainSplit(eval_size=0.25), verbose=1, ) Explanation: Now we initialize nolearn's neural net itself. We will explain each argument shortly: * The most important argument is the layers argument, which should be the list of layers defined above. * max_epochs is simply the number of epochs the net learns with each call to fit (an 'epoch' is a full training cycle using all training data). * As update, we choose adam, which for many problems is a good first choice as updateing rule. * The objective of our net will be the regularization_objective we just defined. * To change the lambda2 parameter of our objective function, we set the objective_lambda2 parameter. The NeuralNetwork class will then automatically set this value. Usually, moderate L2 regularization is applied, whereas L1 regularization is less frequent. * For 'adam', a small learning rate is best, so we set it with the update_learning_rate argument (nolearn will automatically interpret this argument to mean the learning_rate argument of the update parameter, i.e. adam in our case). * The NeuralNet will hold out some of the training data for validation if we set the eval_size of the TrainSplit to a number greater than 0. This will allow us to monitor how well the net generalizes to yet unseen data. By setting this argument to 1/4, we tell the net to hold out 25% of the samples for validation. * Finally, we set verbose to 1, which will result in the net giving us some useful information. End of explanation net0.fit(X, y) Explanation: Training the neural network To train the net, we call its fit method with our X and y data, as we would with any scikit learn classifier. End of explanation from nolearn.lasagne.visualize import plot_loss from nolearn.lasagne.visualize import plot_conv_weights from nolearn.lasagne.visualize import plot_conv_activity from nolearn.lasagne.visualize import plot_occlusion Explanation: As we set the verbosity to 1, nolearn will print some useful information for us: First of all, some general information about the net and its layers is printed. Then, during training, the progress will be printed after each epoch. The train loss is the loss/cost that the net tries to minimize. For this example, this is the log loss (cross entropy). The valid loss is the loss for the hold out validation set. You should expect this value to indicate how well your model generalizes to yet unseen data. train/val is simply the ratio of train loss to valid loss. If this value is very low, i.e. if the train loss is much better than your valid loss, it means that the net has probably overfitted the train data. When we are dealing with a classification task, the accuracy score of the valdation set, valid acc, is also printed. dur is simply the duration it took to process the given epoch. In addition to this, nolearn will color the as of yet best train and valid loss, so that it is easy to spot whether the net makes progress. Visualizations Diagnosing what's wrong with your neural network if the results are unsatisfying can sometimes be difficult, something closer to an art than a science. But with nolearn's visualization tools, we should be able to get some insights that help us diagnose if something is wrong. End of explanation plot_loss(net0) Explanation: Train and validation loss progress With nolearn's visualization tools, it is possible to get some further insights into the working of the CNN. First of all, we will simply plot the log loss of the training and validation data over each epoch, as shown below: End of explanation plot_conv_weights(net0.layers_[1], figsize=(4, 4)) Explanation: This kind of visualization can be helpful in determining whether we want to continue training or not. For instance, here we see that both loss functions still are still decreasing and that more training will pay off. This graph can also help determine if we are overfitting: If the train loss is much lower than the validation loss, we should probably do something to regularize the net. Visualizing layer weights We can further have a look at the weights learned by the net. The first argument of the function should be the layer we want to visualize. The layers can be accessed through the layers_ attribute and then by name (e.g. 'conv2dcc1') or by index, as below. (Obviously, visualizing the weights only makes sense for convolutional layers.) End of explanation x = X[0:1] plot_conv_activity(net0.layers_[1], x) Explanation: As can be seen above, in our case, the results are not too interesting. If the weights just look like noise, we might have to do something (e.g. use more filters so that each can specialize better). Visualizing the layers' activities To see through the "eyes" of the net, we can plot the activities produced by different layers. The plot_conv_activity function is made for that. The first argument, again, is a layer, the second argument an image in the bc01 format (which is why we use X[0:1] instead of just X[0]). End of explanation plot_occlusion(net0, X[:5], y[:5]) Explanation: Here we can see that depending on the learned filters, the neural net represents the image in different ways, which is what we should expect. If, e.g., some images were completely black, that could indicate that the corresponding filters have not learned anything useful. When you find yourself in such a situation, training longer or initializing the weights differently might do the trick. Plot occlusion images A possibility to check if the net, for instance, overfits or learns important features is to occlude part of the image. Then we can check whether the net still makes correct predictions. The idea behind that is the following: If the most critical part of an image is something like the head of a person, that is probably right. If it is instead a random part of the background, the net probably overfits (see here for more). With the plot_occlusion function, we can check this. The first argument is the neural net, the second the X data, the third the y data. Be warned that this function can be quite slow for larger images. End of explanation from nolearn.lasagne import PrintLayerInfo Explanation: Here we see which parts of the number are most important for correct classification. We ses that the critical parts are all directly above the numbers, so this seems to work out. For more complex images with different objects in the scene, this function should be more useful, though. Finding a good architecture This section tries to help you go deep with your convolutional neural net. To do so, one cannot simply increase the number of convolutional layers at will. It is important that the layers have a sufficiently high learning capacity while they should cover approximately 100% of the incoming image (Xudong Cao, 2015). The usual approach is to try to go deep with convolutional layers. If you chain too many convolutional layers, though, the learning capacity of the layers falls too low. At this point, you have to add a max pooling layer. Use too many max pooling layers, and your image coverage grows larger than the image, which is clearly pointless. Striking the right balance while maximizing the depth of your layer is the final goal. It is generally a good idea to use small filter sizes for your convolutional layers, generally <b>3x3</b>. The reason for this is that this allows to cover the same receptive field of the image while using less parameters that would be required if a larger filter size were used. Moreover, deeper stacks of convolutional layers are more expressive (see here for more). End of explanation layers1 = [ (InputLayer, {'shape': (None, X.shape[1], X.shape[2], X.shape[3])}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3)}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3)}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (Conv2DLayer, {'num_filters': 96, 'filter_size': (3, 3)}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (DenseLayer, {'num_units': 64}), (DropoutLayer, {}), (DenseLayer, {'num_units': 64}), (DenseLayer, {'num_units': 10, 'nonlinearity': softmax}), ] net1 = NeuralNet( layers=layers1, update_learning_rate=0.01, verbose=2, ) Explanation: A shallow net Let us try out a simple architecture and see how we fare. End of explanation net1.initialize() layer_info = PrintLayerInfo() layer_info(net1) Explanation: To see information about the capacity and coverage of each layer, we need to set the verbosity of the net to a value of 2 and then initialize the net. We next pass the initialized net to PrintLayerInfo to see some useful information. By the way, we could also just call the fit method of the net to get the same outcome, but since we don't want to fit just now, we proceed as shown below. End of explanation layers2 = [ (InputLayer, {'shape': (None, X.shape[1], X.shape[2], X.shape[3])}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3)}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (DenseLayer, {'num_units': 64}), (DropoutLayer, {}), (DenseLayer, {'num_units': 64}), (DenseLayer, {'num_units': 10, 'nonlinearity': softmax}), ] net2 = NeuralNet( layers=layers2, update_learning_rate=0.01, verbose=2, ) net2.initialize() layer_info(net2) Explanation: This net is fine. The capacity never falls below 1/6, which would be 16.7%, and the coverage of the image never exceeds 100%. However, with only 4 convolutional layers, this net is not very deep and will properly not achieve the best possible results. What we also see is the role of max pooling. If we look at 'maxpool2d1', after this layer, the capacity of the net is increased. Max pooling thus helps to increase capacity should it dip too low. However, max pooling also significantly increases the coverage of the image. So if we use max pooling too often, the coverage will quickly exceed 100% and we cannot go sufficiently deep. Too little maxpooling Now let us try an architecture that uses a lot of convolutional layers but only one maxpooling layer. End of explanation layers3 = [ (InputLayer, {'shape': (None, X.shape[1], X.shape[2], X.shape[3])}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3), 'pad': 1}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3), 'pad': 1}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (DenseLayer, {'num_units': 64}), (DropoutLayer, {}), (DenseLayer, {'num_units': 64}), (DenseLayer, {'num_units': 10, 'nonlinearity': softmax}), ] net3 = NeuralNet( layers=layers3, update_learning_rate=0.01, verbose=2, ) net3.initialize() layer_info(net3) Explanation: Here we have a very deep net but we have a problem: The lack of max pooling layers means that the capacity of the net dips below 16.7%. The corresponding layers are shown in magenta. We need to find a better solution. Too much maxpooling Here is an architecture with too mach maxpooling. For illustrative purposes, we set the pad parameter to 1; without it, the image size would shrink below 0, at which point the code will raise an error. End of explanation layers4 = [ (InputLayer, {'shape': (None, X.shape[1], X.shape[2], X.shape[3])}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 32, 'filter_size': (3, 3), 'pad': 1}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3), 'pad': 1}), (Conv2DLayer, {'num_filters': 64, 'filter_size': (3, 3), 'pad': 1}), (MaxPool2DLayer, {'pool_size': (2, 2)}), (DenseLayer, {'num_units': 64}), (DropoutLayer, {}), (DenseLayer, {'num_units': 64}), (DenseLayer, {'num_units': 10, 'nonlinearity': softmax}), ] net4 = NeuralNet( layers=layers4, update_learning_rate=0.01, verbose=2, ) net4.initialize() layer_info(net4) Explanation: This net uses too much maxpooling for too small an image. The later layers, colored in cyan, would cover more than 100% of the image. So this network is clearly also suboptimal. A good compromise Now let us have a look at a reasonably deep architecture that satisfies the criteria we set out to meet: End of explanation net4.verbose = 3 layer_info(net4) Explanation: With 10 convolutional layers, this network is rather deep, given the small image size. Yet the learning capacity is always suffiently large and never are is than 100% of the image covered. This could just be a good solution. Maybe you would like to give this architecture a spin? Note 1: The MNIST images typically don't cover the whole of the 28x28 image size. Therefore, an image coverage of less than 100% is probably very acceptable. For other image data sets such as CIFAR or ImageNet, it is recommended to cover the whole image. Note 2: This analysis does not tell us how many feature maps (i.e. number of filters per convolutional layer) to use. Here we have to experiment with different values. Larger values mean that the network should learn more types of features but also increase the risk of overfitting (and may exceed the available memory). In general though, deeper layers (those farther down) are supposed to learn more complex features and should thus have more feature maps. Even more information It is possible to get more information by increasing the verbosity level beyond 2. End of explanation
514
Given the following text description, write Python code to implement the functionality described below step by step Description: Robot Calibration Nominal Robot A nominal robot model Step1: Real Robots Real robots do not conform perfectly to the nominal parameters Small errors in the robot model can generate large errors in Cartesian position Sources of errors include, but are not limited to Step2: Get Real (aka Measured) Poses In real life, these poses would be measured using metrology equipment (e.g., laser tracker, CMM) Step3: Split Calibration and Validation Measures A portion of the measured configurations and positions should be set aside for validation after calibration (i.e., optimization) This is to prevent/check the optimized model for overfitting Step4: Get Nominal Position Errors These nominal model is our starting point for calibration The errors are in millimetres Step5: Calibration Step6: Results A calibrated robot model is never perfect in real life The goal is often to reduce the max error under a desired threshold
Python Code: from pybotics.robot import Robot from pybotics.predefined_models import ur10 nominal_robot = Robot.from_parameters(ur10()) import pandas as pd def display_robot_kinematics(robot: Robot): df = pd.DataFrame(robot.kinematic_chain.matrix) df.columns = ["alpha", "a", "theta", "d"] display(df) display_robot_kinematics(nominal_robot) Explanation: Robot Calibration Nominal Robot A nominal robot model: Represents what the robot manufacturer intended as a kinematic model Is mathematically ideal End of explanation import numpy as np from copy import deepcopy real_robot = deepcopy(nominal_robot) # let's pretend our real robot has small joint offsets # in real life, this would be a joint mastering issue (level-1 calibration) # https://en.wikipedia.org/wiki/Robot_calibration for link in real_robot.kinematic_chain.links: link.theta += np.random.uniform( low=np.deg2rad(-0.1), high=np.deg2rad(0.1) ) display_robot_kinematics(real_robot) Explanation: Real Robots Real robots do not conform perfectly to the nominal parameters Small errors in the robot model can generate large errors in Cartesian position Sources of errors include, but are not limited to: Kinematic errors Mechanical tolerances Angle offsets Non-kinematic errors Joint stiffness Gravity Temperature Friction End of explanation joints = [] positions = [] for i in range(1000): q = real_robot.random_joints() pose = real_robot.fk(q) joints.append(q) positions.append(pose[:-1,-1]) pd.DataFrame(joints).describe() pd.DataFrame(positions, columns=['x','y','z']).describe() Explanation: Get Real (aka Measured) Poses In real life, these poses would be measured using metrology equipment (e.g., laser tracker, CMM) End of explanation from sklearn.model_selection import train_test_split split = train_test_split(joints, positions, test_size=0.3) train_joints = split[0] test_joints = split[1] train_positions = split[2] test_positions = split[3] Explanation: Split Calibration and Validation Measures A portion of the measured configurations and positions should be set aside for validation after calibration (i.e., optimization) This is to prevent/check the optimized model for overfitting End of explanation from pybotics.optimization import compute_absolute_errors nominal_errors = compute_absolute_errors( qs=test_joints, positions=test_positions, robot=nominal_robot ) display(pd.Series(nominal_errors).describe()) Explanation: Get Nominal Position Errors These nominal model is our starting point for calibration The errors are in millimetres End of explanation from pybotics.optimization import OptimizationHandler # init calibration handler handler = OptimizationHandler(nominal_robot) # set handler to solve for theta parameters kc_mask_matrix = np.zeros_like(nominal_robot.kinematic_chain.matrix, dtype=bool) kc_mask_matrix[:,2] = True display(kc_mask_matrix) handler.kinematic_chain_mask = kc_mask_matrix.ravel() from scipy.optimize import least_squares from pybotics.optimization import optimize_accuracy # run optimization result = least_squares( fun=optimize_accuracy, x0=handler.generate_optimization_vector(), args=(handler, train_joints, train_positions), verbose=2 ) # type: scipy.optimize.OptimizeResult Explanation: Calibration End of explanation calibrated_robot = handler.robot calibrated_errors = compute_absolute_errors( qs=test_joints, positions=test_positions, robot=calibrated_robot ) display(pd.Series(calibrated_errors).describe()) import matplotlib.pyplot as plt %matplotlib inline plt.xscale("log") plt.hist(nominal_errors, color="C0", label="Nominal") plt.hist(calibrated_errors, color="C1", label="Calibrated") plt.legend() plt.xlabel("Absolute Error [mm]") plt.ylabel("Frequency") Explanation: Results A calibrated robot model is never perfect in real life The goal is often to reduce the max error under a desired threshold End of explanation
515
Given the following text description, write Python code to implement the functionality described below step by step Description: PIPITS Fungal ITS-dedicated Pipeline The default pair merge algorithm in vsearch discards 90% of the data. This was observed in other datasets and is believe to be overly conservative. PIPITs offers support for using Pear is a dedicated alternative Dependencies || PIPITS || Follow instructions provided at Step1: Step 2 Step2: Step 3 Step3: Step 4 Step4: Step 4 Step5: Step 5 Step6: Step 6 Step7: Step 7 Step8: Step 7
Python Code: import os # Provide the directory for your index and read files ITS = '/home/roli/FORESTs_BHAVYA/WoodsLake/raw_seq/ITS/' # Provide datasets = [['ITS',ITS,'ITS.metadata.pipits.Woods.tsv']] # Ensure your reads files are named accordingly (or modify to suit your needs) readFile1 = 'read1.fq.gz' readFile2 = 'read2.fq.gz' indexFile1 = 'index_read1.fq.gz' indexFile2 = 'index_read2.fq.gz' # Example of metadata file #Index1 Index2 Name #AATTCAA CATCCGG RG1 #CGCGCAG TCATGGT RG2 #AAGGTCT AGAACCG RG3 #ACTGGAC TGGAATA RG4 ## Again, for our pipeline Index1 typically is the reverse complement of the reverse barcode, while Index2 is the forward barcode. Explanation: PIPITS Fungal ITS-dedicated Pipeline The default pair merge algorithm in vsearch discards 90% of the data. This was observed in other datasets and is believe to be overly conservative. PIPITs offers support for using Pear is a dedicated alternative Dependencies || PIPITS || Follow instructions provided at: https://github.com/hsgweon/pipits Note: all dependencies which require 'sudo' will already be met (i.e. don't bother running those commands... they won't work anyways) || deML || Follow instructions provided at: https://github.com/grenaud/deML || phyloseq || conda install -c r-igraph Rscript -e "source('http://bioconductor.org/biocLite.R');biocLite('phyloseq')" || FUNGuild || download FUNGUild script: https://raw.githubusercontent.com/UMNFuN/FUNGuild/master/Guilds_v1.1.py || PEAR || download at: https://sco.h-its.org/exelixis/web/software/pear/ Citations Gweon, H. S., Oliver, A., Taylor, J., Booth, T., Gibbs, M., Read, D. S., et al. (2015). PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods in ecology and evolution, 6(8), 973-980. Renaud, G., Stenzel, U., Maricic, T., Wiebe, V., & Kelso, J. (2014). deML: robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics, 31(5), 770-772. McMurdie and Holmes (2013) phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE. 8(4):e61217 Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology 20:241–248. Zhang J, Kobert K, Flouri T, Stamatakis A. 2013. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30(5): 614-620. Last Modified by R. Wilhelm on January 2nd, 2018 Step 1: User Input End of explanation # Ignore all the 'conflict' errors. The reads are paired so the conflicts are bogus (i.e. it gives a warning everytime an barcode appears in multiple samples, but no pairs are duplicated) for dataset in datasets: name = dataset[0] directory = dataset[1] metadata = directory+dataset[2] index1 = directory+indexFile1 index2 = directory+indexFile2 read1 = directory+readFile1 read2 = directory+readFile2 # Make output directory %mkdir $directory/pipits_input/ # Run deML ## Note: you may get error involving 'ulimit'. If so, exit your notebook. Enter 'ulimit -n 9999' at the command line, then restart a new notebook. !deML -i $metadata -f $read1 -r $read2 -if1 $index1 -if2 $index2 -o $directory/pipits_input/$name # Remove unnecessary 'failed' reads and index files %rm $directory/pipits_input/*.fail.* $directory/pipits_input/unknown* Explanation: Step 2: Demultiplex Raw Reads End of explanation import glob, re for dataset in datasets: name = dataset[0] directory = dataset[1] # Remove Previously Prepended Name (PIPITS wanted something) for file in glob.glob(directory+"pipits_input/"+name+"_*"): new_name = re.sub(name+"_","",file) os.rename(file, new_name) # Rename files with with extension .fq (PIPITS is PICKY) for file in glob.glob(directory+"pipits_input/*.fq.gz"): new_name = re.sub(".fq.gz",".fastq.gz",file) os.rename(file, new_name) # Remove Unbinned Reads %rm $directory/pipits_input/unknown* # Run PIPITS List Prep input_dir = directory+"pipits_input/" output_dir = directory+name+".readpairslist.txt" !pipits_getreadpairslist -i $input_dir -o $output_dir -f Explanation: Step 3: Make Sample Mapping File (aka. 'readpairlist') End of explanation for dataset in datasets: name = dataset[0] directory = dataset[1] input_dir = directory+"pipits_input/" output_dir = directory+"pipits_prep/" readpairfile = directory+name+".readpairslist.txt" !pipits_prep -i $input_dir -o $output_dir -l $readpairfile Explanation: Step 4: Pre-process Data with PIPITS (merge and QC) End of explanation ITS_Region = "ITS1" for dataset in datasets: name = dataset[0] directory = dataset[1] input_file = directory+"pipits_prep/prepped.fasta" output_dir = directory+"pipits_funits/" !pipits_funits -i $input_file -o $output_dir -x $ITS_Region Explanation: Step 4: Extract Variable Region (User Input Required) End of explanation for dataset in datasets: name = dataset[0] directory = dataset[1] input_file = directory+"pipits_funits/ITS.fasta" output_dir = directory+"PIPITS_final/" !pipits_process -i $input_file -o $output_dir --Xmx 20G Explanation: Step 5: Cluster and Assign Taxonomy End of explanation for dataset in datasets: name = dataset[0] directory = dataset[1] # Prepare PIPITS output for FUNGuild !pipits_funguild.py -i $directory/PIPITS_final/otu_table.txt -o $directory/PIPITS_final/otu_table_funguild.txt # Run FUNGuild !python /home/db/FUNGuild/Guilds_v1.1.py -otu $directory/PIPITS_final/otu_table_funguild.txt -db fungi -m -u Explanation: Step 6: Push OTU Table through FUNGuild End of explanation ## Setup R-Magic for Jupyter Notebooks import rpy2 import pandas as pd %load_ext rpy2.ipython %R library(phyloseq) for dataset in datasets: name = dataset[0] directory = dataset[1] metadata = dataset[2] # Input Biom biom = directory+"/PIPITS_final/otu_table.biom" %R -i biom %R x <- import_biom(biom) # Fix taxonomy table %R colnames(tax_table(x)) <- c("Domain","Phylum","Class","Order","Family","Genus","Species") %R tax_table(x) = gsub("k__| p__| c__| o__| f__| g__| s__","",tax_table(x)) # Merge Mapping into Phyloseq sample_file = pd.read_table(directory+metadata, keep_default_na=False) %R -i sample_file %R rownames(sample_file) <- sample_file$X.SampleID %R sample_file$X.SampleID <- NULL %R sample_file <- sample_data(sample_file) %R p <- merge_phyloseq(x, sample_file) # Save Phyloseq Object as '.rds' output = directory+"/PIPITS_final/p_"+name+".pipits.final.rds" %%R -i output %%R saveRDS(p, file = output) # Confirm Output %R print(p) Explanation: Step 7: Import into R End of explanation for dataset in datasets: name = dataset[0] directory = dataset[1] %rm -r $directory/pipits_prep/ %rm -r $directory/pipits_funits/ %rm -r $directory/pipits_input/ del_me = directory+name+".readpairslist.txt" %rm $del_me Explanation: Step 7: Clean-up Intermediate Files and Final Outputs End of explanation
516
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Toplevel MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Flux Correction 3. Key Properties --&gt; Genealogy 4. Key Properties --&gt; Software Properties 5. Key Properties --&gt; Coupling 6. Key Properties --&gt; Tuning Applied 7. Key Properties --&gt; Conservation --&gt; Heat 8. Key Properties --&gt; Conservation --&gt; Fresh Water 9. Key Properties --&gt; Conservation --&gt; Salt 10. Key Properties --&gt; Conservation --&gt; Momentum 11. Radiative Forcings 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect 24. Radiative Forcings --&gt; Aerosols --&gt; Dust 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt 28. Radiative Forcings --&gt; Other --&gt; Land Use 29. Radiative Forcings --&gt; Other --&gt; Solar 1. Key Properties Key properties of the model 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 2. Key Properties --&gt; Flux Correction Flux correction properties of the model 2.1. Details Is Required Step7: 3. Key Properties --&gt; Genealogy Genealogy and history of the model 3.1. Year Released Is Required Step8: 3.2. CMIP3 Parent Is Required Step9: 3.3. CMIP5 Parent Is Required Step10: 3.4. Previous Name Is Required Step11: 4. Key Properties --&gt; Software Properties Software properties of model 4.1. Repository Is Required Step12: 4.2. Code Version Is Required Step13: 4.3. Code Languages Is Required Step14: 4.4. Components Structure Is Required Step15: 4.5. Coupler Is Required Step16: 5. Key Properties --&gt; Coupling ** 5.1. Overview Is Required Step17: 5.2. Atmosphere Double Flux Is Required Step18: 5.3. Atmosphere Fluxes Calculation Grid Is Required Step19: 5.4. Atmosphere Relative Winds Is Required Step20: 6. Key Properties --&gt; Tuning Applied Tuning methodology for model 6.1. Description Is Required Step21: 6.2. Global Mean Metrics Used Is Required Step22: 6.3. Regional Metrics Used Is Required Step23: 6.4. Trend Metrics Used Is Required Step24: 6.5. Energy Balance Is Required Step25: 6.6. Fresh Water Balance Is Required Step26: 7. Key Properties --&gt; Conservation --&gt; Heat Global heat convervation properties of the model 7.1. Global Is Required Step27: 7.2. Atmos Ocean Interface Is Required Step28: 7.3. Atmos Land Interface Is Required Step29: 7.4. Atmos Sea-ice Interface Is Required Step30: 7.5. Ocean Seaice Interface Is Required Step31: 7.6. Land Ocean Interface Is Required Step32: 8. Key Properties --&gt; Conservation --&gt; Fresh Water Global fresh water convervation properties of the model 8.1. Global Is Required Step33: 8.2. Atmos Ocean Interface Is Required Step34: 8.3. Atmos Land Interface Is Required Step35: 8.4. Atmos Sea-ice Interface Is Required Step36: 8.5. Ocean Seaice Interface Is Required Step37: 8.6. Runoff Is Required Step38: 8.7. Iceberg Calving Is Required Step39: 8.8. Endoreic Basins Is Required Step40: 8.9. Snow Accumulation Is Required Step41: 9. Key Properties --&gt; Conservation --&gt; Salt Global salt convervation properties of the model 9.1. Ocean Seaice Interface Is Required Step42: 10. Key Properties --&gt; Conservation --&gt; Momentum Global momentum convervation properties of the model 10.1. Details Is Required Step43: 11. Radiative Forcings Radiative forcings of the model for historical and scenario (aka Table 12.1 IPCC AR5) 11.1. Overview Is Required Step44: 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 Carbon dioxide forcing 12.1. Provision Is Required Step45: 12.2. Additional Information Is Required Step46: 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 Methane forcing 13.1. Provision Is Required Step47: 13.2. Additional Information Is Required Step48: 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O Nitrous oxide forcing 14.1. Provision Is Required Step49: 14.2. Additional Information Is Required Step50: 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 Troposheric ozone forcing 15.1. Provision Is Required Step51: 15.2. Additional Information Is Required Step52: 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 Stratospheric ozone forcing 16.1. Provision Is Required Step53: 16.2. Additional Information Is Required Step54: 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC Ozone-depleting and non-ozone-depleting fluorinated gases forcing 17.1. Provision Is Required Step55: 17.2. Equivalence Concentration Is Required Step56: 17.3. Additional Information Is Required Step57: 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 SO4 aerosol forcing 18.1. Provision Is Required Step58: 18.2. Additional Information Is Required Step59: 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon Black carbon aerosol forcing 19.1. Provision Is Required Step60: 19.2. Additional Information Is Required Step61: 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon Organic carbon aerosol forcing 20.1. Provision Is Required Step62: 20.2. Additional Information Is Required Step63: 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate Nitrate forcing 21.1. Provision Is Required Step64: 21.2. Additional Information Is Required Step65: 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect Cloud albedo effect forcing (RFaci) 22.1. Provision Is Required Step66: 22.2. Aerosol Effect On Ice Clouds Is Required Step67: 22.3. Additional Information Is Required Step68: 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect Cloud lifetime effect forcing (ERFaci) 23.1. Provision Is Required Step69: 23.2. Aerosol Effect On Ice Clouds Is Required Step70: 23.3. RFaci From Sulfate Only Is Required Step71: 23.4. Additional Information Is Required Step72: 24. Radiative Forcings --&gt; Aerosols --&gt; Dust Dust forcing 24.1. Provision Is Required Step73: 24.2. Additional Information Is Required Step74: 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic Tropospheric volcanic forcing 25.1. Provision Is Required Step75: 25.2. Historical Explosive Volcanic Aerosol Implementation Is Required Step76: 25.3. Future Explosive Volcanic Aerosol Implementation Is Required Step77: 25.4. Additional Information Is Required Step78: 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic Stratospheric volcanic forcing 26.1. Provision Is Required Step79: 26.2. Historical Explosive Volcanic Aerosol Implementation Is Required Step80: 26.3. Future Explosive Volcanic Aerosol Implementation Is Required Step81: 26.4. Additional Information Is Required Step82: 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt Sea salt forcing 27.1. Provision Is Required Step83: 27.2. Additional Information Is Required Step84: 28. Radiative Forcings --&gt; Other --&gt; Land Use Land use forcing 28.1. Provision Is Required Step85: 28.2. Crop Change Only Is Required Step86: 28.3. Additional Information Is Required Step87: 29. Radiative Forcings --&gt; Other --&gt; Solar Solar forcing 29.1. Provision Is Required Step88: 29.2. Additional Information Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'ncc', 'sandbox-1', 'toplevel') Explanation: ES-DOC CMIP6 Model Properties - Toplevel MIP Era: CMIP6 Institute: NCC Source ID: SANDBOX-1 Sub-Topics: Radiative Forcings. Properties: 85 (42 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:25 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Flux Correction 3. Key Properties --&gt; Genealogy 4. Key Properties --&gt; Software Properties 5. Key Properties --&gt; Coupling 6. Key Properties --&gt; Tuning Applied 7. Key Properties --&gt; Conservation --&gt; Heat 8. Key Properties --&gt; Conservation --&gt; Fresh Water 9. Key Properties --&gt; Conservation --&gt; Salt 10. Key Properties --&gt; Conservation --&gt; Momentum 11. Radiative Forcings 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect 24. Radiative Forcings --&gt; Aerosols --&gt; Dust 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt 28. Radiative Forcings --&gt; Other --&gt; Land Use 29. Radiative Forcings --&gt; Other --&gt; Solar 1. Key Properties Key properties of the model 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top level overview of coupled model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of coupled model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.flux_correction.details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Flux Correction Flux correction properties of the model 2.1. Details Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how flux corrections are applied in the model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.year_released') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Genealogy Genealogy and history of the model 3.1. Year Released Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Year the model was released End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP3_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.2. CMIP3 Parent Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 CMIP3 parent if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP5_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.3. CMIP5 Parent Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 CMIP5 parent if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.previous_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.4. Previous Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Previously known as End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Software Properties Software properties of model 4.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.components_structure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.4. Components Structure Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how model realms are structured into independent software components (coupled via a coupler) and internal software components. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.coupler') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OASIS" # "OASIS3-MCT" # "ESMF" # "NUOPC" # "Bespoke" # "Unknown" # "None" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 4.5. Coupler Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Overarching coupling framework for model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Coupling ** 5.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of coupling in the model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_double_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 5.2. Atmosphere Double Flux Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the atmosphere passing a double flux to the ocean and sea ice (as opposed to a single one)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_fluxes_calculation_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Atmosphere grid" # "Ocean grid" # "Specific coupler grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 5.3. Atmosphere Fluxes Calculation Grid Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Where are the air-sea fluxes calculated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_relative_winds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 5.4. Atmosphere Relative Winds Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are relative or absolute winds used to compute the flux? I.e. do ocean surface currents enter the wind stress calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6. Key Properties --&gt; Tuning Applied Tuning methodology for model 6.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics/diagnostics retained. Document the relative weight given to climate performance metrics/diagnostics versus process oriented metrics/diagnostics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.2. Global Mean Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List set of metrics/diagnostics of the global mean state used in tuning model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.3. Regional Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of regional metrics/diagnostics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.4. Trend Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List observed trend metrics/diagnostics used in tuning model/component (such as 20th century) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.energy_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.5. Energy Balance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how energy balance was obtained in the full system: in the various components independently or at the components coupling stage? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.fresh_water_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.6. Fresh Water Balance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how fresh_water balance was obtained in the full system: in the various components independently or at the components coupling stage? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.global') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Key Properties --&gt; Conservation --&gt; Heat Global heat convervation properties of the model 7.1. Global Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how heat is conserved globally End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.2. Atmos Ocean Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the atmosphere/ocean coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_land_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.3. Atmos Land Interface Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how heat is conserved at the atmosphere/land coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_sea-ice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.4. Atmos Sea-ice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the atmosphere/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.5. Ocean Seaice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the ocean/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.land_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.6. Land Ocean Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the land/ocean coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.global') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Key Properties --&gt; Conservation --&gt; Fresh Water Global fresh water convervation properties of the model 8.1. Global Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how fresh_water is conserved globally End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.2. Atmos Ocean Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how fresh_water is conserved at the atmosphere/ocean coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_land_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.3. Atmos Land Interface Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how fresh water is conserved at the atmosphere/land coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_sea-ice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.4. Atmos Sea-ice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how fresh water is conserved at the atmosphere/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.5. Ocean Seaice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how fresh water is conserved at the ocean/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.runoff') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.6. Runoff Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how runoff is distributed and conserved End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.iceberg_calving') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.7. Iceberg Calving Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how iceberg calving is modeled and conserved End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.endoreic_basins') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.8. Endoreic Basins Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how endoreic basins (no ocean access) are treated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.snow_accumulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.9. Snow Accumulation Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how snow accumulation over land and over sea-ice is treated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.salt.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Key Properties --&gt; Conservation --&gt; Salt Global salt convervation properties of the model 9.1. Ocean Seaice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how salt is conserved at the ocean/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.momentum.details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10. Key Properties --&gt; Conservation --&gt; Momentum Global momentum convervation properties of the model 10.1. Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how momentum is conserved in the model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11. Radiative Forcings Radiative forcings of the model for historical and scenario (aka Table 12.1 IPCC AR5) 11.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of radiative forcings (GHG and aerosols) implementation in model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CO2.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 Carbon dioxide forcing 12.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CO2.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CH4.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 Methane forcing 13.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CH4.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 13.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.N2O.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O Nitrous oxide forcing 14.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.N2O.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.tropospheric_O3.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 Troposheric ozone forcing 15.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.tropospheric_O3.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.stratospheric_O3.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 Stratospheric ozone forcing 16.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.stratospheric_O3.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 16.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC Ozone-depleting and non-ozone-depleting fluorinated gases forcing 17.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.equivalence_concentration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "Option 1" # "Option 2" # "Option 3" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.2. Equivalence Concentration Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Details of any equivalence concentrations used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.3. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.SO4.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 SO4 aerosol forcing 18.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.SO4.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.black_carbon.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon Black carbon aerosol forcing 19.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.black_carbon.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.organic_carbon.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon Organic carbon aerosol forcing 20.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.organic_carbon.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.nitrate.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate Nitrate forcing 21.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.nitrate.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 21.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect Cloud albedo effect forcing (RFaci) 22.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.aerosol_effect_on_ice_clouds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22.2. Aerosol Effect On Ice Clouds Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Radiative effects of aerosols on ice clouds are represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.3. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect Cloud lifetime effect forcing (ERFaci) 23.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.aerosol_effect_on_ice_clouds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 23.2. Aerosol Effect On Ice Clouds Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Radiative effects of aerosols on ice clouds are represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.RFaci_from_sulfate_only') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 23.3. RFaci From Sulfate Only Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Radiative forcing from aerosol cloud interactions from sulfate aerosol only? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 23.4. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.dust.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 24. Radiative Forcings --&gt; Aerosols --&gt; Dust Dust forcing 24.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.dust.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 24.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic Tropospheric volcanic forcing 25.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.historical_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.2. Historical Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in historical simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.future_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.3. Future Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in future simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 25.4. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic Stratospheric volcanic forcing 26.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.historical_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26.2. Historical Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in historical simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.future_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26.3. Future Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in future simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.4. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.sea_salt.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt Sea salt forcing 27.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.sea_salt.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 28. Radiative Forcings --&gt; Other --&gt; Land Use Land use forcing 28.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.crop_change_only') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 28.2. Crop Change Only Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Land use change represented via crop change only? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.3. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.solar.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "irradiance" # "proton" # "electron" # "cosmic ray" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 29. Radiative Forcings --&gt; Other --&gt; Solar Solar forcing 29.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How solar forcing is provided End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.solar.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation
517
Given the following text description, write Python code to implement the functionality described below step by step Description: Kind recipe to extract clusters from thresholded SPMt maps and make them as a map of ROIs First threshold your SPMt map Step1: Define a folder containing rough hand-drawn ROIs over the clusters The given names are very approximative with respect to the rough location of the cluster. Step2: Take each hand-drawn ROI and generate a cleaned version of it using the intersection with the thresholded map Step3: Collect all the cleaned ROIs in a single Nifti Step4: Compile values from create ROI Step5: Generate a plot with these ROI values With relation to age, grouping subjects by genotypes, and correcting values for covariates
Python Code: original_fp = '/home/grg/spm/analyses/analysis_20170228/MD_DARTEL_csf5_interaction_linearage/estimatecontrasts/spmT_0028.nii' thresholded_map, threshold = thresholding.map_threshold(original_fp, threshold=1e-3) thresholded_fp = '/tmp/thresholded_map.nii.gz' thresholded_map.to_filename(thresholded_fp) # Save it on disk Explanation: Kind recipe to extract clusters from thresholded SPMt maps and make them as a map of ROIs First threshold your SPMt map End of explanation roi_dir = '/home/grg/spm/ROIapoE/ROI_DARTEL/csf5/' rois_fp = [e for e in glob(osp.join(roi_dir, '*.nii.gz')) if not '_cleaned' in e and not 'rois' in e] print rois_fp print len(rois_fp), 'files found.' Explanation: Define a folder containing rough hand-drawn ROIs over the clusters The given names are very approximative with respect to the rough location of the cluster. End of explanation thresholded_img = np.asarray(nib.load(thresholded_fp).dataobj) for roi_fp in rois_fp: print roi_fp roi = np.array(image.load_img(roi_fp).dataobj) roi[thresholded_img==0] = 0 img = image.new_img_like(roi_fp, roi) plotting.plot_roi(img) img.to_filename(osp.splitext(roi_fp)[0] + '_cleaned.nii.gz') Explanation: Take each hand-drawn ROI and generate a cleaned version of it using the intersection with the thresholded map End of explanation rois_fp = '/tmp/rois2.nii.gz' # File where the ROIs will be collected roi_fps = glob(osp.join(roi_dir, '*_cleaned.nii.gz')) print roi_fps print len(roi_fps), 'cleaned ROIs found' img = np.asarray(image.load_img(roi_fps[0]).dataobj) for i in range(1, len(roi_fps)): new_img = np.asarray(image.load_img(roi_fps[i]).dataobj) img[new_img!=0] = i+1 finalimg = image.new_img_like(roi_fps[0], img) finalimg.to_filename(rois_fp) plotting.plot_roi(finalimg) Explanation: Collect all the cleaned ROIs in a single Nifti End of explanation roivalues_wd = '/tmp/roivalues_csf.5' # Folder where the files containing the ROI values will be stored data_wd = '/home/grg/dartel_csf.5/' # Folder containing the images over which the ROI values will be extracted subjects = json.load(open(osp.join('/home/grg/spm', 'data', 'subjects.json'))) # List of subjects # Load the collection of ROIs rois = np.asarray(nib.load(rois_fp).dataobj) nb_roi = len(np.unique(rois)) - 1 print nb_roi, 'regions - ', len(subjects), 'subjects' # Iterate over subjects for s in subjects: try: mdfp = glob(osp.join(data_wd, 'rswr%s*.nii'%s))[0] # Build the command and run it cmd = 'AimsRoiFeatures -i %s -s %s -o %s'%(rois_fp, mdfp, osp.join(roivalues_wd, '%s_stats.csv'%s)) print cmd os.system(cmd) except Exception as e: print s, e Explanation: Compile values from create ROI End of explanation %run /home/grg/git/alfa/roicollect.py %matplotlib inline from IPython.display import display data = pd.read_excel('/tmp/covariates.xls') # a table containing ApoE group, gender, educational years, ventricles data['subject'] = data.index # Adding subject as an extra column display(data.head()) regions = [0,1] #list(np.unique(rois)) regions.remove(0) plot_regions(data, regions, src=roivalues_wd) Explanation: Generate a plot with these ROI values With relation to age, grouping subjects by genotypes, and correcting values for covariates End of explanation
518
Given the following text description, write Python code to implement the functionality described below step by step Description: CS446/546 - Class Session 19 - Correlation network In this class session we are going to analyze gene expression data from a human bladder cancer cohort, using python. We will load a data matrix of expression measurements of 4,473 genes in 414 different bladder cancer samples. These genes have been selected because they are differentially expressed between normal bladder and bladder cancer (thus more likely to have a function in bladder cancer specifically), but the columns in the data matrix are restricted to bladder cancer samples (not normal bladder) because we want to obtain a network representing variation across cancers. The measurements in the matrix have already been normalized to account for inter-sample heterogeneity and then log2 transformed. Our job is to compute Pearson correlation coefficients between all pairs of genes, obtain Fisher-transformed z-scores for all pairs of genes, test each pair of genes for significance of the z score, adjust for multiple hypothesis testing, filter to eliminate any pair for which R < 0.75 or Padj > 0.01, load the graph into an igraph.Graph object, and plot the degree distribution on log-log scale. We will then answer two questions Step1: Using pandas.read_csv, load the tab-deliminted text file of gene expression measurements (rows correspond to genes, columns correspond to bladder tumor samples), into a data frame gene_matrix_for_network_df. Step2: Use the pandas.DataFrame.as_matrix method to make a matrix gene_matrix_for_network. Print out the dimensions of the matrix, by accessing its shape variable Step3: Use del to delete the data frame, since we no longer need it (save memory) Look at the online help for the numpy.corrcoef function, using help(numpy.corrcoef). When you pass a single argument x which is a 2D "array" (i.e., a matrix), by default does corrcoef compute coefficients for pairs of rows, or pairs of columns? Step4: Compute the 4,473 x 4,473 matrix of gene-gene Pearson correlation coefficients, using numpy.corrcoef (this function treats each row as a variable, so you don't have to do any transposing of the matrix, unlike the situation in R). Step5: Look at the online help for numpy.fill_diagonal. Does it return the modified matrix or modify the matrix argument in place? Step6: Set the diagonal elements of the matrix to zero, using numpy.fill_diagonal Step7: Look at the online help for numpy.multiply. Does it do element-wise multiplication or matrix multiplication? Step8: Look at the online help for numpy.tri. Does it modify a matrix argument in-place or return a matrix? What is in the matrix that it returns? Step9: Set the upper-triangle of the matrix to zero, using numpy.multiply and numpy.tri Step10: Using numpy.where, get a tuple of two numpy.arrays containing the row/col indices of the entries of the matrix for which R >= 0.75. Use array indexing to obtain the R values for these matrix entries, as a numpy array cor_coeff_values_above_thresh. Step11: Refer to Eq. (13.5) in the assigned readding for today's class (p9 of the PDF). Obtain a numpy array of the correlation coefficients that exceeded 0.75, and Fisher-transform the correlation coefficient values to get a vector z_scores of z scores. Each of these z scores will correspond to an edge in the network, unless the absolute z score is too small such that we can't exclude the null hypothesis that the corresponding two genes' expression values are indepdenent (we will perform that check in the next step). Step12: Delete the correlation matrix object in order to save memory (we won't need it from here on out). Assume that under the null hypothesis that two genes are independent, then sqrt(M-3)z for the pair of genes is an independent sample from the normal distribution with zero mean and unit variance, where M is the number of samples used to compute the Pearson correlation coefficient (i.e., M = 414). For each entry in z_scores compute a P value as the area under two tails of the normal distribution N(x), where the two tails are x < -sqrt(M-3)z and x > sqrt(M-3)z. (You'll know you are doing it right if z=0 means you get a P value of 1). You will want to use the functions numpy.abs and scipy.stats.norm.cdf, as well as the math.sqrt function (in order to compute the square root). Step13: Adjust the P values for multiple hypothesis testing, using the statsmodels.sandbox.stats.multicomp.multipletests function wth method="fdr_bh" Step14: Verify that we don't need to drop any entries due to the adjusted P value not being small enough (use numpy.where and len); this should produce zero since we have M=414 samples per gene. Step15: Read the online help for the function zip. What does it do? Step16: We want to pass our tuple of numpy arrays containing row and column indices to Graph.TupleList; however, Graph.TupleList accepts a tuple list, not a tuple of numpy arrays. So we need to make a tuple list, using zip Step17: Make an undirected graph from the row/column indices of the (upper-triangle) gene pairs whose correlations were above our threshold, using igraph.Graph.TupleList. Print a summary of the network, as a sanity check, using the igraph.Graph.summary method. Step18: Plot the degree distribution on log-log scale; does it appear to be scale-free?
Python Code: import pandas import scipy.stats import matplotlib import pylab import numpy import statsmodels.sandbox.stats.multicomp import igraph import math Explanation: CS446/546 - Class Session 19 - Correlation network In this class session we are going to analyze gene expression data from a human bladder cancer cohort, using python. We will load a data matrix of expression measurements of 4,473 genes in 414 different bladder cancer samples. These genes have been selected because they are differentially expressed between normal bladder and bladder cancer (thus more likely to have a function in bladder cancer specifically), but the columns in the data matrix are restricted to bladder cancer samples (not normal bladder) because we want to obtain a network representing variation across cancers. The measurements in the matrix have already been normalized to account for inter-sample heterogeneity and then log2 transformed. Our job is to compute Pearson correlation coefficients between all pairs of genes, obtain Fisher-transformed z-scores for all pairs of genes, test each pair of genes for significance of the z score, adjust for multiple hypothesis testing, filter to eliminate any pair for which R < 0.75 or Padj > 0.01, load the graph into an igraph.Graph object, and plot the degree distribution on log-log scale. We will then answer two questions: (1) does the network look to be scale-free? and (2) what is it's best-fit scaling exponent? We will start by importing all of the modules that we will need for this notebook. Note the difference in language-design philosophy between R (which requires loading one package for this analysis) and python (where we have to load seven modules). Python keeps its core minimal, whereas R has a lot of statistical and plotting functions in the base language (or in packages that are loaded by default). End of explanation gene_matrix_for_network_df = Explanation: Using pandas.read_csv, load the tab-deliminted text file of gene expression measurements (rows correspond to genes, columns correspond to bladder tumor samples), into a data frame gene_matrix_for_network_df. End of explanation gene_matrix_for_network = gene_matrix_for_network.shape Explanation: Use the pandas.DataFrame.as_matrix method to make a matrix gene_matrix_for_network. Print out the dimensions of the matrix, by accessing its shape variable End of explanation help(numpy.corrcoef) Explanation: Use del to delete the data frame, since we no longer need it (save memory) Look at the online help for the numpy.corrcoef function, using help(numpy.corrcoef). When you pass a single argument x which is a 2D "array" (i.e., a matrix), by default does corrcoef compute coefficients for pairs of rows, or pairs of columns? End of explanation gene_matrix_for_network_cor = Explanation: Compute the 4,473 x 4,473 matrix of gene-gene Pearson correlation coefficients, using numpy.corrcoef (this function treats each row as a variable, so you don't have to do any transposing of the matrix, unlike the situation in R). End of explanation help(numpy.fill_diagonal) Explanation: Look at the online help for numpy.fill_diagonal. Does it return the modified matrix or modify the matrix argument in place? End of explanation numpy.fill_diagonal( ## fill in here ## ) Explanation: Set the diagonal elements of the matrix to zero, using numpy.fill_diagonal End of explanation help(numpy.multiply) Explanation: Look at the online help for numpy.multiply. Does it do element-wise multiplication or matrix multiplication? End of explanation help(numpy.tri) Explanation: Look at the online help for numpy.tri. Does it modify a matrix argument in-place or return a matrix? What is in the matrix that it returns? End of explanation gene_matrix_for_network_cor = numpy.multiply(gene_matrix_for_network_cor, numpy.tri(*gene_matrix_for_network_cor.shape)) Explanation: Set the upper-triangle of the matrix to zero, using numpy.multiply and numpy.tri: End of explanation inds_correl_above_thresh = cor_coeff_values_above_thresh = Explanation: Using numpy.where, get a tuple of two numpy.arrays containing the row/col indices of the entries of the matrix for which R >= 0.75. Use array indexing to obtain the R values for these matrix entries, as a numpy array cor_coeff_values_above_thresh. End of explanation z_scores = Explanation: Refer to Eq. (13.5) in the assigned readding for today's class (p9 of the PDF). Obtain a numpy array of the correlation coefficients that exceeded 0.75, and Fisher-transform the correlation coefficient values to get a vector z_scores of z scores. Each of these z scores will correspond to an edge in the network, unless the absolute z score is too small such that we can't exclude the null hypothesis that the corresponding two genes' expression values are indepdenent (we will perform that check in the next step). End of explanation M = gene_matrix_for_network.shape[1] P_values = Explanation: Delete the correlation matrix object in order to save memory (we won't need it from here on out). Assume that under the null hypothesis that two genes are independent, then sqrt(M-3)z for the pair of genes is an independent sample from the normal distribution with zero mean and unit variance, where M is the number of samples used to compute the Pearson correlation coefficient (i.e., M = 414). For each entry in z_scores compute a P value as the area under two tails of the normal distribution N(x), where the two tails are x < -sqrt(M-3)z and x > sqrt(M-3)z. (You'll know you are doing it right if z=0 means you get a P value of 1). You will want to use the functions numpy.abs and scipy.stats.norm.cdf, as well as the math.sqrt function (in order to compute the square root). End of explanation P_values_adj = statsmodels.sandbox.stats.multicomp.multipletests(P_values, method="fdr_bh")[1] Explanation: Adjust the P values for multiple hypothesis testing, using the statsmodels.sandbox.stats.multicomp.multipletests function wth method="fdr_bh" End of explanation len(numpy.where(P_values_adj >= 0.01)[0]) Explanation: Verify that we don't need to drop any entries due to the adjusted P value not being small enough (use numpy.where and len); this should produce zero since we have M=414 samples per gene. End of explanation help(zip) Explanation: Read the online help for the function zip. What does it do? End of explanation row_col_inds_tuple_list = ## [note this can be done more elegantly using the unary "*" operator: ## row_col_inds_tuple_list = zip(*inds_correl_above_thresh) ## see how we only need to type the variable name once, if we use the unary "*" ] Explanation: We want to pass our tuple of numpy arrays containing row and column indices to Graph.TupleList; however, Graph.TupleList accepts a tuple list, not a tuple of numpy arrays. So we need to make a tuple list, using zip: End of explanation final_network = final_network.summary() Explanation: Make an undirected graph from the row/column indices of the (upper-triangle) gene pairs whose correlations were above our threshold, using igraph.Graph.TupleList. Print a summary of the network, as a sanity check, using the igraph.Graph.summary method. End of explanation degree_dist = Explanation: Plot the degree distribution on log-log scale; does it appear to be scale-free? End of explanation
519
Given the following text description, write Python code to implement the functionality described below step by step Description: Using Convolutional Neural Networks Welcome to the first week of the first deep learning certificate! We're going to use convolutional neural networks (CNNs) to allow our computer to see - something that is only possible thanks to deep learning. Introduction to this week's task Step1: Define path to data Step2: A few basic libraries that we'll need for the initial exercises Step3: We have created a file most imaginatively called 'utils.py' to store any little convenience functions we'll want to use. We will discuss these as we use them. Step4: Use a pretrained VGG model with our Vgg16 class Our first step is simply to use a model that has been fully created for us, which can recognise a wide variety (1,000 categories) of images. We will use 'VGG', which won the 2014 Imagenet competition, and is a very simple model to create and understand. The VGG Imagenet team created both a larger, slower, slightly more accurate model (VGG 19) and a smaller, faster model (VGG 16). We will be using VGG 16 since the much slower performance of VGG19 is generally not worth the very minor improvement in accuracy. We have created a python class, Vgg16, which makes using the VGG 16 model very straightforward. The punchline Step5: The code above will work for any image recognition task, with any number of categories! All you have to do is to put your images into one folder per category, and run the code above. Let's take a look at how this works, step by step... Use Vgg16 for basic image recognition Let's start off by using the Vgg16 class to recognise the main imagenet category for each image. We won't be able to enter the Cats vs Dogs competition with an Imagenet model alone, since 'cat' and 'dog' are not categories in Imagenet - instead each individual breed is a separate category. However, we can use it to see how well it can recognise the images, which is a good first step. i.e. Vgg() model will return us 这个图片对于所有imagenet上1000多个种类的概率。然而cats,dogs并不是imagenet上的种类。imagenet上的种类更细致。 First, create a Vgg16 object Step6: Vgg16 is built on top of Keras (which we will be learning much more about shortly!), a flexible, easy to use deep learning library that sits on top of Theano or Tensorflow. Keras reads groups of images and labels in batches, using a fixed directory structure, where images from each category for training must be placed in a separate folder. Let's grab batches of data from our training folder Step7: (BTW, when Keras refers to 'classes', it doesn't mean python classes - but rather it refers to the categories of the labels, such as 'pug', or 'tabby'.) Batches is just a regular python iterator. Each iteration returns both the images themselves, as well as the labels. Step8: As you can see, the labels for each image are an array, containing a 1 in the first position if it's a cat, and in the second position if it's a dog. This approach to encoding categorical variables, where an array containing just a single 1 in the position corresponding to the category, is very common in deep learning. It is called one hot encoding. The arrays contain two elements, because we have two categories (cat, and dog). If we had three categories (e.g. cats, dogs, and kangaroos), then the arrays would each contain two 0's, and one 1. Step9: We can now pass the images to Vgg16's predict() function to get back probabilities, category indexes, and category names for each image's VGG prediction. Step10: The category indexes are based on the ordering of categories used in the VGG model - e.g here are the first four Step11: (Note that, other than creating the Vgg16 object, none of these steps are necessary to build a model; they are just showing how to use the class to view imagenet predictions.) Use our Vgg16 class to finetune a Dogs vs Cats model To change our model so that it outputs "cat" vs "dog", instead of one of 1,000 very specific categories, we need to use a process called "finetuning". Finetuning looks from the outside to be identical to normal machine learning training - we provide a training set with data and labels to learn from, and a validation set to test against. The model learns a set of parameters based on the data provided. However, the difference is that we start with a model that is already trained to solve a similar problem. The idea is that many of the parameters should be very similar, or the same, between the existing model, and the model we wish to create. Therefore, we only select a subset of parameters to train, and leave the rest untouched. This happens automatically when we call fit() after calling finetune(). We create our batches just like before, and making the validation set available as well. A 'batch' (or mini-batch as it is commonly known) is simply a subset of the training data - we use a subset at a time when training or predicting, in order to speed up training, and to avoid running out of memory. Step12: Calling finetune() modifies the model such that it will be trained based on the data in the batches provided - in this case, to predict either 'dog' or 'cat'. Step13: Finally, we fit() the parameters of the model using the training data, reporting the accuracy on the validation set after every epoch. (An epoch is one full pass through the training data.) Step14: That shows all of the steps involved in using the Vgg16 class to create an image recognition model using whatever labels you are interested in. For instance, this process could classify paintings by style, or leaves by type of disease, or satellite photos by type of crop, and so forth. Next up, we'll dig one level deeper to see what's going on in the Vgg16 class. Create a VGG model from scratch in Keras For the rest of this tutorial, we will not be using the Vgg16 class at all. Instead, we will recreate from scratch the functionality we just used. This is not necessary if all you want to do is use the existing model - but if you want to create your own models, you'll need to understand these details. It will also help you in the future when you debug any problems with your models, since you'll understand what's going on behind the scenes. Model setup We need to import all the modules we'll be using from numpy, scipy, and keras Step15: Let's import the mappings from VGG ids to imagenet category ids and descriptions, for display purposes later. Step16: Here's a few examples of the categories we just imported Step17: Model creation Creating the model involves creating the model architecture, and then loading the model weights into that architecture. We will start by defining the basic pieces of the VGG architecture. VGG has just one type of convolutional block, and one type of fully connected ('dense') block. Here's the convolutional block definition Step18: ...and here's the fully-connected definition. Step19: When the VGG model was trained in 2014, the creators subtracted the average of each of the three (R,G,B) channels first, so that the data for each channel had a mean of zero. Furthermore, their software that expected the channels to be in B,G,R order, whereas Python by default uses R,G,B. We need to preprocess our data to make these two changes, so that it is compatible with the VGG model Step20: Now we're ready to define the VGG model architecture - look at how simple it is, now that we have the basic blocks defined! Step21: We'll learn about what these different blocks do later in the course. For now, it's enough to know that Step22: As well as the architecture, we need the weights that the VGG creators trained. The weights are the part of the model that is learnt from the data, whereas the architecture is pre-defined based on the nature of the problem. Downloading pre-trained weights is much preferred to training the model ourselves, since otherwise we would have to download the entire Imagenet archive, and train the model for many days! It's very helpful when researchers release their weights, as they did here. Step23: Getting imagenet predictions The setup of the imagenet model is now complete, so all we have to do is grab a batch of images and call predict() on them. Step24: Keras provides functionality to create batches of data from directories containing images; all we have to do is to define the size to resize the images to, what type of labels to create, whether to randomly shuffle the images, and how many images to include in each batch. We use this little wrapper to define some helpful defaults appropriate for imagenet data Step25: From here we can use exactly the same steps as before to look at predictions from the model. Step26: The VGG model returns 1,000 probabilities for each image, representing the probability that the model assigns to each possible imagenet category for each image. By finding the index with the largest probability (with np.argmax()) we can find the predicted label.
Python Code: %matplotlib inline Explanation: Using Convolutional Neural Networks Welcome to the first week of the first deep learning certificate! We're going to use convolutional neural networks (CNNs) to allow our computer to see - something that is only possible thanks to deep learning. Introduction to this week's task: 'Dogs vs Cats' We're going to try to create a model to enter the Dogs vs Cats competition at Kaggle. There are 25,000 labelled dog and cat photos available for training, and 12,500 in the test set that we have to try to label for this competition. According to the Kaggle web-site, when this competition was launched (end of 2013): "State of the art: The current literature suggests machine classifiers can score above 80% accuracy on this task". So if we can beat 80%, then we will be at the cutting edge as of 2013! Basic setup There isn't too much to do to get started - just a few simple configuration steps. This shows plots in the web page itself - we always wants to use this when using jupyter notebook: End of explanation path = "data/dogscats/sample/" #path = "data/dogscats" Explanation: Define path to data: (It's a good idea to put it in a subdirectory of your notebooks folder, and then exclude that directory from git control by adding it to .gitignore.) End of explanation from __future__ import division,print_function import os, json from glob import glob import numpy as np np.set_printoptions(precision=4, linewidth=100) from matplotlib import pyplot as plt Explanation: A few basic libraries that we'll need for the initial exercises: End of explanation from importlib import reload import utils; reload(utils) from utils import plots # reload is handy if you change something in the file Explanation: We have created a file most imaginatively called 'utils.py' to store any little convenience functions we'll want to use. We will discuss these as we use them. End of explanation # As large as you can, but no larger than 64 is recommended. # If you have an older or cheaper GPU, you'll run out of memory, so will have to decrease this. batch_size=64 # Import our class, and instantiate import vgg16; reload(vgg16) from vgg16 import Vgg16 vgg = Vgg16() # Grab a few images at a time for training and validation. # NB: They must be in subdirectories named based on their category batches = vgg.get_batches(path+'train', batch_size=batch_size) val_batches = vgg.get_batches(path+'valid', batch_size=batch_size*2) vgg.finetune(batches) vgg.fit(batches, val_batches, nb_epoch=1) Explanation: Use a pretrained VGG model with our Vgg16 class Our first step is simply to use a model that has been fully created for us, which can recognise a wide variety (1,000 categories) of images. We will use 'VGG', which won the 2014 Imagenet competition, and is a very simple model to create and understand. The VGG Imagenet team created both a larger, slower, slightly more accurate model (VGG 19) and a smaller, faster model (VGG 16). We will be using VGG 16 since the much slower performance of VGG19 is generally not worth the very minor improvement in accuracy. We have created a python class, Vgg16, which makes using the VGG 16 model very straightforward. The punchline: state of the art custom model in 7 lines of code Here's everything you need to do to get >97% accuracy on the Dogs vs Cats dataset - we won't analyze how it works behind the scenes yet, since at this stage we're just going to focus on the minimum necessary to actually do useful work. End of explanation vgg = Vgg16() Explanation: The code above will work for any image recognition task, with any number of categories! All you have to do is to put your images into one folder per category, and run the code above. Let's take a look at how this works, step by step... Use Vgg16 for basic image recognition Let's start off by using the Vgg16 class to recognise the main imagenet category for each image. We won't be able to enter the Cats vs Dogs competition with an Imagenet model alone, since 'cat' and 'dog' are not categories in Imagenet - instead each individual breed is a separate category. However, we can use it to see how well it can recognise the images, which is a good first step. i.e. Vgg() model will return us 这个图片对于所有imagenet上1000多个种类的概率。然而cats,dogs并不是imagenet上的种类。imagenet上的种类更细致。 First, create a Vgg16 object: End of explanation batches = vgg.get_batches(path+'train', batch_size=4) Explanation: Vgg16 is built on top of Keras (which we will be learning much more about shortly!), a flexible, easy to use deep learning library that sits on top of Theano or Tensorflow. Keras reads groups of images and labels in batches, using a fixed directory structure, where images from each category for training must be placed in a separate folder. Let's grab batches of data from our training folder: End of explanation imgs,labels = next(batches) Explanation: (BTW, when Keras refers to 'classes', it doesn't mean python classes - but rather it refers to the categories of the labels, such as 'pug', or 'tabby'.) Batches is just a regular python iterator. Each iteration returns both the images themselves, as well as the labels. End of explanation plots(imgs, titles=labels) Explanation: As you can see, the labels for each image are an array, containing a 1 in the first position if it's a cat, and in the second position if it's a dog. This approach to encoding categorical variables, where an array containing just a single 1 in the position corresponding to the category, is very common in deep learning. It is called one hot encoding. The arrays contain two elements, because we have two categories (cat, and dog). If we had three categories (e.g. cats, dogs, and kangaroos), then the arrays would each contain two 0's, and one 1. End of explanation vgg.predict(imgs, True) Explanation: We can now pass the images to Vgg16's predict() function to get back probabilities, category indexes, and category names for each image's VGG prediction. End of explanation vgg.classes[:4] Explanation: The category indexes are based on the ordering of categories used in the VGG model - e.g here are the first four: End of explanation batch_size=64 batches = vgg.get_batches(path+'train', batch_size=batch_size) val_batches = vgg.get_batches(path+'valid', batch_size=batch_size) Explanation: (Note that, other than creating the Vgg16 object, none of these steps are necessary to build a model; they are just showing how to use the class to view imagenet predictions.) Use our Vgg16 class to finetune a Dogs vs Cats model To change our model so that it outputs "cat" vs "dog", instead of one of 1,000 very specific categories, we need to use a process called "finetuning". Finetuning looks from the outside to be identical to normal machine learning training - we provide a training set with data and labels to learn from, and a validation set to test against. The model learns a set of parameters based on the data provided. However, the difference is that we start with a model that is already trained to solve a similar problem. The idea is that many of the parameters should be very similar, or the same, between the existing model, and the model we wish to create. Therefore, we only select a subset of parameters to train, and leave the rest untouched. This happens automatically when we call fit() after calling finetune(). We create our batches just like before, and making the validation set available as well. A 'batch' (or mini-batch as it is commonly known) is simply a subset of the training data - we use a subset at a time when training or predicting, in order to speed up training, and to avoid running out of memory. End of explanation vgg.finetune(batches) Explanation: Calling finetune() modifies the model such that it will be trained based on the data in the batches provided - in this case, to predict either 'dog' or 'cat'. End of explanation vgg.fit(batches, val_batches, nb_epoch=1) Explanation: Finally, we fit() the parameters of the model using the training data, reporting the accuracy on the validation set after every epoch. (An epoch is one full pass through the training data.) End of explanation from numpy.random import random, permutation from scipy import misc, ndimage from scipy.ndimage.interpolation import zoom import keras from keras import backend as K from keras.utils.data_utils import get_file from keras.models import Sequential, Model from keras.layers.core import Flatten, Dense, Dropout, Lambda from keras.layers import Input from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D from keras.optimizers import SGD, RMSprop from keras.preprocessing import image Explanation: That shows all of the steps involved in using the Vgg16 class to create an image recognition model using whatever labels you are interested in. For instance, this process could classify paintings by style, or leaves by type of disease, or satellite photos by type of crop, and so forth. Next up, we'll dig one level deeper to see what's going on in the Vgg16 class. Create a VGG model from scratch in Keras For the rest of this tutorial, we will not be using the Vgg16 class at all. Instead, we will recreate from scratch the functionality we just used. This is not necessary if all you want to do is use the existing model - but if you want to create your own models, you'll need to understand these details. It will also help you in the future when you debug any problems with your models, since you'll understand what's going on behind the scenes. Model setup We need to import all the modules we'll be using from numpy, scipy, and keras: End of explanation FILES_PATH = 'http://files.fast.ai/models/'; CLASS_FILE='imagenet_class_index.json' # Keras' get_file() is a handy function that downloads files, and caches them for re-use later fpath = get_file(CLASS_FILE, FILES_PATH+CLASS_FILE, cache_subdir='models') with open(fpath) as f: class_dict = json.load(f) # Convert dictionary with string indexes into an array classes = [class_dict[str(i)][1] for i in range(len(class_dict))] Explanation: Let's import the mappings from VGG ids to imagenet category ids and descriptions, for display purposes later. End of explanation classes[:5] Explanation: Here's a few examples of the categories we just imported: End of explanation def ConvBlock(layers, model, filters): for i in range(layers): model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(filters, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) Explanation: Model creation Creating the model involves creating the model architecture, and then loading the model weights into that architecture. We will start by defining the basic pieces of the VGG architecture. VGG has just one type of convolutional block, and one type of fully connected ('dense') block. Here's the convolutional block definition: End of explanation def FCBlock(model): model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) Explanation: ...and here's the fully-connected definition. End of explanation # Mean of each channel as provided by VGG researchers vgg_mean = np.array([123.68, 116.779, 103.939]).reshape((3,1,1)) def vgg_preprocess(x): x = x - vgg_mean # subtract mean return x[:, ::-1] # reverse axis bgr->rgb Explanation: When the VGG model was trained in 2014, the creators subtracted the average of each of the three (R,G,B) channels first, so that the data for each channel had a mean of zero. Furthermore, their software that expected the channels to be in B,G,R order, whereas Python by default uses R,G,B. We need to preprocess our data to make these two changes, so that it is compatible with the VGG model: End of explanation def VGG_16(): model = Sequential() model.add(Lambda(vgg_preprocess, input_shape=(3,224,224))) ConvBlock(2, model, 64) ConvBlock(2, model, 128) ConvBlock(3, model, 256) ConvBlock(3, model, 512) ConvBlock(3, model, 512) model.add(Flatten()) FCBlock(model) FCBlock(model) model.add(Dense(1000, activation='softmax')) return model Explanation: Now we're ready to define the VGG model architecture - look at how simple it is, now that we have the basic blocks defined! End of explanation model = VGG_16() Explanation: We'll learn about what these different blocks do later in the course. For now, it's enough to know that: Convolution layers are for finding patterns in images Dense (fully connected) layers are for combining patterns across an image Now that we've defined the architecture, we can create the model like any python object: End of explanation fpath = get_file('vgg16.h5', FILES_PATH+'vgg16.h5', cache_subdir='models') model.load_weights(fpath) Explanation: As well as the architecture, we need the weights that the VGG creators trained. The weights are the part of the model that is learnt from the data, whereas the architecture is pre-defined based on the nature of the problem. Downloading pre-trained weights is much preferred to training the model ourselves, since otherwise we would have to download the entire Imagenet archive, and train the model for many days! It's very helpful when researchers release their weights, as they did here. End of explanation batch_size = 4 Explanation: Getting imagenet predictions The setup of the imagenet model is now complete, so all we have to do is grab a batch of images and call predict() on them. End of explanation def get_batches(dirname, gen=image.ImageDataGenerator(), shuffle=True, batch_size=batch_size, class_mode='categorical'): return gen.flow_from_directory(path+dirname, target_size=(224,224), class_mode=class_mode, shuffle=shuffle, batch_size=batch_size) Explanation: Keras provides functionality to create batches of data from directories containing images; all we have to do is to define the size to resize the images to, what type of labels to create, whether to randomly shuffle the images, and how many images to include in each batch. We use this little wrapper to define some helpful defaults appropriate for imagenet data: End of explanation batches = get_batches('train', batch_size=batch_size) val_batches = get_batches('valid', batch_size=batch_size) imgs,labels = next(batches) # This shows the 'ground truth' plots(imgs, titles=labels) Explanation: From here we can use exactly the same steps as before to look at predictions from the model. End of explanation def pred_batch(imgs): preds = model.predict(imgs) idxs = np.argmax(preds, axis=1) print('Shape: {}'.format(preds.shape)) print('First 5 classes: {}'.format(classes[:5])) print('First 5 probabilities: {}\n'.format(preds[0, :5])) print('Predictions prob/class: ') for i in range(len(idxs)): idx = idxs[i] print (' {:.4f}/{}'.format(preds[i, idx], classes[idx])) pred_batch(imgs) Explanation: The VGG model returns 1,000 probabilities for each image, representing the probability that the model assigns to each possible imagenet category for each image. By finding the index with the largest probability (with np.argmax()) we can find the predicted label. End of explanation
520
Given the following text description, write Python code to implement the functionality described below step by step Description: Matrix factorization is a very interesting area of machine learning research. Formulating a problem as a 2D matrix $X$ to be decomposed into multiple matrices, which combine to return an approximation of $X$, can lead to state of the art results for many interesting problems. This core concept is the focus of compressive sensing, matrix completion, sparse coding, robust PCA, dictionary learning, and many other algorithms. One major website which shows many different types of matrix decomposition algorithms is the Matrix Factorization Jungle, run by Igor Carron. There has been a heavy focus on random projections in recent algorithms, which can often lead to increased stability and computationally efficient solutions. <!-- TEASER_END --> Below is a link to the GoDec algorithm output, as applied to the "Hall" video (shown below) found in this zip file, which is a surveillance tape taken from a mall. Using the GoDec algorithm, the background is almost completely subtracted from the noisy elements of people walking, while still capturing periodic background elements as part of the background. I have written code for both the GoDec and Robust PCA algorithms in numpy based on their Matlab equivalents. There are many datasets which can be found here, and we will set up a simple download function for ease-of-access. Special thanks to @kuantkid for the PyRPCA repo, which was the inspiration to start and extend this work, and especially the idea of creating a demo video from PNGs which is PRETTY. DANG. AWESOME. Interstellar Overdrive Step1: First we want to download a video, so that we can compare the algorithmic result against the original video. The file is downloaded, if it does not already exist in the working directory. Next, it will create a directory of the same name, and unzip the file contents (Campus.zip to Campus/filename). Step2: The code below will read in all the .bmp images downloaded and unzipped from the website, as well as converting to grayscale, scaling the result between 0 and 1. Eventually, I plan to do a "full-color" version of this testing, but for now the greyscale will have to suffice. Step4: Robust PCA Robust Principal Component Analysis (PCA) is an extension of PCA. Rather than attempting to solve $X = L$, where $L$ is typically a low-rank approximation ($N \times M$, vs. $N \times P$, $M < P$), Robust PCA solves the factorization problem $X = L + S$, where $L$ is a low-rank approximation, and $S$ is a sparse component. By separating the factorization into two separate matrix components, Robust PCA makes a much better low-rank estimate $L$ on many problems. There are a variety of algorithms to solve this optimization problem. The code below is an implementation of the Inexact Augmented Lagrangian Multiplier algorithm for Robust PCA which is identical to the equivalent MATLAB code (download), or as near as I could make it. The functionality seems equivalent, and for relevant details please see the paper. This algorithm was chosen because according to the timing results at the bottom of this page, it was both the fastest and most accurate of the formulas listed. Though it appears to be fairly slow in our testing, it is fully believable that this is an implementation issue, since this code has not been specifically optimized for numpy. Due to this limitation, we clip the algorithm to the first few frames to save time. Step5: GoDec The code below contains an implementation of the GoDec algorithm, which attempts to solve the problem $X = L + S + G$, with $L$ low-rank, $S$ sparse, and $G$ as a component of Gaussian noise. By allowing the decomposition to expand to 3 matrix components, the algorithm is able to more effectively differentiate the sparse component from the low-rank. Step6: A Momentary Lapse of Reason Now it is time to do something a little unreasonable - we can actually take all of this data, reshape it into a series of images, and plot it as a video inside the IPython notebook! The first step is to generate the frames for the video as .png files, as shown below. Step7: Echoes The code below will display HTML5 video for each of the videos generated in the previos step, and embed it in the IPython notebook. There are "echoes" of people, which are much more pronounced in the Robust PCA video than the GoDec version, likely due to the increased flexibility of an independent Gaussian term. Overall, the effect is pretty cool though not mathematically as good as the GoDec result. Step8: If these videos freeze for some reason, just hit refresh and they should start playing.
Python Code: from IPython.display import YouTubeVideo YouTubeVideo('JgfK46RA8XY') Explanation: Matrix factorization is a very interesting area of machine learning research. Formulating a problem as a 2D matrix $X$ to be decomposed into multiple matrices, which combine to return an approximation of $X$, can lead to state of the art results for many interesting problems. This core concept is the focus of compressive sensing, matrix completion, sparse coding, robust PCA, dictionary learning, and many other algorithms. One major website which shows many different types of matrix decomposition algorithms is the Matrix Factorization Jungle, run by Igor Carron. There has been a heavy focus on random projections in recent algorithms, which can often lead to increased stability and computationally efficient solutions. <!-- TEASER_END --> Below is a link to the GoDec algorithm output, as applied to the "Hall" video (shown below) found in this zip file, which is a surveillance tape taken from a mall. Using the GoDec algorithm, the background is almost completely subtracted from the noisy elements of people walking, while still capturing periodic background elements as part of the background. I have written code for both the GoDec and Robust PCA algorithms in numpy based on their Matlab equivalents. There are many datasets which can be found here, and we will set up a simple download function for ease-of-access. Special thanks to @kuantkid for the PyRPCA repo, which was the inspiration to start and extend this work, and especially the idea of creating a demo video from PNGs which is PRETTY. DANG. AWESOME. Interstellar Overdrive End of explanation import numpy as np import matplotlib.pyplot as plt %matplotlib inline try: from urllib2 import urlopen except ImportError: from urllib.request import urlopen from scipy.io import loadmat, savemat import os ext = {"water":'WaterSurface.zip', "fountain":'Fountain.zip', "campus":'Campus.zip', "escalator": 'Escalator.zip', "curtain": 'Curtain.zip', "lobby": 'Lobby.zip', "mall": 'ShoppingMall.zip', "hall": 'hall.zip', "bootstrap": 'Bootstrap.zip'} example = "mall" def progress_bar_downloader(url, fname, progress_update_every=5): #from http://stackoverflow.com/questions/22676/how-do-i-download-a-file-over-http-using-python/22776#22776 u = urlopen(url) f = open(fname, 'wb') meta = u.info() file_size = int(meta.get("Content-Length")) print("Downloading: %s Bytes: %s" % (fname, file_size)) file_size_dl = 0 block_sz = 8192 p = 0 while True: buffer = u.read(block_sz) if not buffer: break file_size_dl += len(buffer) f.write(buffer) if (file_size_dl * 100. / file_size) > p: status = r"%10d [%3.2f%%]" % (file_size_dl, file_size_dl * 100. / file_size) print(status) p += progress_update_every f.close() def get_video_clip(d): #Download files from http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html if os.path.exists('./' + d): print('Video file %s already downloaded, continuing' % d) return else: print('Video file %s not found, downloading' % d) progress_bar_downloader(r'http://perception.i2r.a-star.edu.sg/BK_Model_TestData/' + d, d) def bname(x): return x.split('.')[0] get_video_clip(ext[example]) if not os.path.exists('./' + bname(ext[example])): os.makedirs(bname(ext[example])) os.system('unzip ' + ext[example] + ' -d ' + bname(ext[example])) Explanation: First we want to download a video, so that we can compare the algorithmic result against the original video. The file is downloaded, if it does not already exist in the working directory. Next, it will create a directory of the same name, and unzip the file contents (Campus.zip to Campus/filename). End of explanation from scipy import misc import numpy as np from glob import glob def rgb2gray(rgb): r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray / 255. fdir = bname(ext[example]) names = sorted(glob(fdir + "/*.bmp")) d1, d2, channels = misc.imread(names[0]).shape d1 = 128 d2 = 160 num = len(names) X = np.zeros((d1, d2, num)) for n, i in enumerate(names): X[:, :, n] = misc.imresize(rgb2gray(misc.imread(i).astype(np.double)) / 255., (d1, d2)) X = X.reshape(d1 * d2, num) clip = 100 print(X.shape) print(d1) print(d2) Explanation: The code below will read in all the .bmp images downloaded and unzipped from the website, as well as converting to grayscale, scaling the result between 0 and 1. Eventually, I plan to do a "full-color" version of this testing, but for now the greyscale will have to suffice. End of explanation import numpy as np from numpy.linalg import norm, svd def inexact_augmented_lagrange_multiplier(X, lmbda=.01, tol=1e-3, maxiter=100, verbose=True): Inexact Augmented Lagrange Multiplier Y = X norm_two = norm(Y.ravel(), 2) norm_inf = norm(Y.ravel(), np.inf) / lmbda dual_norm = np.max([norm_two, norm_inf]) Y = Y / dual_norm A = np.zeros(Y.shape) E = np.zeros(Y.shape) dnorm = norm(X, 'fro') mu = 1.25 / norm_two rho = 1.5 sv = 10. n = Y.shape[0] itr = 0 while True: Eraw = X - A + (1 / mu) * Y Eupdate = np.maximum(Eraw - lmbda / mu, 0) + np.minimum(Eraw + lmbda / mu, 0) U, S, V = svd(X - Eupdate + (1 / mu) * Y, full_matrices=False) svp = (S > 1 / mu).shape[0] if svp < sv: sv = np.min([svp + 1, n]) else: sv = np.min([svp + round(.05 * n), n]) Aupdate = np.dot(np.dot(U[:, :svp], np.diag(S[:svp] - 1 / mu)), V[:svp, :]) A = Aupdate E = Eupdate Z = X - A - E Y = Y + mu * Z mu = np.min([mu * rho, mu * 1e7]) itr += 1 if ((norm(Z, 'fro') / dnorm) < tol) or (itr >= maxiter): break if verbose: print("Finished at iteration %d" % (itr)) return A, E sz = clip A, E = inexact_augmented_lagrange_multiplier(X[:, :sz]) A = A.reshape(d1, d2, sz) * 255. E = E.reshape(d1, d2, sz) * 255. #Refer to them by position desired for video demo later savemat("./IALM_background_subtraction.mat", {"1": A, "2": E}) print("RPCA complete") Explanation: Robust PCA Robust Principal Component Analysis (PCA) is an extension of PCA. Rather than attempting to solve $X = L$, where $L$ is typically a low-rank approximation ($N \times M$, vs. $N \times P$, $M < P$), Robust PCA solves the factorization problem $X = L + S$, where $L$ is a low-rank approximation, and $S$ is a sparse component. By separating the factorization into two separate matrix components, Robust PCA makes a much better low-rank estimate $L$ on many problems. There are a variety of algorithms to solve this optimization problem. The code below is an implementation of the Inexact Augmented Lagrangian Multiplier algorithm for Robust PCA which is identical to the equivalent MATLAB code (download), or as near as I could make it. The functionality seems equivalent, and for relevant details please see the paper. This algorithm was chosen because according to the timing results at the bottom of this page, it was both the fastest and most accurate of the formulas listed. Though it appears to be fairly slow in our testing, it is fully believable that this is an implementation issue, since this code has not been specifically optimized for numpy. Due to this limitation, we clip the algorithm to the first few frames to save time. End of explanation import numpy as np from numpy.linalg import norm from scipy.linalg import qr def wthresh(a, thresh): #Soft wavelet threshold res = np.abs(a) - thresh return np.sign(a) * ((res > 0) * res) #Default threshold of .03 is assumed to be for input in the range 0-1... #original matlab had 8 out of 255, which is about .03 scaled to 0-1 range def go_dec(X, thresh=.03, rank=2, power=0, tol=1e-3, max_iter=100, random_seed=0, verbose=True): m, n = X.shape if m < n: X = X.T m, n = X.shape L = X S = np.zeros(L.shape) itr = 0 random_state = np.random.RandomState(random_seed) while True: Y2 = random_state.randn(n, rank) for i in range(power + 1): Y1 = np.dot(L, Y2) Y2 = np.dot(L.T, Y1); Q, R = qr(Y2, mode='economic') L_new = np.dot(np.dot(L, Q), Q.T) T = L - L_new + S L = L_new S = wthresh(T, thresh) T -= S err = norm(T.ravel(), 2) if (err < tol) or (itr >= max_iter): break L += T itr += 1 #Is this even useful in soft GoDec? May be a display issue... G = X - L - S if m < n: L = L.T S = S.T G = G.T if verbose: print("Finished at iteration %d" % (itr)) return L, S, G sz = clip L, S, G = go_dec(X[:, :sz]) L = L.reshape(d1, d2, sz) * 255. S = S.reshape(d1, d2, sz) * 255. G = G.reshape(d1, d2, sz) * 255. savemat("./GoDec_background_subtraction.mat", {"1": L, "2": S, "3": G, }) print("GoDec complete") Explanation: GoDec The code below contains an implementation of the GoDec algorithm, which attempts to solve the problem $X = L + S + G$, with $L$ low-rank, $S$ sparse, and $G$ as a component of Gaussian noise. By allowing the decomposition to expand to 3 matrix components, the algorithm is able to more effectively differentiate the sparse component from the low-rank. End of explanation import os import sys import matplotlib.pyplot as plt from scipy.io import loadmat import numpy as np from matplotlib import cm import matplotlib #demo inspired by / stolen from @kuantkid on Github - nice work! def mlabdefaults(): matplotlib.rcParams['lines.linewidth'] = 1.5 matplotlib.rcParams['savefig.dpi'] = 300 matplotlib.rcParams['font.size'] = 22 matplotlib.rcParams['font.family'] = "Times New Roman" matplotlib.rcParams['legend.fontsize'] = "small" matplotlib.rcParams['legend.fancybox'] = True matplotlib.rcParams['lines.markersize'] = 10 matplotlib.rcParams['figure.figsize'] = 8, 5.6 matplotlib.rcParams['legend.labelspacing'] = 0.1 matplotlib.rcParams['legend.borderpad'] = 0.1 matplotlib.rcParams['legend.borderaxespad'] = 0.2 matplotlib.rcParams['font.monospace'] = "Courier New" matplotlib.rcParams['savefig.dpi'] = 200 def make_video(alg, cache_path='/tmp/matrix_dec_tmp'): name = alg if not os.path.exists(cache_path): os.mkdir(cache_path) #If you generate a big if not os.path.exists('%s/%s_tmp'%(cache_path, name)): os.mkdir("%s/%s_tmp"%(cache_path, name)) mat = loadmat('./%s_background_subtraction.mat'%(name)) org = X.reshape(d1, d2, X.shape[1]) * 255. fig = plt.figure() ax = fig.add_subplot(111) usable = [x for x in sorted(mat.keys()) if "_" not in x][0] sz = min(org.shape[2], mat[usable].shape[2]) for i in range(sz): ax.cla() ax.axis("off") ax.imshow(np.hstack([mat[x][:, :, i] for x in sorted(mat.keys()) if "_" not in x] + \ [org[:, :, i]]), cm.gray) fname_ = '%s/%s_tmp/_tmp%03d.png'%(cache_path, name, i) if (i % 25) == 0: print('Completed frame', i, 'of', sz, 'for method', name) fig.tight_layout() fig.savefig(fname_, bbox_inches="tight") #Write out an mp4 and webm video from the png files. -r 5 means 5 frames a second #libx264 is h.264 encoding, -s 160x130 is the image size #You may need to sudo apt-get install libavcodec plt.close() num_arrays = na = len([x for x in mat.keys() if "_" not in x]) cdims = (na * d1, d2) cmd_h264 = "ffmpeg -y -r 10 -i '%s/%s_tmp/_tmp%%03d.png' -c:v libx264 " % (cache_path, name) + \ "-s %dx%d -preset ultrafast -pix_fmt yuv420p %s_animation.mp4" % (cdims[0], cdims[1], name) cmd_vp8 = "ffmpeg -y -r 10 -i '%s/%s_tmp/_tmp%%03d.png' -c:v libvpx " % (cache_path, name) + \ "-s %dx%d -preset ultrafast -pix_fmt yuv420p %s_animation.webm" % (cdims[0], cdims[1], name) os.system(cmd_h264) os.system(cmd_vp8) if __name__ == "__main__": mlabdefaults() all_methods = ['IALM', 'GoDec'] for name in all_methods: make_video(name); print("Background is generated from this file:", example) Explanation: A Momentary Lapse of Reason Now it is time to do something a little unreasonable - we can actually take all of this data, reshape it into a series of images, and plot it as a video inside the IPython notebook! The first step is to generate the frames for the video as .png files, as shown below. End of explanation from IPython.display import HTML from base64 import b64encode def html5_video(alg, frames): #This *should* support all browsers... framesz = 250 info = {"mp4": {"ext":"mp4", "encoded": '', "size":(frames * framesz, framesz)}} html_output = [] for k in info.keys(): f = open("%s_animation.%s" % (alg, info[k]["ext"]), "rb").read() encoded = b64encode(f).decode('ascii') video_tag = '<video width="500" height="250" autoplay="autoplay" ' + \ 'loop src="data:video/%s;base64,%s">' % (k, encoded) html_output.append(video_tag) return HTML(data=''.join(html_output)) Explanation: Echoes The code below will display HTML5 video for each of the videos generated in the previos step, and embed it in the IPython notebook. There are "echoes" of people, which are much more pronounced in the Robust PCA video than the GoDec version, likely due to the increased flexibility of an independent Gaussian term. Overall, the effect is pretty cool though not mathematically as good as the GoDec result. End of explanation html5_video("IALM", 3) html5_video("GoDec", 4) Explanation: If these videos freeze for some reason, just hit refresh and they should start playing. End of explanation
521
Given the following text description, write Python code to implement the functionality described below step by step Description: Code-HotSpots Welche Dateien werden wie oft geändert? Input Git-Versionskontrollsystemdaten einlesen. Step1: Bereinigen Nur Produktions-Code ausgewerten. Step2: Aggregation HotSpots ermitteln Step3: Visualisierung TOP 10 Hotspots anzeigen.
Python Code: from ozapfdis import git log = git.log_numstat_existing("../../../dropover/") log.head() Explanation: Code-HotSpots Welche Dateien werden wie oft geändert? Input Git-Versionskontrollsystemdaten einlesen. End of explanation java_prod = log[log['file'].str.contains("backend/src/main/java/")].copy() java_prod = java_prod[~java_prod['file'].str.contains("package-info.java")] java_prod.head() Explanation: Bereinigen Nur Produktions-Code ausgewerten. End of explanation hotspots = java_prod['file'].value_counts() hotspots.head() Explanation: Aggregation HotSpots ermitteln End of explanation hotspots.head(10).plot.barh(); Explanation: Visualisierung TOP 10 Hotspots anzeigen. End of explanation
522
Given the following text description, write Python code to implement the functionality described below step by step Description: Python Basics at PyCAR2020 Let's search some text You already know the components of programming. You have been exercising the reasoning programming relies on for your entire life, probably without even realizing it. Programming is just a way to take the logic you already use on a daily basis and express it in a way a computer can understand and act upon. It's just learning how to write in a different language. One very important disclaimer before we start doing just that Step1: Now tell Python where the file is and to open it. The path to the file can be one variable Step2: Now create a variable term_count containing the integer value of how many times we've seen it in the text. So far, that's zero Step3: So any time we want to check to see how many times we've seen our search_term or check where our file_location is, we can use these variables instead of typing out the card value! If you forget what one of the variables is set to, you can print it out. (The print() command was optional in Python 2.x, but is now required in Python 3.x.) Let's also make a comment to remind us of what this variable does. Step4: When it's on multiple lines, note the line number and collect all relevant line numbers Step5: Remember that a string is just a series of characters, not a word or a sentence. So you can represent those characters as lowercase or uppercase, or see whether the string starts with or ends with specific things. Try to make our search_term lowercase Step6: We've decided to standaradize our strings for comparison by making them lowercase. Cool. Now we need to do the comparing. Our open file is ready to explore. And to do that, we'll need a for loop. The loop will assign each line to a variable on the fly, then reference that variable to do stuff we tell it to Step7: We've read through the whole file, but our variable search_term still holds the open file. Let's close it explicitly, using a tool Python gives us on files Step8: Now let's set some language so we can make our data more readable. Step9: Now we can drop our variables into a sentence to help better make sense of our data Step10: And how often was our term on the same line? Which lines? Step11: Another way to analyze text is frequency of the words it contains. There may be insights there about what's important, or they may be terms you want to use in a FOIA request Step12: Remember, we closed our file, so we'll need to open it again and set it to a variable. This is a time when making the file path its own variable saves us the trouble of finding it again Step13: Once again, we'll need to loop through the lines in the file. This time, we care about inspecting each individual word -- not just whether a term is somewhere in the line Step14: Set up our baseline variables -- where we'll want to store the top values we're looking for. We'll need one variable for most_common_word, set to None, and another for highest_count, set to zero. Step15: Now we have a dictionary of every word in The Iliad. And we can spot-check the number of times any word we'd like has appeared by using the word as the key to access that (just remember we made all the keys lowercase)
Python Code: # This could just as easily be 'horse' or 'Helen' or 'Agamemnon' or `sand` -- or 'Trojan' search_term = 'Achilles' Explanation: Python Basics at PyCAR2020 Let's search some text You already know the components of programming. You have been exercising the reasoning programming relies on for your entire life, probably without even realizing it. Programming is just a way to take the logic you already use on a daily basis and express it in a way a computer can understand and act upon. It's just learning how to write in a different language. One very important disclaimer before we start doing just that: Nobody memorizes this stuff. We all have to look stuff up all the time. We don’t expect you to memorize it, either. Ask questions. Ask us to review things we’ve already told you. (Most of us ask questions we've asked before daily — we just ask them of Google.) Now for some code. Let's say you want to search 130,000 lines of text for certain tems -- which are most common, how frequently do they occur, how often are they used in a way that's concentrated, which might indicate places you want to look more closely. No person wants to do that by hand. And people are bad at precisely that kind of work. But it's perfect for a computer. That length happens to correspond to The Iliad. In groups of two or three, think about a book like that. In your groups, figure out two things: A whole text is made up of what parts? What is the first thing you need to know to begin to search a file of text? The second thing? Third thing? Roughly, the steps might look like this: 1. open the file 2. break the file into individual lines 3. begin to examine each line 4. if the line contains the term you're looking for, capture that 5. does anything else about the line interest you? Is your term there multiple times, for instance? 6. if none of your conditions are met, keep going This is a program! See, you already know how to program. Now let’s take a minute to step through this the way a computer might. In Python and other languages, we use the concept of variables to store values. A variable is just an easy way to reference a value we want to keep track of. So if we want to store a search term and how often our program has found it, we probably want to assign them to variables to keep track of them. Create a string that represents the search term we want to find and assign it to a variable search_term: End of explanation file_location = '../basics/data/iliad.txt' file_to_read = open(file_location) Explanation: Now tell Python where the file is and to open it. The path to the file can be one variable: file_location. And we can use that to open the file itself and store that opened file in a variable file_to_read End of explanation # how many times our search_term has occurred term_count = 0 Explanation: Now create a variable term_count containing the integer value of how many times we've seen it in the text. So far, that's zero End of explanation # how many lines contain at least two of our search_term multi_term_line = 0 Explanation: So any time we want to check to see how many times we've seen our search_term or check where our file_location is, we can use these variables instead of typing out the card value! If you forget what one of the variables is set to, you can print it out. (The print() command was optional in Python 2.x, but is now required in Python 3.x.) Let's also make a comment to remind us of what this variable does. End of explanation # so far, zero line_number = 0 # an empty list we hope to fill with lines we might want to explore in greater detail line_numbers_list = [] Explanation: When it's on multiple lines, note the line number and collect all relevant line numbers End of explanation # lowercase because of line.lower() below -- we want to compare lowercase only against lowercase search_term = search_term.lower() Explanation: Remember that a string is just a series of characters, not a word or a sentence. So you can represent those characters as lowercase or uppercase, or see whether the string starts with or ends with specific things. Try to make our search_term lowercase: End of explanation # begin looping line by line through our file for line in file_to_read: # increment the line_number line_number += 1 # make the line lowercase line = line.lower() # check whether our search_term is in the line if search_term in line: # if it is, use a tool Python gives us to count how many times # and add that to the number of times we've seen already term_count += line.count(search_term) # if it has counted more than one in the line, we know it's there multiple times; # keep track of that, too if line.count(search_term) > 1: # print(line) multi_term_line += 1 # and add that to the list using a tool Python give us for lists line_numbers_list.append(line_number) Explanation: We've decided to standaradize our strings for comparison by making them lowercase. Cool. Now we need to do the comparing. Our open file is ready to explore. And to do that, we'll need a for loop. The loop will assign each line to a variable on the fly, then reference that variable to do stuff we tell it to: End of explanation file_to_read.close() Explanation: We've read through the whole file, but our variable search_term still holds the open file. Let's close it explicitly, using a tool Python gives us on files: End of explanation # if this value is zero or more than one or (somehow) negative, this word should be plural if multi_term_line != 1: times = 'times' else: times = 'time' Explanation: Now let's set some language so we can make our data more readable. End of explanation # we can do it by adding the strings to one another like this: print(search_term + ' was in The Iliad ' + str(term_count) + ' times') # or we can use what Python calls `f-strings`, which allow us to drop variables directly into a string; # doing it this way means we don't have to keep track as much of wayward spaces or # whether one of our variables is an integer print(f'{search_term} was in The Iliad {term_count} times') Explanation: Now we can drop our variables into a sentence to help better make sense of our data: End of explanation print(f'It was on the same line multiple times {multi_term_line} {times}') print(f'it was on lines {line_numbers_list} multiple times') Explanation: And how often was our term on the same line? Which lines? End of explanation # a dictionary to collect words as keys and number of occurrences as the value most_common_words = {} Explanation: Another way to analyze text is frequency of the words it contains. There may be insights there about what's important, or they may be terms you want to use in a FOIA request: Let's make a dictionary to keep track of how often all the words in The Iliad occur: End of explanation file_to_read = open(file_location) Explanation: Remember, we closed our file, so we'll need to open it again and set it to a variable. This is a time when making the file path its own variable saves us the trouble of finding it again: End of explanation for line in file_to_read: line = line.lower() # make a list of words out of each line using a Python tool for lists word_list = line.split() # and loop over each word in the line for word in word_list: # if a word is not yet in the most_common_words dictionary, add it # if the word is there already, increase the count by 1 most_common_words[word] = most_common_words.get(word, 0) + 1 # we now have the words we want to analyze further in a dictionary -- so we don't need that file anymore. So let's close it file_to_read.close() Explanation: Once again, we'll need to loop through the lines in the file. This time, we care about inspecting each individual word -- not just whether a term is somewhere in the line: End of explanation most_common_word = None highest_count = 0 Explanation: Set up our baseline variables -- where we'll want to store the top values we're looking for. We'll need one variable for most_common_word, set to None, and another for highest_count, set to zero. End of explanation print(most_common_words["homer"]) print(most_common_words['paris']) print(most_common_words['hector']) print(most_common_words['helen']) print(most_common_words['sand']) print(most_common_words['trojan']) for word, count in most_common_words.items(): # as we go through the most_common_words dictionary, # set the word and the count that's the biggest we've seen so far if highest_count is None or count > highest_count: most_common_word = word highest_count = count print(f'The most common word in The Iliad is: {most_common_word}') print(f'It is in The Iliad {highest_count} times') print('Wow! How cool is that?') Explanation: Now we have a dictionary of every word in The Iliad. And we can spot-check the number of times any word we'd like has appeared by using the word as the key to access that (just remember we made all the keys lowercase): End of explanation
523
Given the following text description, write Python code to implement the functionality described below step by step Description: Creating temporary files with unique names securely, so they cannot be guessed by someone wanting to break the application or steal the data, is challenging. The tempfile module provides several functions for creating temporary file system resources securely. TemporaryFile() opens and returns an unnamed file, NamedTemporaryFile() opens and returns a named file, SpooledTemporaryFile holds its content in memory before writing to disk, and TemporaryDirectory is a context manager that removes the directory when the context is closed. Temporary File Step1: Named File Step2: Spooled File Step3: Temporary Directories Step4: Predicting Name Step5: Temporary File Location
Python Code: import os import tempfile print('Building a filename with PID:') filename = '/tmp/guess_my_name.{}.txt'.format(os.getpid()) with open(filename, 'w+b') as temp: print('temp:') print(' {!r}'.format(temp)) print('temp.name:') print(' {!r}'.format(temp.name)) # Clean up the temporary file yourself. os.remove(filename) print() print('TemporaryFile:') with tempfile.TemporaryFile() as temp: print('temp:') print(' {!r}'.format(temp)) print('temp.name:') print(' {!r}'.format(temp.name)) import os import tempfile with tempfile.TemporaryFile() as temp: temp.write(b'Some data') temp.seek(0) print(temp.read()) import tempfile with tempfile.TemporaryFile(mode='w+t') as f: f.writelines(['first\n', 'second\n']) f.seek(0) for line in f: print(line.rstrip()) Explanation: Creating temporary files with unique names securely, so they cannot be guessed by someone wanting to break the application or steal the data, is challenging. The tempfile module provides several functions for creating temporary file system resources securely. TemporaryFile() opens and returns an unnamed file, NamedTemporaryFile() opens and returns a named file, SpooledTemporaryFile holds its content in memory before writing to disk, and TemporaryDirectory is a context manager that removes the directory when the context is closed. Temporary File End of explanation import os import pathlib import tempfile with tempfile.NamedTemporaryFile() as temp: print('temp:') print(' {!r}'.format(temp)) print('temp.name:') print(' {!r}'.format(temp.name)) f = pathlib.Path(temp.name) print('Exists after close:', f.exists()) Explanation: Named File End of explanation import tempfile with tempfile.SpooledTemporaryFile(max_size=100, mode='w+t', encoding='utf-8') as temp: print('temp: {!r}'.format(temp)) for i in range(3): temp.write('This line is repeated over and over.\n') print(temp._rolled, temp._file) import tempfile with tempfile.SpooledTemporaryFile(max_size=1000, mode='w+t', encoding='utf-8') as temp: print('temp: {!r}'.format(temp)) for i in range(3): temp.write('This line is repeated over and over.\n') print(temp._rolled, temp._file) print('rolling over') temp.rollover() print(temp._rolled, temp._file) Explanation: Spooled File End of explanation import pathlib import tempfile with tempfile.TemporaryDirectory() as directory_name: the_dir = pathlib.Path(directory_name) print(the_dir) a_file = the_dir / 'a_file.txt' a_file.write_text('This file is deleted.') print('Directory exists after?', the_dir.exists()) print('Contents after:', list(the_dir.glob('*'))) Explanation: Temporary Directories End of explanation import tempfile with tempfile.NamedTemporaryFile(suffix='_suffix', prefix='prefix_', dir='/tmp') as temp: print('temp:') print(' ', temp) print('temp.name:') print(' ', temp.name) Explanation: Predicting Name End of explanation import tempfile print('gettempdir():', tempfile.gettempdir()) print('gettempprefix():', tempfile.gettempprefix()) Explanation: Temporary File Location End of explanation
524
Given the following text description, write Python code to implement the functionality described below step by step Description: In this tutorial you'll learn all about histograms and density plots. Set up the notebook As always, we begin by setting up the coding environment. (This code is hidden, but you can un-hide it by clicking on the "Code" button immediately below this text, on the right.) Step1: Select a dataset We'll work with a dataset of 150 different flowers, or 50 each from three different species of iris (Iris setosa, Iris versicolor, and Iris virginica). Load and examine the data Each row in the dataset corresponds to a different flower. There are four measurements Step2: Histograms Say we would like to create a histogram to see how petal length varies in iris flowers. We can do this with the sns.histplot command. Step3: In the code cell above, we had to supply the command with the column we'd like to plot (in this case, we chose 'Petal Length (cm)'). Density plots The next type of plot is a kernel density estimate (KDE) plot. In case you're not familiar with KDE plots, you can think of it as a smoothed histogram. To make a KDE plot, we use the sns.kdeplot command. Setting shade=True colors the area below the curve (and data= chooses the column we would like to plot). Step4: 2D KDE plots We're not restricted to a single column when creating a KDE plot. We can create a two-dimensional (2D) KDE plot with the sns.jointplot command. In the plot below, the color-coding shows us how likely we are to see different combinations of sepal width and petal length, where darker parts of the figure are more likely. Step5: Note that in addition to the 2D KDE plot in the center, - the curve at the top of the figure is a KDE plot for the data on the x-axis (in this case, iris_data['Petal Length (cm)']), and - the curve on the right of the figure is a KDE plot for the data on the y-axis (in this case, iris_data['Sepal Width (cm)']). Color-coded plots For the next part of the tutorial, we'll create plots to understand differences between the species. We can create three different histograms (one for each species) of petal length by using the sns.histplot command (as above). - data= provides the name of the variable that we used to read in the data - x= sets the name of column with the data we want to plot - hue= sets the column we'll use to split the data into different histograms Step6: We can also create a KDE plot for each species by using sns.kdeplot (as above). The functionality for data, x, and hue are identical to when we used sns.histplot above. Additionally, we set shade=True to color the area below each curve.
Python Code: #$HIDE$ import pandas as pd pd.plotting.register_matplotlib_converters() import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns print("Setup Complete") Explanation: In this tutorial you'll learn all about histograms and density plots. Set up the notebook As always, we begin by setting up the coding environment. (This code is hidden, but you can un-hide it by clicking on the "Code" button immediately below this text, on the right.) End of explanation # Path of the file to read iris_filepath = "../input/iris.csv" # Read the file into a variable iris_data iris_data = pd.read_csv(iris_filepath, index_col="Id") # Print the first 5 rows of the data iris_data.head() Explanation: Select a dataset We'll work with a dataset of 150 different flowers, or 50 each from three different species of iris (Iris setosa, Iris versicolor, and Iris virginica). Load and examine the data Each row in the dataset corresponds to a different flower. There are four measurements: the sepal length and width, along with the petal length and width. We also keep track of the corresponding species. End of explanation # Histogram sns.histplot(iris_data['Petal Length (cm)']) Explanation: Histograms Say we would like to create a histogram to see how petal length varies in iris flowers. We can do this with the sns.histplot command. End of explanation # KDE plot sns.kdeplot(data=iris_data['Petal Length (cm)'], shade=True) Explanation: In the code cell above, we had to supply the command with the column we'd like to plot (in this case, we chose 'Petal Length (cm)'). Density plots The next type of plot is a kernel density estimate (KDE) plot. In case you're not familiar with KDE plots, you can think of it as a smoothed histogram. To make a KDE plot, we use the sns.kdeplot command. Setting shade=True colors the area below the curve (and data= chooses the column we would like to plot). End of explanation # 2D KDE plot sns.jointplot(x=iris_data['Petal Length (cm)'], y=iris_data['Sepal Width (cm)'], kind="kde") Explanation: 2D KDE plots We're not restricted to a single column when creating a KDE plot. We can create a two-dimensional (2D) KDE plot with the sns.jointplot command. In the plot below, the color-coding shows us how likely we are to see different combinations of sepal width and petal length, where darker parts of the figure are more likely. End of explanation # Histograms for each species sns.histplot(data=iris_data, x='Petal Length (cm)', hue='Species') # Add title plt.title("Histogram of Petal Lengths, by Species") Explanation: Note that in addition to the 2D KDE plot in the center, - the curve at the top of the figure is a KDE plot for the data on the x-axis (in this case, iris_data['Petal Length (cm)']), and - the curve on the right of the figure is a KDE plot for the data on the y-axis (in this case, iris_data['Sepal Width (cm)']). Color-coded plots For the next part of the tutorial, we'll create plots to understand differences between the species. We can create three different histograms (one for each species) of petal length by using the sns.histplot command (as above). - data= provides the name of the variable that we used to read in the data - x= sets the name of column with the data we want to plot - hue= sets the column we'll use to split the data into different histograms End of explanation # KDE plots for each species sns.kdeplot(data=iris_data, x='Petal Length (cm)', hue='Species', shade=True) # Add title plt.title("Distribution of Petal Lengths, by Species") Explanation: We can also create a KDE plot for each species by using sns.kdeplot (as above). The functionality for data, x, and hue are identical to when we used sns.histplot above. Additionally, we set shade=True to color the area below each curve. End of explanation
525
Given the following text description, write Python code to implement the functionality described below step by step Description: The SparkContext.addPyFiles() function can be used to add py files. We can define objects and variables in these files and make them available to the Spark cluster. Create a SparkContext object Step1: Add py files Step2: Use my_module.py We can import my_module as a python module
Python Code: from pyspark import SparkConf, SparkContext, SparkFiles from pyspark.sql import SparkSession sc = SparkContext(conf=SparkConf()) Explanation: The SparkContext.addPyFiles() function can be used to add py files. We can define objects and variables in these files and make them available to the Spark cluster. Create a SparkContext object End of explanation sc.addPyFile('pyFiles/my_module.py') SparkFiles.get('my_module.py') Explanation: Add py files End of explanation from my_module import * addPyFiles_is_successfull() sum_two_variables(4,5) Explanation: Use my_module.py We can import my_module as a python module End of explanation
526
Given the following text description, write Python code to implement the functionality described below step by step Description: Knows What It Knows (KWIK) A framework for self-aware learning Combines elements of Probably Approximately Correct (PAC) and mistake-bound models Useful for active learning Motivation Polynomial sample complexity guarantee algorithms Rmax algorithm that estimates transition probabilities for each state-action-next action of MDP Accuracy bound using Hoeffding bounds KWIK Only makes accurate predictions Can opt-out of prediction by saying "i don't know", which is polynomially bound Example 1 Step1: Example 1 2 patrons Step2: Example 2 3 patrons Step3: Another example This time the composition is (Normal patron, I, P)
Python Code: from collections import Counter class Kwik: def __init__(self, number_of_patrons): # Init self.current_i_do_not_knows = 0 self.number_of_patrons = number_of_patrons self.max_i_do_not_knows = self.number_of_patrons * (self.number_of_patrons - 1) self.instigator = None self.peacemaker = None self.candidates = {candidate_type: set(range(self.number_of_patrons)) for candidate_type in ['instigator', 'peacemaker']} self.peacemaker_candidates = set(range(self.number_of_patrons)) self.solved = False self.memory = {} def _remove_candidate(self, patron_index, candidate_type): if not self.solved and not (candidate_type == 'instigator' and self.instigator is not None) \ and not (candidate_type == 'peacemaker' and self.peacemaker is not None): candidates_for_type = self.candidates[candidate_type] candidates_for_type.discard(patron_index) if len(candidates_for_type) == 1: remaining = candidates_for_type.pop() if candidate_type == 'instigator': self.instigator = remaining if self.peacemaker is not None: self.solved = True else: self._remove_candidate(remaining, 'peacemaker') else: self.peacemaker = remaining if self.instigator is not None: self.solved = True else: self._remove_candidate(remaining, 'instigator') def _learn(self, at_establishment, fight_occurred, counts): if counts[True] == 1 and fight_occurred: # If only one person is there and a fight breaks out -> he's the instigator instigator = at_establishment.index(True) self.instigator = instigator self.candidates['instigator'] = set() self._remove_candidate(instigator, 'peacemaker') elif counts[True] == 1 and not fight_occurred: # If only one person is there and no fight breaks out -> he's NOT the instigator # remove him from the list of instigators index = at_establishment.index(True) self._remove_candidate(index, 'instigator') else: # Some people are present, eliminate candidates for patron_index, patron_present in enumerate(at_establishment): # If the patron was present if patron_present: if fight_occurred: # The patron is not a peacemaker self._remove_candidate(patron_index, 'peacemaker') else: # The patron is not an instigator # TODO: this is not correct self._remove_candidate(patron_index, 'instigator') def _all_known(self, at_establishment): if at_establishment[self.instigator]: if at_establishment[self.peacemaker]: return 0 else: return 1 else: return 0 def _determine_and_learn(self, at_establishment, fight_occurred): counts = Counter(at_establishment) if len(counts) == 1: # Everyone is present so no fight and nothing to learn return 0 else: self._learn(at_establishment, fight_occurred, counts) if self.current_i_do_not_knows == self.max_i_do_not_knows: raise ValueError("Exhausted ⟂") else: self.current_i_do_not_knows += 1 return -1 def run_instance(self, at_establishment, fight_occurred): # Make it hashable at_establishment = tuple(at_establishment) if at_establishment in self.memory: # We've seen this before, return from memory return int(self.memory[at_establishment]) else: self.memory[at_establishment] = fight_occurred if self.solved: # Instigator and peacemaker are already known return self._all_known(at_establishment) else: # Another case return self._determine_and_learn(at_establishment, fight_occurred) Explanation: Knows What It Knows (KWIK) A framework for self-aware learning Combines elements of Probably Approximately Correct (PAC) and mistake-bound models Useful for active learning Motivation Polynomial sample complexity guarantee algorithms Rmax algorithm that estimates transition probabilities for each state-action-next action of MDP Accuracy bound using Hoeffding bounds KWIK Only makes accurate predictions Can opt-out of prediction by saying "i don't know", which is polynomially bound Example 1 End of explanation learner = Kwik(number_of_patrons=2) # both patrons 0 and 1 are candidates of being both I and P learner.candidates # We haven't memorized anything learner.memory # P and I present and no fight # Since we know that there's at least one I and one P # if everyone is present or absent we haven't learned anything # and we know that there's no fight learner.run_instance([True, True], False) # Memorize this instance learner.memory # Nothing was learnt from this case learner.candidates # Patron 1 present and patron 0 absent # We still don't know who is who so return -1 (don't know) learner.run_instance([True, False], True) # Memorize learner.memory # Since a fight broke out we know 0 was the I # and we can deduce that 1 is P learner.candidates learner.instigator learner.peacemaker Explanation: Example 1 2 patrons End of explanation learner = Kwik(3) learner.candidates learner.run_instance([True, True, True], False) learner.run_instance([False, False, True], False) learner.candidates learner.run_instance([True, True, False], True) learner.candidates learner.peacemaker learner.run_instance([False, True, True], False) # Is this correct? # We eliminate patron 1 as an instigator and deduce 0 is I learner.candidates learner.instigator learner.run_instance([True, False, True], False) learner.run_instance([True, False, False], True) learner.run_instance([True, False, False], True) Explanation: Example 2 3 patrons End of explanation learner = Kwik(3) learner.candidates learner.run_instance([False, False, True], False) learner.candidates learner.run_instance([False, True, True], False) learner.candidates # This is not correct learner.instigator learner.run_instance([True, False, True], False) learner.candidates learner.run_instance([True, True, False], True) learner.candidates learner.peacemaker learner.instigator # Incorrect learner.run_instance([False, True, False], True) Explanation: Another example This time the composition is (Normal patron, I, P) End of explanation
527
Given the following text description, write Python code to implement the functionality described below step by step Description: In this notebook a simple Q learner will be trained and evaluated. The Q learner recommends when to buy or sell shares of one particular stock, and in which quantity (in fact it determines the desired fraction of shares in the total portfolio value). One initial attempt was made to train the Q-learner with multiple processes, but it was unsuccessful. Step1: Let's show the symbols data, to see how good the recommender has to be. Step2: Let's run the trained agent, with the test set First a non-learning test Step3: And now a "realistic" test, in which the learner continues to learn from past samples in the test set (it even makes some random moves, though very few). Step4: What are the metrics for "holding the position"?
Python Code: # Basic imports import os import pandas as pd import matplotlib.pyplot as plt import numpy as np import datetime as dt import scipy.optimize as spo import sys from time import time from sklearn.metrics import r2_score, median_absolute_error from multiprocessing import Pool %matplotlib inline %pylab inline pylab.rcParams['figure.figsize'] = (20.0, 10.0) %load_ext autoreload %autoreload 2 sys.path.append('../../') import recommender.simulator as sim from utils.analysis import value_eval from recommender.agent import Agent from functools import partial NUM_THREADS = 1 LOOKBACK = 252*2 + 28 STARTING_DAYS_AHEAD = 20 POSSIBLE_FRACTIONS = [0.0, 1.0] # Get the data SYMBOL = 'SPY' total_data_train_df = pd.read_pickle('../../data/data_train_val_df.pkl').stack(level='feature') data_train_df = total_data_train_df[SYMBOL].unstack() total_data_test_df = pd.read_pickle('../../data/data_test_df.pkl').stack(level='feature') data_test_df = total_data_test_df[SYMBOL].unstack() if LOOKBACK == -1: total_data_in_df = total_data_train_df data_in_df = data_train_df else: data_in_df = data_train_df.iloc[-LOOKBACK:] total_data_in_df = total_data_train_df.loc[data_in_df.index[0]:] # Create many agents index = np.arange(NUM_THREADS).tolist() env, num_states, num_actions = sim.initialize_env(total_data_in_df, SYMBOL, starting_days_ahead=STARTING_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS) agents = [Agent(num_states=num_states, num_actions=num_actions, random_actions_rate=0.98, random_actions_decrease=0.9999, dyna_iterations=0, name='Agent_{}'.format(i)) for i in index] def show_results(results_list, data_in_df, graph=False): for values in results_list: total_value = values.sum(axis=1) print('Sharpe ratio: {}\nCum. Ret.: {}\nAVG_DRET: {}\nSTD_DRET: {}\nFinal value: {}'.format(*value_eval(pd.DataFrame(total_value)))) print('-'*100) initial_date = total_value.index[0] compare_results = data_in_df.loc[initial_date:, 'Close'].copy() compare_results.name = SYMBOL compare_results_df = pd.DataFrame(compare_results) compare_results_df['portfolio'] = total_value std_comp_df = compare_results_df / compare_results_df.iloc[0] if graph: plt.figure() std_comp_df.plot() Explanation: In this notebook a simple Q learner will be trained and evaluated. The Q learner recommends when to buy or sell shares of one particular stock, and in which quantity (in fact it determines the desired fraction of shares in the total portfolio value). One initial attempt was made to train the Q-learner with multiple processes, but it was unsuccessful. End of explanation print('Sharpe ratio: {}\nCum. Ret.: {}\nAVG_DRET: {}\nSTD_DRET: {}\nFinal value: {}'.format(*value_eval(pd.DataFrame(data_in_df['Close'].iloc[STARTING_DAYS_AHEAD:])))) # Simulate (with new envs, each time) n_epochs = 15 for i in range(n_epochs): tic = time() env.reset(STARTING_DAYS_AHEAD) results_list = sim.simulate_period(total_data_in_df, SYMBOL, agents[0], starting_days_ahead=STARTING_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS, verbose=False, other_env=env) toc = time() print('Epoch: {}'.format(i)) print('Elapsed time: {} seconds.'.format((toc-tic))) print('Random Actions Rate: {}'.format(agents[0].random_actions_rate)) show_results([results_list], data_in_df) env.reset(STARTING_DAYS_AHEAD) results_list = sim.simulate_period(total_data_in_df, SYMBOL, agents[0], learn=False, starting_days_ahead=STARTING_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS, other_env=env) show_results([results_list], data_in_df, graph=True) Explanation: Let's show the symbols data, to see how good the recommender has to be. End of explanation TEST_DAYS_AHEAD = 20 env.set_test_data(total_data_test_df, TEST_DAYS_AHEAD) tic = time() results_list = sim.simulate_period(total_data_test_df, SYMBOL, agents[0], learn=False, starting_days_ahead=TEST_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS, verbose=False, other_env=env) toc = time() print('Epoch: {}'.format(i)) print('Elapsed time: {} seconds.'.format((toc-tic))) print('Random Actions Rate: {}'.format(agents[0].random_actions_rate)) show_results([results_list], data_test_df, graph=True) Explanation: Let's run the trained agent, with the test set First a non-learning test: this scenario would be worse than what is possible (in fact, the q-learner can learn from past samples in the test set without compromising the causality). End of explanation env.set_test_data(total_data_test_df, TEST_DAYS_AHEAD) tic = time() results_list = sim.simulate_period(total_data_test_df, SYMBOL, agents[0], learn=True, starting_days_ahead=TEST_DAYS_AHEAD, possible_fractions=POSSIBLE_FRACTIONS, verbose=False, other_env=env) toc = time() print('Epoch: {}'.format(i)) print('Elapsed time: {} seconds.'.format((toc-tic))) print('Random Actions Rate: {}'.format(agents[0].random_actions_rate)) show_results([results_list], data_test_df, graph=True) Explanation: And now a "realistic" test, in which the learner continues to learn from past samples in the test set (it even makes some random moves, though very few). End of explanation print('Sharpe ratio: {}\nCum. Ret.: {}\nAVG_DRET: {}\nSTD_DRET: {}\nFinal value: {}'.format(*value_eval(pd.DataFrame(data_test_df['Close'].iloc[STARTING_DAYS_AHEAD:])))) import pickle with open('../../data/simple_q_learner.pkl', 'wb') as best_agent: pickle.dump(agents[0], best_agent) Explanation: What are the metrics for "holding the position"? End of explanation
528
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Toplevel MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Flux Correction 3. Key Properties --&gt; Genealogy 4. Key Properties --&gt; Software Properties 5. Key Properties --&gt; Coupling 6. Key Properties --&gt; Tuning Applied 7. Key Properties --&gt; Conservation --&gt; Heat 8. Key Properties --&gt; Conservation --&gt; Fresh Water 9. Key Properties --&gt; Conservation --&gt; Salt 10. Key Properties --&gt; Conservation --&gt; Momentum 11. Radiative Forcings 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect 24. Radiative Forcings --&gt; Aerosols --&gt; Dust 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt 28. Radiative Forcings --&gt; Other --&gt; Land Use 29. Radiative Forcings --&gt; Other --&gt; Solar 1. Key Properties Key properties of the model 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 2. Key Properties --&gt; Flux Correction Flux correction properties of the model 2.1. Details Is Required Step7: 3. Key Properties --&gt; Genealogy Genealogy and history of the model 3.1. Year Released Is Required Step8: 3.2. CMIP3 Parent Is Required Step9: 3.3. CMIP5 Parent Is Required Step10: 3.4. Previous Name Is Required Step11: 4. Key Properties --&gt; Software Properties Software properties of model 4.1. Repository Is Required Step12: 4.2. Code Version Is Required Step13: 4.3. Code Languages Is Required Step14: 4.4. Components Structure Is Required Step15: 4.5. Coupler Is Required Step16: 5. Key Properties --&gt; Coupling ** 5.1. Overview Is Required Step17: 5.2. Atmosphere Double Flux Is Required Step18: 5.3. Atmosphere Fluxes Calculation Grid Is Required Step19: 5.4. Atmosphere Relative Winds Is Required Step20: 6. Key Properties --&gt; Tuning Applied Tuning methodology for model 6.1. Description Is Required Step21: 6.2. Global Mean Metrics Used Is Required Step22: 6.3. Regional Metrics Used Is Required Step23: 6.4. Trend Metrics Used Is Required Step24: 6.5. Energy Balance Is Required Step25: 6.6. Fresh Water Balance Is Required Step26: 7. Key Properties --&gt; Conservation --&gt; Heat Global heat convervation properties of the model 7.1. Global Is Required Step27: 7.2. Atmos Ocean Interface Is Required Step28: 7.3. Atmos Land Interface Is Required Step29: 7.4. Atmos Sea-ice Interface Is Required Step30: 7.5. Ocean Seaice Interface Is Required Step31: 7.6. Land Ocean Interface Is Required Step32: 8. Key Properties --&gt; Conservation --&gt; Fresh Water Global fresh water convervation properties of the model 8.1. Global Is Required Step33: 8.2. Atmos Ocean Interface Is Required Step34: 8.3. Atmos Land Interface Is Required Step35: 8.4. Atmos Sea-ice Interface Is Required Step36: 8.5. Ocean Seaice Interface Is Required Step37: 8.6. Runoff Is Required Step38: 8.7. Iceberg Calving Is Required Step39: 8.8. Endoreic Basins Is Required Step40: 8.9. Snow Accumulation Is Required Step41: 9. Key Properties --&gt; Conservation --&gt; Salt Global salt convervation properties of the model 9.1. Ocean Seaice Interface Is Required Step42: 10. Key Properties --&gt; Conservation --&gt; Momentum Global momentum convervation properties of the model 10.1. Details Is Required Step43: 11. Radiative Forcings Radiative forcings of the model for historical and scenario (aka Table 12.1 IPCC AR5) 11.1. Overview Is Required Step44: 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 Carbon dioxide forcing 12.1. Provision Is Required Step45: 12.2. Additional Information Is Required Step46: 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 Methane forcing 13.1. Provision Is Required Step47: 13.2. Additional Information Is Required Step48: 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O Nitrous oxide forcing 14.1. Provision Is Required Step49: 14.2. Additional Information Is Required Step50: 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 Troposheric ozone forcing 15.1. Provision Is Required Step51: 15.2. Additional Information Is Required Step52: 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 Stratospheric ozone forcing 16.1. Provision Is Required Step53: 16.2. Additional Information Is Required Step54: 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC Ozone-depleting and non-ozone-depleting fluorinated gases forcing 17.1. Provision Is Required Step55: 17.2. Equivalence Concentration Is Required Step56: 17.3. Additional Information Is Required Step57: 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 SO4 aerosol forcing 18.1. Provision Is Required Step58: 18.2. Additional Information Is Required Step59: 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon Black carbon aerosol forcing 19.1. Provision Is Required Step60: 19.2. Additional Information Is Required Step61: 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon Organic carbon aerosol forcing 20.1. Provision Is Required Step62: 20.2. Additional Information Is Required Step63: 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate Nitrate forcing 21.1. Provision Is Required Step64: 21.2. Additional Information Is Required Step65: 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect Cloud albedo effect forcing (RFaci) 22.1. Provision Is Required Step66: 22.2. Aerosol Effect On Ice Clouds Is Required Step67: 22.3. Additional Information Is Required Step68: 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect Cloud lifetime effect forcing (ERFaci) 23.1. Provision Is Required Step69: 23.2. Aerosol Effect On Ice Clouds Is Required Step70: 23.3. RFaci From Sulfate Only Is Required Step71: 23.4. Additional Information Is Required Step72: 24. Radiative Forcings --&gt; Aerosols --&gt; Dust Dust forcing 24.1. Provision Is Required Step73: 24.2. Additional Information Is Required Step74: 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic Tropospheric volcanic forcing 25.1. Provision Is Required Step75: 25.2. Historical Explosive Volcanic Aerosol Implementation Is Required Step76: 25.3. Future Explosive Volcanic Aerosol Implementation Is Required Step77: 25.4. Additional Information Is Required Step78: 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic Stratospheric volcanic forcing 26.1. Provision Is Required Step79: 26.2. Historical Explosive Volcanic Aerosol Implementation Is Required Step80: 26.3. Future Explosive Volcanic Aerosol Implementation Is Required Step81: 26.4. Additional Information Is Required Step82: 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt Sea salt forcing 27.1. Provision Is Required Step83: 27.2. Additional Information Is Required Step84: 28. Radiative Forcings --&gt; Other --&gt; Land Use Land use forcing 28.1. Provision Is Required Step85: 28.2. Crop Change Only Is Required Step86: 28.3. Additional Information Is Required Step87: 29. Radiative Forcings --&gt; Other --&gt; Solar Solar forcing 29.1. Provision Is Required Step88: 29.2. Additional Information Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'noaa-gfdl', 'gfdl-esm4', 'toplevel') Explanation: ES-DOC CMIP6 Model Properties - Toplevel MIP Era: CMIP6 Institute: NOAA-GFDL Source ID: GFDL-ESM4 Sub-Topics: Radiative Forcings. Properties: 85 (42 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-20 15:02:34 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties 2. Key Properties --&gt; Flux Correction 3. Key Properties --&gt; Genealogy 4. Key Properties --&gt; Software Properties 5. Key Properties --&gt; Coupling 6. Key Properties --&gt; Tuning Applied 7. Key Properties --&gt; Conservation --&gt; Heat 8. Key Properties --&gt; Conservation --&gt; Fresh Water 9. Key Properties --&gt; Conservation --&gt; Salt 10. Key Properties --&gt; Conservation --&gt; Momentum 11. Radiative Forcings 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect 24. Radiative Forcings --&gt; Aerosols --&gt; Dust 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt 28. Radiative Forcings --&gt; Other --&gt; Land Use 29. Radiative Forcings --&gt; Other --&gt; Solar 1. Key Properties Key properties of the model 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Top level overview of coupled model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of coupled model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.flux_correction.details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Flux Correction Flux correction properties of the model 2.1. Details Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how flux corrections are applied in the model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.year_released') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Genealogy Genealogy and history of the model 3.1. Year Released Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Year the model was released End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP3_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.2. CMIP3 Parent Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 CMIP3 parent if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.CMIP5_parent') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.3. CMIP5 Parent Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 CMIP5 parent if any End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.genealogy.previous_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 3.4. Previous Name Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Previously known as End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Software Properties Software properties of model 4.1. Repository Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Location of code for this component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Code Version Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Code version identifier. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.3. Code Languages Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N Code language(s). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.components_structure') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.4. Components Structure Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how model realms are structured into independent software components (coupled via a coupler) and internal software components. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.software_properties.coupler') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "OASIS" # "OASIS3-MCT" # "ESMF" # "NUOPC" # "Bespoke" # "Unknown" # "None" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 4.5. Coupler Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Overarching coupling framework for model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Coupling ** 5.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of coupling in the model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_double_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 5.2. Atmosphere Double Flux Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is the atmosphere passing a double flux to the ocean and sea ice (as opposed to a single one)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_fluxes_calculation_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Atmosphere grid" # "Ocean grid" # "Specific coupler grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 5.3. Atmosphere Fluxes Calculation Grid Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Where are the air-sea fluxes calculated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.coupling.atmosphere_relative_winds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 5.4. Atmosphere Relative Winds Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are relative or absolute winds used to compute the flux? I.e. do ocean surface currents enter the wind stress calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6. Key Properties --&gt; Tuning Applied Tuning methodology for model 6.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics/diagnostics retained. Document the relative weight given to climate performance metrics/diagnostics versus process oriented metrics/diagnostics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.2. Global Mean Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List set of metrics/diagnostics of the global mean state used in tuning model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.3. Regional Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List of regional metrics/diagnostics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.4. Trend Metrics Used Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N List observed trend metrics/diagnostics used in tuning model/component (such as 20th century) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.energy_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.5. Energy Balance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how energy balance was obtained in the full system: in the various components independently or at the components coupling stage? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.tuning_applied.fresh_water_balance') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.6. Fresh Water Balance Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how fresh_water balance was obtained in the full system: in the various components independently or at the components coupling stage? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.global') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Key Properties --&gt; Conservation --&gt; Heat Global heat convervation properties of the model 7.1. Global Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how heat is conserved globally End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.2. Atmos Ocean Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the atmosphere/ocean coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_land_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.3. Atmos Land Interface Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how heat is conserved at the atmosphere/land coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.atmos_sea-ice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.4. Atmos Sea-ice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the atmosphere/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.5. Ocean Seaice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the ocean/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.heat.land_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.6. Land Ocean Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how heat is conserved at the land/ocean coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.global') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Key Properties --&gt; Conservation --&gt; Fresh Water Global fresh water convervation properties of the model 8.1. Global Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how fresh_water is conserved globally End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_ocean_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.2. Atmos Ocean Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how fresh_water is conserved at the atmosphere/ocean coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_land_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.3. Atmos Land Interface Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe if/how fresh water is conserved at the atmosphere/land coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.atmos_sea-ice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.4. Atmos Sea-ice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how fresh water is conserved at the atmosphere/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.5. Ocean Seaice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how fresh water is conserved at the ocean/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.runoff') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.6. Runoff Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how runoff is distributed and conserved End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.iceberg_calving') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.7. Iceberg Calving Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how iceberg calving is modeled and conserved End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.endoreic_basins') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.8. Endoreic Basins Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how endoreic basins (no ocean access) are treated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.fresh_water.snow_accumulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.9. Snow Accumulation Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe how snow accumulation over land and over sea-ice is treated End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.salt.ocean_seaice_interface') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9. Key Properties --&gt; Conservation --&gt; Salt Global salt convervation properties of the model 9.1. Ocean Seaice Interface Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how salt is conserved at the ocean/sea-ice coupling interface End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.key_properties.conservation.momentum.details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10. Key Properties --&gt; Conservation --&gt; Momentum Global momentum convervation properties of the model 10.1. Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe if/how momentum is conserved in the model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11. Radiative Forcings Radiative forcings of the model for historical and scenario (aka Table 12.1 IPCC AR5) 11.1. Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of radiative forcings (GHG and aerosols) implementation in model End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CO2.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 12. Radiative Forcings --&gt; Greenhouse Gases --&gt; CO2 Carbon dioxide forcing 12.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CO2.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CH4.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Radiative Forcings --&gt; Greenhouse Gases --&gt; CH4 Methane forcing 13.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CH4.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 13.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.N2O.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14. Radiative Forcings --&gt; Greenhouse Gases --&gt; N2O Nitrous oxide forcing 14.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.N2O.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.tropospheric_O3.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15. Radiative Forcings --&gt; Greenhouse Gases --&gt; Tropospheric O3 Troposheric ozone forcing 15.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.tropospheric_O3.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.stratospheric_O3.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 16. Radiative Forcings --&gt; Greenhouse Gases --&gt; Stratospheric O3 Stratospheric ozone forcing 16.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.stratospheric_O3.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 16.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17. Radiative Forcings --&gt; Greenhouse Gases --&gt; CFC Ozone-depleting and non-ozone-depleting fluorinated gases forcing 17.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.equivalence_concentration') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "Option 1" # "Option 2" # "Option 3" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17.2. Equivalence Concentration Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Details of any equivalence concentrations used End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.greenhouse_gases.CFC.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.3. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.SO4.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18. Radiative Forcings --&gt; Aerosols --&gt; SO4 SO4 aerosol forcing 18.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.SO4.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.black_carbon.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19. Radiative Forcings --&gt; Aerosols --&gt; Black Carbon Black carbon aerosol forcing 19.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.black_carbon.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 19.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.organic_carbon.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20. Radiative Forcings --&gt; Aerosols --&gt; Organic Carbon Organic carbon aerosol forcing 20.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.organic_carbon.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.nitrate.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21. Radiative Forcings --&gt; Aerosols --&gt; Nitrate Nitrate forcing 21.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.nitrate.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 21.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22. Radiative Forcings --&gt; Aerosols --&gt; Cloud Albedo Effect Cloud albedo effect forcing (RFaci) 22.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.aerosol_effect_on_ice_clouds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22.2. Aerosol Effect On Ice Clouds Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Radiative effects of aerosols on ice clouds are represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_albedo_effect.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.3. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23. Radiative Forcings --&gt; Aerosols --&gt; Cloud Lifetime Effect Cloud lifetime effect forcing (ERFaci) 23.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.aerosol_effect_on_ice_clouds') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 23.2. Aerosol Effect On Ice Clouds Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Radiative effects of aerosols on ice clouds are represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.RFaci_from_sulfate_only') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 23.3. RFaci From Sulfate Only Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Radiative forcing from aerosol cloud interactions from sulfate aerosol only? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.cloud_lifetime_effect.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 23.4. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.dust.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 24. Radiative Forcings --&gt; Aerosols --&gt; Dust Dust forcing 24.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.dust.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 24.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25. Radiative Forcings --&gt; Aerosols --&gt; Tropospheric Volcanic Tropospheric volcanic forcing 25.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.historical_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.2. Historical Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in historical simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.future_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 25.3. Future Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in future simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.tropospheric_volcanic.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 25.4. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26. Radiative Forcings --&gt; Aerosols --&gt; Stratospheric Volcanic Stratospheric volcanic forcing 26.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.historical_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26.2. Historical Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in historical simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.future_explosive_volcanic_aerosol_implementation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Type A" # "Type B" # "Type C" # "Type D" # "Type E" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 26.3. Future Explosive Volcanic Aerosol Implementation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How explosive volcanic aerosol is implemented in future simulations End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.stratospheric_volcanic.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 26.4. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.sea_salt.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 27. Radiative Forcings --&gt; Aerosols --&gt; Sea Salt Sea salt forcing 27.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.aerosols.sea_salt.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 27.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "M" # "Y" # "E" # "ES" # "C" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 28. Radiative Forcings --&gt; Other --&gt; Land Use Land use forcing 28.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How this forcing agent is provided (e.g. via concentrations, emission precursors, prognostically derived, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.crop_change_only') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 28.2. Crop Change Only Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Land use change represented via crop change only? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.land_use.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 28.3. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.solar.provision') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "N/A" # "irradiance" # "proton" # "electron" # "cosmic ray" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 29. Radiative Forcings --&gt; Other --&gt; Solar Solar forcing 29.1. Provision Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N How solar forcing is provided End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.toplevel.radiative_forcings.other.solar.additional_information') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 29.2. Additional Information Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Additional information relating to the provision and implementation of this forcing agent (e.g. citations, use of non-standard datasets, explaining how multiple provisions are used, etc.). End of explanation
529
Given the following text description, write Python code to implement the functionality described below step by step Description: ApJdataFrames Luhman1999 Title Step1: Table 1 - Data for Spectroscopic Sample in ρ Ophiuchi Step2: Save data
Python Code: import warnings warnings.filterwarnings("ignore") from astropy.io import ascii import pandas as pd Explanation: ApJdataFrames Luhman1999 Title: Low-Mass Star Formation and the Initial Mass Function in the ρ Ophiuchi Cloud Core Authors: K. L. Luhman and G.H. Rieke Data is from this paper: http://iopscience.iop.org/0004-637X/525/1/440/fulltext/ End of explanation names = ["BKLT","Other ID","RA_1950","DEC_1950","SpT_prev","SpT_IR","SpT_adopted", "Teff","AJ","Lbol","J-H","H-K","K","rK","BrGamma"] tbl1 = pd.read_csv("http://iopscience.iop.org/0004-637X/525/1/440/fulltext/40180.tb1.txt", sep="\t", na_values="\ldots", skiprows=1, names=names) tbl1.RA_1950 = "16 "+tbl1.RA_1950 tbl1.DEC_1950 = "-24 "+tbl1.DEC_1950 tbl1.head() len(tbl1) Explanation: Table 1 - Data for Spectroscopic Sample in ρ Ophiuchi End of explanation ! mkdir ../data/Luhman1999 tbl1.to_csv("../data/Luhman1999/tbl1.csv", index=False, sep='\t') Explanation: Save data End of explanation
530
Given the following text description, write Python code to implement the functionality described below step by step Description: Import necessary modules Step1: Filepath management Step2: Load the data from the hdf store Step3: Visualize the data Step4: Adding in missing times (zero volume minutes) Before evaluating goals, we need to fill in the missing time steps. These missing time steps have zero trading volume. So, all of the prices for these steps are equal to the last closing price. All of the volumes are equal to zero. Step7: Logic for getting goal information Step8: Get goal tags for all data Step9: Save data to hdf
Python Code: import time import pandas as pd import numpy as np import datetime as dt from collections import OrderedDict from copy import copy import warnings import matplotlib.pyplot as plt import seaborn as sns from pprint import pprint %matplotlib inline Explanation: Import necessary modules End of explanation project_dir = r'/Users/hudson/Code/marketModel/' Explanation: Filepath management End of explanation stock_data = pd.read_hdf(project_dir + 'data/stock_data/raw_stock_data.hdf', 'table') symbols = stock_data.reset_index().ticker.unique() pprint(symbols) symbol = np.random.choice(symbols) print 'symbol: ' + symbol stock_data_vis = stock_data.loc[symbol] print stock_data_vis.head() print stock_data_vis.describe() print stock_data.reset_index().loc[:,('ticker', 'timestamp')].groupby('ticker').agg([len, np.min, np.max]) Explanation: Load the data from the hdf store End of explanation # First keep the time index so we can see the time frame stock_data_vis.close.plot(label=symbol) plt.legend(bbox_to_anchor=(1.25, .5)) plt.tight_layout() plt.ylabel("Close ($)") sns.despine() # Now drop the time index so we can see the actual stock movement stock_data_vis.reset_index().close.plot(label=symbol) stock_data_vis.reset_index().close.rolling(20).mean().plot(label='20 Min. Moving Avg.') plt.legend(bbox_to_anchor=(1.25, .5)) plt.tight_layout() plt.ylabel("Close ($)") sns.despine() Explanation: Visualize the data End of explanation # First reshape the index and group by ticker stock_data_final = stock_data.reset_index(level=0) grouped_stock_data = stock_data_final.groupby('ticker') ## Before evaluating goals, we need to fill in the missing time steps. ## These missing time steps have zero trading volume. ## So, all of the prices for these steps are equal to the last ## closing price. All of the volumes are equal to zero. stock_data_with_all_minutes = [] for name, group in grouped_stock_data: # Create a dataframe of all the times min_time, max_time = group.index.min(), group.index.max() timeDiff = (max_time - min_time).components numMinutes = timeDiff.days*24*60 + timeDiff.hours*60 + timeDiff.minutes #alltimesIdx = pd.DatetimeIndex(start=min_time, freq=pd.tseries.offsets.Minute(1), periods=numMinutes) alltimesIdx = pd.DatetimeIndex(start=min_time, freq=pd.Timedelta(minutes=1), periods=numMinutes) alltimes = pd.DataFrame(index=alltimesIdx) # Drop minutes outside of 9:30am - 4:00pm est alltimes = alltimes.between_time('09:30','16:00') # Join on the original dataframe alltimes_group = alltimes.join(group) # Forward fill the NaN closing prices alltimes_group.loc[:,('ticker', 'close')] = alltimes_group.loc[:,('ticker', 'close')].\ fillna(method='ffill', axis=0) # Assign all price variables to the close price alltimes_group.loc[:,'open':'close'] = alltimes_group.loc[:,'open':'close'].\ fillna(method='bfill', axis=1) # Assign all NaN volumes to zero alltimes_group.loc[:, 'volume'] = alltimes_group.loc[:, 'volume'].fillna(value=0) stock_data_with_all_minutes.append(alltimes_group) stock_data_with_all_minutes = pd.concat(stock_data_with_all_minutes) stock_data_with_all_minutes.index.name = 'timestamp' stock_data_with_all_minutes.reset_index().loc[:,('ticker', 'timestamp')].groupby('ticker').agg([len, min, max]) Explanation: Adding in missing times (zero volume minutes) Before evaluating goals, we need to fill in the missing time steps. These missing time steps have zero trading volume. So, all of the prices for these steps are equal to the last closing price. All of the volumes are equal to zero. End of explanation def get_min_max(data, starttime, endtime): This function takes data for a specific ticker and returns the min and max prices. subdata = data.loc[starttime:endtime] return (subdata.low.min(), subdata.high.max()) def is_goal_met(data, timestep, goal_time_from_step, goal_duration, goal_raise_frac = 0.1, goal_drop_frac=0.1): This function takes data for a specific ticker, a time index for that ticker, goal parameters, and returns a boolean indicating whether or not the goal is satisfied for that timestep. # Assign a status message to record various special cases statusMessage = "" #Convert time variables to appropriate numpyt date types td_goal_time_from_step = np.timedelta64(goal_time_from_step, 'm') td_goal_duration = np.timedelta64(goal_duration, 'm') # Calculate the start and end times of the goal time window goal_starttime = np.datetime64(timestep + td_goal_time_from_step) goal_endtime = np.datetime64(goal_starttime + td_goal_duration) if goal_endtime > np.datetime64(data.index.max()): statusMessage = "Goal time window end time lies beyond available data." # Get the data for goal checking in that time window subdata = data.loc[goal_starttime:goal_endtime] # Get the minimum and maximum prices for the goal time window min_price, max_price = get_min_max(data, goal_starttime, goal_endtime) if np.isnan(min_price) | np.isnan(max_price): # Zero trading volume in time window. Get last prices. most_recent_time_with_transactions = np.max(data.loc[:goal_starttime].index) if most_recent_time_with_transactions == timestep: statusMessage = statusMessage + " Zero trading volume between current timestep and goal time window end." return {'timestamp': timestep, 'goal_met': False, 'raise_goal_met': False, 'drop_goal_met': True, 'statusMessage': statusMessage} else: min_price, max_price = data.loc[timestep, 'low'], data.loc[timestep, 'high'] # Determine if goals were met # TODO: is this the right reference for the 'current price'? current_price = np.mean(data.loc[timestep, ['high', 'close']]) # Is raise goal met? Return true if max price at least (1+goal_raise_frac) * current_price is_raise_goal_met = max_price >= (1+goal_raise_frac) * current_price # Is drop goal met? Return true if min price at least (1-goal_drop_frac) * current_price is_drop_goal_met = min_price >= (1-goal_drop_frac) * current_price # Return dict containing raise and drop goals and product for convenience return {'timestamp': timestep, 'goal_met': is_raise_goal_met * is_drop_goal_met, 'raise_goal_met': is_raise_goal_met, 'drop_goal_met': is_drop_goal_met, 'statusMessage': statusMessage} # test get_min_max get_min_max(stock_data_vis, '2017-08-28', '2017-08-30') # test is_goal_met random_time_index = np.random.choice(stock_data_vis.index.values) print "Random time: " + str(random_time_index) %timeit is_goal_met(stock_data_vis, random_time_index, 0, 1000) Explanation: Logic for getting goal information End of explanation # first define a function that tags for one ticker def get_tagged_stock_data(data, ticker, goal_time_from_step, goal_duration, goal_raise_frac = 0.1, goal_drop_frac=0.1): # Loop over the timestamps building a dictionary of the tagging information tagged_stock_data = [] for timestep in data.index: goal_dict = is_goal_met(data, timestep, goal_time_from_step, goal_duration, goal_raise_frac, goal_drop_frac) tagged_stock_data.append(goal_dict) # Convert to pandas and return return pd.DataFrame(tagged_stock_data).set_index('timestamp') start_delay = 0 # minutes duration = 120 # minutes (next half hour) raise_fraction = 0.05 drop_fraction = 0.05 list_tagged_tickers = [] for i, (symbol, group) in enumerate(stock_data_with_all_minutes.groupby('ticker')): print "Progress: {} of {} tickers. Current ticker: {}".format(i, len(symbols), symbol) # get the tag data for this symbol tag_data = get_tagged_stock_data(group, symbol, start_delay, duration, raise_fraction, drop_fraction) # join tag data back onto the group data merged_data = group.join(tag_data) # Append to the list of tagged data list_tagged_tickers.append(merged_data) # Concatenate all the groups all_tagged_data = pd.concat(list_tagged_tickers) #print all_tagged_data.goal_met.value_counts() #print all_tagged_data.statusMessage.value_counts() print all_tagged_data.groupby('ticker').agg({'goal_met': lambda x: x[x].shape[0], 'raise_goal_met': lambda x: x[x].shape[0], 'drop_goal_met': lambda x: x[x].shape[0]}).agg(np.sum) Explanation: Get goal tags for all data End of explanation all_tagged_data.to_hdf(project_dir + 'data/stock_data/tagged_stock_data.hdf', 'table') Explanation: Save data to hdf End of explanation
531
Given the following text description, write Python code to implement the functionality described below step by step Description: Using Pickle to manage memory in Python Author Step1: Function to track memory utilization Step2: Create a dataframe with random integers between 0 and 1000 Step3: Create Pickle dump Step4: Remove the variable from memory Step5: Restore the variable from disk
Python Code: import gc import pickle import psutil import numpy as np import pandas as pd Explanation: Using Pickle to manage memory in Python Author: Dr. Rahul Remanan, CEO, Moad Computer Run this notebook in Google Colab Import dependencies End of explanation def memory_utilization(): print('Current memory utilization: {}% ...'.format(psutil.virtual_memory().percent)) Explanation: Function to track memory utilization End of explanation memory_utilization() var=pd.DataFrame(np.random.randint(0,1000,size=(int(2.5e8),2)),columns=['var1','var2']) print(var.head()) memory_utilization() Explanation: Create a dataframe with random integers between 0 and 1000 End of explanation pickle.dump(var,open('var.pkl','wb')) memory_utilization() Explanation: Create Pickle dump End of explanation del var _=gc.collect() memory_utilization() Explanation: Remove the variable from memory End of explanation var=pickle.load(open('var.pkl','rb')) memory_utilization() print(var.head()) Explanation: Restore the variable from disk End of explanation
532
Given the following text description, write Python code to implement the functionality described below step by step Description: <a href="https Step1: Neural Tangents Cookbook In this notebook we explore the training of infinitely-wide, Bayesian, neural networks using a library called Neural Tangents. Recent work has shown that such networks are Gaussian Processes with a particular compositional kernel called the NNGP kernel. More recently, it was shown that predictions resulting from these networks following Gradient Descent are Gaussian with a distribution that can be computed in closed form using the Neural Tangent Kernel. Neural Tangents provides a high level library to compute NNGP and NT kernels for a wide range of neural networks. See the paper for a more detailed description of the library itself. Our goal will be to train an ensemble of neural networks on a simple synthetic task. We'll then compare the results of this ensemble with the prediction of the NTK theory. Finally, we'll play around with different neural network architectures to see how this affects the resulting kernel. However, Neural Tangents is built on JAX which may be new to you. To get warmed up with JAX, we'll start out by generating some data. Warm Up Step2: Now let's set up some constants that will define our dataset. In particular, we will use a small training set of 5 points and 50 tests points. Finally, we'll define a noise scale and target function. Step3: Next we generate our training data. We know that we will want to have randomly chosen $x$'s and noise. To generate random numbers in JAX, we have to explicitly evolve the random number state using random.split each time we draw a random number. Then we'll want to generate the random inputs, apply the target function, and add the random noise. Step4: Finally, we want to generate our test data. The $x$'s will be linearly spaced with no noise. Note, we want the inputs to have shape (N, 1) instead of (N,) since we treat this as a model with one feature. Step5: Having generated our data, let's plot it. Step6: What a good looking dataset! Let's train a neural network on it. Defining a Neural Network The first thing we need to do is define a neural network. We'll start out with a simple fully-connected network using Erf nonlinearities. We describe our network using our neural network library that shares syntax and code with JAX's own library called stax. Layers in jax.example_libraries.stax are pairs of functions (init_fn, apply_fn) where init_fn(key, input_shape) draws parameters randomly and apply_fn(params, xs) computes outputs of the function for specific inputs. These layers can be composed using serial and parallel combinators to produce new (init_fn, apply_fn) pairs. Similarly, layers in neural_tangents.stax are triplets of functions (init_fn, apply_fn, kernel_fn) where the first two functions are the same as their stax equivalent but the third function, kernel_fn, computes infinite-width GP kernels corresponding to the layer. Again these layers can be composed using serial and parallel to build kernels for complicated architectures. Fully-connected layers in neural_tangents.stax are created using the Dense layer which is defined by, $$z^{l+1}i = \frac{\sigma_w}{\sqrt{N{in}}} \sum_j W_{ij} z^{l}i + \sigma_b b_i$$ where $W{ij}, b_i\sim\mathcal N(0,1)$ at initialization and $\sigma_w, \sigma_b$ sets the scales of the weights and biases respectively. Step7: Here the lines apply_fn = jit(apply_fn) and kernel_fn = jit(kernel_fn, static_argnums=(2,)) use a JAX feature that compiles functions so that they are executed as single calls to the GPU. Next, let's take several random draws of the parameters of the network and plot what the functions look like. Step8: Next we can look at the exact prior over functions in the infinite-width limit using the kernel_fn. The kernel function has the signature kernel = kernel_fn(x_1, x_2) which computes the kernel between two sets of inputs x_1 and x_2. The kernel_fn can compute two different kernels Step9: Infinite Width Inference We can use the infinite-width GP defined above to perform exact Bayesian inference using the infinite width network. To do this, we will use the function neural_tangents.predict.gradient_descent_mse_ensemble that performs this inference exactly. predict_fn = nt.predict.gradient_descent_mse_ensemble(kernel_fn, train_xs, train_ys); mean, cov = predict_fn(x_test=test_xs, get='ntk', compute_cov=True) computes the mean and covariance of the network evaluated on the test points after training. This predict_fn function includes two different modes Step10: We see that our posterior exactly fits all of the training points as expected. We also see that the there is significant uncertainty in the predictions between the points in the middle. Next, we would like to compute the result of doing gradient descent on our infinite network for an infinite amount of time. To do this, we will use the "NTK" inference mode. Note that otherwise the call to predict_fn looks identical. We will compare the result of true Bayesian inference with gradient descent. Step11: We see that while the result of gradient descent and bayesian inference are similar, they are not identical. Not only can we do inference at infinite times, but we can also perform finite-time inference. We will use this to predict the mean of the train and test losses over the course of training. To compute the mean MSE loss, we need to access the mean and variance of our networks predictions as a function of time. To do this, we call our predict_fn function with finite times t (as opposed to using the default value t=None earlier, considered as infinite time). Note that predict can act on both scalar and array values, so we simply invoke the function. Step12: Training a Neural Network We will now compare the results of gradient descent GP-inference computed above to the result of training an ensemble of finite width neural networks. We first train a single network drawn from the prior and then we will show how to generalize this to an ensemble. To do this we use JAX's gradient descent optimizer. Optimizers are described by a triple of functions (init_fn, update_fn, get_params). Here, init_fn(params) takes an initial set of parameters and returns an optimizer state that can include extra information (like the velocity in the momentum optimizer). opt_update(step, grads, state) takes a new state and updates it using gradients. Finally, get_params(state) returns the parameters for a given state. Step13: Next we need to define a loss and a gradient of the loss. We'll use an MSE loss. The function grad is another JAX function that takes a function and returns a new function that computes its gradient. Step14: Now we want to actually train the network. To do this we just initialize the optimizer state and then update it however many times we want. We'll record the train and test loss after each step. Step15: Finally, lets plot the loss over the course of training and the function after training compared with our GP inference. Step16: Training an Ensemble of Neural Networks The draw above certainly seems consistent with exact inference. However, as discussed above to make a more quantitative comparison we want to train an ensemble of finite-width networks. We could use a for-loop to loop over all the different instantiations that we wanted to evaluate. However, it is more convenient and efficient to use another JAX feature called vmap. vmap takes a function and vectorizes it over a batch dimension. In this case, we're going to add a batch dimension to our training loop so that we train a whole batch of neural networks at once. To do that, let's first wrap our whole training loop in a function. The function will take a random state and train a network based on that random state. Step17: We can test it to make sure that we get a trained network. Step18: Now, to train an ensemble we just have to apply vmap to train_network. The resulting function will take a vector of random states and will train one network for each random state in the vector. Step19: Let's plot the empirical standard deviation in the loss over the course of training as well as well as for the function after gradient descent compared with the exact inference above. Step20: We see pretty nice agreement between exact inference of the infinite-width networks and the result of training an ensemble! Note that we do see some deviations in the training loss at the end of training. This is ameliorated by using a wider network. Playing Around with the Architecture To demonstrate the ease of specifying more exotic architecture, can try to reproduce the above results with different choices of architecture. For fn, let's see what happens if we add residual connections. Step21: Given this new architecture, let's train a new ensemble of models. Step22: Finally, let's repeat our NTK-GP inference Step23: Now let's draw the result!
Python Code: !pip install --upgrade pip !pip install --upgrade jax[cuda11_cudnn805] -f https://storage.googleapis.com/jax-releases/jax_releases.html !pip install -q git+https://www.github.com/google/neural-tangents import jax.numpy as np from jax import random from jax.example_libraries import optimizers from jax import jit, grad, vmap import functools import neural_tangents as nt from neural_tangents import stax from IPython.display import set_matplotlib_formats set_matplotlib_formats('pdf', 'svg') import matplotlib import seaborn as sns sns.set(font_scale=1.3) sns.set_style("darkgrid", {"axes.facecolor": ".95"}) import matplotlib.pyplot as plt def format_plot(x=None, y=None): # plt.grid(False) ax = plt.gca() if x is not None: plt.xlabel(x, fontsize=20) if y is not None: plt.ylabel(y, fontsize=20) def finalize_plot(shape=(1, 1)): plt.gcf().set_size_inches( shape[0] * 1.5 * plt.gcf().get_size_inches()[1], shape[1] * 1.5 * plt.gcf().get_size_inches()[1]) plt.tight_layout() legend = functools.partial(plt.legend, fontsize=10) def plot_fn(train, test, *fs): train_xs, train_ys = train plt.plot(train_xs, train_ys, 'ro', markersize=10, label='train') if test != None: test_xs, test_ys = test plt.plot(test_xs, test_ys, 'k--', linewidth=3, label='$f(x)$') for f in fs: plt.plot(test_xs, f(test_xs), '-', linewidth=3) plt.xlim([-np.pi, np.pi]) plt.ylim([-1.5, 1.5]) format_plot('$x$', '$f$') def loss_fn(predict_fn, ys, t, xs=None): mean, cov = predict_fn(t=t, get='ntk', x_test=xs, compute_cov=True) mean = np.reshape(mean, mean.shape[:1] + (-1,)) var = np.diagonal(cov, axis1=1, axis2=2) ys = np.reshape(ys, (1, -1)) mean_predictions = 0.5 * np.mean(ys ** 2 - 2 * mean * ys + var + mean ** 2, axis=1) return mean_predictions Explanation: <a href="https://colab.research.google.com/github/google/neural-tangents/blob/main/notebooks/neural_tangents_cookbook.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> Copyright 2019 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Imports and Utils End of explanation key = random.PRNGKey(10) Explanation: Neural Tangents Cookbook In this notebook we explore the training of infinitely-wide, Bayesian, neural networks using a library called Neural Tangents. Recent work has shown that such networks are Gaussian Processes with a particular compositional kernel called the NNGP kernel. More recently, it was shown that predictions resulting from these networks following Gradient Descent are Gaussian with a distribution that can be computed in closed form using the Neural Tangent Kernel. Neural Tangents provides a high level library to compute NNGP and NT kernels for a wide range of neural networks. See the paper for a more detailed description of the library itself. Our goal will be to train an ensemble of neural networks on a simple synthetic task. We'll then compare the results of this ensemble with the prediction of the NTK theory. Finally, we'll play around with different neural network architectures to see how this affects the resulting kernel. However, Neural Tangents is built on JAX which may be new to you. To get warmed up with JAX, we'll start out by generating some data. Warm Up: Creating a Dataset We're going to build a widely used synthetic dataset that's used extensively in Pattern Recognition and Machine Learning. Incidentally, Pattern Recognition and Machine Learning is an outstanding book by Christopher Bishop that was recently released for free. Our training data is going to be drawn from a process, $$y = f(x) + \epsilon$$ where $f(x)$ is a deterministic function and $\epsilon\sim\mathcal N(0, \sigma)$ is Gaussian noise with some scale. We're going to choose $f(x) = \sin(x)$ with $x\sim\text{Uniform}(-\pi, \pi)$. Our testing data will be $y = f(x)$ for $x$ linearly spaced in $[-\pi, \pi]$. Feel free to try out different functions and domains! Since we want to generate our data randomly, we'll need to generate random numbers. Unlike most random number generators that store a global random state, JAX makes the random state explicit (see the JAX documentation for more information). Let's therefore start by making some random state using a seed of 10. End of explanation train_points = 5 test_points = 50 noise_scale = 1e-1 target_fn = lambda x: np.sin(x) Explanation: Now let's set up some constants that will define our dataset. In particular, we will use a small training set of 5 points and 50 tests points. Finally, we'll define a noise scale and target function. End of explanation key, x_key, y_key = random.split(key, 3) train_xs = random.uniform(x_key, (train_points, 1), minval=-np.pi, maxval=np.pi) train_ys = target_fn(train_xs) train_ys += noise_scale * random.normal(y_key, (train_points, 1)) train = (train_xs, train_ys) Explanation: Next we generate our training data. We know that we will want to have randomly chosen $x$'s and noise. To generate random numbers in JAX, we have to explicitly evolve the random number state using random.split each time we draw a random number. Then we'll want to generate the random inputs, apply the target function, and add the random noise. End of explanation test_xs = np.linspace(-np.pi, np.pi, test_points) test_xs = np.reshape(test_xs, (test_points, 1)) test_ys = target_fn(test_xs) test = (test_xs, test_ys) Explanation: Finally, we want to generate our test data. The $x$'s will be linearly spaced with no noise. Note, we want the inputs to have shape (N, 1) instead of (N,) since we treat this as a model with one feature. End of explanation plot_fn(train, test) legend(loc='upper left') finalize_plot((0.85, 0.6)) Explanation: Having generated our data, let's plot it. End of explanation init_fn, apply_fn, kernel_fn = stax.serial( stax.Dense(512, W_std=1.5, b_std=0.05), stax.Erf(), stax.Dense(512, W_std=1.5, b_std=0.05), stax.Erf(), stax.Dense(1, W_std=1.5, b_std=0.05) ) apply_fn = jit(apply_fn) kernel_fn = jit(kernel_fn, static_argnums=(2,)) Explanation: What a good looking dataset! Let's train a neural network on it. Defining a Neural Network The first thing we need to do is define a neural network. We'll start out with a simple fully-connected network using Erf nonlinearities. We describe our network using our neural network library that shares syntax and code with JAX's own library called stax. Layers in jax.example_libraries.stax are pairs of functions (init_fn, apply_fn) where init_fn(key, input_shape) draws parameters randomly and apply_fn(params, xs) computes outputs of the function for specific inputs. These layers can be composed using serial and parallel combinators to produce new (init_fn, apply_fn) pairs. Similarly, layers in neural_tangents.stax are triplets of functions (init_fn, apply_fn, kernel_fn) where the first two functions are the same as their stax equivalent but the third function, kernel_fn, computes infinite-width GP kernels corresponding to the layer. Again these layers can be composed using serial and parallel to build kernels for complicated architectures. Fully-connected layers in neural_tangents.stax are created using the Dense layer which is defined by, $$z^{l+1}i = \frac{\sigma_w}{\sqrt{N{in}}} \sum_j W_{ij} z^{l}i + \sigma_b b_i$$ where $W{ij}, b_i\sim\mathcal N(0,1)$ at initialization and $\sigma_w, \sigma_b$ sets the scales of the weights and biases respectively. End of explanation prior_draws = [] for _ in range(10): key, net_key = random.split(key) _, params = init_fn(net_key, (-1, 1)) prior_draws += [apply_fn(params, test_xs)] plot_fn(train, test) for p in prior_draws: plt.plot(test_xs, p, linewidth=3, color=[1, 0.65, 0.65]) legend(['train', '$f(x)$', 'random draw'], loc='upper left') finalize_plot((0.85, 0.6)) Explanation: Here the lines apply_fn = jit(apply_fn) and kernel_fn = jit(kernel_fn, static_argnums=(2,)) use a JAX feature that compiles functions so that they are executed as single calls to the GPU. Next, let's take several random draws of the parameters of the network and plot what the functions look like. End of explanation kernel = kernel_fn(test_xs, test_xs, 'nngp') std_dev = np.sqrt(np.diag(kernel)) plot_fn(train, test) plt.fill_between( np.reshape(test_xs, (-1,)), 2 * std_dev, -2 * std_dev, alpha=0.4) for p in prior_draws: plt.plot(test_xs, p, linewidth=3, color=[1, 0.65, 0.65]) finalize_plot((0.85, 0.6)) Explanation: Next we can look at the exact prior over functions in the infinite-width limit using the kernel_fn. The kernel function has the signature kernel = kernel_fn(x_1, x_2) which computes the kernel between two sets of inputs x_1 and x_2. The kernel_fn can compute two different kernels: the NNGP kernel which describes the Bayesian infinite network and the NT kernel which describes how this network evolves under gradient descent. We would like to visualize the standard deviation of the infinite-width function distribution at each $x$. This is given by the diagonal of the NNGP kernel. We compute this now and then plot it compared with the draws above. End of explanation predict_fn = nt.predict.gradient_descent_mse_ensemble(kernel_fn, train_xs, train_ys, diag_reg=1e-4) nngp_mean, nngp_covariance = predict_fn(x_test=test_xs, get='nngp', compute_cov=True) nngp_mean = np.reshape(nngp_mean, (-1,)) nngp_std = np.sqrt(np.diag(nngp_covariance)) plot_fn(train, test) plt.plot(test_xs, nngp_mean, 'r-', linewidth=3) plt.fill_between( np.reshape(test_xs, (-1)), nngp_mean - 2 * nngp_std, nngp_mean + 2 * nngp_std, color='red', alpha=0.2) plt.xlim([-np.pi, np.pi]) plt.ylim([-1.5, 1.5]) legend(['Train', 'f(x)', 'Bayesian Inference'], loc='upper left') finalize_plot((0.85, 0.6)) Explanation: Infinite Width Inference We can use the infinite-width GP defined above to perform exact Bayesian inference using the infinite width network. To do this, we will use the function neural_tangents.predict.gradient_descent_mse_ensemble that performs this inference exactly. predict_fn = nt.predict.gradient_descent_mse_ensemble(kernel_fn, train_xs, train_ys); mean, cov = predict_fn(x_test=test_xs, get='ntk', compute_cov=True) computes the mean and covariance of the network evaluated on the test points after training. This predict_fn function includes two different modes: in "NNGP" mode we compute the Bayesian posterior (which is equivalent to gradient descent with all but the last-layer weights frozen), in "NTK" mode we compute the distribution of networks after gradient descent training. We want to do exact Bayesian inference so we'll start off using the "NNGP" setting. We will compute and plot these predictions now; we will be concerned with the standard deviation of the predictions on test points which will be given by the diagonal of the covariance matrix. End of explanation ntk_mean, ntk_covariance = predict_fn(x_test=test_xs, get='ntk', compute_cov=True) ntk_mean = np.reshape(ntk_mean, (-1,)) ntk_std = np.sqrt(np.diag(ntk_covariance)) plot_fn(train, test) plt.plot(test_xs, nngp_mean, 'r-', linewidth=3) plt.fill_between( np.reshape(test_xs, (-1)), nngp_mean - 2 * nngp_std, nngp_mean + 2 * nngp_std, color='red', alpha=0.2) plt.plot(test_xs, ntk_mean, 'b-', linewidth=3) plt.fill_between( np.reshape(test_xs, (-1)), ntk_mean - 2 * ntk_std, ntk_mean + 2 * ntk_std, color='blue', alpha=0.2) plt.xlim([-np.pi, np.pi]) plt.ylim([-1.5, 1.5]) legend(['Train', 'f(x)', 'Bayesian Inference', 'Gradient Descent'], loc='upper left') finalize_plot((0.85, 0.6)) Explanation: We see that our posterior exactly fits all of the training points as expected. We also see that the there is significant uncertainty in the predictions between the points in the middle. Next, we would like to compute the result of doing gradient descent on our infinite network for an infinite amount of time. To do this, we will use the "NTK" inference mode. Note that otherwise the call to predict_fn looks identical. We will compare the result of true Bayesian inference with gradient descent. End of explanation ts = np.arange(0, 10 ** 3, 10 ** -1) ntk_train_loss_mean = loss_fn(predict_fn, train_ys, ts) ntk_test_loss_mean = loss_fn(predict_fn, test_ys, ts, test_xs) plt.subplot(1, 2, 1) plt.loglog(ts, ntk_train_loss_mean, linewidth=3) plt.loglog(ts, ntk_test_loss_mean, linewidth=3) format_plot('Step', 'Loss') legend(['Infinite Train', 'Infinite Test']) plt.subplot(1, 2, 2) plot_fn(train, None) plt.plot(test_xs, ntk_mean, 'b-', linewidth=3) plt.fill_between( np.reshape(test_xs, (-1)), ntk_mean - 2 * ntk_std, ntk_mean + 2 * ntk_std, color='blue', alpha=0.2) legend( ['Train', 'Infinite Network'], loc='upper left') finalize_plot((1.5, 0.6)) Explanation: We see that while the result of gradient descent and bayesian inference are similar, they are not identical. Not only can we do inference at infinite times, but we can also perform finite-time inference. We will use this to predict the mean of the train and test losses over the course of training. To compute the mean MSE loss, we need to access the mean and variance of our networks predictions as a function of time. To do this, we call our predict_fn function with finite times t (as opposed to using the default value t=None earlier, considered as infinite time). Note that predict can act on both scalar and array values, so we simply invoke the function. End of explanation learning_rate = 0.1 training_steps = 10000 opt_init, opt_update, get_params = optimizers.sgd(learning_rate) opt_update = jit(opt_update) Explanation: Training a Neural Network We will now compare the results of gradient descent GP-inference computed above to the result of training an ensemble of finite width neural networks. We first train a single network drawn from the prior and then we will show how to generalize this to an ensemble. To do this we use JAX's gradient descent optimizer. Optimizers are described by a triple of functions (init_fn, update_fn, get_params). Here, init_fn(params) takes an initial set of parameters and returns an optimizer state that can include extra information (like the velocity in the momentum optimizer). opt_update(step, grads, state) takes a new state and updates it using gradients. Finally, get_params(state) returns the parameters for a given state. End of explanation loss = jit(lambda params, x, y: 0.5 * np.mean((apply_fn(params, x) - y) ** 2)) grad_loss = jit(lambda state, x, y: grad(loss)(get_params(state), x, y)) Explanation: Next we need to define a loss and a gradient of the loss. We'll use an MSE loss. The function grad is another JAX function that takes a function and returns a new function that computes its gradient. End of explanation train_losses = [] test_losses = [] opt_state = opt_init(params) for i in range(training_steps): opt_state = opt_update(i, grad_loss(opt_state, *train), opt_state) train_losses += [loss(get_params(opt_state), *train)] test_losses += [loss(get_params(opt_state), *test)] Explanation: Now we want to actually train the network. To do this we just initialize the optimizer state and then update it however many times we want. We'll record the train and test loss after each step. End of explanation plt.subplot(1, 2, 1) plt.loglog(ts, ntk_train_loss_mean, linewidth=3) plt.loglog(ts, ntk_test_loss_mean, linewidth=3) plt.loglog(ts, train_losses, 'k-', linewidth=2) plt.loglog(ts, test_losses, 'k-', linewidth=2) format_plot('Step', 'Loss') legend(['Infinite Train', 'Infinite Test', 'Finite']) plt.subplot(1, 2, 2) plot_fn(train, None) plt.plot(test_xs, ntk_mean, 'b-', linewidth=3) plt.fill_between( np.reshape(test_xs, (-1)), ntk_mean - 2 * ntk_std, ntk_mean + 2 * ntk_std, color='blue', alpha=0.2) plt.plot(test_xs, apply_fn(get_params(opt_state), test_xs), 'k-', linewidth=2) legend( ['Train', 'Infinite Network', 'Finite Network'], loc='upper left') finalize_plot((1.5, 0.6)) Explanation: Finally, lets plot the loss over the course of training and the function after training compared with our GP inference. End of explanation def train_network(key): train_losses = [] test_losses = [] _, params = init_fn(key, (-1, 1)) opt_state = opt_init(params) for i in range(training_steps): train_losses += [np.reshape(loss(get_params(opt_state), *train), (1,))] test_losses += [np.reshape(loss(get_params(opt_state), *test), (1,))] opt_state = opt_update(i, grad_loss(opt_state, *train), opt_state) train_losses = np.concatenate(train_losses) test_losses = np.concatenate(test_losses) return get_params(opt_state), train_losses, test_losses Explanation: Training an Ensemble of Neural Networks The draw above certainly seems consistent with exact inference. However, as discussed above to make a more quantitative comparison we want to train an ensemble of finite-width networks. We could use a for-loop to loop over all the different instantiations that we wanted to evaluate. However, it is more convenient and efficient to use another JAX feature called vmap. vmap takes a function and vectorizes it over a batch dimension. In this case, we're going to add a batch dimension to our training loop so that we train a whole batch of neural networks at once. To do that, let's first wrap our whole training loop in a function. The function will take a random state and train a network based on that random state. End of explanation #@test {"skip": true} params, train_loss, test_loss = train_network(key) #@test {"skip": true} plt.subplot(1, 2, 1) plt.loglog(ts, ntk_train_loss_mean, linewidth=3) plt.loglog(ts, ntk_test_loss_mean, linewidth=3) plt.loglog(ts, train_loss, 'k-', linewidth=2) plt.loglog(ts, test_loss, 'k-', linewidth=2) format_plot('Step', 'Loss') legend(['Train', 'Test', 'Finite']) plt.subplot(1, 2, 2) plot_fn(train, None) plt.plot(test_xs, ntk_mean, 'b-', linewidth=3) plt.fill_between( np.reshape(test_xs, (-1)), ntk_mean - 2 * ntk_std, ntk_mean + 2 * ntk_std, color='blue', alpha=0.2) plt.plot(test_xs, apply_fn(params, test_xs), 'k-', linewidth=2) legend(['Train', 'Infinite Network', 'Finite Network'], loc='upper left') finalize_plot((1.5, 0.6)) Explanation: We can test it to make sure that we get a trained network. End of explanation #@test {"skip": true} ensemble_size = 100 ensemble_key = random.split(key, ensemble_size) params, train_loss, test_loss = vmap(train_network)(ensemble_key) Explanation: Now, to train an ensemble we just have to apply vmap to train_network. The resulting function will take a vector of random states and will train one network for each random state in the vector. End of explanation #@test {"skip": true} plt.subplot(1, 2, 1) mean_train_loss = np.mean(train_loss, axis=0) mean_test_loss = np.mean(test_loss, axis=0) plt.loglog(ts, ntk_train_loss_mean, linewidth=3) plt.loglog(ts, ntk_test_loss_mean, linewidth=3) plt.loglog(ts, mean_train_loss, 'k-', linewidth=2) plt.loglog(ts, mean_test_loss, 'k-', linewidth=2) plt.xlim([10 ** 0, 10 ** 3]) plt.xscale('log') plt.yscale('log') format_plot('Step', 'Loss') legend(['Infinite Train', 'Infinite Test', 'Finite Ensemble']) plt.subplot(1, 2, 2) plot_fn(train, None) plt.plot(test_xs, ntk_mean, 'b-', linewidth=3) plt.fill_between( np.reshape(test_xs, (-1)), ntk_mean - 2 * ntk_std, ntk_mean + 2 * ntk_std, color='blue', alpha=0.2) ensemble_fx = vmap(apply_fn, (0, None))(params, test_xs) mean_fx = np.reshape(np.mean(ensemble_fx, axis=0), (-1,)) std_fx = np.reshape(np.std(ensemble_fx, axis=0), (-1,)) plt.plot(test_xs, mean_fx - 2 * std_fx, 'k--', label='_nolegend_') plt.plot(test_xs, mean_fx + 2 * std_fx, 'k--', label='_nolegend_') plt.plot(test_xs, mean_fx, linewidth=2, color='black') legend(['Train', 'Infinite Network', 'Finite Ensemble'], loc='upper left') plt.xlim([-np.pi, np.pi]) plt.ylim([-1.5, 1.5]) format_plot('$x$', '$f$') finalize_plot((1.5, 0.6)) Explanation: Let's plot the empirical standard deviation in the loss over the course of training as well as well as for the function after gradient descent compared with the exact inference above. End of explanation ResBlock = stax.serial( stax.FanOut(2), stax.parallel( stax.serial( stax.Erf(), stax.Dense(512, W_std=1.1, b_std=0), ), stax.Identity() ), stax.FanInSum() ) init_fn, apply_fn, kernel_fn = stax.serial( stax.Dense(512, W_std=1, b_std=0), ResBlock, ResBlock, stax.Erf(), stax.Dense(1, W_std=1.5, b_std=0) ) apply_fn = jit(apply_fn) kernel_fn = jit(kernel_fn, static_argnums=(2,)) Explanation: We see pretty nice agreement between exact inference of the infinite-width networks and the result of training an ensemble! Note that we do see some deviations in the training loss at the end of training. This is ameliorated by using a wider network. Playing Around with the Architecture To demonstrate the ease of specifying more exotic architecture, can try to reproduce the above results with different choices of architecture. For fn, let's see what happens if we add residual connections. End of explanation #@test {"skip": true} ensemble_size = 100 learning_rate = 0.1 ts = np.arange(0, 10 ** 3, learning_rate) opt_init, opt_update, get_params = optimizers.sgd(learning_rate) opt_update = jit(opt_update) key, = random.split(key, 1) ensemble_key = random.split(key, ensemble_size) params, train_loss, test_loss = vmap(train_network)(ensemble_key) Explanation: Given this new architecture, let's train a new ensemble of models. End of explanation #@test {"skip": true} predict_fn = nt.predict.gradient_descent_mse_ensemble(kernel_fn, train_xs, train_ys, diag_reg=1e-4) ntk_mean, ntk_var = predict_fn(x_test=test_xs, get='ntk', compute_cov=True) ntk_mean = np.reshape(ntk_mean, (-1,)) ntk_std = np.sqrt(np.diag(ntk_var)) ntk_train_loss_mean = loss_fn(predict_fn, train_ys, ts) ntk_test_loss_mean = loss_fn(predict_fn, test_ys, ts, test_xs) Explanation: Finally, let's repeat our NTK-GP inference End of explanation #@test {"skip": true} plt.subplot(1, 2, 1) mean_train_loss = np.mean(train_loss, axis=0) mean_test_loss = np.mean(test_loss, axis=0) plt.loglog(ts, ntk_train_loss_mean, linewidth=3) plt.loglog(ts, ntk_test_loss_mean, linewidth=3) plt.loglog(ts, mean_train_loss, 'k-', linewidth=2) plt.loglog(ts, mean_test_loss, 'k-', linewidth=2) plt.xlim([10 ** 0, 10 ** 3]) plt.xscale('log') plt.yscale('log') format_plot('Step', 'Loss') legend(['Infinite Train', 'Infinite Test', 'Finite Ensemble']) plt.subplot(1, 2, 2) plot_fn(train, None) plt.plot(test_xs, ntk_mean, 'b-', linewidth=3) plt.fill_between( np.reshape(test_xs, (-1)), ntk_mean - 2 * ntk_std, ntk_mean + 2 * ntk_std, color='blue', alpha=0.2) ensemble_fx = vmap(apply_fn, (0, None))(params, test_xs) mean_fx = np.reshape(np.mean(ensemble_fx, axis=0), (-1,)) std_fx = np.reshape(np.std(ensemble_fx, axis=0), (-1,)) plt.plot(test_xs, mean_fx - 2 * std_fx, 'k--', label='_nolegend_') plt.plot(test_xs, mean_fx + 2 * std_fx, 'k--', label='_nolegend_') plt.plot(test_xs, mean_fx, linewidth=2, color='black') legend(['Train', 'Infinite Network', 'Finite Ensemble'], loc='upper left') plt.xlim([-np.pi, np.pi]) plt.ylim([-1.5, 1.5]) format_plot('$x$', '$f$') finalize_plot((1.5, 0.6)) Explanation: Now let's draw the result! End of explanation
533
Given the following text description, write Python code to implement the functionality described below step by step Description: Regression Copyright 2015 Allen Downey License Step1: Let's load up the NSFG data again. Step2: And select live, full-term births. Step3: And drop rows with missing data (just for the variables we want). Step4: Check a few rows Step5: And summarize a few variables. Step6: Here's a scatterplot of age and birthweight, with parameters tuned to avoid saturation. Step7: Mean of mother's age Step8: Mean and standard deviation of birthweight Step9: And the coefficient of correlation Step10: The Pandas corr function gets the same result Step11: To see the relationship more clearly, we can group mother's age into 3-year bins and plot percentiles of birth weight for each bin. Step13: The first and last points are not very reliable, because they represent fewer data points. It looks like there is a generally positive relationshop between birth weight and mother's age, possibly leveling or dropping for older mothers. We can get more information about the mothers by reading the respondents file, which contains one row per respondent. Step14: There are 7643 respondents and 3087 variables about each. Step15: If we use the caseid variable as the index, we can look up respondents efficiently by id. Here's what the first few rows look like Step16: Now we can join the tables, using the caseid from each pregnancy record to find the corresponding respondent and (abstractly) copy over the additional variables. So the joined table has one row for each pregnancy and all the columns from both tables. Step17: The encoding for screentime is a colon-separated timestamp. Step18: If we convert to a datetime object, we avoid some processing problems later. Step19: To estimate the effect of mother's age on birthweight, we can use a simple least squares fit. Step20: The slope is almost 3 ounces per decade. We can do the same thing using Ordinary Least Squares from statsmodels Step21: The results object contains the parameters (and all the other info in the table) Step22: And the results are consistent with my implementation Step23: We can use a boolean variable as a predictor Step24: First babies are lighter by about 1.5 ounces. Step25: And we can make a model with multiple predictors. Step26: If we control for mother's age, the difference in weight for first babies is cut to about 0.5 ounces (and no longer statistically significant). Step27: The relationship with age might be non-linear. Adding a quadratic term helps a little, although note that the $R^2$ values for all of these models are very small. Step28: Now we can combine the quadratic age model with isfirst Step29: Now the effect is cut to less that a third of an ounce, and very plausibly due to chance. Step30: Here's the best model I found, combining all variables that seemed plausibly predictive. Step31: All predictors are statistically significant, so the effects could be legit, but the $R^2$ value is still very small Step32: The estimated parameter is 0.0016, which is small and not statistically significant. So the apparent relationship might be due to chance. But for the sake of the example, I'll take it at face value and work out the effect on the prediction. A parameter in a logistic regression is a log odds ratio, so we can compute the odds ratio for a difference of 10 years in mother's age Step33: And we can use the odds ratio to update a prior probability. A mother at the mean age has a 51% chance of having a boy. In the case a mother who is 10 years older has a 51.4% chance. Step34: I searched for other factors that might be predictive. The most likely candidates turn out not to be statistically significant. Step35: Again, taking these parameters at face values, we can use the model to make predictions. The baseline strategy is to always guess boy, which yields accuracy of 50.8% Step36: results.predict uses the model to generate predictions for the data. Adding up the correct positive and negative predictions, we get accuracy 51.3% Step37: And we can use the model to generate a prediction for the office pool. Suppose your hypothetical coworker is is 39 years old and white, her husband is 30, and they are expecting their first child.
Python Code: from __future__ import print_function, division import numpy as np import pandas as pd import first import thinkstats2 import thinkplot %matplotlib inline Explanation: Regression Copyright 2015 Allen Downey License: Creative Commons Attribution 4.0 International End of explanation live, firsts, others = first.MakeFrames() live.shape Explanation: Let's load up the NSFG data again. End of explanation live = live[live.prglngth>=37] live.shape Explanation: And select live, full-term births. End of explanation live = live.dropna(subset=['agepreg', 'totalwgt_lb']) live.shape Explanation: And drop rows with missing data (just for the variables we want). End of explanation live.head() Explanation: Check a few rows: End of explanation live[['agepreg', 'totalwgt_lb']].describe() Explanation: And summarize a few variables. End of explanation ages = live.agepreg weights = live.totalwgt_lb thinkplot.Scatter(ages, weights, alpha=0.1, s=15) thinkplot.Config(xlabel='age (years)', ylabel='weight (lbs)', xlim=[10, 45], ylim=[0, 15], legend=False) Explanation: Here's a scatterplot of age and birthweight, with parameters tuned to avoid saturation. End of explanation live['agepreg'].mean() Explanation: Mean of mother's age: End of explanation live['totalwgt_lb'].mean(), live['totalwgt_lb'].std() Explanation: Mean and standard deviation of birthweight: End of explanation thinkstats2.Corr(ages, weights) Explanation: And the coefficient of correlation: End of explanation live['totalwgt_lb'].corr(live['agepreg']) Explanation: The Pandas corr function gets the same result: End of explanation bins = np.arange(10, 48, 3) indices = np.digitize(live.agepreg, bins) groups = live.groupby(indices) ages = [group.agepreg.mean() for i, group in groups][1:-1] cdfs = [thinkstats2.Cdf(group.totalwgt_lb) for i, group in groups][1:-1] thinkplot.PrePlot(5) for percent in [90, 75, 50, 25, 10]: weights = [cdf.Percentile(percent) for cdf in cdfs] label = '%dth' % percent thinkplot.Plot(ages, weights, label=label) thinkplot.Config(xlabel="mother's age (years)", ylabel='birth weight (lbs)', xlim=[14, 50], legend=True) Explanation: To see the relationship more clearly, we can group mother's age into 3-year bins and plot percentiles of birth weight for each bin. End of explanation def ReadFemResp(dct_file='2002FemResp.dct', dat_file='2002FemResp.dat.gz', nrows=None): Reads the NSFG respondent data. dct_file: string file name dat_file: string file name returns: DataFrame dct = thinkstats2.ReadStataDct(dct_file) df = dct.ReadFixedWidth(dat_file, compression='gzip', nrows=nrows) return df Explanation: The first and last points are not very reliable, because they represent fewer data points. It looks like there is a generally positive relationshop between birth weight and mother's age, possibly leveling or dropping for older mothers. We can get more information about the mothers by reading the respondents file, which contains one row per respondent. End of explanation resp = ReadFemResp() resp.shape Explanation: There are 7643 respondents and 3087 variables about each. End of explanation resp.index = resp.caseid resp.head() Explanation: If we use the caseid variable as the index, we can look up respondents efficiently by id. Here's what the first few rows look like: End of explanation join = live.join(resp, on='caseid', rsuffix='_r') join.shape Explanation: Now we can join the tables, using the caseid from each pregnancy record to find the corresponding respondent and (abstractly) copy over the additional variables. So the joined table has one row for each pregnancy and all the columns from both tables. End of explanation join.screentime.head() Explanation: The encoding for screentime is a colon-separated timestamp. End of explanation join.screentime = pd.to_datetime(join.screentime) join.screentime.head() Explanation: If we convert to a datetime object, we avoid some processing problems later. End of explanation ages = join.agepreg weights = join.totalwgt_lb inter, slope = thinkstats2.LeastSquares(ages, weights) inter, slope, slope*16*10 Explanation: To estimate the effect of mother's age on birthweight, we can use a simple least squares fit. End of explanation import statsmodels.formula.api as smf formula = ('totalwgt_lb ~ agepreg') results = smf.ols(formula, data=join).fit() results.summary() Explanation: The slope is almost 3 ounces per decade. We can do the same thing using Ordinary Least Squares from statsmodels: End of explanation inter, slope = results.params inter, slope Explanation: The results object contains the parameters (and all the other info in the table): End of explanation slope * 16 * 10 # slope in ounces per decade Explanation: And the results are consistent with my implementation: End of explanation join['isfirst'] = (join.birthord == 1) formula = 'totalwgt_lb ~ isfirst' results = smf.ols(formula, data=join).fit() results.summary() Explanation: We can use a boolean variable as a predictor: End of explanation results.params['isfirst[T.True]'] * 16 Explanation: First babies are lighter by about 1.5 ounces. End of explanation formula = 'totalwgt_lb ~ agepreg + isfirst' results = smf.ols(formula, data=join).fit() results.summary() Explanation: And we can make a model with multiple predictors. End of explanation results.params['isfirst[T.True]'] * 16 Explanation: If we control for mother's age, the difference in weight for first babies is cut to about 0.5 ounces (and no longer statistically significant). End of explanation join['age2'] = join.agepreg**2 formula = 'totalwgt_lb ~ agepreg + age2' results = smf.ols(formula, data=join).fit() results.summary() Explanation: The relationship with age might be non-linear. Adding a quadratic term helps a little, although note that the $R^2$ values for all of these models are very small. End of explanation formula = 'totalwgt_lb ~ agepreg + age2 + isfirst' results = smf.ols(formula, data=join).fit() results.summary() Explanation: Now we can combine the quadratic age model with isfirst End of explanation results.params['isfirst[T.True]'] * 16 Explanation: Now the effect is cut to less that a third of an ounce, and very plausibly due to chance. End of explanation formula = ('totalwgt_lb ~ agepreg + age2 + C(race) + ' 'nbrnaliv>1 + paydu==1 + totincr') results = smf.ols(formula, data=join).fit() results.summary() Explanation: Here's the best model I found, combining all variables that seemed plausibly predictive. End of explanation live['isboy'] = (live.babysex==1).astype(int) model = smf.logit('isboy ~ agepreg', data=live) results = model.fit() results.summary() Explanation: All predictors are statistically significant, so the effects could be legit, but the $R^2$ value is still very small: this model doesn't provide much help for the office pool. Logistic regression Let's say we want to predict the sex of a baby based on information about the mother. I'll start by creating a binary dependent variable, isboy, and checking for dependence on mother's age: End of explanation log_odds_ratio = results.params['agepreg'] * 10 odds_ratio = np.exp(log_odds_ratio) odds_ratio Explanation: The estimated parameter is 0.0016, which is small and not statistically significant. So the apparent relationship might be due to chance. But for the sake of the example, I'll take it at face value and work out the effect on the prediction. A parameter in a logistic regression is a log odds ratio, so we can compute the odds ratio for a difference of 10 years in mother's age: End of explanation p = 0.51 prior_odds = p / (1-p) post_odds = prior_odds * odds_ratio p = post_odds / (post_odds + 1) p Explanation: And we can use the odds ratio to update a prior probability. A mother at the mean age has a 51% chance of having a boy. In the case a mother who is 10 years older has a 51.4% chance. End of explanation formula = 'isboy ~ agepreg + hpagelb + birthord + C(race)' model = smf.logit(formula, data=live) results = model.fit() results.summary() Explanation: I searched for other factors that might be predictive. The most likely candidates turn out not to be statistically significant. End of explanation exog = pd.DataFrame(model.exog, columns=model.exog_names) endog = pd.DataFrame(model.endog, columns=[model.endog_names]) actual = endog['isboy'] baseline = actual.mean() baseline Explanation: Again, taking these parameters at face values, we can use the model to make predictions. The baseline strategy is to always guess boy, which yields accuracy of 50.8% End of explanation predict = (results.predict() >= 0.5) true_pos = predict * actual true_neg = (1 - predict) * (1 - actual) acc = (sum(true_pos) + sum(true_neg)) / len(actual) acc Explanation: results.predict uses the model to generate predictions for the data. Adding up the correct positive and negative predictions, we get accuracy 51.3% End of explanation columns = ['agepreg', 'hpagelb', 'birthord', 'race'] new = pd.DataFrame([[39, 30, 1, 2]], columns=columns) y = results.predict(new) y Explanation: And we can use the model to generate a prediction for the office pool. Suppose your hypothetical coworker is is 39 years old and white, her husband is 30, and they are expecting their first child. End of explanation
534
Given the following text description, write Python code to implement the functionality described below step by step Description: <a href="https Step1: Keys <script type="text/javascript"> localStorage.setItem('language', 'language-py') </script> <table align="left" style="margin-right Step2: Example In the following example, we create a pipeline with a PCollection of key-value pairs. Then, we apply Keys to extract the keys and discard the values.
Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License") # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. Explanation: <a href="https://colab.research.google.com/github/apache/beam/blob/master/examples/notebooks/documentation/transforms/python/elementwise/keys-py.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/></a> <table align="left"><td><a target="_blank" href="https://beam.apache.org/documentation/transforms/python/elementwise/keys"><img src="https://beam.apache.org/images/logos/full-color/name-bottom/beam-logo-full-color-name-bottom-100.png" width="32" height="32" />View the docs</a></td></table> End of explanation !pip install --quiet -U apache-beam Explanation: Keys <script type="text/javascript"> localStorage.setItem('language', 'language-py') </script> <table align="left" style="margin-right:1em"> <td> <a class="button" target="_blank" href="https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.util.html#apache_beam.transforms.util.Keys"><img src="https://beam.apache.org/images/logos/sdks/python.png" width="32px" height="32px" alt="Pydoc"/> Pydoc</a> </td> </table> <br/><br/><br/> Takes a collection of key-value pairs and returns the key of each element. Setup To run a code cell, you can click the Run cell button at the top left of the cell, or select it and press Shift+Enter. Try modifying a code cell and re-running it to see what happens. To learn more about Colab, see Welcome to Colaboratory!. First, let's install the apache-beam module. End of explanation import apache_beam as beam with beam.Pipeline() as pipeline: icons = ( pipeline | 'Garden plants' >> beam.Create([ ('🍓', 'Strawberry'), ('🥕', 'Carrot'), ('🍆', 'Eggplant'), ('🍅', 'Tomato'), ('🥔', 'Potato'), ]) | 'Keys' >> beam.Keys() | beam.Map(print)) Explanation: Example In the following example, we create a pipeline with a PCollection of key-value pairs. Then, we apply Keys to extract the keys and discard the values. End of explanation
535
Given the following text description, write Python code to implement the functionality described below step by step Description: Poincare Map This example shows how to calculate a simple Poincare Map with REBOUND. A Poincare Map (or sometimes calles Poincare Section) can be helpful to understand dynamical systems. Step1: We first create the initial conditions for our map. The most interesting Poincare maps exist near resonance, so we have to find a system near a resonance. The easiest way to get planets into resonance is migration. So that's what we'll do. Initially we setup a simulation in which the planets are placed just outside the 2 Step2: We then define a simple migration force that will act on the outer planet. We implement it in python. This is relatively slow, but we only need to migrate the planet for a short time. Step3: Next, we link the additional migration forces to our REBOUND simulation and get the pointer to the particle array. Step4: Then, we just integrate the system for 3000 time units, about 500 years in units where $G=1$. Step5: Then we save the simulation to a binary file. We'll be reusing it a lot later to create the initial conditions and it is faster to load it from file than to migrate the planets into resonance each time. Step6: To create the poincare map, we first define which hyper surface we want to look at. Here, we choose the pericenter of the outer planet. Step7: We will also need a helper function that ensures our resonant angle is in the range $[-\pi Step8: The following function generate the Poincare Map for one set of initial conditions. We first load the resonant system from the binary file we created earlier. We then randomly perturb the velocity of one of the particles. If we perturb the velocity enough, the planets will not be in resonant anymore. We also initialize shadow particles to calculate the MEGNO, a fast chaos indicator. Step9: For this example we'll run 10 initial conditions. Some of them will be in resonance, some other won't be. We run them in parallel using the InterruptiblePool that comes with REBOUND. Step10: Now we can finally plot the Poincare Map. We color the points by the MEGNO value of the particular simulation. A value close to 2 corresponds to quasi-periodic orbits, a large value indicate chaotic motion.
Python Code: import rebound import numpy as np Explanation: Poincare Map This example shows how to calculate a simple Poincare Map with REBOUND. A Poincare Map (or sometimes calles Poincare Section) can be helpful to understand dynamical systems. End of explanation sim = rebound.Simulation() sim.add(m=1.) sim.add(m=1e-3,a=1,e=0.001) sim.add(m=0.,a=1.65) sim.move_to_com() Explanation: We first create the initial conditions for our map. The most interesting Poincare maps exist near resonance, so we have to find a system near a resonance. The easiest way to get planets into resonance is migration. So that's what we'll do. Initially we setup a simulation in which the planets are placed just outside the 2:1 mean motion resonance. End of explanation def migrationForce(reb_sim): tau = 40000. ps[2].ax -= ps[2].vx/tau ps[2].ay -= ps[2].vy/tau ps[2].az -= ps[2].vz/tau Explanation: We then define a simple migration force that will act on the outer planet. We implement it in python. This is relatively slow, but we only need to migrate the planet for a short time. End of explanation sim.additional_forces = migrationForce ps = sim.particles Explanation: Next, we link the additional migration forces to our REBOUND simulation and get the pointer to the particle array. End of explanation sim.integrate(3000.) Explanation: Then, we just integrate the system for 3000 time units, about 500 years in units where $G=1$. End of explanation sim.save("resonant_system.bin") Explanation: Then we save the simulation to a binary file. We'll be reusing it a lot later to create the initial conditions and it is faster to load it from file than to migrate the planets into resonance each time. End of explanation def hyper(sim): ps = sim.particles dx = ps[2].x -ps[0].x dy = ps[2].y -ps[0].y dvx = ps[2].vx-ps[0].vx dvy = ps[2].vy-ps[0].vy return dx*dvx + dy*dvy Explanation: To create the poincare map, we first define which hyper surface we want to look at. Here, we choose the pericenter of the outer planet. End of explanation def mod2pi(x): if x>np.pi: return mod2pi(x-2.*np.pi) if x<-np.pi: return mod2pi(x+2.*np.pi) return x Explanation: We will also need a helper function that ensures our resonant angle is in the range $[-\pi:\pi]$. End of explanation def runone(args): i = args # integer numbering the run N_points_max = 2000 # maximum number of point in our Poincare Section N_points = 0 poincare_map = np.zeros((N_points_max,2)) # setting up simulation from binary file sim = rebound.Simulation.from_file("resonant_system.bin") vx = 0.97+0.06*(float(i)/float(Nsim)) sim.particles[2].vx *= vx sim.t = 0. # reset time to 0 sim.init_megno(1e-16) # add variational (shadow) particles and calculate MEGNO # Integrate simulation in small intervals # After each interval check if we crossed the # hypersurface. If so, bisect until we hit the # hypersurface exactly up to a precision # of dt_epsilon dt = 0.13 dt_epsilon = 0.001 sign = hyper(sim) while sim.t<15000. and N_points < N_points_max: oldt = sim.t olddt = sim.dt sim.integrate(oldt+dt) nsign = hyper(sim) if sign*nsign < 0.: # Hyper surface crossed. leftt = oldt rightt = sim.t sim.dt = -olddt while (rightt-leftt > dt_epsilon): # Bisection. midt = (leftt+rightt)/2. sim.integrate(midt, exact_finish_time=1) msign = hyper(sim) if msign*sign > 0.: leftt = midt sim.dt = 0.3*olddt else: rightt = midt sim.dt = -0.3*olddt # Hyper surface found up to precision of dt_epsilon. # Calculate orbital elements o = sim.calculate_orbits() # Check if we cross hypersurface in one direction or the other. if o[1].r<o[1].a: # Calculate resonant angle phi and its time derivative tp = np.pi*2. phi = mod2pi(o[0].l-2.*o[1].l+o[1].omega+o[1].Omega) phid = (tp/o[0].P-2.*tp/o[1].P)/(tp/o[0].P) # Store value for map poincare_map[N_points] = [phi,phid] N_points += 1 sim.dt = olddt sim.integrate(oldt+dt) sign = nsign return (poincare_map, sim.calculate_megno(),vx) Explanation: The following function generate the Poincare Map for one set of initial conditions. We first load the resonant system from the binary file we created earlier. We then randomly perturb the velocity of one of the particles. If we perturb the velocity enough, the planets will not be in resonant anymore. We also initialize shadow particles to calculate the MEGNO, a fast chaos indicator. End of explanation Nsim = 10 pool = rebound.InterruptiblePool() res = pool.map(runone,range(Nsim)) Explanation: For this example we'll run 10 initial conditions. Some of them will be in resonance, some other won't be. We run them in parallel using the InterruptiblePool that comes with REBOUND. End of explanation %matplotlib inline import matplotlib.pyplot as plt fig = plt.figure(figsize=(14,8)) ax = plt.subplot(111) ax.set_xlabel("$\phi$"); ax.set_ylabel("$\dot{\phi}$") ax.set_xlim([-np.pi,np.pi]); ax.set_ylim([-0.06,0.1]) cm = plt.cm.get_cmap('brg') for m, megno, vx in res: c = np.empty(len(m[:,0])); c.fill(megno) p = ax.scatter(m[:,0],m[:,1],marker=".",c=c, vmin=1.4, vmax=3, s=25,edgecolor='none', cmap=cm) cb = plt.colorbar(p, ax=ax) cb.set_label("MEGNO $<Y>$") Explanation: Now we can finally plot the Poincare Map. We color the points by the MEGNO value of the particular simulation. A value close to 2 corresponds to quasi-periodic orbits, a large value indicate chaotic motion. End of explanation
536
Given the following text description, write Python code to implement the functionality described below step by step Description: Classification with Support Vector Machines by Soeren Sonnenburg | Saurabh Mahindre - <a href=\"https Step1: Liblinear, a library for large- scale linear learning focusing on SVM, is used to do the classification. It supports different solver types. Step2: We solve ${\bf w}\cdot{\bf x} + \text{b} = 0$ to visualise the separating hyperplane. The methods get_w() and get_bias() are used to get the necessary values. Step3: The classifier is now applied on a X-Y grid of points to get predictions. Step4: SVMs using kernels If the data set is not linearly separable, a non-linear mapping $\Phi Step5: Just for fun we compute the kernel matrix and display it. There are clusters visible that are smooth for the gaussian and polynomial kernel and block-wise for the linear one. The gaussian one also smoothly decays from some cluster centre while the polynomial one oscillates within the clusters. Step6: Prediction using kernel based SVM Now we train an SVM with a Gaussian Kernel. We use LibSVM but we could use any of the other SVM from Shogun. They all utilize the same kernel framework and so are drop-in replacements. Step7: We could now check a number of properties like what the value of the objective function returned by the particular SVM learning algorithm or the explictly computed primal and dual objective function is Step8: and based on the objectives we can compute the duality gap (have a look at reference [2]), a measure of convergence quality of the svm training algorithm . In theory it is 0 at the optimum and in reality at least close to 0. Step9: Let's now apply on the X-Y grid data and plot the results. Step10: Probabilistic Outputs Calibrated probabilities can be generated in addition to class predictions using scores_to_probabilities() method of BinaryLabels, which implements the method described in [3]. This should only be used in conjunction with SVM. A parameteric form of a sigmoid function $$\frac{1}{{1+}exp(af(x) + b)}$$ is used to fit the outputs. Here $f(x)$ is the signed distance of a sample from the hyperplane, $a$ and $b$ are parameters to the sigmoid. This gives us the posterier probabilities $p(y=1|f(x))$. Let's try this out on the above example. The familiar "S" shape of the sigmoid should be visible. Step11: Soft margins and slack variables If there is no clear classification possible using a hyperplane, we need to classify the data as nicely as possible while incorporating the misclassified samples. To do this a concept of soft margin is used. The method introduces non-negative slack variables, $\xi_i$, which measure the degree of misclassification of the data $x_i$. $$ y_i(\mathbf{w}\cdot\mathbf{x_i} + b) \ge 1 - \xi_i \quad 1 \le i \le N $$ Introducing a linear penalty function leads to $$\arg\min_{\mathbf{w},\mathbf{\xi}, b } ({\frac{1}{2} \|\mathbf{w}\|^2 +C \sum_{i=1}^n \xi_i) }$$ This in its dual form is leads to a slightly modified equation $\qquad(2)$. \begin{eqnarray} \max_{\bf \alpha} && \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N}\sum_{j=1}^{N} \alpha_i y_i \alpha_j y_j k({\bf x_i}, {\bf x_j})\ \mbox{s.t.} && 0\leq\alpha_i\leq C\ && \sum_{i=1}^{N} \alpha_i y_i=0 \ \end{eqnarray} The result is that soft-margin SVM could choose decision boundary that has non-zero training error even if dataset is linearly separable but is less likely to overfit. Here's an example using LibSVM on the above used data set. Highlighted points show support vectors. This should visually show the impact of C and how the amount of outliers on the wrong side of hyperplane is controlled using it. Step12: You can see that lower value of C causes classifier to sacrifice linear separability in order to gain stability, in a sense that influence of any single datapoint is now bounded by C. For hard margin SVM, support vectors are the points which are "on the margin". In the picture above, C=1000 is pretty close to hard-margin SVM, and you can see the highlighted points are the ones that will touch the margin. In high dimensions this might lead to overfitting. For soft-margin SVM, with a lower value of C, it's easier to explain them in terms of dual (equation $(2)$) variables. Support vectors are datapoints from training set which are are included in the predictor, ie, the ones with non-zero $\alpha_i$ parameter. This includes margin errors and points on the margin of the hyperplane. Binary classification using different kernels Two-dimensional Gaussians are generated as data for this section. $x_-\sim{\cal N_2}(0,1)-d$ $x_+\sim{\cal N_2}(0,1)+d$ and corresponding positive and negative labels. We create traindata and testdata with num of them being negatively and positively labelled in traindata,trainlab and testdata, testlab. For that we utilize Shogun's Gaussian Mixture Model class (GMM) from which we sample the data points and plot them. Step13: Now lets plot the contour output on a $-5...+5$ grid for The Support Vector Machines decision function $\mbox{sign}(f(x))$ The Support Vector Machines raw output $f(x)$ The Original Gaussian Mixture Model Distribution Step14: And voila! The SVM decision rule reasonably distinguishes the red from the blue points. Despite being optimized for learning the discriminative function maximizing the margin, the SVM output quality wise remotely resembles the original distribution of the gaussian mixture model. Let us visualise the output using different kernels. Step15: Kernel Normalizers Kernel normalizers post-process kernel values by carrying out normalization in feature space. Since kernel based SVMs use a non-linear mapping, in most cases any normalization in input space is lost in feature space. Kernel normalizers are a possible solution to this. Kernel Normalization is not strictly-speaking a form of preprocessing since it is not applied directly on the input vectors but can be seen as a kernel interpretation of the preprocessing. The KernelNormalizer class provides tools for kernel normalization. Some of the kernel normalizers in Shogun Step16: Multiclass classification Multiclass classification can be done using SVM by reducing the problem to binary classification. More on multiclass reductions in this notebook. CGMNPSVM class provides a built in one vs rest multiclass classification using GMNPlib. Let us see classification using it on four classes. CGMM class is used to sample the data. Step17: Let us try the multiclass classification for different kernels.
Python Code: import matplotlib.pyplot as plt %matplotlib inline import os SHOGUN_DATA_DIR=os.getenv('SHOGUN_DATA_DIR', '../../../data') import matplotlib.patches as patches #To import all shogun classes import shogun as sg import numpy as np #Generate some random data X = 2 * np.random.randn(10,2) traindata=np.r_[X + 3, X + 7].T feats_train=sg.features(traindata) trainlab=np.concatenate((np.ones(10),-np.ones(10))) labels=sg.BinaryLabels(trainlab) # Plot the training data plt.figure(figsize=(6,6)) plt.gray() _=plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.title("Training Data") plt.xlabel('attribute1') plt.ylabel('attribute2') p1 = patches.Rectangle((0, 0), 1, 1, fc="k") p2 = patches.Rectangle((0, 0), 1, 1, fc="w") plt.legend((p1, p2), ["Class 1", "Class 2"], loc=2) plt.gray() Explanation: Classification with Support Vector Machines by Soeren Sonnenburg | Saurabh Mahindre - <a href=\"https://github.com/Saurabh7\">github.com/Saurabh7</a> as a part of <a href=\"http://www.google-melange.com/gsoc/project/details/google/gsoc2014/saurabh7/5750085036015616\">Google Summer of Code 2014 project</a> mentored by - Heiko Strathmann - <a href=\"https://github.com/karlnapf\">github.com/karlnapf</a> - <a href=\"http://herrstrathmann.de/\">herrstrathmann.de</a> This notebook illustrates how to train a <a href="http://en.wikipedia.org/wiki/Support_vector_machine">Support Vector Machine</a> (SVM) <a href="http://en.wikipedia.org/wiki/Statistical_classification">classifier</a> using Shogun. The <a href="http://www.shogun-toolbox.org/doc/en/3.0.0/classshogun_1_1CLibSVM.html">CLibSVM</a> class of Shogun is used to do binary classification. Multiclass classification is also demonstrated using CGMNPSVM. Introduction Linear Support Vector Machines Prediction using Linear SVM SVMs using kernels Kernels in Shogun Prediction using kernel based SVM Probabilistic Outputs using SVM Soft margins and slack variables Binary classification using different kernels Kernel Normalizers Multiclass classification using SVM Introduction Support Vector Machines (SVM's) are a learning method used for binary classification. The basic idea is to find a hyperplane which separates the data into its two classes. However, since example data is often not linearly separable, SVMs operate in a kernel induced feature space, i.e., data is embedded into a higher dimensional space where it is linearly separable. Linear Support Vector Machines In a supervised learning problem, we are given a labeled set of input-output pairs $\mathcal{D}=(x_i,y_i)^N_{i=1}\subseteq \mathcal{X} \times \mathcal{Y}$ where $x\in\mathcal{X}$ and $y\in{-1,+1}$. SVM is a binary classifier that tries to separate objects of different classes by finding a (hyper-)plane such that the margin between the two classes is maximized. A hyperplane in $\mathcal{R}^D$ can be parameterized by a vector $\bf{w}$ and a constant $\text b$ expressed in the equation:$${\bf w}\cdot{\bf x} + \text{b} = 0$$ Given such a hyperplane ($\bf w$,b) that separates the data, the discriminating function is: $$f(x) = \text {sign} ({\bf w}\cdot{\bf x} + {\text b})$$ If the training data are linearly separable, we can select two hyperplanes in a way that they separate the data and there are no points between them, and then try to maximize their distance. The region bounded by them is called "the margin". These hyperplanes can be described by the equations $$({\bf w}\cdot{\bf x} + {\text b}) = 1$$ $$({\bf w}\cdot{\bf x} + {\text b}) = -1$$ the distance between these two hyperplanes is $\frac{2}{\|\mathbf{w}\|}$, so we want to minimize $\|\mathbf{w}\|$. $$ \arg\min_{(\mathbf{w},b)}\frac{1}{2}\|\mathbf{w}\|^2 \qquad\qquad(1)$$ This gives us a hyperplane that maximizes the geometric distance to the closest data points. As we also have to prevent data points from falling into the margin, we add the following constraint: for each ${i}$ either $$({\bf w}\cdot{x}_i + {\text b}) \geq 1$$ or $$({\bf w}\cdot{x}_i + {\text b}) \leq -1$$ which is similar to $${y_i}({\bf w}\cdot{x}_i + {\text b}) \geq 1 \forall i$$ Lagrange multipliers are used to modify equation $(1)$ and the corresponding dual of the problem can be shown to be: \begin{eqnarray} \max_{\bf \alpha} && \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N}\sum_{j=1}^{N} \alpha_i y_i \alpha_j y_j {\bf x_i} \cdot {\bf x_j}\ \mbox{s.t.} && \alpha_i\geq 0\ && \sum_{i}^{N} \alpha_i y_i=0\ \end{eqnarray} From the derivation of these equations, it was seen that the optimal hyperplane can be written as: $$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i. $$ here most $\alpha_i$ turn out to be zero, which means that the solution is a sparse linear combination of the training data. Prediction using Linear SVM Now let us see how one can train a linear Support Vector Machine with Shogun. Two dimensional data (having 2 attributes say: attribute1 and attribute2) is now sampled to demonstrate the classification. End of explanation #prameters to svm #parameter C is described in a later section. C=1 epsilon=1e-3 svm=sg.machine('LibLinear', C1=C, C2=C, liblinear_solver_type='L2R_L2LOSS_SVC', epsilon=epsilon) #train svm.put('labels', labels) svm.train(feats_train) w=svm.get('w') b=svm.get('bias') Explanation: Liblinear, a library for large- scale linear learning focusing on SVM, is used to do the classification. It supports different solver types. End of explanation #solve for w.x+b=0 x1=np.linspace(-1.0, 11.0, 100) def solve (x1): return -( ( (w[0])*x1 + b )/w[1] ) x2=list(map(solve, x1)) #plot plt.figure(figsize=(6,6)) plt.gray() plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.plot(x1,x2, linewidth=2) plt.title("Separating hyperplane") plt.xlabel('attribute1') plt.ylabel('attribute2') plt.gray() Explanation: We solve ${\bf w}\cdot{\bf x} + \text{b} = 0$ to visualise the separating hyperplane. The methods get_w() and get_bias() are used to get the necessary values. End of explanation size=100 x1_=np.linspace(-5, 15, size) x2_=np.linspace(-5, 15, size) x, y=np.meshgrid(x1_, x2_) #Generate X-Y grid test data grid=sg.features(np.array((np.ravel(x), np.ravel(y)))) #apply on test grid predictions = svm.apply(grid) #Distance from hyperplane z=predictions.get_values().reshape((size, size)) #plot plt.jet() plt.figure(figsize=(16,6)) plt.subplot(121) plt.title("Classification") c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.gray() plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.xlabel('attribute1') plt.ylabel('attribute2') plt.jet() #Class predictions z=predictions.get('labels').reshape((size, size)) #plot plt.subplot(122) plt.title("Separating hyperplane") c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.gray() plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.xlabel('attribute1') plt.ylabel('attribute2') plt.gray() Explanation: The classifier is now applied on a X-Y grid of points to get predictions. End of explanation gaussian_kernel=sg.kernel("GaussianKernel", log_width=np.log(100)) #Polynomial kernel of degree 2 poly_kernel=sg.kernel('PolyKernel', degree=2, c=1.0) poly_kernel.init(feats_train, feats_train) linear_kernel=sg.kernel('LinearKernel') linear_kernel.init(feats_train, feats_train) kernels=[linear_kernel, poly_kernel, gaussian_kernel] Explanation: SVMs using kernels If the data set is not linearly separable, a non-linear mapping $\Phi:{\bf x} \rightarrow \Phi({\bf x}) \in \mathcal{F} $ is used. This maps the data into a higher dimensional space where it is linearly separable. Our equation requires only the inner dot products ${\bf x_i}\cdot{\bf x_j}$. The equation can be defined in terms of inner products $\Phi({\bf x_i}) \cdot \Phi({\bf x_j})$ instead. Since $\Phi({\bf x_i})$ occurs only in dot products with $ \Phi({\bf x_j})$ it is sufficient to know the formula (kernel function) : $$K({\bf x_i, x_j} ) = \Phi({\bf x_i}) \cdot \Phi({\bf x_j})$$ without dealing with the maping directly. The transformed optimisation problem is: \begin{eqnarray} \max_{\bf \alpha} && \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N}\sum_{j=1}^{N} \alpha_i y_i \alpha_j y_j k({\bf x_i}, {\bf x_j})\ \mbox{s.t.} && \alpha_i\geq 0\ && \sum_{i=1}^{N} \alpha_i y_i=0 \qquad\qquad(2)\ \end{eqnarray} Kernels in Shogun Shogun provides many options for the above mentioned kernel functions. Kernel is the base class for kernels. Some commonly used kernels : Gaussian kernel : Popular Gaussian kernel computed as $k({\bf x},{\bf x'})= exp(-\frac{||{\bf x}-{\bf x'}||^2}{\tau})$ Linear kernel : Computes $k({\bf x},{\bf x'})= {\bf x}\cdot {\bf x'}$ Polynomial kernel : Polynomial kernel computed as $k({\bf x},{\bf x'})= ({\bf x}\cdot {\bf x'}+c)^d$ Simgmoid Kernel : Computes $k({\bf x},{\bf x'})=\mbox{tanh}(\gamma {\bf x}\cdot{\bf x'}+c)$ Some of these kernels are initialised below. End of explanation plt.jet() def display_km(kernels, svm): plt.figure(figsize=(20,6)) plt.suptitle('Kernel matrices for different kernels', fontsize=12) for i, kernel in enumerate(kernels): kernel.init(feats_train,feats_train) plt.subplot(1, len(kernels), i+1) plt.title(kernel.get_name()) km=kernel.get_kernel_matrix() plt.imshow(km, interpolation="nearest") plt.colorbar() display_km(kernels, svm) Explanation: Just for fun we compute the kernel matrix and display it. There are clusters visible that are smooth for the gaussian and polynomial kernel and block-wise for the linear one. The gaussian one also smoothly decays from some cluster centre while the polynomial one oscillates within the clusters. End of explanation C=1 epsilon=1e-3 svm=sg.machine('LibSVM', C1=C, C2=C, kernel=gaussian_kernel, labels=labels) _=svm.train() Explanation: Prediction using kernel based SVM Now we train an SVM with a Gaussian Kernel. We use LibSVM but we could use any of the other SVM from Shogun. They all utilize the same kernel framework and so are drop-in replacements. End of explanation libsvm_obj = svm.get('objective') primal_obj, dual_obj = sg.as_svm(svm).compute_svm_primal_objective(), sg.as_svm(svm).compute_svm_dual_objective() print(libsvm_obj, primal_obj, dual_obj) Explanation: We could now check a number of properties like what the value of the objective function returned by the particular SVM learning algorithm or the explictly computed primal and dual objective function is End of explanation print("duality_gap", dual_obj-primal_obj) Explanation: and based on the objectives we can compute the duality gap (have a look at reference [2]), a measure of convergence quality of the svm training algorithm . In theory it is 0 at the optimum and in reality at least close to 0. End of explanation out=svm.apply(grid) z=out.get_values().reshape((size, size)) #plot plt.jet() plt.figure(figsize=(16,6)) plt.subplot(121) plt.title("Classification") c=plt.pcolor(x1_, x2_, z) plt.contour(x1_ , x2_, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.gray() plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.xlabel('attribute1') plt.ylabel('attribute2') plt.jet() z=out.get('labels').reshape((size, size)) plt.subplot(122) plt.title("Decision boundary") c=plt.pcolor(x1_, x2_, z) plt.contour(x1_ , x2_, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=50) plt.xlabel('attribute1') plt.ylabel('attribute2') plt.gray() Explanation: Let's now apply on the X-Y grid data and plot the results. End of explanation n=10 x1t_=np.linspace(-5, 15, n) x2t_=np.linspace(-5, 15, n) xt, yt=np.meshgrid(x1t_, x2t_) #Generate X-Y grid test data test_grid=sg.features(np.array((np.ravel(xt), np.ravel(yt)))) labels_out=svm.apply(test_grid) #Get values (Distance from hyperplane) values=labels_out.get('current_values') #Get probabilities labels_out.scores_to_probabilities() prob=labels_out.get('current_values') #plot plt.gray() plt.figure(figsize=(10,6)) p1=plt.scatter(values, prob) plt.title('Probabilistic outputs') plt.xlabel('Distance from hyperplane') plt.ylabel('Probability') plt.legend([p1], ["Test samples"], loc=2) Explanation: Probabilistic Outputs Calibrated probabilities can be generated in addition to class predictions using scores_to_probabilities() method of BinaryLabels, which implements the method described in [3]. This should only be used in conjunction with SVM. A parameteric form of a sigmoid function $$\frac{1}{{1+}exp(af(x) + b)}$$ is used to fit the outputs. Here $f(x)$ is the signed distance of a sample from the hyperplane, $a$ and $b$ are parameters to the sigmoid. This gives us the posterier probabilities $p(y=1|f(x))$. Let's try this out on the above example. The familiar "S" shape of the sigmoid should be visible. End of explanation def plot_sv(C_values): plt.figure(figsize=(20,6)) plt.suptitle('Soft and hard margins with varying C', fontsize=12) for i in range(len(C_values)): plt.subplot(1, len(C_values), i+1) linear_kernel=sg.LinearKernel(feats_train, feats_train) svm1 = sg.machine('LibSVM', C1=C_values[i], C2=C_values[i], kernel=linear_kernel, labels=labels) svm1 = sg.as_svm(svm1) svm1.train() vec1=svm1.get_support_vectors() X_=[] Y_=[] new_labels=[] for j in vec1: X_.append(traindata[0][j]) Y_.append(traindata[1][j]) new_labels.append(trainlab[j]) out1=svm1.apply(grid) z1=out1.get_labels().reshape((size, size)) plt.jet() c=plt.pcolor(x1_, x2_, z1) plt.contour(x1_ , x2_, z1, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.gray() plt.scatter(X_, Y_, c=new_labels, s=150) plt.scatter(traindata[0, :], traindata[1,:], c=labels, s=20) plt.title('Support vectors for C=%.2f'%C_values[i]) plt.xlabel('attribute1') plt.ylabel('attribute2') C_values=[0.1, 1000] plot_sv(C_values) Explanation: Soft margins and slack variables If there is no clear classification possible using a hyperplane, we need to classify the data as nicely as possible while incorporating the misclassified samples. To do this a concept of soft margin is used. The method introduces non-negative slack variables, $\xi_i$, which measure the degree of misclassification of the data $x_i$. $$ y_i(\mathbf{w}\cdot\mathbf{x_i} + b) \ge 1 - \xi_i \quad 1 \le i \le N $$ Introducing a linear penalty function leads to $$\arg\min_{\mathbf{w},\mathbf{\xi}, b } ({\frac{1}{2} \|\mathbf{w}\|^2 +C \sum_{i=1}^n \xi_i) }$$ This in its dual form is leads to a slightly modified equation $\qquad(2)$. \begin{eqnarray} \max_{\bf \alpha} && \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N}\sum_{j=1}^{N} \alpha_i y_i \alpha_j y_j k({\bf x_i}, {\bf x_j})\ \mbox{s.t.} && 0\leq\alpha_i\leq C\ && \sum_{i=1}^{N} \alpha_i y_i=0 \ \end{eqnarray} The result is that soft-margin SVM could choose decision boundary that has non-zero training error even if dataset is linearly separable but is less likely to overfit. Here's an example using LibSVM on the above used data set. Highlighted points show support vectors. This should visually show the impact of C and how the amount of outliers on the wrong side of hyperplane is controlled using it. End of explanation num=50; dist=1.0; gmm=sg.GMM(2) gmm.set_nth_mean(np.array([-dist,-dist]),0) gmm.set_nth_mean(np.array([dist,dist]),1) gmm.set_nth_cov(np.array([[1.0,0.0],[0.0,1.0]]),0) gmm.set_nth_cov(np.array([[1.0,0.0],[0.0,1.0]]),1) gmm.put('m_coefficients', np.array([1.0,0.0])) xntr=np.array([gmm.sample() for i in range(num)]).T gmm.set_coef(np.array([0.0,1.0])) xptr=np.array([gmm.sample() for i in range(num)]).T traindata=np.concatenate((xntr,xptr), axis=1) trainlab=np.concatenate((-np.ones(num), np.ones(num))) #shogun format features feats_train=sg.features(traindata) labels=sg.BinaryLabels(trainlab) gaussian_kernel = sg.kernel("GaussianKernel", log_width=np.log(10)) #Polynomial kernel of degree 2 poly_kernel = sg.kernel('PolyKernel', degree=2, c=1.0) poly_kernel.init(feats_train, feats_train) linear_kernel = sg.kernel('LinearKernel') linear_kernel.init(feats_train, feats_train) kernels=[gaussian_kernel, poly_kernel, linear_kernel] #train machine C=1 svm=sg.machine('LibSVM', C1=C, C2=C, kernel=gaussian_kernel, labels=labels) _=svm.train(feats_train) Explanation: You can see that lower value of C causes classifier to sacrifice linear separability in order to gain stability, in a sense that influence of any single datapoint is now bounded by C. For hard margin SVM, support vectors are the points which are "on the margin". In the picture above, C=1000 is pretty close to hard-margin SVM, and you can see the highlighted points are the ones that will touch the margin. In high dimensions this might lead to overfitting. For soft-margin SVM, with a lower value of C, it's easier to explain them in terms of dual (equation $(2)$) variables. Support vectors are datapoints from training set which are are included in the predictor, ie, the ones with non-zero $\alpha_i$ parameter. This includes margin errors and points on the margin of the hyperplane. Binary classification using different kernels Two-dimensional Gaussians are generated as data for this section. $x_-\sim{\cal N_2}(0,1)-d$ $x_+\sim{\cal N_2}(0,1)+d$ and corresponding positive and negative labels. We create traindata and testdata with num of them being negatively and positively labelled in traindata,trainlab and testdata, testlab. For that we utilize Shogun's Gaussian Mixture Model class (GMM) from which we sample the data points and plot them. End of explanation size=100 x1=np.linspace(-5, 5, size) x2=np.linspace(-5, 5, size) x, y=np.meshgrid(x1, x2) grid=sg.features(np.array((np.ravel(x), np.ravel(y)))) grid_out=svm.apply(grid) z=grid_out.get('labels').reshape((size, size)) plt.jet() plt.figure(figsize=(16,5)) z=grid_out.get_values().reshape((size, size)) plt.subplot(121) plt.title('Classification') c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.subplot(122) plt.title('Original distribution') gmm.put('m_coefficients', np.array([1.0,0.0])) gmm.set_features(grid) grid_out=gmm.get_likelihood_for_all_examples() zn=grid_out.reshape((size, size)) gmm.set_coef(np.array([0.0,1.0])) grid_out=gmm.get_likelihood_for_all_examples() zp=grid_out.reshape((size, size)) z=zp-zn c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) Explanation: Now lets plot the contour output on a $-5...+5$ grid for The Support Vector Machines decision function $\mbox{sign}(f(x))$ The Support Vector Machines raw output $f(x)$ The Original Gaussian Mixture Model Distribution End of explanation def plot_outputs(kernels): plt.figure(figsize=(20,5)) plt.suptitle('Binary Classification using different kernels', fontsize=12) for i in range(len(kernels)): plt.subplot(1,len(kernels),i+1) plt.title(kernels[i].get_name()) svm.put('kernel', kernels[i]) svm.train() grid_out=svm.apply(grid) z=grid_out.get_values().reshape((size, size)) c=plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.scatter(traindata[0,:], traindata[1,:], c=trainlab, s=35) plot_outputs(kernels) Explanation: And voila! The SVM decision rule reasonably distinguishes the red from the blue points. Despite being optimized for learning the discriminative function maximizing the margin, the SVM output quality wise remotely resembles the original distribution of the gaussian mixture model. Let us visualise the output using different kernels. End of explanation f = open(os.path.join(SHOGUN_DATA_DIR, 'uci/ionosphere/ionosphere.data')) mat = [] labels = [] # read data from file for line in f: words = line.rstrip().split(',') mat.append([float(i) for i in words[0:-1]]) if str(words[-1])=='g': labels.append(1) else: labels.append(-1) f.close() mat_train=mat[:30] mat_test=mat[30:110] lab_train=sg.BinaryLabels(np.array(labels[:30]).reshape((30,))) lab_test=sg.BinaryLabels(np.array(labels[30:110]).reshape((len(labels[30:110]),))) feats_train = sg.features(np.array(mat_train).T) feats_test = sg.features(np.array(mat_test).T) #without normalization gaussian_kernel=sg.kernel("GaussianKernel", log_width=np.log(0.1)) gaussian_kernel.init(feats_train, feats_train) C=1 svm=sg.machine('LibSVM', C1=C, C2=C, kernel=gaussian_kernel, labels=lab_train) _=svm.train() output=svm.apply(feats_test) Err=sg.ErrorRateMeasure() error=Err.evaluate(output, lab_test) print('Error:', error) #set normalization gaussian_kernel=sg.kernel("GaussianKernel", log_width=np.log(0.1)) # TODO: currently there is a bug that makes it impossible to use Gaussian kernels and kernel normalisers # See github issue #3504 #gaussian_kernel.set_normalizer(sg.SqrtDiagKernelNormalizer()) gaussian_kernel.init(feats_train, feats_train) svm.put('kernel', gaussian_kernel) svm.train() output=svm.apply(feats_test) Err=sg.ErrorRateMeasure() error=Err.evaluate(output, lab_test) print('Error with normalization:', error) Explanation: Kernel Normalizers Kernel normalizers post-process kernel values by carrying out normalization in feature space. Since kernel based SVMs use a non-linear mapping, in most cases any normalization in input space is lost in feature space. Kernel normalizers are a possible solution to this. Kernel Normalization is not strictly-speaking a form of preprocessing since it is not applied directly on the input vectors but can be seen as a kernel interpretation of the preprocessing. The KernelNormalizer class provides tools for kernel normalization. Some of the kernel normalizers in Shogun: SqrtDiagKernelNormalizer : This normalization in the feature space amounts to defining a new kernel $k'({\bf x},{\bf x'}) = \frac{k({\bf x},{\bf x'})}{\sqrt{k({\bf x},{\bf x})k({\bf x'},{\bf x'})}}$ AvgDiagKernelNormalizer : Scaling with a constant $k({\bf x},{\bf x'})= \frac{1}{c}\cdot k({\bf x},{\bf x'})$ ZeroMeanCenterKernelNormalizer : Centers the kernel in feature space and ensures each feature must have zero mean after centering. The set_normalizer() method of Kernel is used to add a normalizer. Let us try it out on the ionosphere dataset where we use a small training set of 30 samples to train our SVM. Gaussian kernel with and without normalization is used. See reference [1] for details. End of explanation num=30; num_components=4 means=np.zeros((num_components, 2)) means[0]=[-1.5,1.5] means[1]=[1.5,-1.5] means[2]=[-1.5,-1.5] means[3]=[1.5,1.5] covs=np.array([[1.0,0.0],[0.0,1.0]]) gmm=sg.GMM(num_components) [gmm.set_nth_mean(means[i], i) for i in range(num_components)] [gmm.set_nth_cov(covs,i) for i in range(num_components)] gmm.put('m_coefficients', np.array([1.0,0.0,0.0,0.0])) xntr=np.array([gmm.sample() for i in range(num)]).T xnte=np.array([gmm.sample() for i in range(5000)]).T gmm.put('m_coefficients', np.array([0.0,1.0,0.0,0.0])) xntr1=np.array([gmm.sample() for i in range(num)]).T xnte1=np.array([gmm.sample() for i in range(5000)]).T gmm.put('m_coefficients', np.array([0.0,0.0,1.0,0.0])) xptr=np.array([gmm.sample() for i in range(num)]).T xpte=np.array([gmm.sample() for i in range(5000)]).T gmm.put('m_coefficients', np.array([0.0,0.0,0.0,1.0])) xptr1=np.array([gmm.sample() for i in range(num)]).T xpte1=np.array([gmm.sample() for i in range(5000)]).T traindata=np.concatenate((xntr,xntr1,xptr,xptr1), axis=1) testdata=np.concatenate((xnte,xnte1,xpte,xpte1), axis=1) l0 = np.array([0.0 for i in range(num)]) l1 = np.array([1.0 for i in range(num)]) l2 = np.array([2.0 for i in range(num)]) l3 = np.array([3.0 for i in range(num)]) trainlab=np.concatenate((l0,l1,l2,l3)) testlab=np.concatenate((l0,l1,l2,l3)) plt.title('Toy data for multiclass classification') plt.jet() plt.scatter(traindata[0,:], traindata[1,:], c=trainlab, s=75) feats_train=sg.features(traindata) labels=sg.MulticlassLabels(trainlab) Explanation: Multiclass classification Multiclass classification can be done using SVM by reducing the problem to binary classification. More on multiclass reductions in this notebook. CGMNPSVM class provides a built in one vs rest multiclass classification using GMNPlib. Let us see classification using it on four classes. CGMM class is used to sample the data. End of explanation gaussian_kernel=sg.kernel("GaussianKernel", log_width=np.log(2)) poly_kernel=sg.kernel('PolyKernel', degree=4, c=1.0) poly_kernel.init(feats_train, feats_train) linear_kernel=sg.kernel('LinearKernel') linear_kernel.init(feats_train, feats_train) kernels=[gaussian_kernel, poly_kernel, linear_kernel] svm=sg.GMNPSVM(1, gaussian_kernel, labels) _=svm.train(feats_train) size=100 x1=np.linspace(-6, 6, size) x2=np.linspace(-6, 6, size) x, y=np.meshgrid(x1, x2) grid=sg.features(np.array((np.ravel(x), np.ravel(y)))) def plot_outputs(kernels): plt.figure(figsize=(20,5)) plt.suptitle('Multiclass Classification using different kernels', fontsize=12) for i in range(len(kernels)): plt.subplot(1,len(kernels),i+1) plt.title(kernels[i].get_name()) svm.set_kernel(kernels[i]) svm.train(feats_train) grid_out=svm.apply(grid) z=grid_out.get_labels().reshape((size, size)) plt.pcolor(x, y, z) plt.contour(x, y, z, linewidths=1, colors='black', hold=True) plt.colorbar(c) plt.scatter(traindata[0,:], traindata[1,:], c=trainlab, s=35) plot_outputs(kernels) Explanation: Let us try the multiclass classification for different kernels. End of explanation
537
Given the following text description, write Python code to implement the functionality described below step by step Description: Executed Step1: Load software and filenames definitions Step2: Data folder Step3: Check that the folder exists Step4: List of data files in data_dir Step5: Data load Initial loading of the data Step6: Laser alternation selection At this point we have only the timestamps and the detector numbers Step7: We need to define some parameters Step8: We should check if everithing is OK with an alternation histogram Step9: If the plot looks good we can apply the parameters with Step10: Measurements infos All the measurement data is in the d variable. We can print it Step11: Or check the measurements duration Step12: Compute background Compute the background using automatic threshold Step13: Burst search and selection Step14: Preliminary selection and plots Step15: A-direct excitation fitting To extract the A-direct excitation coefficient we need to fit the S values for the A-only population. The S value for the A-only population is fitted with different methods Step16: Zero threshold on nd Select bursts with Step17: Selection 1 Bursts are weighted using $w = f(S)$, where the function $f(S)$ is a Gaussian fitted to the $S$ histogram of the FRET population. Step18: Selection 2 Bursts are here weighted using weights $w$ Step19: Selection 3 Bursts are here selected according to Step20: Save data to file Step21: The following string contains the list of variables to be saved. When saving, the order of the variables is preserved. Step22: This is just a trick to format the different variables
Python Code: ph_sel_name = "all-ph" data_id = "7d" # ph_sel_name = "all-ph" # data_id = "7d" Explanation: Executed: Mon Mar 27 11:37:05 2017 Duration: 9 seconds. usALEX-5samples - Template This notebook is executed through 8-spots paper analysis. For a direct execution, uncomment the cell below. End of explanation from fretbursts import * init_notebook() from IPython.display import display Explanation: Load software and filenames definitions End of explanation data_dir = './data/singlespot/' Explanation: Data folder: End of explanation import os data_dir = os.path.abspath(data_dir) + '/' assert os.path.exists(data_dir), "Path '%s' does not exist." % data_dir Explanation: Check that the folder exists: End of explanation from glob import glob file_list = sorted(f for f in glob(data_dir + '*.hdf5') if '_BKG' not in f) file_list ## Selection for POLIMI 2012-12-6 dataset # file_list.pop(2) # file_list = file_list[1:-2] # display(file_list) # labels = ['22d', '27d', '17d', '12d', '7d'] ## Selection for P.E. 2012-12-6 dataset # file_list.pop(1) # file_list = file_list[:-1] # display(file_list) # labels = ['22d', '27d', '17d', '12d', '7d'] ## Selection for POLIMI 2012-11-26 datatset labels = ['17d', '27d', '7d', '12d', '22d'] files_dict = {lab: fname for lab, fname in zip(labels, file_list)} files_dict ph_sel_map = {'all-ph': Ph_sel('all'), 'AexAem': Ph_sel(Aex='Aem')} ph_sel = ph_sel_map[ph_sel_name] data_id, ph_sel_name Explanation: List of data files in data_dir: End of explanation d = loader.photon_hdf5(filename=files_dict[data_id]) Explanation: Data load Initial loading of the data: End of explanation d.ph_times_t, d.det_t Explanation: Laser alternation selection At this point we have only the timestamps and the detector numbers: End of explanation d.add(det_donor_accept=(0, 1), alex_period=4000, D_ON=(2850, 580), A_ON=(900, 2580), offset=0) Explanation: We need to define some parameters: donor and acceptor ch, excitation period and donor and acceptor excitiations: End of explanation plot_alternation_hist(d) Explanation: We should check if everithing is OK with an alternation histogram: End of explanation loader.alex_apply_period(d) Explanation: If the plot looks good we can apply the parameters with: End of explanation d Explanation: Measurements infos All the measurement data is in the d variable. We can print it: End of explanation d.time_max Explanation: Or check the measurements duration: End of explanation d.calc_bg(bg.exp_fit, time_s=60, tail_min_us='auto', F_bg=1.7) dplot(d, timetrace_bg) d.rate_m, d.rate_dd, d.rate_ad, d.rate_aa Explanation: Compute background Compute the background using automatic threshold: End of explanation from mpl_toolkits.axes_grid1 import AxesGrid import lmfit print('lmfit version:', lmfit.__version__) assert d.dir_ex == 0 assert d.leakage == 0 d.burst_search(m=10, F=6, ph_sel=ph_sel) print(d.ph_sel, d.num_bursts) ds_sa = d.select_bursts(select_bursts.naa, th1=30) ds_sa.num_bursts Explanation: Burst search and selection End of explanation mask = (d.naa[0] - np.abs(d.na[0] + d.nd[0])) > 30 ds_saw = d.select_bursts_mask_apply([mask]) ds_sas0 = ds_sa.select_bursts(select_bursts.S, S2=0.10) ds_sas = ds_sa.select_bursts(select_bursts.S, S2=0.15) ds_sas2 = ds_sa.select_bursts(select_bursts.S, S2=0.20) ds_sas3 = ds_sa.select_bursts(select_bursts.S, S2=0.25) ds_st = d.select_bursts(select_bursts.size, add_naa=True, th1=30) ds_sas.num_bursts dx = ds_sas0 size = dx.na[0] + dx.nd[0] s_hist, s_bins = np.histogram(size, bins=np.r_[-15 : 25 : 1], density=True) s_ax = s_bins[:-1] + 0.5*(s_bins[1] - s_bins[0]) plot(s_ax, s_hist, '-o', alpha=0.5) dx = ds_sas size = dx.na[0] + dx.nd[0] s_hist, s_bins = np.histogram(size, bins=np.r_[-15 : 25 : 1], density=True) s_ax = s_bins[:-1] + 0.5*(s_bins[1] - s_bins[0]) plot(s_ax, s_hist, '-o', alpha=0.5) dx = ds_sas2 size = dx.na[0] + dx.nd[0] s_hist, s_bins = np.histogram(size, bins=np.r_[-15 : 25 : 1], density=True) s_ax = s_bins[:-1] + 0.5*(s_bins[1] - s_bins[0]) plot(s_ax, s_hist, '-o', alpha=0.5) dx = ds_sas3 size = dx.na[0] + dx.nd[0] s_hist, s_bins = np.histogram(size, bins=np.r_[-15 : 25 : 1], density=True) s_ax = s_bins[:-1] + 0.5*(s_bins[1] - s_bins[0]) plot(s_ax, s_hist, '-o', alpha=0.5) plt.title('(nd + na) for A-only population using different S cutoff'); dx = ds_sa alex_jointplot(dx); dplot(ds_sa, hist_S) Explanation: Preliminary selection and plots End of explanation dx = ds_sa bin_width = 0.03 bandwidth = 0.03 bins = np.r_[-0.2 : 1 : bin_width] x_kde = np.arange(bins.min(), bins.max(), 0.0002) ## Weights weights = None ## Histogram fit fitter_g = mfit.MultiFitter(dx.S) fitter_g.histogram(bins=np.r_[-0.2 : 1.2 : bandwidth]) fitter_g.fit_histogram(model = mfit.factory_two_gaussians(p1_center=0.1, p2_center=0.4)) S_hist_orig = fitter_g.hist_pdf S_2peaks = fitter_g.params.loc[0, 'p1_center'] dir_ex_S2p = S_2peaks/(1 - S_2peaks) print('Fitted direct excitation (na/naa) [2-Gauss]:', dir_ex_S2p) ## KDE fitter_g.calc_kde(bandwidth=bandwidth) fitter_g.find_kde_max(x_kde, xmin=0, xmax=0.15) S_peak = fitter_g.kde_max_pos[0] dir_ex_S_kde = S_peak/(1 - S_peak) print('Fitted direct excitation (na/naa) [KDE]: ', dir_ex_S_kde) fig, ax = plt.subplots(1, 2, figsize=(14, 4.5)) mfit.plot_mfit(fitter_g, ax=ax[0]) ax[0].set_title('2-Gaussians fit (S_fit = %.2f %%)' % (S_2peaks*100)) mfit.plot_mfit(fitter_g, ax=ax[1], plot_model=False, plot_kde=True) ax[1].set_title('KDE fit (S_fit = %.2f %%)' % (S_peak*100)); ## 2-Asym-Gaussian fitter_ag = mfit.MultiFitter(dx.S) fitter_ag.histogram(bins=np.r_[-0.2 : 1.2 : bandwidth]) fitter_ag.fit_histogram(model = mfit.factory_two_asym_gaussians(p1_center=0.1, p2_center=0.4)) #print(fitter_ag.fit_obj[0].model.fit_report()) S_2peaks_a = fitter_ag.params.loc[0, 'p1_center'] dir_ex_S2pa = S_2peaks_a/(1 - S_2peaks_a) print('Fitted direct excitation (na/naa) [2-Gauss]:', dir_ex_S2pa) fig, ax = plt.subplots(1, 2, figsize=(14, 4.5)) mfit.plot_mfit(fitter_g, ax=ax[0]) ax[0].set_title('2-Gaussians fit (S_fit = %.2f %%)' % (S_2peaks*100)) mfit.plot_mfit(fitter_ag, ax=ax[1]) ax[1].set_title('2-Asym-Gaussians fit (S_fit = %.2f %%)' % (S_2peaks_a*100)); Explanation: A-direct excitation fitting To extract the A-direct excitation coefficient we need to fit the S values for the A-only population. The S value for the A-only population is fitted with different methods: - Histogram git with 2 Gaussians or with 2 asymmetric Gaussians (an asymmetric Gaussian has right- and left-side of the peak decreasing according to different sigmas). - KDE maximum In the following we apply these methods using different selection or weighting schemes to reduce amount of FRET population and make fitting of the A-only population easier. Even selection Here A-only and FRET population are evenly selected. End of explanation dx = ds_sa.select_bursts(select_bursts.nd, th1=-100, th2=0) fitter = bext.bursts_fitter(dx, 'S') fitter.fit_histogram(model = mfit.factory_gaussian(center=0.1)) S_1peaks_th = fitter.params.loc[0, 'center'] dir_ex_S1p = S_1peaks_th/(1 - S_1peaks_th) print('Fitted direct excitation (na/naa) [2-Gauss]:', dir_ex_S1p) mfit.plot_mfit(fitter) plt.xlim(-0.1, 0.6) Explanation: Zero threshold on nd Select bursts with: $$n_d < 0$$. End of explanation dx = ds_sa ## Weights weights = 1 - mfit.gaussian(dx.S[0], fitter_g.params.loc[0, 'p2_center'], fitter_g.params.loc[0, 'p2_sigma']) weights[dx.S[0] >= fitter_g.params.loc[0, 'p2_center']] = 0 ## Histogram fit fitter_w1 = mfit.MultiFitter(dx.S) fitter_w1.weights = [weights] fitter_w1.histogram(bins=np.r_[-0.2 : 1.2 : bandwidth]) fitter_w1.fit_histogram(model = mfit.factory_two_gaussians(p1_center=0.1, p2_center=0.4)) S_2peaks_w1 = fitter_w1.params.loc[0, 'p1_center'] dir_ex_S2p_w1 = S_2peaks_w1/(1 - S_2peaks_w1) print('Fitted direct excitation (na/naa) [2-Gauss]:', dir_ex_S2p_w1) ## KDE fitter_w1.calc_kde(bandwidth=bandwidth) fitter_w1.find_kde_max(x_kde, xmin=0, xmax=0.15) S_peak_w1 = fitter_w1.kde_max_pos[0] dir_ex_S_kde_w1 = S_peak_w1/(1 - S_peak_w1) print('Fitted direct excitation (na/naa) [KDE]: ', dir_ex_S_kde_w1) def plot_weights(x, weights, ax): ax2 = ax.twinx() x_sort = x.argsort() ax2.plot(x[x_sort], weights[x_sort], color='k', lw=4, alpha=0.4) ax2.set_ylabel('Weights'); fig, ax = plt.subplots(1, 2, figsize=(14, 4.5)) mfit.plot_mfit(fitter_w1, ax=ax[0]) mfit.plot_mfit(fitter_g, ax=ax[0], plot_model=False, plot_kde=False) plot_weights(dx.S[0], weights, ax=ax[0]) ax[0].set_title('2-Gaussians fit (S_fit = %.2f %%)' % (S_2peaks_w1*100)) mfit.plot_mfit(fitter_w1, ax=ax[1], plot_model=False, plot_kde=True) mfit.plot_mfit(fitter_g, ax=ax[1], plot_model=False, plot_kde=False) plot_weights(dx.S[0], weights, ax=ax[1]) ax[1].set_title('KDE fit (S_fit = %.2f %%)' % (S_peak_w1*100)); Explanation: Selection 1 Bursts are weighted using $w = f(S)$, where the function $f(S)$ is a Gaussian fitted to the $S$ histogram of the FRET population. End of explanation ## Weights sizes = dx.nd[0] + dx.na[0] #- dir_ex_S_kde_w3*dx.naa[0] weights = dx.naa[0] - abs(sizes) weights[weights < 0] = 0 ## Histogram fitter_w4 = mfit.MultiFitter(dx.S) fitter_w4.weights = [weights] fitter_w4.histogram(bins=np.r_[-0.2 : 1.2 : bandwidth]) fitter_w4.fit_histogram(model = mfit.factory_two_gaussians(p1_center=0.1, p2_center=0.4)) S_2peaks_w4 = fitter_w4.params.loc[0, 'p1_center'] dir_ex_S2p_w4 = S_2peaks_w4/(1 - S_2peaks_w4) print('Fitted direct excitation (na/naa) [2-Gauss]:', dir_ex_S2p_w4) ## KDE fitter_w4.calc_kde(bandwidth=bandwidth) fitter_w4.find_kde_max(x_kde, xmin=0, xmax=0.15) S_peak_w4 = fitter_w4.kde_max_pos[0] dir_ex_S_kde_w4 = S_peak_w4/(1 - S_peak_w4) print('Fitted direct excitation (na/naa) [KDE]: ', dir_ex_S_kde_w4) fig, ax = plt.subplots(1, 2, figsize=(14, 4.5)) mfit.plot_mfit(fitter_w4, ax=ax[0]) mfit.plot_mfit(fitter_g, ax=ax[0], plot_model=False, plot_kde=False) #plot_weights(dx.S[0], weights, ax=ax[0]) ax[0].set_title('2-Gaussians fit (S_fit = %.2f %%)' % (S_2peaks_w4*100)) mfit.plot_mfit(fitter_w4, ax=ax[1], plot_model=False, plot_kde=True) mfit.plot_mfit(fitter_g, ax=ax[1], plot_model=False, plot_kde=False) #plot_weights(dx.S[0], weights, ax=ax[1]) ax[1].set_title('KDE fit (S_fit = %.2f %%)' % (S_peak_w4*100)); Explanation: Selection 2 Bursts are here weighted using weights $w$: $$w = n_{aa} - |n_a + n_d|$$ End of explanation mask = (d.naa[0] - np.abs(d.na[0] + d.nd[0])) > 30 ds_saw = d.select_bursts_mask_apply([mask]) print(ds_saw.num_bursts) dx = ds_saw ## Weights weights = None ## 2-Gaussians fitter_w5 = mfit.MultiFitter(dx.S) fitter_w5.histogram(bins=np.r_[-0.2 : 1.2 : bandwidth]) fitter_w5.fit_histogram(model = mfit.factory_two_gaussians(p1_center=0.1, p2_center=0.4)) S_2peaks_w5 = fitter_w5.params.loc[0, 'p1_center'] dir_ex_S2p_w5 = S_2peaks_w5/(1 - S_2peaks_w5) print('Fitted direct excitation (na/naa) [2-Gauss]:', dir_ex_S2p_w5) ## KDE fitter_w5.calc_kde(bandwidth=bandwidth) fitter_w5.find_kde_max(x_kde, xmin=0, xmax=0.15) S_peak_w5 = fitter_w5.kde_max_pos[0] S_2peaks_w5_fiterr = fitter_w5.fit_res[0].params['p1_center'].stderr dir_ex_S_kde_w5 = S_peak_w5/(1 - S_peak_w5) print('Fitted direct excitation (na/naa) [KDE]: ', dir_ex_S_kde_w5) ## 2-Asym-Gaussians fitter_w5a = mfit.MultiFitter(dx.S) fitter_w5a.histogram(bins=np.r_[-0.2 : 1.2 : bandwidth]) fitter_w5a.fit_histogram(model = mfit.factory_two_asym_gaussians(p1_center=0.05, p2_center=0.3)) S_2peaks_w5a = fitter_w5a.params.loc[0, 'p1_center'] dir_ex_S2p_w5a = S_2peaks_w5a/(1 - S_2peaks_w5a) #print(fitter_w5a.fit_obj[0].model.fit_report(min_correl=0.5)) print('Fitted direct excitation (na/naa) [2-Asym-Gauss]:', dir_ex_S2p_w5a) fig, ax = plt.subplots(1, 3, figsize=(19, 4.5)) mfit.plot_mfit(fitter_w5, ax=ax[0]) mfit.plot_mfit(fitter_g, ax=ax[0], plot_model=False, plot_kde=False) ax[0].set_title('2-Gaussians fit (S_fit = %.2f %%)' % (S_2peaks_w5*100)) mfit.plot_mfit(fitter_w5, ax=ax[1], plot_model=False, plot_kde=True) mfit.plot_mfit(fitter_g, ax=ax[1], plot_model=False, plot_kde=False) ax[1].set_title('KDE fit (S_fit = %.2f %%)' % (S_peak_w5*100)); mfit.plot_mfit(fitter_w5a, ax=ax[2]) mfit.plot_mfit(fitter_g, ax=ax[2], plot_model=False, plot_kde=False) ax[2].set_title('2-Asym-Gaussians fit (S_fit = %.2f %%)' % (S_2peaks_w5a*100)); Explanation: Selection 3 Bursts are here selected according to: $$n_{aa} - |n_a + n_d| > 30$$ End of explanation sample = data_id n_bursts_aa = ds_sas.num_bursts[0] Explanation: Save data to file End of explanation variables = ('sample n_bursts_aa dir_ex_S1p dir_ex_S_kde dir_ex_S2p dir_ex_S2pa ' 'dir_ex_S2p_w1 dir_ex_S_kde_w1 dir_ex_S_kde_w4 dir_ex_S_kde_w5 dir_ex_S2p_w5 dir_ex_S2p_w5a ' 'S_2peaks_w5 S_2peaks_w5_fiterr\n') Explanation: The following string contains the list of variables to be saved. When saving, the order of the variables is preserved. End of explanation variables_csv = variables.replace(' ', ',') fmt_float = '{%s:.6f}' fmt_int = '{%s:d}' fmt_str = '{%s}' fmt_dict = {**{'sample': fmt_str}, **{k: fmt_int for k in variables.split() if k.startswith('n_bursts')}} var_dict = {name: eval(name) for name in variables.split()} var_fmt = ', '.join([fmt_dict.get(name, fmt_float) % name for name in variables.split()]) + '\n' data_str = var_fmt.format(**var_dict) print(variables_csv) print(data_str) # NOTE: The file name should be the notebook name but with .csv extension with open('results/usALEX-5samples-PR-raw-dir_ex_aa-fit-%s.csv' % ph_sel_name, 'a') as f: f.seek(0, 2) if f.tell() == 0: f.write(variables_csv) f.write(data_str) Explanation: This is just a trick to format the different variables: End of explanation
538
Given the following text description, write Python code to implement the functionality described below step by step Description: Introduction This workbook contains some examples for reading, analysing and plotting processed MT data. It covers most of the steps available in MTPy. For more details on specific input parameters and other functionality, we recommend looking at the mtpy documentation, which can be found at Step1: The mt_obj contains all the data from the edi file, e.g. impedance, tipper, frequency as well as station information (lat/long). To look at any of these parameters you can type, for example Step2: There are many other parameters you can look at in the mt_obj. Just type mt_obj.[TAB] to see what is available. In the MT object are the Z and Tipper objects (mt_obj.Z; mt_obj.Tipper). These contain all information related to, respectively, the impedance tensor and the tipper. Step3: As with the MT object, you can explore the object by typing mt_obj.Z.[TAB] to see the available attributes. Plot an edi file In this example we plot MT data from an edi file. Step4: Make some change to the data and save to a new file This example demonstrates how to resample the data onto new frequency values and write to a new edi file. In the example below, you can either choose every second frequency or resample onto five periods per decade. To do this we need to make a new Z object, and save it to a file.
Python Code: # import required modules from mtpy.core.mt import MT # Define the path to your edi file edi_file = "C:/mtpywin/mtpy/examples/data/edi_files_2/Synth00.edi" # Create an MT object mt_obj = MT(edi_file) Explanation: Introduction This workbook contains some examples for reading, analysing and plotting processed MT data. It covers most of the steps available in MTPy. For more details on specific input parameters and other functionality, we recommend looking at the mtpy documentation, which can be found at: https://mtpy2.readthedocs.io/en/develop/. This workbook is structured according to some of the key modules in MTPy: Core, Analysis, Imaging, and Modeling. Getting Started To start with, you will need to make sure MTPy is installed and is working correctly. Please see the installation guide (https://github.com/MTgeophysics/mtpy/wiki/MTPy-installation-guide-for-Windows-10-and-Ubuntu-18.04) for details. Before you begin these examples, we suggest you make a temporary folder (e.g. C:/tmp) to save all example outputs. Useful tricks and tips This workbook exists as a Jupyter notebook and a pdf. If you are running the Jupyter notebook, you can run each of the cells, modifying the inputs to suit your requirements. Most of these examples have been written to be self contained. In Jupyter, you can add the following line to the top of any cell and it will write the contents of that cell to a python script: %%writefile example.py You can also select multiple cells and copy them to a new Jupyter notebook. Many of the examples below make use of the matplotlib colour maps. Please see https://matplotlib.org/examples/color/colormaps_reference.html for colour map options. Core These first few examples cover some of the basic functions and tools that can be used to look at data contained in an edi file, plot it, and make changes (e.g. sample onto different frequencies). Read an edi file into an MT object End of explanation # To see the latitude and longitude print(mt_obj.lat, mt_obj.lon) # To see the easting, northing, and elevation print(mt_obj.east, mt_obj.north, mt_obj.elev) Explanation: The mt_obj contains all the data from the edi file, e.g. impedance, tipper, frequency as well as station information (lat/long). To look at any of these parameters you can type, for example: End of explanation # for example, to see the frequency values represented in the impedance tensor: print(mt_obj.Z.freq) # or to see the impedance tensor (first 4 elements) print(mt_obj.Z.z[:4]) # or the resistivity or phase (first 4 values) print(mt_obj.Z.resistivity[:4]) print(mt_obj.Z.phase[:4]) Explanation: There are many other parameters you can look at in the mt_obj. Just type mt_obj.[TAB] to see what is available. In the MT object are the Z and Tipper objects (mt_obj.Z; mt_obj.Tipper). These contain all information related to, respectively, the impedance tensor and the tipper. End of explanation # import required modules from mtpy.core.mt import MT import os # Define the path to your edi file and save path edi_file = "C:/mtpywin/mtpy/examples/data/edi_files_2/Synth00.edi" savepath = r"C:/tmp" # Create an MT object mt_obj = MT(edi_file) # To plot the edi file we read in in Part 1 & save to file: pt_obj = mt_obj.plot_mt_response(plot_num=1, # 1 = yx and xy; 2 = all 4 components # 3 = off diagonal + determinant plot_tipper = 'yri', plot_pt = 'y' # plot phase tensor 'y' or 'n' ) #pt_obj.save_plot(os.path.join(savepath,"Synth00.png"), fig_dpi=400) Explanation: As with the MT object, you can explore the object by typing mt_obj.Z.[TAB] to see the available attributes. Plot an edi file In this example we plot MT data from an edi file. End of explanation # import required modules from mtpy.core.mt import MT import os # Define the path to your edi file and save path edi_file = r"C:/mtpywin/mtpy/examples/data/edi_files_2/Synth00.edi" savepath = r"C:/tmp" # Create an MT object mt_obj = MT(edi_file) # First, define a frequency array: # Every second frequency: new_freq_list = mt_obj.Z.freq[::2] # OR 5 periods per decade from 10^-4 to 10^3 seconds from mtpy.utils.calculator import get_period_list new_freq_list = 1./get_period_list(1e-4,1e3,5) # Create new Z and Tipper objects containing interpolated data new_Z_obj, new_Tipper_obj = mt_obj.interpolate(new_freq_list) # Write a new edi file using the new data mt_obj.write_mt_file( save_dir=savepath, fn_basename='Synth00_5ppd', file_type='edi', new_Z_obj=new_Z_obj, # provide a z object to update the data new_Tipper_obj=new_Tipper_obj, # provide a tipper object longitude_format='LONG', # write longitudes as 'LONG' not ‘LON’ latlon_format='dd'# write as decimal degrees (any other input # will write as degrees:minutes:seconds ) Explanation: Make some change to the data and save to a new file This example demonstrates how to resample the data onto new frequency values and write to a new edi file. In the example below, you can either choose every second frequency or resample onto five periods per decade. To do this we need to make a new Z object, and save it to a file. End of explanation
539
Given the following text description, write Python code to implement the functionality described below step by step Description: Nucleic acids structure analysis analysis of the nucleic acids backbone torsion angles. The 'nucleic_acid_torsion' function can be used to compute the backbone torsion angles. For example Step1: plot the backbone torsion angle The 'plot_torsion_wheel' function provide the plot of the backbone torsion angle of a nuclei acids molecules. usage Step2: Analysis the puckering of nucleic acids. Step3: analysis of the protein backbone torsion angles. Step4: Compute NOEs The Nuclear Overhauser Effect is based on the distances between hydrogen atoms from NOESY NMR spectra. The 'get_NOE' function can compute the distance of hydrogen atoms between 2 molecules and compute the hydrogen atom pairs which are within the NOE effect range (0-6.5 angstrom) The NOE effect are classfied as 'weak' (3.5,6.5),'medium' (2.6,5.0) and 'strong' (1.8,3.6), which are also been used as arguments for the 'get_NOE' function. One can also compute all of the NOE effect by providing an argument as 'all'. For example Step5: Analysis of a bunch of pdb files The 'ls' class provide a simple way to get a bunch of pdb files, e.g., ls(dir).pdb, will return all of the pdb files in 'dir' directory.
Python Code: from SBio import * s3 = create_molecule('D:\\python\\structural bioinformatics_in_python\\examples\\S3.pdb').m1 torsions = nucleic_acid_torsion(s3, ('A','B'),(1,12)) print(torsions[1]) # residue.serial , α, β, γ, δ, ε, ξ, χ, Explanation: Nucleic acids structure analysis analysis of the nucleic acids backbone torsion angles. The 'nucleic_acid_torsion' function can be used to compute the backbone torsion angles. For example: End of explanation %matplotlib inline import matplotlib from SBio import * s3 = create_molecule('D:\\python\\structural bioinformatics_in_python\\examples\\S3.pdb') torsions = nucleic_acid_torsion_plot(s3, ('A','B'),(1,12)) plot_torsion_wheel(torsions, 'torsion', abz=False, show = True) Explanation: plot the backbone torsion angle The 'plot_torsion_wheel' function provide the plot of the backbone torsion angle of a nuclei acids molecules. usage: plot_torsion_wheel(angles, title, filename='1.png', abz=True, show = False) arguments: title: the displaying title filename: save file name abz: displaying the allowing range of 'A', 'B' and 'Z' DNA show: directly display or save the figure End of explanation from SBio import * S3 = create_molecule('D:\\python\\structural bioinformatics_in_python\\examples\\S3.pdb') pucker = nucleic_acid_pucker(S3.m1,('A','B'),(1,12)) print(pucker[0]) Explanation: Analysis the puckering of nucleic acids. End of explanation M1 = create_molecule('D:\\python\\structural bioinformatics_in_python\\examples\\1sez.pdb').m1 torsion = protein_tosion(M1, ('A','B'), (1,485)) plot_phi_psi(torsion, 'phi_psi', 'phi_psi.png', True) Explanation: analysis of the protein backbone torsion angles. End of explanation m_g4 = create_molecule('D:\\python\\structural bioinformatics_in_python\\examples\\CMA.pdb').m1 m_lig = create_molecule('D:\\python\\structural bioinformatics_in_python\\examples\\daota-m2.pdb').m1 NOE = get_NOE(m_g4, m_lig,'strong') for i in NOE[:5]: print(i) Explanation: Compute NOEs The Nuclear Overhauser Effect is based on the distances between hydrogen atoms from NOESY NMR spectra. The 'get_NOE' function can compute the distance of hydrogen atoms between 2 molecules and compute the hydrogen atom pairs which are within the NOE effect range (0-6.5 angstrom) The NOE effect are classfied as 'weak' (3.5,6.5),'medium' (2.6,5.0) and 'strong' (1.8,3.6), which are also been used as arguments for the 'get_NOE' function. One can also compute all of the NOE effect by providing an argument as 'all'. For example: End of explanation structures = "D:\\python\structural bioinformatics_in_python\\examples\\ensembles" dihedral = [] for pdb in ls(structures).pdb: #get all of the pdb files in 'structures' m = create_molecule(pdb).m1 dihedral.append(get_torsion(m.A3.C, m.A3.CA, m.A4.N, m.A4.CA)) for x, y in enumerate(dihedral): print(x+1, y) Explanation: Analysis of a bunch of pdb files The 'ls' class provide a simple way to get a bunch of pdb files, e.g., ls(dir).pdb, will return all of the pdb files in 'dir' directory. End of explanation
540
Given the following text description, write Python code to implement the functionality described below step by step Description: Multiple Stripe Analysis (MSA) for Single Degree of Freedom (SDOF) Oscillators In this method, a single degree of freedom (SDOF) model of each structure is subjected to non-linear time history analysis using a suite of ground motion records scaled to multple stripes of intensity measure. The displacements of the SDOF due to each ground motion record are used as input to determine the distribution of buildings in each damage state for each level of ground motion intensity. A regression algorithm is then applied to derive the fragility model. The figure below illustrates the results of a Multiple Stripe Analysis, from which the fragility function is built. <img src="../../../../figures/MSA_example.jpg" width="500" align="middle"> Note Step1: Load capacity curves In order to use this methodology, it is necessary to provide one (or a group) of capacity curves, defined according to the format described in the RMTK manual. Please provide the location of the file containing the capacity curves using the parameter capacity_curves_file. If the User wants to specify the cyclic hysteretic behaviour of the SDOF system, please input the path of the file where the hysteretic parameters are contained, using the variable sdof_hysteresis. The parameters should be defined according to the format described in the RMTK manual. If instead default parameters want to be assumed, please set the sdof_hysteresis variable to "Default" Step2: Load ground motion records For what concerns the ground motions to be used in th Multiple Stripe Analysis the following inputs are required Step3: Load damage state thresholds Please provide the path to your damage model file using the parameter damage_model_file in the cell below. Currently the user can provide spectral displacement, capacity curve dependent and interstorey drift damage model type. If the damage model type is interstorey drift the user has to input interstorey drift values of the MDOF system. The user can then provide the pushover curve in terms of Vb-dfloor to be able to convert interstorey drift limit states to roof displacements and spectral displacements of the SDOF system, otherwise a linear relationship is assumed. Step4: Obtain the damage probability matrix The following parameters need to be defined in the cell below in order to calculate the damage probability matrix Step5: Fit lognormal CDF fragility curves The following parameters need to be defined in the cell below in order to fit lognormal CDF fragility curves to the damage probability matrix obtained above Step6: Plot fragility functions The following parameters need to be defined in the cell below in order to plot the lognormal CDF fragility curves obtained above Step7: Save fragility functions The derived parametric fragility functions can be saved to a file in either CSV format or in the NRML format that is used by all OpenQuake input models. The following parameters need to be defined in the cell below in order to save the lognormal CDF fragility curves obtained above Step8: Obtain vulnerability function A vulnerability model can be derived by combining the set of fragility functions obtained above with a consequence model. In this process, the fractions of buildings in each damage state are multiplied by the associated damage ratio from the consequence model, in order to obtain a distribution of loss ratio for each intensity measure level. The following parameters need to be defined in the cell below in order to calculate vulnerability functions using the above derived fragility functions Step9: Save vulnerability function The derived parametric or nonparametric vulnerability function can be saved to a file in either CSV format or in the NRML format that is used by all OpenQuake input models. The following parameters need to be defined in the cell below in order to save the lognormal CDF fragility curves obtained above
Python Code: import MSA_on_SDOF from rmtk.vulnerability.common import utils import numpy as np import MSA_utils %matplotlib inline Explanation: Multiple Stripe Analysis (MSA) for Single Degree of Freedom (SDOF) Oscillators In this method, a single degree of freedom (SDOF) model of each structure is subjected to non-linear time history analysis using a suite of ground motion records scaled to multple stripes of intensity measure. The displacements of the SDOF due to each ground motion record are used as input to determine the distribution of buildings in each damage state for each level of ground motion intensity. A regression algorithm is then applied to derive the fragility model. The figure below illustrates the results of a Multiple Stripe Analysis, from which the fragility function is built. <img src="../../../../figures/MSA_example.jpg" width="500" align="middle"> Note: To run the code in a cell: Click on the cell to select it. Press SHIFT+ENTER on your keyboard or press the play button (<button class='fa fa-play icon-play btn btn-xs btn-default'></button>) in the toolbar above. End of explanation capacity_curves_file = '../../../../../rmtk_data/capacity_curves_sdof_first_mode.csv' sdof_hysteresis = "../../../../../rmtk_data/pinching_parameters.csv" from read_pinching_parameters import read_parameters capacity_curves = utils.read_capacity_curves(capacity_curves_file) capacity_curves = utils.check_SDOF_curves(capacity_curves) utils.plot_capacity_curves(capacity_curves) hysteresis = read_parameters(sdof_hysteresis) Explanation: Load capacity curves In order to use this methodology, it is necessary to provide one (or a group) of capacity curves, defined according to the format described in the RMTK manual. Please provide the location of the file containing the capacity curves using the parameter capacity_curves_file. If the User wants to specify the cyclic hysteretic behaviour of the SDOF system, please input the path of the file where the hysteretic parameters are contained, using the variable sdof_hysteresis. The parameters should be defined according to the format described in the RMTK manual. If instead default parameters want to be assumed, please set the sdof_hysteresis variable to "Default" End of explanation gmrs_folder = "../../../../../rmtk_data/MSA_records" minT, maxT = 0.1, 2.0 no_bins = 10 no_rec_bin = 30 record_scaled_folder = "../../../../../rmtk_data/Scaling_factors" gmrs = utils.read_gmrs(gmrs_folder) #utils.plot_response_spectra(gmrs, minT, maxT) Explanation: Load ground motion records For what concerns the ground motions to be used in th Multiple Stripe Analysis the following inputs are required: 1. gmrs_folder: path to the folder containing the ground motion records to be used in the analysis. Each accelerogram needs to be in a separate CSV file as described in the RMTK manual. 2. record_scaled_folder. In this folder there should be a csv file for each Intensity Measure bin selected for the MSA, containing the names of the records that should be scaled to that IM bin, and the corresponding scaling factors. An example of this type of file is provided in the RMTK manual. 3. no_bins: number of Intensity Measure bins. 4. no_rec_bin: number of records per bin If the user wants to plot acceleration, displacement and velocity response spectra, the function utils.plot_response_spectra(gmrs, minT, maxT) should be un-commented. The parameters minT and maxT are used to define the period bounds when plotting the spectra for the provided ground motion fields. End of explanation damage_model_file = "../../../../../rmtk_data/damage_model_Sd.csv" damage_model = utils.read_damage_model(damage_model_file) Explanation: Load damage state thresholds Please provide the path to your damage model file using the parameter damage_model_file in the cell below. Currently the user can provide spectral displacement, capacity curve dependent and interstorey drift damage model type. If the damage model type is interstorey drift the user has to input interstorey drift values of the MDOF system. The user can then provide the pushover curve in terms of Vb-dfloor to be able to convert interstorey drift limit states to roof displacements and spectral displacements of the SDOF system, otherwise a linear relationship is assumed. End of explanation damping_ratio = 0.05 degradation = False msa = {}; msa['n. bins']=no_bins; msa['records per bin']=no_rec_bin; msa['input folder']=record_scaled_folder PDM, Sds, IML_info = MSA_on_SDOF.calculate_fragility(capacity_curves, hysteresis, msa, gmrs, damage_model, damping_ratio, degradation) Explanation: Obtain the damage probability matrix The following parameters need to be defined in the cell below in order to calculate the damage probability matrix: 1. damping_ratio: This parameter defines the damping ratio for the structure. 2. degradation: This boolean parameter should be set to True or False to specify whether structural degradation should be considered in the analysis or not. End of explanation import MSA_post_processing IMT = "Sa" T = 0.47 #T = np.arange(0.4,1.91,0.01) regression_method = "max likelihood" fragility_model = MSA_utils.calculate_fragility_model(PDM,gmrs,IML_info,IMT,msa,damage_model, T,damping_ratio, regression_method) Explanation: Fit lognormal CDF fragility curves The following parameters need to be defined in the cell below in order to fit lognormal CDF fragility curves to the damage probability matrix obtained above: 1. IMT: This parameter specifies the intensity measure type to be used. Currently supported options are "PGA", "Sa","Sd" and "HI" (Housner Intensity). 2. period: This parameter defines the period for which a spectral intensity measure should be computed. If Housner Intensity is selected as intensity measure a range of periods should be defined instead (for example T=np.arange(0.3,3.61,0.01)). 3. regression_method: This parameter defines the regression method to be used for estimating the parameters of the fragility functions. The valid options are "least squares" and "max likelihood". End of explanation minIML, maxIML = 0.01, 4 utils.plot_fragility_MSA(fragility_model, minIML, maxIML) Explanation: Plot fragility functions The following parameters need to be defined in the cell below in order to plot the lognormal CDF fragility curves obtained above: * minIML and maxIML: These parameters define the limits of the intensity measure level for plotting the functions End of explanation taxonomy = "RC_1st" output_type = "csv" output_path = "../../../../../rmtk_data/" utils.save_mean_fragility(taxonomy, fragility_model, minIML, maxIML, output_type, output_path) Explanation: Save fragility functions The derived parametric fragility functions can be saved to a file in either CSV format or in the NRML format that is used by all OpenQuake input models. The following parameters need to be defined in the cell below in order to save the lognormal CDF fragility curves obtained above: 1. taxonomy: This parameter specifies a taxonomy string for the the fragility functions. 2. minIML and maxIML: These parameters define the bounds of applicability of the functions. 3. output_type: This parameter specifies the file format to be used for saving the functions. Currently, the formats supported are "csv" and "nrml". End of explanation cons_model_file = "../../../../../rmtk_data/cons_model.csv" imls = np.linspace(minIML, maxIML, 20) distribution_type = "lognormal" cons_model = utils.read_consequence_model(cons_model_file) vulnerability_model = utils.convert_fragility_vulnerability(fragility_model, cons_model, imls, distribution_type) utils.plot_vulnerability_model(vulnerability_model) Explanation: Obtain vulnerability function A vulnerability model can be derived by combining the set of fragility functions obtained above with a consequence model. In this process, the fractions of buildings in each damage state are multiplied by the associated damage ratio from the consequence model, in order to obtain a distribution of loss ratio for each intensity measure level. The following parameters need to be defined in the cell below in order to calculate vulnerability functions using the above derived fragility functions: 1. cons_model_file: This parameter specifies the path of the consequence model file. 2. imls: This parameter specifies a list of intensity measure levels in increasing order at which the distribution of loss ratios are required to be calculated. 3. distribution_type: This parameter specifies the type of distribution to be used for calculating the vulnerability function. The distribution types currently supported are "lognormal", "beta", and "PMF". End of explanation taxonomy = "RC" output_type = "csv" output_path = "../../../../../rmtk_data/output/" utils.save_vulnerability(taxonomy, vulnerability_model, output_type, output_path) Explanation: Save vulnerability function The derived parametric or nonparametric vulnerability function can be saved to a file in either CSV format or in the NRML format that is used by all OpenQuake input models. The following parameters need to be defined in the cell below in order to save the lognormal CDF fragility curves obtained above: 1. taxonomy: This parameter specifies a taxonomy string for the the fragility functions. 3. output_type: This parameter specifies the file format to be used for saving the functions. Currently, the formats supported are "csv" and "nrml". End of explanation
541
Given the following text description, write Python code to implement the functionality described below step by step Description: scikit-learn-k-means Credits Step1: K-Means Clustering Step2: K Means is an algorithm for unsupervised clustering Step3: By eye, it is relatively easy to pick out the four clusters. If you were to perform an exhaustive search for the different segmentations of the data, however, the search space would be exponential in the number of points. Fortunately, there is a well-known Expectation Maximization (EM) procedure which scikit-learn implements, so that KMeans can be solved relatively quickly. Step4: The algorithm identifies the four clusters of points in a manner very similar to what we would do by eye! The K-Means Algorithm
Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt import seaborn; from sklearn.linear_model import LinearRegression from scipy import stats import pylab as pl seaborn.set() Explanation: scikit-learn-k-means Credits: Forked from PyCon 2015 Scikit-learn Tutorial by Jake VanderPlas End of explanation from sklearn import neighbors, datasets iris = datasets.load_iris() X, y = iris.data, iris.target from sklearn.decomposition import PCA pca = PCA(n_components=2) pca.fit(X) X_reduced = pca.transform(X) print("Reduced dataset shape:", X_reduced.shape) import pylab as pl pl.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, cmap='RdYlBu') print("Meaning of the 2 components:") for component in pca.components_: print(" + ".join("%.3f x %s" % (value, name) for value, name in zip(component, iris.feature_names))) from sklearn.cluster import KMeans k_means = KMeans(n_clusters=3, random_state=0) # Fixing the RNG in kmeans k_means.fit(X) y_pred = k_means.predict(X) pl.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y_pred, cmap='RdYlBu'); Explanation: K-Means Clustering End of explanation from sklearn.datasets.samples_generator import make_blobs X, y = make_blobs(n_samples=300, centers=4, random_state=0, cluster_std=0.60) plt.scatter(X[:, 0], X[:, 1], s=50); Explanation: K Means is an algorithm for unsupervised clustering: that is, finding clusters in data based on the data attributes alone (not the labels). K Means is a relatively easy-to-understand algorithm. It searches for cluster centers which are the mean of the points within them, such that every point is closest to the cluster center it is assigned to. Let's look at how KMeans operates on the simple clusters we looked at previously. To emphasize that this is unsupervised, we'll not plot the colors of the clusters: End of explanation from sklearn.cluster import KMeans est = KMeans(4) # 4 clusters est.fit(X) y_kmeans = est.predict(X) plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='rainbow'); Explanation: By eye, it is relatively easy to pick out the four clusters. If you were to perform an exhaustive search for the different segmentations of the data, however, the search space would be exponential in the number of points. Fortunately, there is a well-known Expectation Maximization (EM) procedure which scikit-learn implements, so that KMeans can be solved relatively quickly. End of explanation from fig_code import plot_kmeans_interactive plot_kmeans_interactive(); Explanation: The algorithm identifies the four clusters of points in a manner very similar to what we would do by eye! The K-Means Algorithm: Expectation Maximization K-Means is an example of an algorithm which uses an Expectation-Maximization approach to arrive at the solution. Expectation-Maximization is a two-step approach which works as follows: Guess some cluster centers Repeat until converged A. Assign points to the nearest cluster center B. Set the cluster centers to the mean Let's quickly visualize this process: End of explanation
542
Given the following text description, write Python code to implement the functionality described below step by step Description: Mass-univariate twoway repeated measures ANOVA on single trial power This script shows how to conduct a mass-univariate repeated measures ANOVA. As the model to be fitted assumes two fully crossed factors, we will study the interplay between perceptual modality (auditory VS visual) and the location of stimulus presentation (left VS right). Here we use single trials as replications (subjects) while iterating over time slices plus frequency bands for to fit our mass-univariate model. For the sake of simplicity we will confine this analysis to one single channel of which we know that it exposes a strong induced response. We will then visualize each effect by creating a corresponding mass-univariate effect image. We conclude with accounting for multiple comparisons by performing a permutation clustering test using the ANOVA as clustering function. The results final will be compared to multiple comparisons using False Discovery Rate correction. Step1: Set parameters Step2: We have to make sure all conditions have the same counts, as the ANOVA expects a fully balanced data matrix and does not forgive imbalances that generously (risk of type-I error). Step3: Create TFR representations for all conditions Step4: Setup repeated measures ANOVA We will tell the ANOVA how to interpret the data matrix in terms of factors. This is done via the factor levels argument which is a list of the number factor levels for each factor. Step5: Now we'll assemble the data matrix and swap axes so the trial replications are the first dimension and the conditions are the second dimension. Step6: While the iteration scheme used above for assembling the data matrix makes sure the first two dimensions are organized as expected (with A = modality and B = location) Step7: Account for multiple comparisons using FDR versus permutation clustering test First we need to slightly modify the ANOVA function to be suitable for the clustering procedure. Also want to set some defaults. Let's first override effects to confine the analysis to the interaction Step8: A stat_fun must deal with a variable number of input arguments. Inside the clustering function each condition will be passed as flattened array, necessitated by the clustering procedure. The ANOVA however expects an input array of dimensions Step9: Create new stats image with only significant clusters Step10: Now using FDR
Python Code: # Authors: Denis Engemann <[email protected]> # Eric Larson <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.time_frequency import tfr_morlet from mne.stats import f_threshold_mway_rm, f_mway_rm, fdr_correction from mne.datasets import sample print(__doc__) Explanation: Mass-univariate twoway repeated measures ANOVA on single trial power This script shows how to conduct a mass-univariate repeated measures ANOVA. As the model to be fitted assumes two fully crossed factors, we will study the interplay between perceptual modality (auditory VS visual) and the location of stimulus presentation (left VS right). Here we use single trials as replications (subjects) while iterating over time slices plus frequency bands for to fit our mass-univariate model. For the sake of simplicity we will confine this analysis to one single channel of which we know that it exposes a strong induced response. We will then visualize each effect by creating a corresponding mass-univariate effect image. We conclude with accounting for multiple comparisons by performing a permutation clustering test using the ANOVA as clustering function. The results final will be compared to multiple comparisons using False Discovery Rate correction. End of explanation data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' tmin, tmax = -0.2, 0.5 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname) events = mne.read_events(event_fname) include = [] raw.info['bads'] += ['MEG 2443'] # bads # picks MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False, include=include, exclude='bads') ch_name = 'MEG 1332' # Load conditions reject = dict(grad=4000e-13, eog=150e-6) event_id = dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True, reject=reject) epochs.pick_channels([ch_name]) # restrict example to one channel Explanation: Set parameters End of explanation epochs.equalize_event_counts(event_id) # Factor to down-sample the temporal dimension of the TFR computed by # tfr_morlet. decim = 2 frequencies = np.arange(7, 30, 3) # define frequencies of interest n_cycles = frequencies / frequencies[0] zero_mean = False # don't correct morlet wavelet to be of mean zero # To have a true wavelet zero_mean should be True but here for illustration # purposes it helps to spot the evoked response. Explanation: We have to make sure all conditions have the same counts, as the ANOVA expects a fully balanced data matrix and does not forgive imbalances that generously (risk of type-I error). End of explanation epochs_power = list() for condition in [epochs[k] for k in event_id]: this_tfr = tfr_morlet(condition, frequencies, n_cycles=n_cycles, decim=decim, average=False, zero_mean=zero_mean, return_itc=False) this_tfr.apply_baseline(mode='ratio', baseline=(None, 0)) this_power = this_tfr.data[:, 0, :, :] # we only have one channel. epochs_power.append(this_power) Explanation: Create TFR representations for all conditions End of explanation n_conditions = len(epochs.event_id) n_replications = epochs.events.shape[0] / n_conditions factor_levels = [2, 2] # number of levels in each factor effects = 'A*B' # this is the default signature for computing all effects # Other possible options are 'A' or 'B' for the corresponding main effects # or 'A:B' for the interaction effect only (this notation is borrowed from the # R formula language) n_frequencies = len(frequencies) times = 1e3 * epochs.times[::decim] n_times = len(times) Explanation: Setup repeated measures ANOVA We will tell the ANOVA how to interpret the data matrix in terms of factors. This is done via the factor levels argument which is a list of the number factor levels for each factor. End of explanation data = np.swapaxes(np.asarray(epochs_power), 1, 0) # reshape last two dimensions in one mass-univariate observation-vector data = data.reshape(n_replications, n_conditions, n_frequencies * n_times) # so we have replications * conditions * observations: print(data.shape) Explanation: Now we'll assemble the data matrix and swap axes so the trial replications are the first dimension and the conditions are the second dimension. End of explanation fvals, pvals = f_mway_rm(data, factor_levels, effects=effects) effect_labels = ['modality', 'location', 'modality by location'] # let's visualize our effects by computing f-images for effect, sig, effect_label in zip(fvals, pvals, effect_labels): plt.figure() # show naive F-values in gray plt.imshow(effect.reshape(8, 211), cmap=plt.cm.gray, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower') # create mask for significant Time-frequency locations effect = np.ma.masked_array(effect, [sig > .05]) plt.imshow(effect.reshape(8, 211), cmap='RdBu_r', extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower') plt.colorbar() plt.xlabel('Time (ms)') plt.ylabel('Frequency (Hz)') plt.title(r"Time-locked response for '%s' (%s)" % (effect_label, ch_name)) plt.show() Explanation: While the iteration scheme used above for assembling the data matrix makes sure the first two dimensions are organized as expected (with A = modality and B = location): .. table:: Sample data layout ===== ==== ==== ==== ==== trial A1B1 A1B2 A2B1 B2B2 ===== ==== ==== ==== ==== 1 1.34 2.53 0.97 1.74 ... ... ... ... ... 56 2.45 7.90 3.09 4.76 ===== ==== ==== ==== ==== Now we're ready to run our repeated measures ANOVA. Note. As we treat trials as subjects, the test only accounts for time locked responses despite the 'induced' approach. For analysis for induced power at the group level averaged TRFs are required. End of explanation effects = 'A:B' Explanation: Account for multiple comparisons using FDR versus permutation clustering test First we need to slightly modify the ANOVA function to be suitable for the clustering procedure. Also want to set some defaults. Let's first override effects to confine the analysis to the interaction End of explanation def stat_fun(*args): return f_mway_rm(np.swapaxes(args, 1, 0), factor_levels=factor_levels, effects=effects, return_pvals=False)[0] # The ANOVA returns a tuple f-values and p-values, we will pick the former. pthresh = 0.00001 # set threshold rather high to save some time f_thresh = f_threshold_mway_rm(n_replications, factor_levels, effects, pthresh) tail = 1 # f-test, so tail > 0 n_permutations = 256 # Save some time (the test won't be too sensitive ...) T_obs, clusters, cluster_p_values, h0 = mne.stats.permutation_cluster_test( epochs_power, stat_fun=stat_fun, threshold=f_thresh, tail=tail, n_jobs=1, n_permutations=n_permutations, buffer_size=None) Explanation: A stat_fun must deal with a variable number of input arguments. Inside the clustering function each condition will be passed as flattened array, necessitated by the clustering procedure. The ANOVA however expects an input array of dimensions: subjects X conditions X observations (optional). The following function catches the list input and swaps the first and the second dimension and finally calls the ANOVA function. End of explanation good_clusers = np.where(cluster_p_values < .05)[0] T_obs_plot = np.ma.masked_array(T_obs, np.invert(clusters[np.squeeze(good_clusers)])) plt.figure() for f_image, cmap in zip([T_obs, T_obs_plot], [plt.cm.gray, 'RdBu_r']): plt.imshow(f_image, cmap=cmap, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower') plt.xlabel('Time (ms)') plt.ylabel('Frequency (Hz)') plt.title("Time-locked response for 'modality by location' (%s)\n" " cluster-level corrected (p <= 0.05)" % ch_name) plt.show() Explanation: Create new stats image with only significant clusters: End of explanation mask, _ = fdr_correction(pvals[2]) T_obs_plot2 = np.ma.masked_array(T_obs, np.invert(mask)) plt.figure() for f_image, cmap in zip([T_obs, T_obs_plot2], [plt.cm.gray, 'RdBu_r']): plt.imshow(f_image, cmap=cmap, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower') plt.xlabel('Time (ms)') plt.ylabel('Frequency (Hz)') plt.title("Time-locked response for 'modality by location' (%s)\n" " FDR corrected (p <= 0.05)" % ch_name) plt.show() Explanation: Now using FDR: End of explanation
543
Given the following text description, write Python code to implement the functionality described below step by step Description: This notebook was created by Sergey Tomin for Workshop Step1: Change RF parameters for the comparison with ASTRA Step2: Initializing SpaceCharge Step3: Comparison with ASTRA Beam tracking with ASTRA was performed by Igor Zagorodnov (DESY).
Python Code: # the output of plotting commands is displayed inline within frontends, # directly below the code cell that produced it %matplotlib inline from time import time # this python library provides generic shallow (copy) and deep copy (deepcopy) operations from copy import deepcopy # import from Ocelot main modules and functions from ocelot import * # import from Ocelot graphical modules from ocelot.gui.accelerator import * # import injector lattice from ocelot.test.workshop.injector_lattice import * # load beam distribution # this function convert Astra beam distribution to Ocelot format - ParticleArray. ParticleArray is designed for tracking. # in order to work with converters we have to import specific module from ocelot.adaptors from ocelot.adaptors.astra2ocelot import * Explanation: This notebook was created by Sergey Tomin for Workshop: Designing future X-ray FELs. Source and license info is on GitHub. August 2016. Tutorial N3. Space Charge. Second order tracking with space charge effect of the 200k particles. As an example, we will use lattice file (converted to Ocelot format) of the European XFEL Injector. The space charge forces are calculated by solving the Poisson equation in the bunch frame. Then the Lorentz transformed electromagnetic field is applied as a kick in the laboratory frame. For the solution of the Poisson equation we use an integral representation of the electrostatic potential by convolution of the free-space Green's function with the charge distribution. The convolution equation is solved with the help of the Fast Fourier Transform (FFT). The same algorithm for solution of the 3D Poisson equation is used, for example, in ASTRA. This example will cover the following topics: Initialization of the Space Charge objects and the places of their applying tracking of second order with space charge effect. Requirements injector_lattice.py - input file, the The European XFEL Injector lattice. beam_6MeV.ast - input file, initial beam distribution in ASTRA format (was obtained from s2e simulation performed with ASTRA). Import of modules End of explanation phi1=18.7268 V1=18.50662e-3/np.cos(phi1*pi/180) C_A1_1_1_I1.v = V1; C_A1_1_1_I1.phi = phi1 C_A1_1_2_I1.v = V1; C_A1_1_2_I1.phi = phi1 C_A1_1_3_I1.v = V1; C_A1_1_3_I1.phi = phi1 C_A1_1_4_I1.v = V1; C_A1_1_4_I1.phi = phi1 C_A1_1_5_I1.v = V1; C_A1_1_5_I1.phi = phi1 C_A1_1_6_I1.v = V1; C_A1_1_6_I1.phi = phi1 C_A1_1_7_I1.v = V1; C_A1_1_7_I1.phi = phi1 C_A1_1_8_I1.v = V1; C_A1_1_8_I1.phi = phi1 phi13=180 V13=-20.2E-3/8/np.cos(phi13*pi/180) C3_AH1_1_1_I1.v=V13; C3_AH1_1_1_I1.phi=phi13 C3_AH1_1_2_I1.v=V13; C3_AH1_1_2_I1.phi=phi13 C3_AH1_1_3_I1.v=V13; C3_AH1_1_3_I1.phi=phi13 C3_AH1_1_4_I1.v=V13; C3_AH1_1_4_I1.phi=phi13 C3_AH1_1_5_I1.v=V13; C3_AH1_1_5_I1.phi=phi13 C3_AH1_1_6_I1.v=V13; C3_AH1_1_6_I1.phi=phi13 C3_AH1_1_7_I1.v=V13; C3_AH1_1_7_I1.phi=phi13 C3_AH1_1_8_I1.v=V13; C3_AH1_1_8_I1.phi=phi13 p_array_init = astraBeam2particleArray(filename='beam_6MeV.ast') # initialization of tracking method method = MethodTM() # for second order tracking we have to choose SecondTM method.global_method = SecondTM # for first order tracking uncomment next line # method.global_method = TransferMap # we will start simulation from point 3.2 from the gun. For this purpose marker was created (start_sim=Marker()) # and placed in 3.2 m after gun # Q_38_I1 is quadrupole between RF cavities 1.3 GHz and 3.9 GHz # C3_AH1_1_8_I1 is the last section of the 3.9 GHz cavity lat = MagneticLattice(cell, start=start_sim, stop=Q_38_I1, method=method) Explanation: Change RF parameters for the comparison with ASTRA End of explanation sc1 = SpaceCharge() sc1.nmesh_xyz = [63, 63, 63] sc1.low_order_kick = False sc1.step = 1 sc5 = SpaceCharge() sc5.nmesh_xyz = [63, 63, 63] sc5.step = 5 sc5.low_order_kick = False navi = Navigator(lat) # add physics processes from the first element to the last of the lattice navi.add_physics_proc(sc1, lat.sequence[0], C_A1_1_2_I1) navi.add_physics_proc(sc5, C_A1_1_2_I1, lat.sequence[-1]) # definiing of unit step in [m] navi.unit_step = 0.02 # deep copy of the initial beam distribution p_array = deepcopy(p_array_init) start = time() tws_track, p_array = track(lat, p_array, navi) print("time exec: ", time() - start, "sec") # you can change top_plot argument, for example top_plot=["alpha_x", "alpha_y"] plot_opt_func(lat, tws_track, top_plot=["E"], fig_name=0, legend=False) plt.show() Explanation: Initializing SpaceCharge End of explanation sa, bx_sc, by_sc, bx_wo_sc, by_wo_sc = np.loadtxt("astra_sim.txt", usecols=(0, 1, 2, 3, 4), unpack=True) s = [tw.s for tw in tws_track] bx = [tw.beta_x for tw in tws_track] by = [tw.beta_y for tw in tws_track] ax = plot_API(lat, legend=False) ax.plot(s, bx, "r", label="Ocelot, bx") ax.plot(sa-3.2, bx_sc, "b-",label="ASTRA, bx") ax.plot(s, by, "r", label="Ocelot, by") ax.plot(sa-3.2, by_sc, "b-",label="ASTRA, by") ax.legend() plt.show() Explanation: Comparison with ASTRA Beam tracking with ASTRA was performed by Igor Zagorodnov (DESY). End of explanation
544
Given the following text description, write Python code to implement the functionality described below step by step Description: < 3. Traitement de données | Contents | 6. Analyse statistique > Step1: Géocodage Le géocodage consiste à obtenir les points de référence géographique d'objets du monde réel. Un cas intéressant est celui des adresses physiques. Il est possible de faire du géocodage à la main dans les outils cartographique publiques tels que Google ou OpenStreetMap. Il est aussi possible d'utiliser des bibliothèques Python comme geopandas pour faire du géocodage systématique. Le service nominatim d'OpenStreetMap permet le géocodage. Autre exemple de geopandas
Python Code: import geopandas Explanation: < 3. Traitement de données | Contents | 6. Analyse statistique > End of explanation geopandas.tools.geocode('2900 boulevard Edouard Montpetit, Montreal', provider='nominatim', user_agent="mon-application") Explanation: Géocodage Le géocodage consiste à obtenir les points de référence géographique d'objets du monde réel. Un cas intéressant est celui des adresses physiques. Il est possible de faire du géocodage à la main dans les outils cartographique publiques tels que Google ou OpenStreetMap. Il est aussi possible d'utiliser des bibliothèques Python comme geopandas pour faire du géocodage systématique. Le service nominatim d'OpenStreetMap permet le géocodage. Autre exemple de geopandas: https://geopandas.org/geocoding.html End of explanation
545
Given the following text description, write Python code to implement the functionality described below step by step Description: Passive Plots a passive learning curve w.r.t. ATLAS objects. Trained, tested on RGZ, split on compact/resolved. Testing on RGZ instead of Norris because we believe it to be reasonably accurate and it's also a lot bigger; if we want a good idea of how this curve levels out we really want to use as much data as possible. Splitting on compact/resolved because we expect compact to level out a lot faster (possibly very fast indeed). Step1: Compact Step2: Resolved
Python Code: import astropy.io.ascii as asc, numpy, h5py, sklearn.linear_model, crowdastro.crowd.util, pickle, scipy.spatial import matplotlib.pyplot as plt %matplotlib inline with open('/Users/alger/data/Crowdastro/sets_atlas.pkl', 'rb') as f: atlas_sets = pickle.load(f) atlas_sets_compact = atlas_sets['RGZ & compact'] atlas_sets_resolved = atlas_sets['RGZ & resolved'] with open('/Users/alger/data/Crowdastro/sets_swire.pkl', 'rb') as f: swire_sets = pickle.load(f) swire_sets_compact = swire_sets['RGZ & compact'] swire_sets_resolved = swire_sets['RGZ & resolved'] with h5py.File('/Users/alger/data/Crowdastro/swire.h5') as f: swire_features = f['features'].value with h5py.File('/Users/alger/data/Crowdastro/crowdastro-swire.h5') as f: swire_names = [i.decode('ascii') for i in f['/swire/cdfs/string'].value] swire_coords = f['/swire/cdfs/numeric'][:, :2] swire_labels = {i['swire']: i['rgz_label'] for i in asc.read('/Users/alger/data/SWIRE/all_labels.csv')} table = asc.read('/Users/alger/data/Crowdastro/one-table-to-rule-them-all.tbl') swire_tree = scipy.spatial.KDTree(swire_coords) Explanation: Passive Plots a passive learning curve w.r.t. ATLAS objects. Trained, tested on RGZ, split on compact/resolved. Testing on RGZ instead of Norris because we believe it to be reasonably accurate and it's also a lot bigger; if we want a good idea of how this curve levels out we really want to use as much data as possible. Splitting on compact/resolved because we expect compact to level out a lot faster (possibly very fast indeed). End of explanation def test_on_atlas_sets(atlas_sets, swire_sets): subset_sizes = numpy.logspace(numpy.log2(5), numpy.log2(len(atlas_sets[0][0])), base=2, num=10) n_atlas = [] n_swire = [] bas = [] for (train, test), (_, test_swire) in zip(atlas_sets, swire_sets): key_to_row = {} for row in table: key_to_row[row['Key']] = row for subset_size in subset_sizes: print(subset_size, end=' ') # Subsample train. subset_size = int(subset_size) train_subset = list(train) numpy.random.shuffle(train_subset) train_subset = train_subset[:subset_size] # Get coords. ras = [key_to_row[k]['Component RA (Franzen)'] for k in train_subset] decs = [key_to_row[k]['Component DEC (Franzen)'] for k in train_subset] coords = list(zip(ras, decs)) # Find nearby SWIREs. nearby = sorted({int(i) for i in numpy.concatenate(swire_tree.query_ball_point(coords, 1 / 60))}) # Train on the features. features = swire_features[nearby] labels = [swire_labels[swire_names[n]] == 'True' for n in nearby] lr = sklearn.linear_model.LogisticRegression(class_weight='balanced', C=1e10) lr.fit(features, labels) # Compute accuracy. test_labels = [swire_labels[swire_names[n]] == 'True' for n in test_swire] test_features = swire_features[test_swire] acc = crowdastro.crowd.util.balanced_accuracy(test_labels, lr.predict(test_features)) n_atlas.append(int(subset_size)) n_swire.append(len(nearby)) bas.append(acc) print() return n_atlas, n_swire, bas n_atlas, n_swire, bas = test_on_atlas_sets(atlas_sets_compact, swire_sets_compact) plt.scatter(n_atlas, bas, alpha=0.7) plt.title('Passive Learning Curve — Compact') plt.xlabel('Number of radio objects') plt.ylabel('Balanced accuracy') plt.xscale('log') Explanation: Compact End of explanation n_atlas_resolved, n_swire_resolved, bas_resolved = test_on_atlas_sets(atlas_sets_resolved, swire_sets_resolved) plt.scatter(n_atlas_resolved, bas_resolved, alpha=0.7) plt.title('Passive Learning Curve — Resolved') plt.xlabel('Number of radio objects') plt.ylabel('Balanced accuracy') plt.xscale('log') plt.scatter(n_atlas_resolved, numpy.array(bas_resolved) * 100, alpha=0.7, color='red', label='Resolved') plt.scatter(n_atlas, numpy.array(bas) * 100, alpha=0.7, color='green', label='Compact') plt.title('Accuracy against number of objects in training set') plt.xlabel('Number of radio objects') plt.ylabel('Balanced accuracy (%)') plt.xscale('log') plt.legend() n_atlas_to_acc_compact = {n: [] for n in n_atlas} for n, ba in zip(n_atlas, bas): n_atlas_to_acc_compact[n].append(ba) xs_compact = [] ys_compact = [] yerr_compact = [] for n in sorted(set(n_atlas)): xs_compact.append(n) ys_compact.append(numpy.mean(n_atlas_to_acc_compact[n])) yerr_compact.append(numpy.std(n_atlas_to_acc_compact[n])) xs_compact = numpy.array(xs_compact) ys_compact = numpy.array(ys_compact) yerr_compact = numpy.array(yerr_compact) ylow_compact = ys_compact - yerr_compact yhigh_compact = ys_compact + yerr_compact n_atlas_to_acc_resolved = {n: [] for n in n_atlas_resolved} for n, ba in zip(n_atlas_resolved, bas_resolved): n_atlas_to_acc_resolved[n].append(ba) xs_resolved = [] ys_resolved = [] yerr_resolved = [] for n in sorted(set(n_atlas_resolved)): xs_resolved.append(n) ys_resolved.append(numpy.mean(n_atlas_to_acc_resolved[n])) yerr_resolved.append(numpy.std(n_atlas_to_acc_resolved[n])) xs_resolved = numpy.array(xs_resolved) ys_resolved = numpy.array(ys_resolved) yerr_resolved = numpy.array(yerr_resolved) ylow_resolved = ys_resolved - yerr_resolved yhigh_resolved = ys_resolved + yerr_resolved plt.plot(xs_compact, ys_compact, alpha=1, color='green', label='compact', marker='x') plt.fill_between(xs_compact, ylow_compact, yhigh_compact, alpha=.2, color='green') plt.plot(xs_resolved, ys_resolved, alpha=1, color='blue', label='resolved', marker='x') plt.fill_between(xs_resolved, ylow_resolved, yhigh_resolved, alpha=.2, color='blue') plt.title('Accuracy against number of objects in training set') plt.xlabel('Number of radio objects') plt.ylabel('Balanced accuracy (%)') plt.xscale('log') plt.legend() plt.savefig('/Users/alger/repos/crowdastro-projects/ATLAS-CDFS/passive.pdf') Explanation: Resolved End of explanation
546
Given the following text description, write Python code to implement the functionality described below step by step Description: ES-DOC CMIP6 Model Properties - Seaice MIP Era Step1: Document Authors Set document authors Step2: Document Contributors Specify document contributors Step3: Document Publication Specify document publication status Step4: Document Table of Contents 1. Key Properties --&gt; Model 2. Key Properties --&gt; Variables 3. Key Properties --&gt; Seawater Properties 4. Key Properties --&gt; Resolution 5. Key Properties --&gt; Tuning Applied 6. Key Properties --&gt; Key Parameter Values 7. Key Properties --&gt; Assumptions 8. Key Properties --&gt; Conservation 9. Grid --&gt; Discretisation --&gt; Horizontal 10. Grid --&gt; Discretisation --&gt; Vertical 11. Grid --&gt; Seaice Categories 12. Grid --&gt; Snow On Seaice 13. Dynamics 14. Thermodynamics --&gt; Energy 15. Thermodynamics --&gt; Mass 16. Thermodynamics --&gt; Salt 17. Thermodynamics --&gt; Salt --&gt; Mass Transport 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics 19. Thermodynamics --&gt; Ice Thickness Distribution 20. Thermodynamics --&gt; Ice Floe Size Distribution 21. Thermodynamics --&gt; Melt Ponds 22. Thermodynamics --&gt; Snow Processes 23. Radiative Processes 1. Key Properties --&gt; Model Name of seaice model used. 1.1. Model Overview Is Required Step5: 1.2. Model Name Is Required Step6: 2. Key Properties --&gt; Variables List of prognostic variable in the sea ice model. 2.1. Prognostic Is Required Step7: 3. Key Properties --&gt; Seawater Properties Properties of seawater relevant to sea ice 3.1. Ocean Freezing Point Is Required Step8: 3.2. Ocean Freezing Point Value Is Required Step9: 4. Key Properties --&gt; Resolution Resolution of the sea ice grid 4.1. Name Is Required Step10: 4.2. Canonical Horizontal Resolution Is Required Step11: 4.3. Number Of Horizontal Gridpoints Is Required Step12: 5. Key Properties --&gt; Tuning Applied Tuning applied to sea ice model component 5.1. Description Is Required Step13: 5.2. Target Is Required Step14: 5.3. Simulations Is Required Step15: 5.4. Metrics Used Is Required Step16: 5.5. Variables Is Required Step17: 6. Key Properties --&gt; Key Parameter Values Values of key parameters 6.1. Typical Parameters Is Required Step18: 6.2. Additional Parameters Is Required Step19: 7. Key Properties --&gt; Assumptions Assumptions made in the sea ice model 7.1. Description Is Required Step20: 7.2. On Diagnostic Variables Is Required Step21: 7.3. Missing Processes Is Required Step22: 8. Key Properties --&gt; Conservation Conservation in the sea ice component 8.1. Description Is Required Step23: 8.2. Properties Is Required Step24: 8.3. Budget Is Required Step25: 8.4. Was Flux Correction Used Is Required Step26: 8.5. Corrected Conserved Prognostic Variables Is Required Step27: 9. Grid --&gt; Discretisation --&gt; Horizontal Sea ice discretisation in the horizontal 9.1. Grid Is Required Step28: 9.2. Grid Type Is Required Step29: 9.3. Scheme Is Required Step30: 9.4. Thermodynamics Time Step Is Required Step31: 9.5. Dynamics Time Step Is Required Step32: 9.6. Additional Details Is Required Step33: 10. Grid --&gt; Discretisation --&gt; Vertical Sea ice vertical properties 10.1. Layering Is Required Step34: 10.2. Number Of Layers Is Required Step35: 10.3. Additional Details Is Required Step36: 11. Grid --&gt; Seaice Categories What method is used to represent sea ice categories ? 11.1. Has Mulitple Categories Is Required Step37: 11.2. Number Of Categories Is Required Step38: 11.3. Category Limits Is Required Step39: 11.4. Ice Thickness Distribution Scheme Is Required Step40: 11.5. Other Is Required Step41: 12. Grid --&gt; Snow On Seaice Snow on sea ice details 12.1. Has Snow On Ice Is Required Step42: 12.2. Number Of Snow Levels Is Required Step43: 12.3. Snow Fraction Is Required Step44: 12.4. Additional Details Is Required Step45: 13. Dynamics Sea Ice Dynamics 13.1. Horizontal Transport Is Required Step46: 13.2. Transport In Thickness Space Is Required Step47: 13.3. Ice Strength Formulation Is Required Step48: 13.4. Redistribution Is Required Step49: 13.5. Rheology Is Required Step50: 14. Thermodynamics --&gt; Energy Processes related to energy in sea ice thermodynamics 14.1. Enthalpy Formulation Is Required Step51: 14.2. Thermal Conductivity Is Required Step52: 14.3. Heat Diffusion Is Required Step53: 14.4. Basal Heat Flux Is Required Step54: 14.5. Fixed Salinity Value Is Required Step55: 14.6. Heat Content Of Precipitation Is Required Step56: 14.7. Precipitation Effects On Salinity Is Required Step57: 15. Thermodynamics --&gt; Mass Processes related to mass in sea ice thermodynamics 15.1. New Ice Formation Is Required Step58: 15.2. Ice Vertical Growth And Melt Is Required Step59: 15.3. Ice Lateral Melting Is Required Step60: 15.4. Ice Surface Sublimation Is Required Step61: 15.5. Frazil Ice Is Required Step62: 16. Thermodynamics --&gt; Salt Processes related to salt in sea ice thermodynamics. 16.1. Has Multiple Sea Ice Salinities Is Required Step63: 16.2. Sea Ice Salinity Thermal Impacts Is Required Step64: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Mass transport of salt 17.1. Salinity Type Is Required Step65: 17.2. Constant Salinity Value Is Required Step66: 17.3. Additional Details Is Required Step67: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Salt thermodynamics 18.1. Salinity Type Is Required Step68: 18.2. Constant Salinity Value Is Required Step69: 18.3. Additional Details Is Required Step70: 19. Thermodynamics --&gt; Ice Thickness Distribution Ice thickness distribution details. 19.1. Representation Is Required Step71: 20. Thermodynamics --&gt; Ice Floe Size Distribution Ice floe-size distribution details. 20.1. Representation Is Required Step72: 20.2. Additional Details Is Required Step73: 21. Thermodynamics --&gt; Melt Ponds Characteristics of melt ponds. 21.1. Are Included Is Required Step74: 21.2. Formulation Is Required Step75: 21.3. Impacts Is Required Step76: 22. Thermodynamics --&gt; Snow Processes Thermodynamic processes in snow on sea ice 22.1. Has Snow Aging Is Required Step77: 22.2. Snow Aging Scheme Is Required Step78: 22.3. Has Snow Ice Formation Is Required Step79: 22.4. Snow Ice Formation Scheme Is Required Step80: 22.5. Redistribution Is Required Step81: 22.6. Heat Diffusion Is Required Step82: 23. Radiative Processes Sea Ice Radiative Processes 23.1. Surface Albedo Is Required Step83: 23.2. Ice Radiation Transmission Is Required
Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'test-institute-3', 'sandbox-3', 'seaice') Explanation: ES-DOC CMIP6 Model Properties - Seaice MIP Era: CMIP6 Institute: TEST-INSTITUTE-3 Source ID: SANDBOX-3 Topic: Seaice Sub-Topics: Dynamics, Thermodynamics, Radiative Processes. Properties: 80 (63 required) Model descriptions: Model description details Initialized From: -- Notebook Help: Goto notebook help page Notebook Initialised: 2018-02-15 16:54:46 Document Setup IMPORTANT: to be executed each time you run the notebook End of explanation # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) Explanation: Document Authors Set document authors End of explanation # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) Explanation: Document Contributors Specify document contributors End of explanation # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) Explanation: Document Publication Specify document publication status End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: Document Table of Contents 1. Key Properties --&gt; Model 2. Key Properties --&gt; Variables 3. Key Properties --&gt; Seawater Properties 4. Key Properties --&gt; Resolution 5. Key Properties --&gt; Tuning Applied 6. Key Properties --&gt; Key Parameter Values 7. Key Properties --&gt; Assumptions 8. Key Properties --&gt; Conservation 9. Grid --&gt; Discretisation --&gt; Horizontal 10. Grid --&gt; Discretisation --&gt; Vertical 11. Grid --&gt; Seaice Categories 12. Grid --&gt; Snow On Seaice 13. Dynamics 14. Thermodynamics --&gt; Energy 15. Thermodynamics --&gt; Mass 16. Thermodynamics --&gt; Salt 17. Thermodynamics --&gt; Salt --&gt; Mass Transport 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics 19. Thermodynamics --&gt; Ice Thickness Distribution 20. Thermodynamics --&gt; Ice Floe Size Distribution 21. Thermodynamics --&gt; Melt Ponds 22. Thermodynamics --&gt; Snow Processes 23. Radiative Processes 1. Key Properties --&gt; Model Name of seaice model used. 1.1. Model Overview Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Overview of sea ice model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.model.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 1.2. Model Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Name of sea ice model code (e.g. CICE 4.2, LIM 2.1, etc.) End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sea ice temperature" # "Sea ice concentration" # "Sea ice thickness" # "Sea ice volume per grid cell area" # "Sea ice u-velocity" # "Sea ice v-velocity" # "Sea ice enthalpy" # "Internal ice stress" # "Salinity" # "Snow temperature" # "Snow depth" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 2. Key Properties --&gt; Variables List of prognostic variable in the sea ice model. 2.1. Prognostic Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List of prognostic variables in the sea ice component. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "TEOS-10" # "Constant" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 3. Key Properties --&gt; Seawater Properties Properties of seawater relevant to sea ice 3.1. Ocean Freezing Point Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 3.2. Ocean Freezing Point Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant seawater freezing point, specify this value. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4. Key Properties --&gt; Resolution Resolution of the sea ice grid 4.1. Name Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 This is a string usually used by the modelling group to describe the resolution of this grid e.g. N512L180, T512L70, ORCA025 etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 4.2. Canonical Horizontal Resolution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 4.3. Number Of Horizontal Gridpoints Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Total number of horizontal (XY) points (or degrees of freedom) on computational grid. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5. Key Properties --&gt; Tuning Applied Tuning applied to sea ice model component 5.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.2. Target Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What was the aim of tuning, e.g. correct sea ice minima, correct seasonal cycle. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.3. Simulations Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 *Which simulations had tuning applied, e.g. all, not historical, only pi-control? * End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.4. Metrics Used Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List any observed metrics used in tuning model/parameters End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 5.5. Variables Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Which variables were changed during the tuning process? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Ice strength (P*) in units of N m{-2}" # "Snow conductivity (ks) in units of W m{-1} K{-1} " # "Minimum thickness of ice created in leads (h0) in units of m" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 6. Key Properties --&gt; Key Parameter Values Values of key parameters 6.1. Typical Parameters Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N What values were specificed for the following parameters if used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 6.2. Additional Parameters Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.N If you have any additional paramterised values that you have used (e.g. minimum open water fraction or bare ice albedo), please provide them here as a comma separated list End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.description') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7. Key Properties --&gt; Assumptions Assumptions made in the sea ice model 7.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N General overview description of any key assumptions made in this model. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.2. On Diagnostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Note any assumptions that specifically affect the CMIP6 diagnostic sea ice variables. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 7.3. Missing Processes Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N List any key processes missing in this model configuration? Provide full details where this affects the CMIP6 diagnostic sea ice variables? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8. Key Properties --&gt; Conservation Conservation in the sea ice component 8.1. Description Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Provide a general description of conservation methodology. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.properties') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Energy" # "Mass" # "Salt" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 8.2. Properties Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Properties conserved in sea ice by the numerical schemes. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.budget') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.3. Budget Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 For each conserved property, specify the output variables which close the related budgets. as a comma separated list. For example: Conserved property, variable1, variable2, variable3 End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 8.4. Was Flux Correction Used Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does conservation involved flux correction? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 8.5. Corrected Conserved Prognostic Variables Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 List any variables which are conserved by more than the numerical scheme alone. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Ocean grid" # "Atmosphere Grid" # "Own Grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9. Grid --&gt; Discretisation --&gt; Horizontal Sea ice discretisation in the horizontal 9.1. Grid Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Grid on which sea ice is horizontal discretised? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Structured grid" # "Unstructured grid" # "Adaptive grid" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9.2. Grid Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the type of sea ice grid? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Finite differences" # "Finite elements" # "Finite volumes" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 9.3. Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the advection scheme? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 9.4. Thermodynamics Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the time step in the sea ice model thermodynamic component in seconds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 9.5. Dynamics Time Step Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the time step in the sea ice model dynamic component in seconds. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 9.6. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional horizontal discretisation details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Zero-layer" # "Two-layers" # "Multi-layers" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 10. Grid --&gt; Discretisation --&gt; Vertical Sea ice vertical properties 10.1. Layering Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N What type of sea ice vertical layers are implemented for purposes of thermodynamic calculations? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 10.2. Number Of Layers Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using multi-layers specify how many. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 10.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional vertical grid details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 11. Grid --&gt; Seaice Categories What method is used to represent sea ice categories ? 11.1. Has Mulitple Categories Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Set to true if the sea ice model has multiple sea ice categories. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 11.2. Number Of Categories Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using sea ice categories specify how many. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.3. Category Limits Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 If using sea ice categories specify each of the category limits. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.4. Ice Thickness Distribution Scheme Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the sea ice thickness distribution scheme End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.seaice_categories.other') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 11.5. Other Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If the sea ice model does not use sea ice categories specify any additional details. For example models that paramterise the ice thickness distribution ITD (i.e there is no explicit ITD) but there is assumed distribution and fluxes are computed accordingly. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 12. Grid --&gt; Snow On Seaice Snow on sea ice details 12.1. Has Snow On Ice Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Is snow on ice represented in this model? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 12.2. Number Of Snow Levels Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: INTEGER&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Number of vertical levels of snow on ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.3. Snow Fraction Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe how the snow fraction on sea ice is determined End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 12.4. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Specify any additional details related to snow on ice. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13. Dynamics Sea Ice Dynamics 13.1. Horizontal Transport Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of horizontal advection of sea ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Incremental Re-mapping" # "Prather" # "Eulerian" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.2. Transport In Thickness Space Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of sea ice transport in thickness space (i.e. in thickness categories)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Hibler 1979" # "Rothrock 1975" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.3. Ice Strength Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Which method of sea ice strength formulation is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.redistribution') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Rafting" # "Ridging" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.4. Redistribution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Which processes can redistribute sea ice (including thickness)? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.dynamics.rheology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Free-drift" # "Mohr-Coloumb" # "Visco-plastic" # "Elastic-visco-plastic" # "Elastic-anisotropic-plastic" # "Granular" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 13.5. Rheology Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Rheology, what is the ice deformation formulation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice latent heat (Semtner 0-layer)" # "Pure ice latent and sensible heat" # "Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)" # "Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14. Thermodynamics --&gt; Energy Processes related to energy in sea ice thermodynamics 14.1. Enthalpy Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the energy formulation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Pure ice" # "Saline ice" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.2. Thermal Conductivity Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What type of thermal conductivity is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Conduction fluxes" # "Conduction and radiation heat fluxes" # "Conduction, radiation and latent heat transport" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.3. Heat Diffusion Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of heat diffusion? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Heat Reservoir" # "Thermal Fixed Salinity" # "Thermal Varying Salinity" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 14.4. Basal Heat Flux Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method by which basal ocean heat flux is handled? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 14.5. Fixed Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If you have selected {Thermal properties depend on S-T (with fixed salinity)}, supply fixed salinity value for each sea ice layer. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.6. Heat Content Of Precipitation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method by which the heat content of precipitation is handled. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 14.7. Precipitation Effects On Salinity Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If precipitation (freshwater) that falls on sea ice affects the ocean surface salinity please provide further details. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15. Thermodynamics --&gt; Mass Processes related to mass in sea ice thermodynamics 15.1. New Ice Formation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method by which new sea ice is formed in open water. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.2. Ice Vertical Growth And Melt Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method that governs the vertical growth and melt of sea ice. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Floe-size dependent (Bitz et al 2001)" # "Virtual thin ice melting (for single-category)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 15.3. Ice Lateral Melting Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the method of sea ice lateral melting? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.4. Ice Surface Sublimation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method that governs sea ice surface sublimation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 15.5. Frazil Ice Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Describe the method of frazil ice formation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 16. Thermodynamics --&gt; Salt Processes related to salt in sea ice thermodynamics. 16.1. Has Multiple Sea Ice Salinities Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does the sea ice model use two different salinities: one for thermodynamic calculations; and one for the salt budget? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 16.2. Sea Ice Salinity Thermal Impacts Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Does sea ice salinity impact the thermal properties of sea ice? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 17. Thermodynamics --&gt; Salt --&gt; Mass Transport Mass transport of salt 17.1. Salinity Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is salinity determined in the mass transport of salt calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 17.2. Constant Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant salinity value specify this value in PSU? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 17.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the salinity profile used. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Prescribed salinity profile" # "Prognostic salinity profile" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics Salt thermodynamics 18.1. Salinity Type Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is salinity determined in the thermodynamic calculation? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) Explanation: 18.2. Constant Salinity Value Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: FLOAT&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 If using a constant salinity value specify this value in PSU? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 18.3. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the salinity profile used. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Virtual (enhancement of thermal conductivity, thin ice melting)" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 19. Thermodynamics --&gt; Ice Thickness Distribution Ice thickness distribution details. 19.1. Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is the sea ice thickness distribution represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Parameterised" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 20. Thermodynamics --&gt; Ice Floe Size Distribution Ice floe-size distribution details. 20.1. Representation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 How is the sea ice floe-size represented? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 20.2. Additional Details Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Please provide further details on any parameterisation of floe-size. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 21. Thermodynamics --&gt; Melt Ponds Characteristics of melt ponds. 21.1. Are Included Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Are melt ponds included in the sea ice model? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Flocco and Feltham (2010)" # "Level-ice melt ponds" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21.2. Formulation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What method of melt pond formulation is used? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Albedo" # "Freshwater" # "Heat" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 21.3. Impacts Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N What do melt ponds have an impact on? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22. Thermodynamics --&gt; Snow Processes Thermodynamic processes in snow on sea ice 22.1. Has Snow Aging Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Set to True if the sea ice model has a snow aging scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.2. Snow Aging Scheme Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow aging scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') # PROPERTY VALUE(S): # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) Explanation: 22.3. Has Snow Ice Formation Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Set to True if the sea ice model has snow ice formation. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.4. Snow Ice Formation Scheme Is Required: FALSE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 0.1 Describe the snow ice formation scheme. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) Explanation: 22.5. Redistribution Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: STRING&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the impact of ridging on snow cover? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Single-layered heat diffusion" # "Multi-layered heat diffusion" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 22.6. Heat Diffusion Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 What is the heat diffusion through snow methodology in sea ice thermodynamics? End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Parameterized" # "Multi-band albedo" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23. Radiative Processes Sea Ice Radiative Processes 23.1. Surface Albedo Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.1 Method used to handle surface albedo. End of explanation # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Delta-Eddington" # "Exponential attenuation" # "Ice radiation transmission per category" # "Other: [Please specify]" # TODO - please enter value(s) Explanation: 23.2. Ice Radiation Transmission Is Required: TRUE&nbsp;&nbsp;&nbsp;&nbsp;Type: ENUM&nbsp;&nbsp;&nbsp;&nbsp;Cardinality: 1.N Method by which solar radiation through sea ice is handled. End of explanation
547
Given the following text description, write Python code to implement the functionality described below step by step Description: Minimization When using a Maximum Likelihood analysis we want to find the maximum of the likelihood $L(\vec{\theta})$ given one or more datasets (i.e., plugin instances) and one model containing one or more sources with free parameters $\vec{\theta}$. Most of the available algorithms for function optimization find the minimum, not the maximum, of a function. Also, since the likelihood function is usually the product of many probabilities, bounded to be $0 < p < 1$, $L(\vec{\theta})$ tend to be very small. Hence, it is much more tractable numerically to deal with the logarithm of the likelihood. Therefore, instead of finding the maximum of the likelihood $L$, we find the minimum of the $-\log{L(\vec{\theta})}$ function. Of course, the values of $\vec{\theta}$ minimizing $-\log{L}$ are the same that maximize $L$, i.e. Step1: Let's get a JointLikelihood object like the one we would have in a normal 3ML analysis. We use a custom function, prepared for this tutorial, which gives a JointLikelihood object having a very simple model with one free parameter ($\mu$), and with a likelihood having a very simple shape Step2: Now let's set up the Minuit minimizer and minimize the -log(L), starting from $\mu = 1$ Step3: Now let's do the same, but starting from $\mu=80$ Step4: and from $\mu=20$ Step5: It is clear that, depending on the starting point, minuit makes different steps trying to reach the minimum. In this last case, at one point Minuit overshoots the minimum jumping all the way from $\sim 30$ to $\sim 80$, then realizes the mistake and goes back. In the case of a simple, convex likelihood like this one, Minuit finds easily the minimum independently of the starting point. Global minimization Now let us consider the case of a more complicated $-\log{L}$ function Step6: This likelihood function has 3 minima Step7: Minuit has found the local minimum, not the global one. Now we start from 80 Step8: Now we found the global minimum. This is a simple example to show that the solution find by a local minimizers can depend on the starting point, and might not be the global minimum. In practice, one can rarely be guaranteed that the likelihood function has only one minimum. This is especially true in many dimensions and in cases of data with poor statistic. To alleviate this problem 3ML offers some "global minimizers". While it is impossible to guarantee that a global minimum will be reached, these minimizers are much more robust towards this kind of problems, at the expenses of a considerable longer runtime. In 3ML each global minimizer must be associated with a local minimizer. The latter is used as final step to improve the solution found by the global minimizer and to compute the error matrix. Grid minimizer The idea behind this is very simple Step9: The GRID minimizer has found the global minimum. Of course the GRID minimizer can be used in multiple dimensions (simply define a grid for the other parameters as well). It is a simple brute force solution that works well in practice, especially when the likelihood function computation is not too time-consuming. When there are many parameters, you should choose carefully the parameters to use in the grid. For example, when looking for a spectral line in a spectrum, it makes sense to use the location of the line as parameter in the grid, but not its normalization. PAGMO minimizer The Pagmo minimizer is an open-source optimization suite provided by the European Space Agency Step10: Multinest minimizer MultiNest is a Bayesian inference tool which calculates the evidence and explores the parameter space which may contain multiple posterior modes and pronounced (curving) degeneracies in moderately high dimensions. It is not strictly a minimizer. However, given its capacity to explore multiple modes of the likelihood function (i.e., multiple local minima), it can be used as a global minimizer. The Multinest minimizer in 3ML forms a posterior probability using the likelihood multiplied by uniformative priors. The priors are automatically chosen (uniform if the allowed parameter range is less than 2 orders of magnitudes or negative values are allowed, log-uniform otherwise). Then, Multinest is run in multimodal mode (multimodal=True). At the end of the run, among all the values of the $-\log{L}$ traversed by Multinest, the smaller one is chosen as starting point for the local minimizer.
Python Code: from threeML import * import matplotlib.pyplot as plt %matplotlib inline from threeML.minimizer.tutorial_material import * Explanation: Minimization When using a Maximum Likelihood analysis we want to find the maximum of the likelihood $L(\vec{\theta})$ given one or more datasets (i.e., plugin instances) and one model containing one or more sources with free parameters $\vec{\theta}$. Most of the available algorithms for function optimization find the minimum, not the maximum, of a function. Also, since the likelihood function is usually the product of many probabilities, bounded to be $0 < p < 1$, $L(\vec{\theta})$ tend to be very small. Hence, it is much more tractable numerically to deal with the logarithm of the likelihood. Therefore, instead of finding the maximum of the likelihood $L$, we find the minimum of the $-\log{L(\vec{\theta})}$ function. Of course, the values of $\vec{\theta}$ minimizing $-\log{L}$ are the same that maximize $L$, i.e.: argmax${\vec{\theta}}~\left( L(\vec{\theta}) \right)$ = argmin${\vec{\theta}}~\left(-\log{L(\vec{\theta})}\right)$. Various minimizers are available in 3ML. We can divide them in two groups: local minimizers and global minimizers. Local minimizers Most of the existing optimization algorithms are local minimizers (MINUIT, Levenberg–Marquardt, Netwton...). A local minimizer starts from the current values for the free parameters $\vec{\theta}$ and try to reach the closest minimum of a function $f(\vec{\theta})$ (in 3ML this is usually the $-\log{L}$). Many minimizers are based on the idea of gradient descent, i.e., they compute the local gradient of $f(\vec{\theta})$ and follow the function along the direction of steepest discent until the minimum. There are however also gradient-free algorithms, like for example COBYLA. While going into the details of how each algorithm works is beyond the scope, we illustrate here an example by using the Minuit algorithm. Let's start by importing what we need in the following: End of explanation # This returns a JointLikelihood object with a simple likelihood function, # and the corresponding Model instance. These objects are what you will have # in a typical 3ML analysis. The Model contains one point source, named "test", # with a spectrum called "simple" jl, model = get_joint_likelihood_object_simple_likelihood() # Let's look at the likelihood function, which in this illustrative example # has a very simple shape _ = plot_likelihood_function(jl) Explanation: Let's get a JointLikelihood object like the one we would have in a normal 3ML analysis. We use a custom function, prepared for this tutorial, which gives a JointLikelihood object having a very simple model with one free parameter ($\mu$), and with a likelihood having a very simple shape: End of explanation model.test.spectrum.main.shape.mu = 1.0 # The minuit minimizer is the default, so no setup is necessary # quiet = True means that no result will be printed res = jl.fit(quiet=True) # This plots the path that Minuit has traveled looking for the minimum # Arrows connect the different points, starting from 1.0 and going # to 40, the minimum fig = plot_minimizer_path(jl) Explanation: Now let's set up the Minuit minimizer and minimize the -log(L), starting from $\mu = 1$: End of explanation model.test.spectrum.main.shape.mu = 80.0 res = jl.fit(quiet=True) fig = plot_minimizer_path(jl) Explanation: Now let's do the same, but starting from $\mu=80$: End of explanation model.test.spectrum.main.shape.mu = 20.0 res = jl.fit(quiet=True) fig = plot_minimizer_path(jl) Explanation: and from $\mu=20$: End of explanation jl, model = get_joint_likelihood_object_complex_likelihood() _ = plot_likelihood_function(jl) Explanation: It is clear that, depending on the starting point, minuit makes different steps trying to reach the minimum. In this last case, at one point Minuit overshoots the minimum jumping all the way from $\sim 30$ to $\sim 80$, then realizes the mistake and goes back. In the case of a simple, convex likelihood like this one, Minuit finds easily the minimum independently of the starting point. Global minimization Now let us consider the case of a more complicated $-\log{L}$ function: End of explanation model.test.spectrum.main.shape.mu = 1.0 res = jl.fit(quiet=True) fig = plot_minimizer_path(jl) Explanation: This likelihood function has 3 minima: 2 are local and one (at $\mu = 60$) is the global minimum. Let's see how Minuit performs in this case. First we start from 1.0: End of explanation model.test.spectrum.main.shape.mu = 70 res = jl.fit(quiet=True) fig = plot_minimizer_path(jl) Explanation: Minuit has found the local minimum, not the global one. Now we start from 80: End of explanation # Create an instance of the GRID minimizer grid_minimizer = GlobalMinimization("grid") # Create an instance of a local minimizer, which will be used by GRID local_minimizer = LocalMinimization("minuit") # Define a grid for mu as 10 steps between 1 and 80 my_grid = {model.test.spectrum.main.shape.mu: np.linspace(1, 80, 10)} # Setup the global minimization # NOTE: the "callbacks" option is useless in a normal 3ML analysis, it is # here only to keep track of the evolution for the plot grid_minimizer.setup(second_minimization=local_minimizer, grid = my_grid, callbacks=[get_callback(jl)]) # Set the minimizer for the JointLikelihood object jl.set_minimizer(grid_minimizer) jl.fit() fig = plot_minimizer_path(jl) Explanation: Now we found the global minimum. This is a simple example to show that the solution find by a local minimizers can depend on the starting point, and might not be the global minimum. In practice, one can rarely be guaranteed that the likelihood function has only one minimum. This is especially true in many dimensions and in cases of data with poor statistic. To alleviate this problem 3ML offers some "global minimizers". While it is impossible to guarantee that a global minimum will be reached, these minimizers are much more robust towards this kind of problems, at the expenses of a considerable longer runtime. In 3ML each global minimizer must be associated with a local minimizer. The latter is used as final step to improve the solution found by the global minimizer and to compute the error matrix. Grid minimizer The idea behind this is very simple: the user defines a grid of values for the parameters, which are used as starting points for minimization performed by a local minimizers. At the end, the solution with the smallest value for $-\log{L}$ will be used as final solution. For example, let's define a grid of 10 values for $\mu$. This means that 3ML will perform 10 local minimizations starting each time from a different point in the grid: End of explanation # Reset the parameter to a value different from the best fit found # by previous algorithms jl, model = get_joint_likelihood_object_complex_likelihood() model.test.spectrum.main.shape.mu = 2.5 # Create an instance of the PAGMO minimizer pagmo_minimizer = GlobalMinimization("pagmo") # Select one of the many algorithms provided by pagmo # (see https://esa.github.io/pagmo2/docs/algorithm_list.html # for a list). # In this case we use the Artificial Bee Colony algorithm # (see here for a description: https://link.springer.com/article/10.1007/s10898-007-9149-x) import pygmo my_algorithm = pygmo.algorithm(pygmo.bee_colony(gen=20)) # Create an instance of a local minimizer local_minimizer = LocalMinimization("minuit") # Setup the global minimization pagmo_minimizer.setup(second_minimization = local_minimizer, algorithm=my_algorithm, islands=10, population_size=10, evolution_cycles=1) # Set the minimizer for the JointLikelihood object jl.set_minimizer(pagmo_minimizer) jl.fit() # NOTE: given the inner working of pygmo, it is not possible # to plot the evolution Explanation: The GRID minimizer has found the global minimum. Of course the GRID minimizer can be used in multiple dimensions (simply define a grid for the other parameters as well). It is a simple brute force solution that works well in practice, especially when the likelihood function computation is not too time-consuming. When there are many parameters, you should choose carefully the parameters to use in the grid. For example, when looking for a spectral line in a spectrum, it makes sense to use the location of the line as parameter in the grid, but not its normalization. PAGMO minimizer The Pagmo minimizer is an open-source optimization suite provided by the European Space Agency: https://esa.github.io/pagmo2/ It contains a lot of algorithms for optimization of different kinds: https://esa.github.io/pagmo2/docs/algorithm_list.html and it is very powerful. In order to be able to use it you need to install the python package pygmo (make sure to have version >= 2, as the old version 1.x has a different API and won't work with 3ML). In Pagmo/pygmo, candidate solutions to the minimization are called "individuals". A population of individuals over which an algorithm acts to improve the solutions is called "island". An ensamble of islands that can share solutions along a defined topology and thus learn on their reciprocal progress is called "archipelago". The evolution of the populations can be executed more than once ("evolution cycles"). After the pygmo section of the optimization has been completed, the secondary minimizer will be used to further improve on the solution (if possible) and to compute the covariance matrix. End of explanation # Reset the parameter to a value different from the best fit found # by previous algorithms jl, model = get_joint_likelihood_object_complex_likelihood() model.test.spectrum.main.shape.mu = 5.0 # Create an instance of the PAGMO minimizer multinest_minimizer = GlobalMinimization("multinest") # Create an instance of a local minimizer local_minimizer = LocalMinimization("minuit") # Setup the global minimization multinest_minimizer.setup(second_minimization = local_minimizer, live_points=100) # Set the minimizer for the JointLikelihood object jl.set_minimizer(multinest_minimizer) jl.fit() # Plots the point traversed by Multinest fig = plot_minimizer_path(jl, points=True) Explanation: Multinest minimizer MultiNest is a Bayesian inference tool which calculates the evidence and explores the parameter space which may contain multiple posterior modes and pronounced (curving) degeneracies in moderately high dimensions. It is not strictly a minimizer. However, given its capacity to explore multiple modes of the likelihood function (i.e., multiple local minima), it can be used as a global minimizer. The Multinest minimizer in 3ML forms a posterior probability using the likelihood multiplied by uniformative priors. The priors are automatically chosen (uniform if the allowed parameter range is less than 2 orders of magnitudes or negative values are allowed, log-uniform otherwise). Then, Multinest is run in multimodal mode (multimodal=True). At the end of the run, among all the values of the $-\log{L}$ traversed by Multinest, the smaller one is chosen as starting point for the local minimizer. End of explanation
548
Given the following text description, write Python code to implement the functionality described below step by step Description: Largest product in a grid Problem 11 In the 20 × 20 grid below, four numbers along a diagonal line have been marked in red. 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 <font color='red'>26</font> 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 <font color='red'>63</font> 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 <font color='red'>78</font> 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 <font color='red'>14</font> 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 The product of these numbers is $26 × 63 × 78 × 14 = 1788696$. What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20 × 20 grid? Step1: Highly divisible triangular number Problem 12 The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be $1+2+3+4+5+6+7=28$. The first ten terms would be Step2: Large sum Problem 13 Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. Step3: Longest Collatz sequence Problem 14 The following iterative sequence is defined for the set of positive integers Step4: Lattice paths Problem 15 Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner. How many such routes are there through a 20×20 grid? Step5: Power digit sum Problem 16 $2^{15}=32768$ and the sum of its digits is 3+2+7+6+8=26. What is the sum of the digits of the number $2^{1000}$? Step6: Number letter counts Problem 17 If the numbers 1 to 5 are written out in words Step7: Maximum path sum I Problem 18 By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, $3+7+4+9=23$. Find the maximum total from top to bottom of the triangle below Step8: Counting Sundays Problem 19 You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday. Thirty days has September, April, June and November. All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? Step9: Factorial digit sum Problem 20 n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100!
Python Code: from euler import Seq, timer import numpy as np def p011(): table = np.loadtxt(open("data/p011.txt","rb"),delimiter=" ", dtype=np.int) rows, columns = np.shape(table) def collect(i,j,di,dj): step = 4 acc = 1 while True: if step==0: return acc elif (i<0) | (i>=rows) | (j<0) | (j>=columns): return 0 else: acc *= table[i,j] step -= 1 i += di j += dj def goRight(i,j): return collect(i,j,0,1) def goDown(i,j): return collect(i,j,1,0) def goDiag1(i,j): return collect(i,j,1,1) def goDiag2(i,j): return collect(i,j,1,-1) return ( [[goRight(i,j), goDown(i,j), goDiag1(i,j), goDiag2(i,j)] for i in range(1,rows+1) for j in range(1,columns+1)] >> Seq.flatten >> Seq.max) timer(p011) Explanation: Largest product in a grid Problem 11 In the 20 × 20 grid below, four numbers along a diagonal line have been marked in red. 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 <font color='red'>26</font> 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 <font color='red'>63</font> 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 <font color='red'>78</font> 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 <font color='red'>14</font> 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48 The product of these numbers is $26 × 63 × 78 × 14 = 1788696$. What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20 × 20 grid? End of explanation from euler import Seq, DivisorSigma, timer def p012(): return ( Seq.unfold(lambda (n,m): (n+m, (n+1, m+n)), (1,0)) >> Seq.find(lambda n: DivisorSigma(n) > 500)) timer(p012) Explanation: Highly divisible triangular number Problem 12 The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be $1+2+3+4+5+6+7=28$. The first ten terms would be: $1,3,6,10,15,21,28,36,45,55,...$ Let us list the factors of the first seven triangle numbers: $1: 1$ $3: 1,3$ $6: 1,2,3,6$ $10: 1,2,5,10$ $15: 1,3,5,15$ $21: 1,3,7,21$ $28: 1,2,4,7,14,28$ We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors? End of explanation from euler import Seq, timer def p013(): return int( str(open('data/p013.txt').read().splitlines() >> Seq.map(long) >> Seq.sum)[0:10]) timer(p013) Explanation: Large sum Problem 13 Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. End of explanation from euler import memoize, snd, timer @memoize def collatz(n): if n == 1: x = 1 elif n%2 == 0: x = 1 + collatz(int(n/2)) else: x = 1 + collatz(int(3*n+1)) return x def p014(): return max([(i, collatz(i)) for i in range(1,1000000)], key=snd)[1] timer(p014) Explanation: Longest Collatz sequence Problem 14 The following iterative sequence is defined for the set of positive integers: n → n/2 (n is even) n → 3n + 1 (n is odd) Using the rule above and starting with 13, we generate the following sequence: 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1. Which starting number, under one million, produces the longest chain? NOTE: Once the chain starts the terms are allowed to go above one million. End of explanation from euler import timer from math import factorial def p015(): return factorial(40) / factorial(20) / factorial(20) timer(p015) Explanation: Lattice paths Problem 15 Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner. How many such routes are there through a 20×20 grid? End of explanation from euler import timer def p016(): return sum(int(n) for n in str(2L ** 1000)) timer(p016) Explanation: Power digit sum Problem 16 $2^{15}=32768$ and the sum of its digits is 3+2+7+6+8=26. What is the sum of the digits of the number $2^{1000}$? End of explanation from euler import timer read_basics = {0: 0, 1: 3, 2: 3, 3: 5, 4: 4, 5: 4, 6: 3, 7: 5, 8: 5, 9: 4, 10: 3, 11: 6, 12: 6, 13: 8, 14: 8, 15: 7, 16: 7, 17: 9, 18: 8, 19: 8, 20: 6, 30: 6, 40: 5, 50: 5, 60: 5, 70: 7, 80: 6, 90: 6} def read_length(x): if x==1000: return 3+8 elif x<=20: return read_basics[x] elif x<100: ten = x/10 * 10 last = x%10 return read_basics[ten] + read_basics[last] else: hund = x/100 if x%100==0: return read_basics[hund] + 7 else: return read_basics[hund] + 7 + 3 + read_length(x%100) def p017(): return sum(read_length(i) for i in range(1,1001)) timer(p017) Explanation: Number letter counts Problem 17 If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are $3+3+5+4+4=19$ letters used in total. If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used? NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage. End of explanation from euler import Seq, timer def p018(): return ( open('data/p018.txt').read().splitlines() >> Seq.map(lambda s: s.split(' ') >> Seq.map(int)) >> Seq.rev >> Seq.reduce(lambda a,b: a >> Seq.window(2) >> Seq.map(max) >> Seq.zip(b) >> Seq.map(sum)) >> Seq.head) timer(p018) Explanation: Maximum path sum I Problem 18 By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, $3+7+4+9=23$. Find the maximum total from top to bottom of the triangle below: 75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o) End of explanation from datetime import date, timedelta from euler import Seq, timer def p019(): beg_dt = date(1901,1,1) end_dt = date(2000,12,31) return ( Seq.init((end_dt - beg_dt).days + 1, lambda x: beg_dt + timedelta(x)) >> Seq.filter(lambda x: (x.day == 1) & (x.weekday() == 1)) >> Seq.length) timer(p019) Explanation: Counting Sundays Problem 19 You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday. Thirty days has September, April, June and November. All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? End of explanation from math import factorial from euler import Seq, timer def p020(): return str(factorial(100)) >> Seq.map(int) >> Seq.sum timer(p020) Explanation: Factorial digit sum Problem 20 n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100! End of explanation
549
Given the following text description, write Python code to implement the functionality described below step by step Description: SEER Data Analysis Phase 3 Step1: To begin exploring the data we took a sample of the SEER data, defined the features and dependent variable, printed the top few lines to ensure a successful data ingest, and ran descriptive statistics Step2: Next we checked our data type and determine the frequency of each class Step3: We used a histogram to see the distribution of survival time in months Step4: Next we played around with a few visualization to get a better understanding of the data Step5: The plot below shows a lot of overlap between the 3 classes which alludes to the fact that classification models may not perform great. However, the plot also shows a more clear classification along the birth year and age at diagnosis features. Step6: Next we moved to creating survival charts using a larger sample size. We created a class with a "plot_survival" function. For the graph we picked variables that the scientific literature finds significant-- Stage, ER status, PR status, age, and radiation treatment. The second plot compares the frequency of survival for censored and non-censored patients.
Python Code: %matplotlib inline import os import time import pandas as pd import numpy as np import matplotlib.pyplot as plt from MasterSeer import MasterSeer from sklearn.feature_selection import SelectPercentile, f_classif, SelectFromModel from sklearn.linear_model import LinearRegression from lifelines.plotting import plot_lifetimes from lifelines import KaplanMeierFitter from numpy.random import uniform, exponential from pandas.tools.plotting import scatter_matrix, radviz, parallel_coordinates Explanation: SEER Data Analysis Phase 3: Data Exploration End of explanation FEATURES = [ "Birth Year", "Age at Diagnosis", "Race", "Origin", "laterality", "Radiation", "Histrec", "ER Status", "PR Status", "Behanal", "Stage", "Numprimes", "Survival Time", "Bucket" ] LABEL_MAP = { 0: "< 60 Months", 1: "60 < months > 120", 2: "> 120 months", } # Read the data into a DataFrame df = pd.read_csv("clean1.csv", sep=',' , header=0, names=FEATURES) # Convert class labels into text for k,v in LABEL_MAP.items(): df.ix[df.Bucket == k, 'Bucket'] = v print(df.head(n=5)) df.describe() Explanation: To begin exploring the data we took a sample of the SEER data, defined the features and dependent variable, printed the top few lines to ensure a successful data ingest, and ran descriptive statistics End of explanation print (df.groupby('Bucket')['Bucket'].count()) Explanation: Next we checked our data type and determine the frequency of each class End of explanation fig = plt.figure() ax = fig.add_subplot(111) ax.hist(df['Survival Time'], bins = 10, range = (df['Survival Time'].min(),df['Survival Time'].max())) plt.title('Survival Time Distribution') plt.xlabel('Survival Time') plt.ylabel('Months') plt.show() Explanation: We used a histogram to see the distribution of survival time in months End of explanation scatter_matrix(df, alpha=0.2, figsize=(12, 12), diagonal='kde') plt.show() plt.figure(figsize=(12,12)) parallel_coordinates(df, 'Bucket') plt.show() Explanation: Next we played around with a few visualization to get a better understanding of the data End of explanation plt.figure(figsize=(12,12)) radviz(df, 'Bucket') plt.show() Explanation: The plot below shows a lot of overlap between the 3 classes which alludes to the fact that classification models may not perform great. However, the plot also shows a more clear classification along the birth year and age at diagnosis features. End of explanation class ExploreSeer(MasterSeer): def __init__(self, path=r'./data/', testMode=False, verbose=True, sample_size=5000): # user supplied parameters self.testMode = testMode # import one file, 500 records and return self.verbose = verbose # prints status messages self.sample_size = sample_size # number of rows to pull for testing if type(path) != str: raise TypeError('path must be a string') if path[-1] != '/': path += '/' # if path does not end with a backslash, add one self.path = path # open connection to the database super().__init__(path, False, verbose=verbose) self.db_conn, self.db_cur = super().init_database(False) def __del__(self): super().__del__() def plot_survival(self): df = super().load_data(col = ['YR_BRTH','AGE_DX','LATERAL','RADIATN','HISTREC','ERSTATUS', 'PRSTATUS','BEHANAL','HST_STGA','NUMPRIMS', 'SRV_TIME_MON', 'SRV_TIME_MON_PA', 'DTH_CLASS', 'O_DTH_CLASS', 'STAT_REC'], cond = 'SRV_TIME_MON < 1000 AND HST_STGA < 8 AND DTH_CLASS < 9 AND ERSTATUS < 4 AND PRSTATUS < 4', sample_size = 100000) kmf = KaplanMeierFitter() try: df.RADIATN = df.RADIATN.replace(7, 0) df = df[df.RADIATN < 7] except Exception as err: pass # 0-negative, 1-borderline,, 2-positive df = df[df.ERSTATUS != 4] df = df[df.ERSTATUS != 9] df.ERSTATUS = df.ERSTATUS.replace(2, 0) df.ERSTATUS = df.ERSTATUS.replace(1, 2) df.ERSTATUS = df.ERSTATUS.replace(3, 1) # 0-negative, 1-borderline,, 2-positive df = df[df.PRSTATUS != 4] df = df[df.PRSTATUS != 9] df.PRSTATUS = df.PRSTATUS.replace(2, 0) df.PRSTATUS = df.PRSTATUS.replace(1, 2) df.PRSTATUS = df.PRSTATUS.replace(3, 1) rad = df.RADIATN > 0 er = df.ERSTATUS > 0 pr = df.PRSTATUS > 0 st0 = df.HST_STGA == 0 st1 = df.HST_STGA == 1 st2 = df.HST_STGA == 2 st4 = df.HST_STGA == 4 age = df.AGE_DX < 50 df['SRV_TIME_YR'] = df['SRV_TIME_MON'] / 12 T = df['SRV_TIME_YR'] #C = (np.logical_or(df.DTH_CLASS == 1, df.O_DTH_CLASS == 1)) C = df.STAT_REC == 4 f, ax = plt.subplots(5, sharex=True, sharey=True) ax[0].set_title("Lifespans of cancer patients"); # radiation kmf.fit(T[rad], event_observed=C[rad], label="Radiation") kmf.plot(ax=ax[0]) #, ci_force_lines=True) kmf.fit(T[~rad], event_observed=C[~rad], label="No Radiation") kmf.plot(ax=ax[0]) #, ci_force_lines=True) # ER Status kmf.fit(T[er], event_observed=C[er], label="ER Positive") kmf.plot(ax=ax[1]) #, ci_force_lines=True) kmf.fit(T[~er], event_observed=C[~er], label="ER Negative") kmf.plot(ax=ax[1]) #, ci_force_lines=True) # PR Status kmf.fit(T[pr], event_observed=C[pr], label="PR Positive") kmf.plot(ax=ax[2]) #, ci_force_lines=True) kmf.fit(T[~pr], event_observed=C[~pr], label="PR Negative") kmf.plot(ax=ax[2]) #, ci_force_lines=True) # stage kmf.fit(T[st0], event_observed=C[st0], label="Stage 0") kmf.plot(ax=ax[3]) #, ci_force_lines=True) kmf.fit(T[st1], event_observed=C[st1], label="Stage 1") kmf.plot(ax=ax[3]) #, ci_force_lines=True) kmf.fit(T[st2], event_observed=C[st2], label="Stage 2") kmf.plot(ax=ax[3]) #, ci_force_lines=True) kmf.fit(T[st4], event_observed=C[st4], label="Stage 4") kmf.plot(ax=ax[3]) #, ci_force_lines=True) # age kmf.fit(T[age], event_observed=C[age], label="Age < 50") kmf.plot(ax=ax[4]) #, ci_force_lines=True) kmf.fit(T[~age], event_observed=C[~age], label="Age >= 50") kmf.plot(ax=ax[4]) #, ci_force_lines=True) ax[0].legend(loc=3,prop={'size':10}) ax[1].legend(loc=3,prop={'size':10}) ax[2].legend(loc=3,prop={'size':10}) ax[3].legend(loc=3,prop={'size':10}) ax[4].legend(loc=3,prop={'size':10}) ax[len(ax)-1].set_xlabel('Survival in years') f.text(0.04, 0.5, 'Survival %', va='center', rotation='vertical') plt.tight_layout() plt.ylim(0,1); plt.show() f, ax = plt.subplots(2, sharex=True, sharey=True) df.hist('SRV_TIME_YR', by=df.STAT_REC != 4, ax=(ax[0], ax[1])) ax[0].set_title('Histogram of Non Censored Patients') ax[0].set_ylabel('Number of Patients') ax[1].set_ylabel('Number of Patients') ax[1].set_title('Histogram of Censored Patients') ax[1].set_xlabel('Survival in Years') plt.show() return # second plot of survival fig, ax = plt.subplots(figsize=(8, 6)) cen = df[df.STAT_REC != 4].SRV_TIME_MON nc = df[df.STAT_REC == 4].SRV_TIME_MON cen = cen.sort_values() nc = nc.sort_values() ax.hlines([x for x in range(len(nc))] , 0, nc , color = 'b', label='Uncensored'); ax.hlines([x for x in range(len(nc), len(nc)+len(cen))], 0, cen, color = 'r', label='Censored'); ax.set_xlim(left=0); ax.set_xlabel('Months'); ax.set_ylim(-0.25, len(df) + 0.25); ax.legend(loc='best'); plt.show() return seer = ExploreSeer(sample_size=10000) seer.plot_survival() Explanation: Next we moved to creating survival charts using a larger sample size. We created a class with a "plot_survival" function. For the graph we picked variables that the scientific literature finds significant-- Stage, ER status, PR status, age, and radiation treatment. The second plot compares the frequency of survival for censored and non-censored patients. End of explanation
550
Given the following text description, write Python code to implement the functionality described below step by step Description: The Evoked data structure Step1: Creating Evoked objects from Epochs Step2: Basic visualization of Evoked objects We can visualize the average evoked response for left-auditory stimuli using the Step3: Like the plot() methods for Step4: To select based on time in seconds, the Step5: Similarities among the core data structures Step6: Notice that Step7: If you want to load only some of the conditions present in a .fif file, Step8: Above, when we created an Step9: This can be remedied by either passing a baseline parameter to Step10: Notice that Step11: This approach will weight each epoch equally and create a single Step12: However, this may not always be the case; if for statistical reasons it is important to average the same number of epochs from different conditions, you can use Step13: Keeping track of nave is important for inverse imaging, because it is used to scale the noise covariance estimate (which in turn affects the magnitude of estimated source activity). See minimum_norm_estimates for more information (especially the whitening_and_scaling section). For this reason, combining
Python Code: import os import mne Explanation: The Evoked data structure: evoked/averaged data This tutorial covers the basics of creating and working with :term:evoked data. It introduces the :class:~mne.Evoked data structure in detail, including how to load, query, subselect, export, and plot data from an :class:~mne.Evoked object. For info on creating an :class:~mne.Evoked object from (possibly simulated) data in a :class:NumPy array &lt;numpy.ndarray&gt;, see tut_creating_data_structures. :depth: 2 As usual we'll start by importing the modules we need: End of explanation sample_data_folder = mne.datasets.sample.data_path() sample_data_raw_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis_raw.fif') raw = mne.io.read_raw_fif(sample_data_raw_file, verbose=False) events = mne.find_events(raw, stim_channel='STI 014') # we'll skip the "face" and "buttonpress" conditions, to save memory: event_dict = {'auditory/left': 1, 'auditory/right': 2, 'visual/left': 3, 'visual/right': 4} epochs = mne.Epochs(raw, events, tmin=-0.3, tmax=0.7, event_id=event_dict, preload=True) evoked = epochs['auditory/left'].average() del raw # reduce memory usage Explanation: Creating Evoked objects from Epochs :class:~mne.Evoked objects typically store an EEG or MEG signal that has been averaged over multiple :term:epochs, which is a common technique for estimating stimulus-evoked activity. The data in an :class:~mne.Evoked object are stored in an :class:array &lt;numpy.ndarray&gt; of shape (n_channels, n_times) (in contrast to an :class:~mne.Epochs object, which stores data of shape (n_epochs, n_channels, n_times)). Thus to create an :class:~mne.Evoked object, we'll start by epoching some raw data, and then averaging together all the epochs from one condition: End of explanation evoked.plot() Explanation: Basic visualization of Evoked objects We can visualize the average evoked response for left-auditory stimuli using the :meth:~mne.Evoked.plot method, which yields a butterfly plot of each channel type: End of explanation print(evoked.data[:2, :3]) # first 2 channels, first 3 timepoints Explanation: Like the plot() methods for :meth:Raw &lt;mne.io.Raw.plot&gt; and :meth:Epochs &lt;mne.Epochs.plot&gt; objects, :meth:evoked.plot() &lt;mne.Evoked.plot&gt; has many parameters for customizing the plot output, such as color-coding channel traces by scalp location, or plotting the :term:global field power &lt;GFP&gt; alongside the channel traces. See tut-visualize-evoked for more information about visualizing :class:~mne.Evoked objects. Subselecting Evoked data .. sidebar:: Evokeds are not memory-mapped :class:~mne.Evoked objects use a :attr:~mne.Evoked.data attribute rather than a :meth:~mne.Epochs.get_data method; this reflects the fact that the data in :class:~mne.Evoked objects are always loaded into memory, never memory-mapped_ from their location on disk (because they are typically much smaller than :class:~mne.io.Raw or :class:~mne.Epochs objects). Unlike :class:~mne.io.Raw and :class:~mne.Epochs objects, :class:~mne.Evoked objects do not support selection by square-bracket indexing. Instead, data can be subselected by indexing the :attr:~mne.Evoked.data attribute: End of explanation evoked_eeg = evoked.copy().pick_types(meg=False, eeg=True) print(evoked_eeg.ch_names) new_order = ['EEG 002', 'MEG 2521', 'EEG 003'] evoked_subset = evoked.copy().reorder_channels(new_order) print(evoked_subset.ch_names) Explanation: To select based on time in seconds, the :meth:~mne.Evoked.time_as_index method can be useful, although beware that depending on the sampling frequency, the number of samples in a span of given duration may not always be the same (see the time-as-index section of the tutorial about Raw data &lt;tut-raw-class&gt; for details). Selecting, dropping, and reordering channels By default, when creating :class:~mne.Evoked data from an :class:~mne.Epochs object, only the "data" channels will be retained: eog, ecg, stim, and misc channel types will be dropped. You can control which channel types are retained via the picks parameter of :meth:epochs.average() &lt;mne.Epochs.average&gt;, by passing 'all' to retain all channels, or by passing a list of integers, channel names, or channel types. See the documentation of :meth:~mne.Epochs.average for details. If you've already created the :class:~mne.Evoked object, you can use the :meth:~mne.Evoked.pick, :meth:~mne.Evoked.pick_channels, :meth:~mne.Evoked.pick_types, and :meth:~mne.Evoked.drop_channels methods to modify which channels are included in an :class:~mne.Evoked object. You can also use :meth:~mne.Evoked.reorder_channels for this purpose; any channel names not provided to :meth:~mne.Evoked.reorder_channels will be dropped. Note that channel selection methods modify the object in-place, so in interactive/exploratory sessions you may want to create a :meth:~mne.Evoked.copy first. End of explanation sample_data_evk_file = os.path.join(sample_data_folder, 'MEG', 'sample', 'sample_audvis-ave.fif') evokeds_list = mne.read_evokeds(sample_data_evk_file, verbose=False) print(evokeds_list) print(type(evokeds_list)) Explanation: Similarities among the core data structures :class:~mne.Evoked objects have many similarities with :class:~mne.io.Raw and :class:~mne.Epochs objects, including: They can be loaded from and saved to disk in .fif format, and their data can be exported to a :class:NumPy array &lt;numpy.ndarray&gt; (but through the :attr:~mne.Evoked.data attribute, not through a get_data() method). :class:Pandas DataFrame &lt;pandas.DataFrame&gt; export is also available through the :meth:~mne.Evoked.to_data_frame method. You can change the name or type of a channel using :meth:evoked.rename_channels() &lt;mne.Evoked.rename_channels&gt; or :meth:evoked.set_channel_types() &lt;mne.Evoked.set_channel_types&gt;. Both methods take :class:dictionaries &lt;dict&gt; where the keys are existing channel names, and the values are the new name (or type) for that channel. Existing channels that are not in the dictionary will be unchanged. :term:SSP projector &lt;projector&gt; manipulation is possible through :meth:~mne.Evoked.add_proj, :meth:~mne.Evoked.del_proj, and :meth:~mne.Evoked.plot_projs_topomap methods, and the :attr:~mne.Evoked.proj attribute. See tut-artifact-ssp for more information on SSP. Like :class:~mne.io.Raw and :class:~mne.Epochs objects, :class:~mne.Evoked objects have :meth:~mne.Evoked.copy, :meth:~mne.Evoked.crop, :meth:~mne.Evoked.time_as_index, :meth:~mne.Evoked.filter, and :meth:~mne.Evoked.resample methods. Like :class:~mne.io.Raw and :class:~mne.Epochs objects, :class:~mne.Evoked objects have evoked.times, :attr:evoked.ch_names &lt;mne.Evoked.ch_names&gt;, and :class:info &lt;mne.Info&gt; attributes. Loading and saving Evoked data Single :class:~mne.Evoked objects can be saved to disk with the :meth:evoked.save() &lt;mne.Evoked.save&gt; method. One difference between :class:~mne.Evoked objects and the other data structures is that multiple :class:~mne.Evoked objects can be saved into a single .fif file, using :func:mne.write_evokeds. The example data &lt;sample-dataset&gt; includes just such a .fif file: the data have already been epoched and averaged, and the file contains separate :class:~mne.Evoked objects for each experimental condition: End of explanation for evok in evokeds_list: print(evok.comment) Explanation: Notice that :func:mne.read_evokeds returned a :class:list of :class:~mne.Evoked objects, and each one has an evoked.comment attribute describing the experimental condition that was averaged to generate the estimate: End of explanation right_vis = mne.read_evokeds(sample_data_evk_file, condition='Right visual') print(right_vis) print(type(right_vis)) Explanation: If you want to load only some of the conditions present in a .fif file, :func:~mne.read_evokeds has a condition parameter, which takes either a string (matched against the comment attribute of the evoked objects on disk), or an integer selecting the :class:~mne.Evoked object based on the order it's stored in the file. Passing lists of integers or strings is also possible. If only one object is selected, the :class:~mne.Evoked object will be returned directly (rather than a length-one list containing it): End of explanation evokeds_list[0].plot(picks='eeg') Explanation: Above, when we created an :class:~mne.Evoked object by averaging epochs, baseline correction was applied by default when we extracted epochs from the class:~mne.io.Raw object (the default baseline period is (None, 0), which assured zero mean for times before the stimulus event). In contrast, if we plot the first :class:~mne.Evoked object in the list that was loaded from disk, we'll see that the data have not been baseline-corrected: End of explanation evokeds_list[0].apply_baseline((None, 0)) evokeds_list[0].plot(picks='eeg') Explanation: This can be remedied by either passing a baseline parameter to :func:mne.read_evokeds, or by applying baseline correction after loading, as shown here: End of explanation left_right_aud = epochs['auditory'].average() print(left_right_aud) Explanation: Notice that :meth:~mne.Evoked.apply_baseline operated in-place. Similarly, :class:~mne.Evoked objects may have been saved to disk with or without :term:projectors &lt;projector&gt; applied; you can pass proj=True to the :func:~mne.read_evokeds function, or use the :meth:~mne.Evoked.apply_proj method after loading. Combining Evoked objects One way to pool data across multiple conditions when estimating evoked responses is to do so prior to averaging (recall that MNE-Python can select based on partial matching of /-separated epoch labels; see tut-section-subselect-epochs for more info): End of explanation left_aud = epochs['auditory/left'].average() right_aud = epochs['auditory/right'].average() print([evok.nave for evok in (left_aud, right_aud)]) Explanation: This approach will weight each epoch equally and create a single :class:~mne.Evoked object. Notice that the printed representation includes (average, N=145), indicating that the :class:~mne.Evoked object was created by averaging across 145 epochs. In this case, the event types were fairly close in number: End of explanation left_right_aud = mne.combine_evoked([left_aud, right_aud], weights='nave') assert left_right_aud.nave == left_aud.nave + right_aud.nave Explanation: However, this may not always be the case; if for statistical reasons it is important to average the same number of epochs from different conditions, you can use :meth:~mne.Epochs.equalize_event_counts prior to averaging. Another approach to pooling across conditions is to create separate :class:~mne.Evoked objects for each condition, and combine them afterward. This can be accomplished by the function :func:mne.combine_evoked, which computes a weighted sum of the :class:~mne.Evoked objects given to it. The weights can be manually specified as a list or array of float values, or can be specified using the keyword 'equal' (weight each :class:~mne.Evoked object by $\frac{1}{N}$, where $N$ is the number of :class:~mne.Evoked objects given) or the keyword 'nave' (weight each :class:~mne.Evoked object by the number of epochs that were averaged together to create it): End of explanation for ix, trial in enumerate(epochs[:3].iter_evoked()): channel, latency, value = trial.get_peak(ch_type='eeg', return_amplitude=True) latency = int(round(latency * 1e3)) # convert to milliseconds value = int(round(value * 1e6)) # convert to µV print('Trial {}: peak of {} µV at {} ms in channel {}' .format(ix, value, latency, channel)) Explanation: Keeping track of nave is important for inverse imaging, because it is used to scale the noise covariance estimate (which in turn affects the magnitude of estimated source activity). See minimum_norm_estimates for more information (especially the whitening_and_scaling section). For this reason, combining :class:~mne.Evoked objects with either weights='equal' or by providing custom numeric weights should usually not be done if you intend to perform inverse imaging on the resulting :class:~mne.Evoked object. Other uses of Evoked objects Although the most common use of :class:~mne.Evoked objects is to store averages of epoched data, there are a couple other uses worth noting here. First, the method :meth:epochs.standard_error() &lt;mne.Epochs.standard_error&gt; will create an :class:~mne.Evoked object (just like :meth:epochs.average() &lt;mne.Epochs.average&gt; does), but the data in the :class:~mne.Evoked object will be the standard error across epochs instead of the average. To indicate this difference, :class:~mne.Evoked objects have a :attr:~mne.Evoked.kind attribute that takes values 'average' or 'standard error' as appropriate. Another use of :class:~mne.Evoked objects is to represent a single trial or epoch of data, usually when looping through epochs. This can be easily accomplished with the :meth:epochs.iter_evoked() &lt;mne.Epochs.iter_evoked&gt; method, and can be useful for applications where you want to do something that is only possible for :class:~mne.Evoked objects. For example, here we use the :meth:~mne.Evoked.get_peak method (which isn't available for :class:~mne.Epochs objects) to get the peak response in each trial: End of explanation
551
Given the following text description, write Python code to implement the functionality described below step by step Description: ABU量化系统使用文档 <center> <img src="./image/abu_logo.png" alt="" style="vertical-align Step1: 受限于沙盒中数据限制,本节示例的相关性分析只限制在abupy内置沙盒数据中,首先将内置沙盒中美股,A股,港股, 比特币,莱特币,期货市场中的symbol都列出来 Step2: 如上所示abupy内置沙盒中的symbol共75个,下面组装这75个symbol形成一个三维panel数据,摘取所有数据的p_change(涨跌幅)列形成二维dataframe对象,如下所示: Step3: 1. 相关相似度的度量 机器学习与比特币示例章节通过比特币的数据特征组成了学习数据,通过训练数据来决策是否有大波动,对于机器学习来说获取更多特征,更多数据始终是优化的最重要且最有效的手段,如果你需要从其它市场找到和比特币有相关性的品种,变换形成新的特征,最简单的方法可以使用corr_xy接口: Step4: 上面通过默认参数获取601766与比特币的相关度,数值为-0.04,可以通过关键子参数similar_type来切换相关的计算方法,如下使用E_CORE_TYPE_SPERM: Step5: 下面使用E_CORE_TYPE_SIGN,sign的相关度度量,只关注符号,不关心具体数据,即比如今天比特币涨,那只要601766今天也涨就正相关,不会理会具体涨多少,实际上这种度量方式更适合交易类型产品: Step6: 下面使用时间加权相关E_CORE_TYPE_ROLLING,进行计算,即时间上越早的相关值所占权重越小,时间上越晚的相关值权重越大: Step7: 上面的corr_xy的接口参数只能是两个品种的相关度度量,如果想要从上面net_cg_df的75种品种中找到与比特币最相关的品种很麻烦,使用corr_matrix接口可以一次输出计算: Step8: corr_matrix接口同样支持关键字参数similar_type,如下使用E_CORE_TYPE_SIGN: Step9: 上面输出的都是正相关的top10,发现除了ltc(莱特币)外,其它的相关度也都在0附近,都没有超过0.1,即都基本无关,实际上不管是正相关还是负相关都成为可以有用的素材,下面看一下时间加权相关的top10负相关的品种: Step10: 如上所示负相关的数值有几个已经上到0.1以上了,但是由于沙盒数据中的交易品种所限,并没有找到适合构成特征(强正相关,或者强负相关)的品种。 备注:之后的章节在使用非沙盒数据的前提下,会编写在完整的各个全市场中寻找与比特币最强正相关,最强负相关的示例,以及通过它们构成特征,实现策略的优化 2. 距离的度量与相似度 与相似度度量相反的是两个矢量之间距离的度量,如下示例在abupy中的距离度量接口使用: Step11: 上面的接口度量了比特币和莱特币之间的欧式距离(L2范数),下面度量曼哈顿距离(L1范数): Step12: 下面度量余弦距离: Step13: 上面接口cosine_distances_xy度量了比特币和莱特币之间的余弦距离,0.23为距离的度量值,距离和相似度之间可以通过关键字参数to_similar=True将余弦距离直接转换为余弦相似度,如下所示: Step14: 和相似度接口类似,xy接口只能两个直接度量,通过matrix接口可实现矩阵的度量,如下所示: Step15: 可以看到与比特币距离最短的是莱特币,同时可以通to_similar=True将距离度量值转换为相似度,如下所示: Step16: 上面度量了欧式距离(L2范数),下面度量曼哈顿距离(L1范数)的matrix接口: Step17: 上面度量结果的中位数,值为0.37,很高,因为L1范数和L2范数针对相似度的度量只是相对的,只在数据范围内,数据之间进行数据比较统计的意义不大,如上ltc的值和WHO差不多大,余弦距离与它们不同,如下示例,可以看到ltc与usTSLA数值差别很大: Step18: 备注:与上述接口的使用类似,通过ABuScalerUtil.scaler_xy针对两组矢量进行标准化,通过ABuScalerUtil.scaler_matrix针对矩阵进行标准化。 3. 相似相关接口的应用 下面示例在abupy中相关相似上层封装的接口的使用,如下通过将市场设置为通过E_MARKET_TARGET_CN,获取A股全市场数据与600036进行对比,可视化最相关的top10个: 备注:由于使用的是沙盒数据,所以市场中本身数据就只有几个,如果在非沙盒环境下,将从市场中几千个symbol中度量相关性: Step19: 上面的接口使用的是find_similar_with_cnt,参数252为天数,即度量最近一年的相关性,下面切换市场为港股市场,接口使用find_similar_with_se参数通过start,end进行设置时间,关键字参数corr_type代表度量相关算法,使用查看hk02333与港股市场的相关性: Step20: 下面的市场继续在港股市场,但参数symbol使用比特币,即度量的结果为比特币与港股市场的相关性: Step21: 下面的市场继续在港股市场,但接口使用find_similar_with_folds,参数参数n_folds代表年数,symbol使用比特币,corr_type使用时间加权相关度量,如下所示: Step22: 上面的接口通过corr_type来切好相关度度量算法,如果想使用多种度量算法,同时度量,可以使用calc_similar接口,使用如下所示: Step23: 上面使用E_CORE_TYPE_PEARS和E_CORE_TYPE_SPERM共同做为度量算法,下面使用+-号相关和时间加权相关,如下所示: Step24: 观察上面的输出值都很高,通过corr_xy度量两支股票的相关度只有0.458,如下所示: Step25: 实际上ABuTLSimilar.calc_similar()度量的是两支股票相对整个市场的相关性评级,它不关心某一个股票具体相关性的数值的大小,calc_similar(a, b) 的工作流程如下: 计算a与市场中所有股票的相关性 将所有相关性进行rank排序 查询股票b在rank序列中的位置,此位置值即为结果 即ABuTLSimilar.calc_similar返回值由0至1,这样的好处是通过计算600036与601766在所有股票中的相似度水平,会更全局客观的体现相关性。 下面calc_similar的show=True进行可视化,它可视化了两支股票的价格距离,如下所示: Step26: 4. 自然相关性 上面说的相关性都是通过走势数值计算度量出的相关性,在股票市场中存在另一种自然相关性,即行业分类的相关。 如下示例abupy中行业分类的相关api,首先从市场中找到与600036处在一个行业中的所有股票,返回dataframe对象,返回中有公司的一些基本信息和财务数据: Step27: 自然相关性来自人为的对行业进行分类,可以通过industries_factorize获取某个市场中所有行业分类信息,如下获取港股市场中所有行业: Step28: 如果你对上面行业分类中的序号6 Step29: 如果你在回测中想使用比如上面两个分类中的所有股票进行回测,可以使用如下接口获取行业中所有股票symbol序列: Step30: 如果已经有了想要查询的具体行业目标,比如想要从A股市场中模糊查询医学相关的股票,可以使用如下接口: Step31: 如果从A股市场中模糊查询医学相关所有股票进行回测,可以使用如下接口获取行业中所有股票symbol序列:
Python Code: # 基础库导入 from __future__ import print_function from __future__ import division import warnings warnings.filterwarnings('ignore') warnings.simplefilter('ignore') import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import os import sys # 使用insert 0即只使用github,避免交叉使用了pip安装的abupy,导致的版本不一致问题 sys.path.insert(0, os.path.abspath('../')) import abupy # 使用沙盒数据,目的是和书中一样的数据环境 abupy.env.enable_example_env_ipython() from abupy import abu, ml, nd, tl, ECoreCorrType, ABuSymbolPd, ABuScalerUtil, AbuFuturesCn, ABuCorrcoef from abupy import find_similar_with_cnt, find_similar_with_se, find_similar_with_folds from abupy import EMarketTargetType, ABuStatsUtil, ABuSimilar, ABuIndustries Explanation: ABU量化系统使用文档 <center> <img src="./image/abu_logo.png" alt="" style="vertical-align:middle;padding:10px 20px;"><font size="6" color="black"><b>第14节 量化相关性分析应用</b></font> </center> 作者: 阿布 阿布量化版权所有 未经允许 禁止转载 abu量化系统github地址 (欢迎+star) 本节ipython notebook 交易目标之间的相关性分析是量化交易中一个非常重要的工具,本节将示例abupy中相关分析模块的使用示例: 首先导入abupy中本节使用的模块: End of explanation us_choice_symbols = ['usTSLA', 'usNOAH', 'usSFUN', 'usBIDU', 'usAAPL', 'usGOOG', 'usWUBA', 'usVIPS', 'us.IXIC'] cn_choice_symbols = ['002230', '300104', '300059', '601766', '600085', '600036', '600809', '000002', '002594', '002739', 'sh000001'] hk_choice_symbols = ['hk03333', 'hk00700', 'hk02333', 'hk01359', 'hk00656', 'hk03888', 'hk02318', 'hkHSI'] tc_choice_symbols = ['btc', 'ltc'] # 期货市场的直接从AbuFuturesCn().symbo中读取 ft_choice_symbols = AbuFuturesCn().symbol.tolist() all_choice_symbols = us_choice_symbols + cn_choice_symbols + hk_choice_symbols + tc_choice_symbols +ft_choice_symbols len(all_choice_symbols) Explanation: 受限于沙盒中数据限制,本节示例的相关性分析只限制在abupy内置沙盒数据中,首先将内置沙盒中美股,A股,港股, 比特币,莱特币,期货市场中的symbol都列出来: End of explanation panel = ABuSymbolPd.make_kl_df(all_choice_symbols, start='2015-07-27', end='2016-07-26', show_progress=True) # 转换panel轴方向,即可方便获取所有金融时间数据的某一个列 panel = panel.swapaxes('items', 'minor') net_cg_df = panel['p_change'].fillna(value=0) net_cg_df.head() Explanation: 如上所示abupy内置沙盒中的symbol共75个,下面组装这75个symbol形成一个三维panel数据,摘取所有数据的p_change(涨跌幅)列形成二维dataframe对象,如下所示: End of explanation ABuCorrcoef.corr_xy(net_cg_df.btc, net_cg_df['601766'], similar_type=ECoreCorrType.E_CORE_TYPE_PEARS) Explanation: 1. 相关相似度的度量 机器学习与比特币示例章节通过比特币的数据特征组成了学习数据,通过训练数据来决策是否有大波动,对于机器学习来说获取更多特征,更多数据始终是优化的最重要且最有效的手段,如果你需要从其它市场找到和比特币有相关性的品种,变换形成新的特征,最简单的方法可以使用corr_xy接口: End of explanation ABuCorrcoef.corr_xy(net_cg_df.btc, net_cg_df['601766'], similar_type=ECoreCorrType.E_CORE_TYPE_SPERM) Explanation: 上面通过默认参数获取601766与比特币的相关度,数值为-0.04,可以通过关键子参数similar_type来切换相关的计算方法,如下使用E_CORE_TYPE_SPERM: End of explanation ABuCorrcoef.corr_xy(net_cg_df.btc, net_cg_df['601766'], similar_type=ECoreCorrType.E_CORE_TYPE_SIGN) Explanation: 下面使用E_CORE_TYPE_SIGN,sign的相关度度量,只关注符号,不关心具体数据,即比如今天比特币涨,那只要601766今天也涨就正相关,不会理会具体涨多少,实际上这种度量方式更适合交易类型产品: End of explanation ABuCorrcoef.corr_xy(net_cg_df.btc, net_cg_df['601766'], similar_type=ECoreCorrType.E_CORE_TYPE_ROLLING) Explanation: 下面使用时间加权相关E_CORE_TYPE_ROLLING,进行计算,即时间上越早的相关值所占权重越小,时间上越晚的相关值权重越大: End of explanation corr_df = ABuCorrcoef.corr_matrix(net_cg_df, ) corr_df.btc.sort_values()[::-1][:10] Explanation: 上面的corr_xy的接口参数只能是两个品种的相关度度量,如果想要从上面net_cg_df的75种品种中找到与比特币最相关的品种很麻烦,使用corr_matrix接口可以一次输出计算: End of explanation corr_df = ABuCorrcoef.corr_matrix(net_cg_df, similar_type=ECoreCorrType.E_CORE_TYPE_SIGN) corr_df.btc.sort_values()[::-1][:10] Explanation: corr_matrix接口同样支持关键字参数similar_type,如下使用E_CORE_TYPE_SIGN: End of explanation corr_df = ABuCorrcoef.corr_matrix(net_cg_df, ECoreCorrType.E_CORE_TYPE_ROLLING) corr_df.btc.sort_values()[:10] Explanation: 上面输出的都是正相关的top10,发现除了ltc(莱特币)外,其它的相关度也都在0附近,都没有超过0.1,即都基本无关,实际上不管是正相关还是负相关都成为可以有用的素材,下面看一下时间加权相关的top10负相关的品种: End of explanation ABuStatsUtil.euclidean_distance_xy(net_cg_df.btc, net_cg_df.ltc) Explanation: 如上所示负相关的数值有几个已经上到0.1以上了,但是由于沙盒数据中的交易品种所限,并没有找到适合构成特征(强正相关,或者强负相关)的品种。 备注:之后的章节在使用非沙盒数据的前提下,会编写在完整的各个全市场中寻找与比特币最强正相关,最强负相关的示例,以及通过它们构成特征,实现策略的优化 2. 距离的度量与相似度 与相似度度量相反的是两个矢量之间距离的度量,如下示例在abupy中的距离度量接口使用: End of explanation ABuStatsUtil.manhattan_distances_xy(net_cg_df.btc, net_cg_df.ltc) Explanation: 上面的接口度量了比特币和莱特币之间的欧式距离(L2范数),下面度量曼哈顿距离(L1范数): End of explanation ABuStatsUtil.cosine_distances_xy(net_cg_df.btc, net_cg_df.ltc) Explanation: 下面度量余弦距离: End of explanation ABuStatsUtil.cosine_distances_xy(net_cg_df.btc, net_cg_df.ltc, to_similar=True) Explanation: 上面接口cosine_distances_xy度量了比特币和莱特币之间的余弦距离,0.23为距离的度量值,距离和相似度之间可以通过关键字参数to_similar=True将余弦距离直接转换为余弦相似度,如下所示: End of explanation euclidean_df = ABuStatsUtil.euclidean_distance_matrix(net_cg_df) euclidean_df.btc.sort_values()[:10] Explanation: 和相似度接口类似,xy接口只能两个直接度量,通过matrix接口可实现矩阵的度量,如下所示: End of explanation manhattan_df = ABuStatsUtil.euclidean_distance_matrix(net_cg_df, to_similar=True) manhattan_df.btc.sort_values()[::-1][:10] Explanation: 可以看到与比特币距离最短的是莱特币,同时可以通to_similar=True将距离度量值转换为相似度,如下所示: End of explanation manhattan_df = ABuStatsUtil.manhattan_distance_matrix(net_cg_df, to_similar=True) manhattan_df.btc.median() Explanation: 上面度量了欧式距离(L2范数),下面度量曼哈顿距离(L1范数)的matrix接口: End of explanation cosine_df = ABuStatsUtil.cosine_distance_matrix(net_cg_df, to_similar=True) cosine_df.btc.sort_values()[::-1][:10] Explanation: 上面度量结果的中位数,值为0.37,很高,因为L1范数和L2范数针对相似度的度量只是相对的,只在数据范围内,数据之间进行数据比较统计的意义不大,如上ltc的值和WHO差不多大,余弦距离与它们不同,如下示例,可以看到ltc与usTSLA数值差别很大: End of explanation abupy.env.g_market_target = EMarketTargetType.E_MARKET_TARGET_CN similar_dict = find_similar_with_cnt('600036', 252) Explanation: 备注:与上述接口的使用类似,通过ABuScalerUtil.scaler_xy针对两组矢量进行标准化,通过ABuScalerUtil.scaler_matrix针对矩阵进行标准化。 3. 相似相关接口的应用 下面示例在abupy中相关相似上层封装的接口的使用,如下通过将市场设置为通过E_MARKET_TARGET_CN,获取A股全市场数据与600036进行对比,可视化最相关的top10个: 备注:由于使用的是沙盒数据,所以市场中本身数据就只有几个,如果在非沙盒环境下,将从市场中几千个symbol中度量相关性: End of explanation abupy.env.g_market_target = EMarketTargetType.E_MARKET_TARGET_HK _ = find_similar_with_se('hk02333', start='2016-07-26', end='2017-07-26', corr_type=ECoreCorrType.E_CORE_TYPE_PEARS) Explanation: 上面的接口使用的是find_similar_with_cnt,参数252为天数,即度量最近一年的相关性,下面切换市场为港股市场,接口使用find_similar_with_se参数通过start,end进行设置时间,关键字参数corr_type代表度量相关算法,使用查看hk02333与港股市场的相关性: End of explanation _ = find_similar_with_cnt('btc', 252, corr_type=ECoreCorrType.E_CORE_TYPE_PEARS) Explanation: 下面的市场继续在港股市场,但参数symbol使用比特币,即度量的结果为比特币与港股市场的相关性: End of explanation _ = find_similar_with_folds('btc', n_folds=1, corr_type=ECoreCorrType.E_CORE_TYPE_ROLLING) Explanation: 下面的市场继续在港股市场,但接口使用find_similar_with_folds,参数参数n_folds代表年数,symbol使用比特币,corr_type使用时间加权相关度量,如下所示: End of explanation abupy.env.g_market_target = EMarketTargetType.E_MARKET_TARGET_CN rank_score, _ = tl.similar.calc_similar('600036', '601766', corr_jobs=(ECoreCorrType.E_CORE_TYPE_PEARS, ECoreCorrType.E_CORE_TYPE_SPERM), show=False) rank_score Explanation: 上面的接口通过corr_type来切好相关度度量算法,如果想使用多种度量算法,同时度量,可以使用calc_similar接口,使用如下所示: End of explanation abupy.env.g_market_target = EMarketTargetType.E_MARKET_TARGET_CN rank_score, _ = tl.similar.calc_similar('600036', '601766', corr_jobs=(ECoreCorrType.E_CORE_TYPE_ROLLING, ECoreCorrType.E_CORE_TYPE_ROLLING), show=False) rank_score Explanation: 上面使用E_CORE_TYPE_PEARS和E_CORE_TYPE_SPERM共同做为度量算法,下面使用+-号相关和时间加权相关,如下所示: End of explanation ABuCorrcoef.corr_xy(net_cg_df['600036'], net_cg_df['601766']) Explanation: 观察上面的输出值都很高,通过corr_xy度量两支股票的相关度只有0.458,如下所示: End of explanation rank_score, _ = tl.similar.calc_similar('600036', '601766', show=True) Explanation: 实际上ABuTLSimilar.calc_similar()度量的是两支股票相对整个市场的相关性评级,它不关心某一个股票具体相关性的数值的大小,calc_similar(a, b) 的工作流程如下: 计算a与市场中所有股票的相关性 将所有相关性进行rank排序 查询股票b在rank序列中的位置,此位置值即为结果 即ABuTLSimilar.calc_similar返回值由0至1,这样的好处是通过计算600036与601766在所有股票中的相似度水平,会更全局客观的体现相关性。 下面calc_similar的show=True进行可视化,它可视化了两支股票的价格距离,如下所示: End of explanation pd.options.display.max_rows = 100 pd.options.display.max_columns = 100 # 找到与600036处在一个行业中的所有股票, 返回dataframe对象 industries, _ = ABuIndustries.industries_df('600036') # 输出显示后5个股票信息 industries.tail() Explanation: 4. 自然相关性 上面说的相关性都是通过走势数值计算度量出的相关性,在股票市场中存在另一种自然相关性,即行业分类的相关。 如下示例abupy中行业分类的相关api,首先从市场中找到与600036处在一个行业中的所有股票,返回dataframe对象,返回中有公司的一些基本信息和财务数据: End of explanation ABuIndustries.industries_factorize(market=EMarketTargetType.E_MARKET_TARGET_HK) Explanation: 自然相关性来自人为的对行业进行分类,可以通过industries_factorize获取某个市场中所有行业分类信息,如下获取港股市场中所有行业: End of explanation # 6:赌场与赌博,序号9:中国房地产 只显示后5支股票信息 ABuIndustries.query_factorize_industry_df([6, 9], market=EMarketTargetType.E_MARKET_TARGET_HK).tail() Explanation: 如果你对上面行业分类中的序号6:赌场与赌博,序号9:中国房地产,比较感兴趣,可以使用如下方式查询这两个行业中的所有股票信息: End of explanation ABuIndustries.query_factorize_industry_symbol([6, 9], market=EMarketTargetType.E_MARKET_TARGET_HK)[:5] Explanation: 如果你在回测中想使用比如上面两个分类中的所有股票进行回测,可以使用如下接口获取行业中所有股票symbol序列: End of explanation # 从A股市场中查询医学相关的股票显示前5个 ABuIndustries.query_match_industries_df('医学', market=EMarketTargetType.E_MARKET_TARGET_CN).head() Explanation: 如果已经有了想要查询的具体行业目标,比如想要从A股市场中模糊查询医学相关的股票,可以使用如下接口: End of explanation ABuIndustries.query_match_industries_symbol('医学', market=EMarketTargetType.E_MARKET_TARGET_CN)[:5] Explanation: 如果从A股市场中模糊查询医学相关所有股票进行回测,可以使用如下接口获取行业中所有股票symbol序列: End of explanation
552
Given the following text description, write Python code to implement the functionality described below step by step Description: 1A.e - TD noté, 21 février 2017 Solution du TD noté, celui-ci présente un algorithme pour calculer les coefficients d'une régression quantile et par extension d'une médiane dans un espace à plusieurs dimensions. Step1: Précision Step2: Q2 La médiane d'un ensemble de points $\left{X_1, ..., X_n\right}$ est une valeur $X_M$ telle que Step3: Q3 Lorsque le nombre de points est pair, la médiane peut être n'importe quelle valeur dans un intervalle. Modifier votre fonction de façon à ce que la fonction précédente retourne le milieu de la fonction. Step4: Q4 Pour un ensemble de points $E=\left{X_1, ..., X_n\right}$, on considère la fonction suivante Step5: Q6 Ecrire une fonction qui transforme un vecteur en une matrice diagonale. Step6: Q7 On considère maintenant que chaque observation est pondérée par un poids $w_i$. On veut maintenant trouver le vecteur $\beta$ qui minimise Step7: Q8 Ecrire une fonction qui calcule les quantités suivantes (fonctions maximum, reciprocal). $$z_i = \frac{1}{\max\left( \delta, \left|y_i - X_i \beta\right|\right)}$$ Step8: Q9 On souhaite coder l'algorithme suivant Step9: Q10 Step10: La régression linéaire égale la moyenne, l'algorithme s'approche de la médiane. Quelques explications et démonstrations Cet énoncé est inspiré de Iteratively reweighted least squares. Cet algorithme permet notamment d'étendre la notion de médiane à des espaces vectoriels de plusieurs dimensions. On peut détermine un point $X_M$ qui minimise la quantité Step11: Par défaut, numpy considère un vecteur de taille (3,) comme un vecteur ligne (3,1). Donc l'expression suivante va marcher Step12: Ou
Python Code: from jyquickhelper import add_notebook_menu add_notebook_menu() Explanation: 1A.e - TD noté, 21 février 2017 Solution du TD noté, celui-ci présente un algorithme pour calculer les coefficients d'une régression quantile et par extension d'une médiane dans un espace à plusieurs dimensions. End of explanation import random def ensemble_aleatoire(n): res = [random.randint(0, 100) for i in range(n)] res[0] = 1000 return res ens = ensemble_aleatoire(10) ens Explanation: Précision : dans tout l'énoncé, la transposée d'une matrice est notée $X' = X^{T}$. La plupart du temps $X$ et $Y$ désignent des vecteurs colonnes. $\beta$ désigne un vecteur ligne, $W$ une matrice diagonale. Exercice 1 Q1 A l'aide du module random, générer un ensemble de points aléatoires. End of explanation def mediane(ensemble): tri = list(sorted(ensemble)) return tri[len(tri)//2] mediane(ens) Explanation: Q2 La médiane d'un ensemble de points $\left{X_1, ..., X_n\right}$ est une valeur $X_M$ telle que : $$\sum_i \mathbb{1}{X_i < X_m} = \sum_i \mathbb{1}{X_i > X_m}$$ Autrement dit, il y a autant de valeurs inférieures que supérieures à $X_M$. On obtient cette valeur en triant les éléments par ordre croissant et en prenant celui du milieu. End of explanation def mediane(ensemble): tri = list(sorted(ensemble)) if len(tri) % 2 == 0: m = len(tri)//2 return (tri[m] + tri[m-1]) / 2 else: return tri[len(tri)//2] mediane(ens) Explanation: Q3 Lorsque le nombre de points est pair, la médiane peut être n'importe quelle valeur dans un intervalle. Modifier votre fonction de façon à ce que la fonction précédente retourne le milieu de la fonction. End of explanation from numpy.linalg import inv def regression_lineaire(X, Y): t = X.T return inv(t @ X) @ t @ Y import numpy X = numpy.array(ens).reshape((len(ens), 1)) regression_lineaire(X, X+1) # un essai pour vérifier que la valeur n'est pas aberrante Explanation: Q4 Pour un ensemble de points $E=\left{X_1, ..., X_n\right}$, on considère la fonction suivante : $$f(x) = \sum_{i=1}^n \left | x - X_i\right |$$. On suppose que la médiane $X_M$ de l'ensemble $E$ n'appartient pas à $E$ : $X_M \notin E$. Que vaut $f'(X_M)$ ? On acceptera le fait que la médiane est le seul point dans ce cas. $$f'(X_m) = - \sum_{i=1}^n \mathbb{1}{X_i < X_m} + \sum{i=1}^n \mathbb{1}_{X_i > X_m}$$ Par définition de la médiane, $f'(X_M)=0$. En triant les éléments, on montre que la $f'(x) = 0 \Longleftrightarrow x=X_m$. Q5 On suppose qu'on dispose d'un ensemble d'observations $\left(X_i, Y_i\right)$ avec $X_i, Y_i \in \mathbb{R}$. La régression linéaire consiste une relation linéaire $Y_i = a X_i + b + \epsilon_i$ qui minimise la variance du bruit. On pose : $$E(a, b) = \sum_i \left(Y_i - (a X_i + b)\right)^2$$ On cherche $a, b$ tels que : $$a^, b^ = \arg \min E(a, b) = \arg \min \sum_i \left(Y_i - (a X_i + b)\right)^2$$ La fonction est dérivable et on trouve : $$\frac{\partial E(a,b)}{\partial a} = - 2 \sum_i X_i ( Y_i - (a X_i + b)) \text{ et } \frac{\partial E(a,b)}{\partial b} = - 2 \sum_i ( Y_i - (a X_i + b))$$ Il suffit alors d'annuler les dérivées. On résoud un système d'équations linéaires. On note : $$\begin{array}{l} \mathbb{E} X = \frac{1}{n}\sum_{i=1}^n X_i \text{ et } \mathbb{E} Y = \frac{1}{n}\sum_{i=1}^n Y_i \ \mathbb{E}{X^2} = \frac{1}{n}\sum_{i=1}^n X_i^2 \text{ et } \mathbb{E} {XY} = \frac{1}{n}\sum_{i=1}^n X_i Y_i \end{array}$$ Finalement : $$\begin{array}{l} a^ = \frac{ \mathbb{E} {XY} - \mathbb{E} X \mathbb{E} Y}{\mathbb{E}{X^2} - (\mathbb{E} X)^2} \text{ et } b^ = \mathbb{E} Y - a^* \mathbb{E} X \end{array}$$ Lorsqu'on a plusieurs dimensions pour $X$, on écrit le problème d'optimisation, on cherche les coefficients $\beta^*$ qui minimisent : $$E(\beta)=\sum_{i=1}^n \left(y_i - X_i \beta\right)^2 = \left \Vert Y - X\beta \right \Vert ^2$$ La solution est : $\beta^* = (X'X)^{-1}X'Y$. Ecrire une fonction qui calcule ce vecteur optimal. End of explanation def matrice_diagonale(W): return numpy.diag(W) matrice_diagonale([1, 2, 3]) Explanation: Q6 Ecrire une fonction qui transforme un vecteur en une matrice diagonale. End of explanation def regression_lineaire_ponderee(X, Y, W): if len(W.shape) == 1 or W.shape[0] != W.shape[1]: # c'est un vecteur W = matrice_diagonale(W.ravel()) wx = W @ X xt = X.T return inv(xt @ wx) @ xt @ W @ Y X = numpy.array(sorted(ens)).reshape((len(ens), 1)) Y = X.copy() Y[0] = max(X) W = numpy.ones(len(ens)) W[0] = 0 regression_lineaire_ponderee(X, Y, W), regression_lineaire(X, Y) Explanation: Q7 On considère maintenant que chaque observation est pondérée par un poids $w_i$. On veut maintenant trouver le vecteur $\beta$ qui minimise : $$E(\beta)=\sum_{i=1}^n w_i \left( y_i - X_i \beta \right)^2 = \left \Vert W^{\frac{1}{2}}(Y - X\beta)\right \Vert^2$$ Où $W=diag(w_1, ..., w_n)$ est la matrice diagonale. La solution est : $$\beta_* = (X'WX)^{-1}X'WY$$. Ecrire une fonction qui calcule la solution de la régression pondérée. La fonction ravel est utile. End of explanation def calcule_z(X, beta, Y, W, delta=0.0001): epsilon = numpy.abs(Y - X @ beta) return numpy.reciprocal(numpy.maximum(epsilon, numpy.ones(epsilon.shape) * delta)) calcule_z(X * 1.0, numpy.array([[1.01]]), Y, W) Explanation: Q8 Ecrire une fonction qui calcule les quantités suivantes (fonctions maximum, reciprocal). $$z_i = \frac{1}{\max\left( \delta, \left|y_i - X_i \beta\right|\right)}$$ End of explanation def algorithm(X, Y, delta=0.0001): W = numpy.ones(X.shape[0]) for i in range(0, 10): beta = regression_lineaire_ponderee(X, Y, W) W = calcule_z(X, beta, Y, W, delta=delta) E = numpy.abs(Y - X @ beta).sum() print(i, E, beta) return beta X = numpy.random.rand(10, 1) Y = X*2 + numpy.random.rand() Y[0] = Y[0] + 100 algorithm(X, Y) regression_lineaire(X, Y) Explanation: Q9 On souhaite coder l'algorithme suivant : $w_i^{(1)} = 1$ $\beta_{(t)} = (X'W^{(t)}X)^{-1}X'W^{(t)}Y$ $w_i^{(t+1)} = \frac{1}{\max\left( \delta, \left|y_i - X_i \beta^{(t)}\right|\right)}$ $t = t+1$ Retour à l'étape 2. End of explanation ens = ensemble_aleatoire(10) Y = numpy.empty((len(ens), 1)) Y[:,0] = ens X = numpy.ones((len(ens), 1)) mediane(ens) Y.mean(axis=0) regression_lineaire(X, Y) algorithm(X,Y) mediane(ens) list(sorted(ens)) Explanation: Q10 End of explanation import numpy y = numpy.array([1, 2, 3]) M = numpy.array([[3, 4], [6, 7], [3, 3]]) M.shape, y.shape try: M @ y except Exception as e: print(e) Explanation: La régression linéaire égale la moyenne, l'algorithme s'approche de la médiane. Quelques explications et démonstrations Cet énoncé est inspiré de Iteratively reweighted least squares. Cet algorithme permet notamment d'étendre la notion de médiane à des espaces vectoriels de plusieurs dimensions. On peut détermine un point $X_M$ qui minimise la quantité : $$\sum_{i=1}^n \left| X_i - X_M \right |$$ Nous reprenons l'algorithme décrit ci-dessus : $w_i^{(1)} = 1$ $\beta_{(t)} = (X'W^{(t)}X)^{-1}X'W^{(t)}Y$ $w_i^{(t+1)} = \frac{1}{\max\left( \delta, \left|y_i - X_i \beta^{(t)}\right|\right)}$ $t = t+1$ Retour à l'étape 2. L'erreur quadratique pondéré est : $$E_2(\beta, W) = \sum_{i=1}^n w_i \left\Vert Y_i - X_i \beta \right\Vert^2$$ Si $w_i = \frac{1}{\left|y_i - X_i \beta\right|}$, on remarque que : $$E_2(\beta, W) = \sum_{i=1}^n \frac{\left\Vert Y_i - X_i \beta \right\Vert^2}{\left|y_i - X_i \beta\right|} = \sum_{i=1}^n \left|y_i - X_i \beta\right| = E_1(\beta)$$ On retombe sur l'erreur en valeur absolue optimisée par la régression quantile. Comme l'étape 2 consiste à trouver les coefficients $\beta$ qui minimise $E_2(\beta, W^{(t)})$, par construction, il ressort que : $$E_1(\beta^{(t+1)}) = E_2(\beta^{(t+1)}, W^{(t)}) \leqslant E_2(\beta^{(t)}, W^{(t)}) = E_1(\beta^{(t)})$$ La suite $t \rightarrow E_1(\beta^{(t)})$ est suite décroissant est minorée par 0. Elle converge donc vers un minimum. Or la fonction $\beta \rightarrow E_1(\beta)$ est une fonction convexe. Elle n'admet qu'un seul minimum (mais pas nécessaire un seul point atteignant ce minimum). L'algorithme converge donc vers la médiane. Le paramètre $\delta$ est là pour éviter les erreurs de divisions par zéros et les approximations de calcul faites par l'ordinateur. Quelques commentaires sur le code Le symbol @ a été introduit par Python 3.5 et est équivalent à la fonction numpy.dot. Les dimensions des matrices posent souvent quelques problèmes. End of explanation y @ M Explanation: Par défaut, numpy considère un vecteur de taille (3,) comme un vecteur ligne (3,1). Donc l'expression suivante va marcher : End of explanation M.T @ y Explanation: Ou : End of explanation
553
Given the following text description, write Python code to implement the functionality described below step by step Description: Unconstrained global optimization with Scipy TODO Step1: Define the objective function Step2: The "basin-hopping" algorithm Basin-hopping is a stochastic algorithm which attempts to find the global minimum of a function. Official documentation Step3: Performances analysis Step4: Benchmark Step5: The "Differential Evolution" (DE) algorithm Differential Evolution is a stochastic algorithm which attempts to find the global minimum of a function. Official documentation Step6: Performances analysis Step7: Benchmark
Python Code: # Init matplotlib %matplotlib inline import matplotlib matplotlib.rcParams['figure.figsize'] = (8, 8) # Setup PyAI import sys sys.path.insert(0, '/Users/jdecock/git/pub/jdhp/pyai') import numpy as np import time import warnings from scipy import optimize # Plot functions from pyai.optimize.utils import plot_contour_2d_solution_space from pyai.optimize.utils import plot_2d_solution_space from pyai.optimize.utils import array_list_to_array from pyai.optimize.utils import plot_fx_wt_iteration_number from pyai.optimize.utils import plot_err_wt_iteration_number from pyai.optimize.utils import plot_err_wt_execution_time from pyai.optimize.utils import plot_err_wt_num_feval Explanation: Unconstrained global optimization with Scipy TODO: * Plots: 0. error w.t. ... => add an option to plot the current solution or the best current solution 4. error w.t. number of function evaluations + error w.t. total number of function evaluations (i.e. including the number of gradient and hessian evaluations) 6. (benchmark session ! distinguish the derivative-free to the non-derivative free case) average version of 3., 4., 5. over several runs with random initial state (+ error bar or box plot) 7. (benchmark session) err w.t. algorithms parameters (plot the iteration or evaluation number or execution time to reach in average an error lower than N% with e.g. N=99%) Import required modules End of explanation ## Objective function: Rosenbrock function (Scipy's implementation) #func = scipy.optimize.rosen # Set the objective function #from pyai.optimize.functions import sphere as func from pyai.optimize.functions import sphere2d as func #from pyai.optimize.functions import additive_gaussian_noise as noise from pyai.optimize.functions import multiplicative_gaussian_noise as noise #from pyai.optimize.functions import additive_poisson_noise as noise func.noise = noise # Comment this line to use a deterministic objective function xmin = func.bounds[0] xmax = func.bounds[1] print(func) print(xmin) print(xmax) print(func.ndim) print(func.arg_min) print(func(func.arg_min)) Explanation: Define the objective function End of explanation from scipy import optimize x0 = np.random.uniform(-10., 10., size=2) res = optimize.basinhopping(optimize.rosen, x0, # The initial point niter=100) # The number of basin hopping iterations print("x* =", res.x) print("f(x*) =", res.fun) print("Cause of the termination:", ";".join(res.message)) print("Number of evaluations of the objective functions:", res.nfev) print("Number of evaluations of the jacobian:", res.njev) print("Number of iterations performed by the optimizer:", res.nit) print(res) Explanation: The "basin-hopping" algorithm Basin-hopping is a stochastic algorithm which attempts to find the global minimum of a function. Official documentation: * https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html#scipy.optimize.basinhopping * More information about the algorithm: http://www-wales.ch.cam.ac.uk/ Basic usage End of explanation %%time it_x_list = [] it_fx_list = [] it_time_list = [] it_num_eval_list = [] def callback(x, f, accept): it_x_list.append(x) it_fx_list.append(f) it_time_list.append(time.time() - init_time) if hasattr(func, 'num_eval'): it_num_eval_list.append(func.num_eval) print(len(it_x_list), x, f, accept, it_num_eval_list[-1]) x_init = np.random.random(func.ndim) # draw samples in [0.0, 1.0) min_bounds = func.bounds[0] max_bounds = func.bounds[1] x_init *= (max_bounds - min_bounds) x_init += min_bounds func.do_eval_logs = True func.reset_eval_counters() func.reset_eval_logs() init_time = time.time() with warnings.catch_warnings(): warnings.simplefilter("ignore") res = optimize.basinhopping(func, x_init, # The initial point niter=100, # The number of basin hopping iterations callback=callback, disp=False) # Print status messages func.do_eval_logs = False eval_x_array = np.array(func.eval_logs_dict['x']).T eval_error_array = np.array(func.eval_logs_dict['fx']) - func(func.arg_min) it_x_array = np.array(it_x_list).T it_error_array = np.array(it_fx_list) - func(func.arg_min) it_time_array = np.array(it_time_list) it_num_eval_array = np.array(it_num_eval_list) print("x* =", res.x) print("f(x*) =", res.fun) print("Cause of the termination:", ";".join(res.message)) print("Number of evaluations of the objective functions:", res.nfev) print("Number of evaluations of the jacobian:", res.njev) print("Number of iterations performed by the optimizer:", res.nit) plot_contour_2d_solution_space(func, xmin=xmin, xmax=xmax, xstar=res.x, xvisited=it_x_array, title="Basin-Hopping"); plot_contour_2d_solution_space(func, xmin=xmin, xmax=xmax, xstar=res.x, xvisited=eval_x_array, title="Basin-Hopping"); print(eval_x_array.shape) print(eval_error_array.shape) print(it_x_array.shape) print(it_error_array.shape) print(it_time_array.shape) print(it_num_eval_array.shape) fig, ax = plt.subplots(nrows=1, ncols=3, squeeze=True, figsize=(15, 5)) ax = ax.ravel() plot_err_wt_iteration_number(it_error_array, ax=ax[0], x_log=True, y_log=True) plot_err_wt_execution_time(it_error_array, it_time_array, ax=ax[1], x_log=True, y_log=True) plot_err_wt_num_feval(it_error_array, it_num_eval_array, ax=ax[2], x_log=True, y_log=True) plt.tight_layout(); # Fix plot margins errors plot_err_wt_num_feval(eval_error_array, x_log=True, y_log=True) Explanation: Performances analysis End of explanation %%time eval_error_array_list = [] NUM_RUNS = 100 for run_index in range(NUM_RUNS): x_init = np.random.random(func.ndim) # draw samples in [0.0, 1.0) min_bounds = func.bounds[0] max_bounds = func.bounds[1] x_init *= (max_bounds - min_bounds) x_init += min_bounds func.do_eval_logs = True func.reset_eval_counters() func.reset_eval_logs() with warnings.catch_warnings(): warnings.simplefilter("ignore") res = optimize.basinhopping(func, x_init, # The initial point niter=100, # The number of basin hopping iterations disp=False) # Print status messages func.do_eval_logs = False eval_error_array = np.array(func.eval_logs_dict['fx']) - func(func.arg_min) print("x* =", res.x) print("f(x*) =", res.fun) #print("Cause of the termination:", ";".join(res.message)) #print("Number of evaluations of the objective functions:", res.nfev) #print("Number of evaluations of the jacobian:", res.njev) #print("Number of iterations performed by the optimizer:", res.nit) eval_error_array_list.append(eval_error_array); plot_err_wt_num_feval(array_list_to_array(eval_error_array_list), x_log=True, y_log=True, plot_option="mean") Explanation: Benchmark End of explanation from scipy import optimize bounds = [[-10, 10], [-10, 10]] res = optimize.differential_evolution(optimize.rosen, bounds, # The initial point maxiter=100, # The number of DE iterations polish=True) print("x* =", res.x) print("f(x*) =", res.fun) print("Cause of the termination:", res.message) print("Number of evaluations of the objective functions:", res.nfev) print("Number of iterations performed by the optimizer:", res.nit) print(res) Explanation: The "Differential Evolution" (DE) algorithm Differential Evolution is a stochastic algorithm which attempts to find the global minimum of a function. Official documentation: * https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html#scipy.optimize.differential_evolution More information: * Practical advice * Wikipedia article Basic usage End of explanation %%time bounds = func.bounds.T.tolist() it_x_list = [] it_fx_list = [] it_time_list = [] it_num_eval_list = [] def callback(xk, convergence): it_x_list.append(xk) it_fx_list.append(func(xk)) it_time_list.append(time.time() - init_time) if hasattr(func, 'num_eval'): it_num_eval_list.append(func.num_eval) print(len(it_x_list), xk, it_fx_list[-1], convergence, it_num_eval_list[-1]) func.do_eval_logs = True func.reset_eval_counters() func.reset_eval_logs() init_time = time.time() with warnings.catch_warnings(): warnings.simplefilter("ignore") res = optimize.differential_evolution(func, bounds, # The initial point maxiter=100, # The number of DE iterations callback=callback, polish=False, disp=False) # Print status messages func.do_eval_logs = False eval_x_array = np.array(func.eval_logs_dict['x']).T eval_error_array = np.array(func.eval_logs_dict['fx']) - func(func.arg_min) it_x_array = np.array(it_x_list).T it_error_array = np.array(it_fx_list) - func(func.arg_min) it_time_array = np.array(it_time_list) it_num_eval_array = np.array(it_num_eval_list) print("x* =", res.x) print("f(x*) =", res.fun) print("Cause of the termination:", res.message) print("Number of evaluations of the objective functions:", res.nfev) print("Number of iterations performed by the optimizer:", res.nit) plot_contour_2d_solution_space(func, xmin=xmin, xmax=xmax, xstar=res.x, xvisited=it_x_array, title="Differential Evolution"); plot_contour_2d_solution_space(func, xmin=xmin, xmax=xmax, xstar=res.x, xvisited=eval_x_array, title="Differential Evolution"); fig, ax = plt.subplots(nrows=1, ncols=3, squeeze=True, figsize=(15, 5)) ax = ax.ravel() plot_err_wt_iteration_number(it_error_array, ax=ax[0], x_log=True, y_log=True) plot_err_wt_execution_time(it_error_array, it_time_array, ax=ax[1], x_log=True, y_log=True) plot_err_wt_num_feval(it_error_array, it_num_eval_array, ax=ax[2], x_log=True, y_log=True) plt.tight_layout(); # Fix plot margins errors plot_err_wt_num_feval(eval_error_array, x_log=True, y_log=True); Explanation: Performances analysis End of explanation %%time eval_error_array_list = [] NUM_RUNS = 100 for run_index in range(NUM_RUNS): bounds = func.bounds.T.tolist() func.do_eval_logs = True func.reset_eval_counters() func.reset_eval_logs() with warnings.catch_warnings(): warnings.simplefilter("ignore") res = optimize.differential_evolution(func, bounds, # The initial point maxiter=100, # The number of DE iterations polish=False, disp=False) # Print status messages func.do_eval_logs = False eval_error_array = np.array(func.eval_logs_dict['fx']) - func(func.arg_min) print("x* =", res.x) print("f(x*) =", res.fun) #print("Cause of the termination:", ";".join(res.message)) #print("Number of evaluations of the objective functions:", res.nfev) #print("Number of evaluations of the jacobian:", res.njev) #print("Number of iterations performed by the optimizer:", res.nit) eval_error_array_list.append(eval_error_array); plot_err_wt_num_feval(array_list_to_array(eval_error_array_list), x_log=True, y_log=True, plot_option="mean") Explanation: Benchmark End of explanation
554
Given the following text description, write Python code to implement the functionality described below step by step Description: 벡터 공간 벡터의 기하학적 의미 길이가 $K$인 벡터(vector) $a$는 $K$차원의 공간에서 원점과 벡터 $a$의 값으로 표시되는 점을 연결한 화살표(arrow)로 간주할 수 있다. $$ a = \begin{bmatrix}1 \ 2 \end{bmatrix} $$ Step1: 벡터의 길이 벡터 $a$ 의 길이를 놈(norm) $\| a \|$ 이라고 하며 다음과 같이 계산할 수 있다. $$ \| a \| = \sqrt{a^T a } = \sqrt{a_1^2 + \cdots + a_K^2} $$ numpy의 linalg 서브 패키지의 norm 명령으로 벡터의 길이를 계산할 수 있다. Step2: 단위 벡터 길이가 1인 벡터를 단위 벡터(unit vector)라고 한다. 예를 들어 다음과 같은 벡터들은 모두 단위 벡터이다. $$ a = \begin{bmatrix}1 \ 0\end{bmatrix} ,\;\; b = \begin{bmatrix}0 \ 1\end{bmatrix} ,\;\; c = \begin{bmatrix} \dfrac{1}{\sqrt{2}} \ \dfrac{1}{\sqrt{2}} \end{bmatrix} $$ Step3: 벡터의 합 벡터와 벡터의 합은 벡터가 된다. $$ a = \begin{bmatrix}1 \ 2\end{bmatrix} ,\;\; b = \begin{bmatrix}2 \ 1\end{bmatrix} \;\;\; \rightarrow \;\;\; c = a + b = \begin{bmatrix}3 \ 3\end{bmatrix} \;\; $$ Step4: 벡터의 집합 중에서 집합의 원소인 두 벡터의 선형 조합(스칼라 곱의 합)이 그 집합의 원소이면 벡터 공간이라고 한다. $$ a, b \in \mathbf{R} \;\; \text{ and } \;\; \alpha_1a + \alpha_2b \in \mathbf{R} $$ 벡터의 분해 어떤 두 벡터 $a$, $b$의 합이 다른 벡터 $c$가 될 때 $c$가 두 벡터 성분(vector component) $a$, $b$으로 분해(decomposition)된다고 말할 수 있다. 벡터의 직교 두 벡터 $a$와 $b$가 이루는 각이 90도이면 서로 직교(orthogonal)라고 하며 $ a \perp b $로 표시한다. 서로 직교인 두 벡터의 벡터 내적(inner product, dot product)는 0이된다. $$ a^T b = b^T a = 0 \;\;\;\; \leftrightarrow \;\;\;\; a \perp b $$ 예를 들어 다음 두 벡터는 서로 직교한다. $$ a = \begin{bmatrix}1 \ 1\end{bmatrix} ,\;\; b = \begin{bmatrix}-1 \ 1\end{bmatrix} \;\;\;\; \rightarrow \;\;\;\; a^T b = \begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}-1 \ 1\end{bmatrix} = -1 + 1 = 0 $$ Step5: 투영 벡터 $a$를 다른 벡터 $b$에 직교하는 성분 $a_1$ 와 나머지 성분 $a_2 = a - a_1$로 분해할 수 있다. 이 때 $a_2$는 $b$와 평행하며 이 길이를 벡터 $a$의 벡터 $b$에 대한 투영(projection)이라고 한다. 벡터의 투영은 다음과 같이 내적을 사용하여 구할 수 있다. $$ a = a_1 + a_2 $$ $$ a_1 \perp b \;\; \text{ and } \;\; a_2 = a - a_1 $$ 이면 $$ \| a_2 \| = a^T\dfrac{b}{\|b\|} = \dfrac{a^Tb}{\|b\|} = \dfrac{b^Ta}{\|b\|} $$ 이다. 또한 두 벡터 사이의 각도 $\theta$는 다음과 같이 구한다. $$ \cos\theta = \dfrac{\| a_2 \|}{\| a \|} = \dfrac{a^Tb}{\|a\|\|b\|}$$ Step6: 벡터의 선형 종속과 선형 독립 벡터들의 선형 조합이 0이 되는 모두 0이 아닌 스칼라값들이 존재하면 그 벡터들은 선형 종속(linearly dependent)이라고 한다. $$ a = \begin{bmatrix}1 \ 2\end{bmatrix} ,\;\; b = \begin{bmatrix}3 \ 3\end{bmatrix} \;\; c = \begin{bmatrix}10 \ 14\end{bmatrix} \;\; $$ $$ 2a + b - \frac{1}{2}c = 0 $$ Step7: 벡터들의 선형 조합이 0이 되는 모두 0이 아닌 스칼라값들이 존재하지 않으면 그 벡터들은 선형 독립(linearly independent)이라고 한다. $$ \alpha_1 a_1 + \cdots + \alpha_K a_K = 0 \;\;\;\; \leftrightarrow \;\;\;\; \alpha_1 = \cdots = \alpha_K = 0 $$ 기저 벡터 벡터 공간에 속하는 벡터의 집합이 선형 독립이고 다른 모든 벡터 공간의 벡터들이 그 벡터 집합의 선형 조합으로 나타나면 그 벡터 집합을 벡터 공간의 기저 벡터(basis vector)라고 한다. 예를 들어 다음과 같은 두 벡터는 2차원 벡터 공간의 기저 벡터이다. $$ a = \begin{bmatrix}1 \ 0\end{bmatrix} ,\;\; b = \begin{bmatrix}0 \ 1\end{bmatrix} \;\; $$ 또는 $$ a = \begin{bmatrix}1 \ 1\end{bmatrix} ,\;\; b = \begin{bmatrix}2 \ 3\end{bmatrix} \;\; $$ 다음과 같은 두 벡터는 2차원 벡터 공간의 기저 벡터가 될 수 없다. $$ a = \begin{bmatrix}1 \ 2\end{bmatrix} ,\;\; b = \begin{bmatrix}2 \ 4\end{bmatrix} \;\; $$ 열 공간 행렬은 열 벡터의 집합으로 볼 수 있다. 이 때 열 벡터들의 조합으로 생성되는 벡터 공간을 열 공간(column space)이라고 한다. $$ A = \begin{bmatrix} 1 & 5 & 6 \ 2 & 6 & 8 \ 7 & 1 & 8 \end{bmatrix} \;\;\;\; \rightarrow \;\;\;\; \alpha_1 \begin{bmatrix} 1 \ 2 \ 7 \end{bmatrix} + \alpha_2 \begin{bmatrix} 5 \ 6 \ 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 6 \ 8 \ 8 \end{bmatrix} \; \in \; \text{column space} $$ 열 랭크 행렬의 열 벡터 중 서로 독립인 열 벡터의 최대 갯수를 열 랭크(column rank) 혹은 랭크(rank)라고 한다. 예를 들어 다음 행렬의 랭크는 2이다. $$ A = \begin{bmatrix} 1 & 5 & 6 \ 2 & 6 & 8 \ 3 & 11 & 14 \end{bmatrix} $$ numpy의 linalg 서브 패키지의 matrix_rank 명령으로 랭크를 계산할 수 있다. Step8: 좌표 벡터의 성분, 즉 좌표(coordinate)는 표준 기저 벡터들에 대한 해당 벡터의 투영(projection)으로 볼 수 있다. Step9: 좌표 변환 새로운 기저 벡터를에 대해 벡터 투영을 계산하는 것을 좌표 변환(coordinate transform)이라고 한다. 좌표 변환은 새로운 기저 벡터로 이루어진 변환 행렬(transform matrix) $A$ 와의 내적으로 계산한다. $$ Aa' = a $$ $$ a' = A^{-1}a $$ 예를 들어, 기존의 기저 벡터가 $$ e_1 = \begin{bmatrix}1 \ 0\end{bmatrix} ,\;\; e_2 = \begin{bmatrix}0 \ 1\end{bmatrix} \;\; $$ 이면 벡터 $a$는 사실 $$ a = \begin{bmatrix}2 \ 2\end{bmatrix} = 2 \begin{bmatrix}1 \ 0\end{bmatrix} + 2 \begin{bmatrix}0 \ 1 \end{bmatrix} = 2 e_1 + 2 e_2 $$ 새로운 기저 벡터가 $$ g_1 = \begin{bmatrix} \dfrac{1}{\sqrt{2}} \ \dfrac{1}{\sqrt{2}} \end{bmatrix} ,\;\; g_2 = \begin{bmatrix} -\dfrac{1}{\sqrt{2}} \ \dfrac{1}{\sqrt{2}} \end{bmatrix} ,\;\; $$ 이면 벡터 $a$의 좌표는 다음과 같이 바뀐다. $$ a = \begin{bmatrix}2 \ 2\end{bmatrix} \;\;\;\; \rightarrow \;\;\;\; a' = A^{-1}a = \begin{bmatrix} e'_1 & e'_2 \end{bmatrix} a = \begin{bmatrix} \dfrac{1}{\sqrt{2}} & -\dfrac{1}{\sqrt{2}} \ \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \end{bmatrix}^{-1} \begin{bmatrix}2 \ 2\end{bmatrix} = \begin{bmatrix} \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \ -\dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix}2 \ 2\end{bmatrix} = \begin{bmatrix}2\sqrt{2}\0\end{bmatrix} $$
Python Code: a = [1, 2] plt.annotate('', xy=a, xytext=(0,0), arrowprops=dict(facecolor='black')) plt.plot(0, 0, 'ro', ms=10) plt.plot(a[0], a[1], 'ro', ms=10) plt.text(0.35, 1.15, "$a$", fontdict={"size": 18}) plt.xticks(np.arange(-2, 4)) plt.yticks(np.arange(-1, 4)) plt.xlim(-2.4, 3.4) plt.ylim(-1.2, 3.2) plt.show() Explanation: 벡터 공간 벡터의 기하학적 의미 길이가 $K$인 벡터(vector) $a$는 $K$차원의 공간에서 원점과 벡터 $a$의 값으로 표시되는 점을 연결한 화살표(arrow)로 간주할 수 있다. $$ a = \begin{bmatrix}1 \ 2 \end{bmatrix} $$ End of explanation a = np.array([1, 1]) np.linalg.norm(a) Explanation: 벡터의 길이 벡터 $a$ 의 길이를 놈(norm) $\| a \|$ 이라고 하며 다음과 같이 계산할 수 있다. $$ \| a \| = \sqrt{a^T a } = \sqrt{a_1^2 + \cdots + a_K^2} $$ numpy의 linalg 서브 패키지의 norm 명령으로 벡터의 길이를 계산할 수 있다. End of explanation a = np.array([1, 0]) b = np.array([0, 1]) c = np.array([1/np.sqrt(2), 1/np.sqrt(2)]) np.linalg.norm(a), np.linalg.norm(b), np.linalg.norm(c) Explanation: 단위 벡터 길이가 1인 벡터를 단위 벡터(unit vector)라고 한다. 예를 들어 다음과 같은 벡터들은 모두 단위 벡터이다. $$ a = \begin{bmatrix}1 \ 0\end{bmatrix} ,\;\; b = \begin{bmatrix}0 \ 1\end{bmatrix} ,\;\; c = \begin{bmatrix} \dfrac{1}{\sqrt{2}} \ \dfrac{1}{\sqrt{2}} \end{bmatrix} $$ End of explanation a = np.array([1, 2]) b = np.array([2, 1]) c = a + b plt.annotate('', xy=a, xytext=(0,0), arrowprops=dict(facecolor='gray')) plt.annotate('', xy=b, xytext=(0,0), arrowprops=dict(facecolor='gray')) plt.annotate('', xy=c, xytext=(0,0), arrowprops=dict(facecolor='black')) plt.plot(0, 0, 'ro', ms=10) plt.plot(a[0], a[1], 'ro', ms=10) plt.plot(b[0], b[1], 'ro', ms=10) plt.plot(c[0], c[1], 'ro', ms=10) plt.plot([a[0], c[0]], [a[1], c[1]], 'k--') plt.plot([b[0], c[0]], [b[1], c[1]], 'k--') plt.text(0.35, 1.15, "$a$", fontdict={"size": 18}) plt.text(1.15, 0.25, "$b$", fontdict={"size": 18}) plt.text(1.25, 1.45, "$c$", fontdict={"size": 18}) plt.xticks(np.arange(-2, 4)) plt.yticks(np.arange(-1, 4)) plt.xlim(-1.4, 4.4) plt.ylim(-0.6, 3.8) plt.show() Explanation: 벡터의 합 벡터와 벡터의 합은 벡터가 된다. $$ a = \begin{bmatrix}1 \ 2\end{bmatrix} ,\;\; b = \begin{bmatrix}2 \ 1\end{bmatrix} \;\;\; \rightarrow \;\;\; c = a + b = \begin{bmatrix}3 \ 3\end{bmatrix} \;\; $$ End of explanation a = np.array([1, 1]) b = np.array([-1, 1]) np.dot(a, b) Explanation: 벡터의 집합 중에서 집합의 원소인 두 벡터의 선형 조합(스칼라 곱의 합)이 그 집합의 원소이면 벡터 공간이라고 한다. $$ a, b \in \mathbf{R} \;\; \text{ and } \;\; \alpha_1a + \alpha_2b \in \mathbf{R} $$ 벡터의 분해 어떤 두 벡터 $a$, $b$의 합이 다른 벡터 $c$가 될 때 $c$가 두 벡터 성분(vector component) $a$, $b$으로 분해(decomposition)된다고 말할 수 있다. 벡터의 직교 두 벡터 $a$와 $b$가 이루는 각이 90도이면 서로 직교(orthogonal)라고 하며 $ a \perp b $로 표시한다. 서로 직교인 두 벡터의 벡터 내적(inner product, dot product)는 0이된다. $$ a^T b = b^T a = 0 \;\;\;\; \leftrightarrow \;\;\;\; a \perp b $$ 예를 들어 다음 두 벡터는 서로 직교한다. $$ a = \begin{bmatrix}1 \ 1\end{bmatrix} ,\;\; b = \begin{bmatrix}-1 \ 1\end{bmatrix} \;\;\;\; \rightarrow \;\;\;\; a^T b = \begin{bmatrix}1 & 1\end{bmatrix} \begin{bmatrix}-1 \ 1\end{bmatrix} = -1 + 1 = 0 $$ End of explanation a = np.array([1, 2]) b = np.array([2, 0]) a2 = np.dot(a, b)/np.linalg.norm(b) * np.array([1, 0]) a1 = a - a2 plt.annotate('', xy=a, xytext=(0,0), arrowprops=dict(facecolor='gray')) plt.annotate('', xy=b, xytext=(0,0), arrowprops=dict(facecolor='gray')) plt.annotate('', xy=a2, xytext=(0,0), arrowprops=dict(facecolor='green')) plt.annotate('', xy=a1, xytext=(0,0), arrowprops=dict(facecolor='green')) plt.plot(0, 0, 'ro', ms=10) plt.plot(a[0], a[1], 'ro', ms=10) plt.plot(b[0], b[1], 'ro', ms=10) plt.text(0.35, 1.15, "$a$", fontdict={"size": 18}) plt.text(1.55, 0.15, "$b$", fontdict={"size": 18}) plt.text(-0.2, 1.05, "$a_1$", fontdict={"size": 18}) plt.text(0.50, 0.15, "$a_2$", fontdict={"size": 18}) plt.xticks(np.arange(-2, 4)) plt.yticks(np.arange(-1, 4)) plt.xlim(-1.5, 3.5) plt.ylim(-0.5, 3) plt.show() Explanation: 투영 벡터 $a$를 다른 벡터 $b$에 직교하는 성분 $a_1$ 와 나머지 성분 $a_2 = a - a_1$로 분해할 수 있다. 이 때 $a_2$는 $b$와 평행하며 이 길이를 벡터 $a$의 벡터 $b$에 대한 투영(projection)이라고 한다. 벡터의 투영은 다음과 같이 내적을 사용하여 구할 수 있다. $$ a = a_1 + a_2 $$ $$ a_1 \perp b \;\; \text{ and } \;\; a_2 = a - a_1 $$ 이면 $$ \| a_2 \| = a^T\dfrac{b}{\|b\|} = \dfrac{a^Tb}{\|b\|} = \dfrac{b^Ta}{\|b\|} $$ 이다. 또한 두 벡터 사이의 각도 $\theta$는 다음과 같이 구한다. $$ \cos\theta = \dfrac{\| a_2 \|}{\| a \|} = \dfrac{a^Tb}{\|a\|\|b\|}$$ End of explanation a = np.array([1, 2]) b = np.array([3, 3]) c = np.array([10, 14]) 2*a + b - 0.5*c Explanation: 벡터의 선형 종속과 선형 독립 벡터들의 선형 조합이 0이 되는 모두 0이 아닌 스칼라값들이 존재하면 그 벡터들은 선형 종속(linearly dependent)이라고 한다. $$ a = \begin{bmatrix}1 \ 2\end{bmatrix} ,\;\; b = \begin{bmatrix}3 \ 3\end{bmatrix} \;\; c = \begin{bmatrix}10 \ 14\end{bmatrix} \;\; $$ $$ 2a + b - \frac{1}{2}c = 0 $$ End of explanation A = np.array([[1, 5, 6], [2, 6, 8], [3, 11, 14]]) np.linalg.matrix_rank(A) Explanation: 벡터들의 선형 조합이 0이 되는 모두 0이 아닌 스칼라값들이 존재하지 않으면 그 벡터들은 선형 독립(linearly independent)이라고 한다. $$ \alpha_1 a_1 + \cdots + \alpha_K a_K = 0 \;\;\;\; \leftrightarrow \;\;\;\; \alpha_1 = \cdots = \alpha_K = 0 $$ 기저 벡터 벡터 공간에 속하는 벡터의 집합이 선형 독립이고 다른 모든 벡터 공간의 벡터들이 그 벡터 집합의 선형 조합으로 나타나면 그 벡터 집합을 벡터 공간의 기저 벡터(basis vector)라고 한다. 예를 들어 다음과 같은 두 벡터는 2차원 벡터 공간의 기저 벡터이다. $$ a = \begin{bmatrix}1 \ 0\end{bmatrix} ,\;\; b = \begin{bmatrix}0 \ 1\end{bmatrix} \;\; $$ 또는 $$ a = \begin{bmatrix}1 \ 1\end{bmatrix} ,\;\; b = \begin{bmatrix}2 \ 3\end{bmatrix} \;\; $$ 다음과 같은 두 벡터는 2차원 벡터 공간의 기저 벡터가 될 수 없다. $$ a = \begin{bmatrix}1 \ 2\end{bmatrix} ,\;\; b = \begin{bmatrix}2 \ 4\end{bmatrix} \;\; $$ 열 공간 행렬은 열 벡터의 집합으로 볼 수 있다. 이 때 열 벡터들의 조합으로 생성되는 벡터 공간을 열 공간(column space)이라고 한다. $$ A = \begin{bmatrix} 1 & 5 & 6 \ 2 & 6 & 8 \ 7 & 1 & 8 \end{bmatrix} \;\;\;\; \rightarrow \;\;\;\; \alpha_1 \begin{bmatrix} 1 \ 2 \ 7 \end{bmatrix} + \alpha_2 \begin{bmatrix} 5 \ 6 \ 1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 6 \ 8 \ 8 \end{bmatrix} \; \in \; \text{column space} $$ 열 랭크 행렬의 열 벡터 중 서로 독립인 열 벡터의 최대 갯수를 열 랭크(column rank) 혹은 랭크(rank)라고 한다. 예를 들어 다음 행렬의 랭크는 2이다. $$ A = \begin{bmatrix} 1 & 5 & 6 \ 2 & 6 & 8 \ 3 & 11 & 14 \end{bmatrix} $$ numpy의 linalg 서브 패키지의 matrix_rank 명령으로 랭크를 계산할 수 있다. End of explanation e1 = np.array([1, 0]) e2 = np.array([0, 1]) a = np.array([2, 2]) plt.annotate('', xy=e1, xytext=(0,0), arrowprops=dict(facecolor='green')) plt.annotate('', xy=e2, xytext=(0,0), arrowprops=dict(facecolor='green')) plt.annotate('', xy=a, xytext=(0,0), arrowprops=dict(facecolor='gray')) plt.plot(0, 0, 'ro', ms=10) plt.plot(a[0], a[1], 'ro', ms=10) plt.text(1.05, 1.35, "$a$", fontdict={"size": 18}) plt.text(-0.2, 0.5, "$e_1$", fontdict={"size": 18}) plt.text(0.5, -0.2, "$e_2$", fontdict={"size": 18}) plt.xticks(np.arange(-2, 4)) plt.yticks(np.arange(-1, 4)) plt.xlim(-1.5, 3.5) plt.ylim(-0.5, 3) plt.show() Explanation: 좌표 벡터의 성분, 즉 좌표(coordinate)는 표준 기저 벡터들에 대한 해당 벡터의 투영(projection)으로 볼 수 있다. End of explanation e1 = np.array([1, 0]) e2 = np.array([0, 1]) a = np.array([2, 2]) g1 = np.array([1, 1])/np.sqrt(2) g2 = np.array([-1, 1])/np.sqrt(2) plt.annotate('', xy=e1, xytext=(0,0), arrowprops=dict(facecolor='green')) plt.annotate('', xy=e2, xytext=(0,0), arrowprops=dict(facecolor='green')) plt.annotate('', xy=g1, xytext=(0,0), arrowprops=dict(facecolor='red')) plt.annotate('', xy=g2, xytext=(0,0), arrowprops=dict(facecolor='red')) plt.annotate('', xy=a, xytext=(0,0), arrowprops=dict(facecolor='gray', alpha=0.5)) plt.plot(0, 0, 'ro', ms=10) plt.plot(a[0], a[1], 'ro', ms=10) plt.text(1.05, 1.35, "$a$", fontdict={"size": 18}) plt.text(-0.2, 0.5, "$e_1$", fontdict={"size": 18}) plt.text(0.5, -0.2, "$e_2$", fontdict={"size": 18}) plt.text(0.2, 0.5, "$g_1$", fontdict={"size": 18}) plt.text(-0.6, 0.2, "$g_2$", fontdict={"size": 18}) plt.xticks(np.arange(-2, 4)) plt.yticks(np.arange(-1, 4)) plt.xlim(-1.5, 3.5) plt.ylim(-0.5, 3) plt.show() A = np.vstack([g1, g2]).T A Ainv = np.linalg.inv(A) Ainv Ainv.dot(a) Explanation: 좌표 변환 새로운 기저 벡터를에 대해 벡터 투영을 계산하는 것을 좌표 변환(coordinate transform)이라고 한다. 좌표 변환은 새로운 기저 벡터로 이루어진 변환 행렬(transform matrix) $A$ 와의 내적으로 계산한다. $$ Aa' = a $$ $$ a' = A^{-1}a $$ 예를 들어, 기존의 기저 벡터가 $$ e_1 = \begin{bmatrix}1 \ 0\end{bmatrix} ,\;\; e_2 = \begin{bmatrix}0 \ 1\end{bmatrix} \;\; $$ 이면 벡터 $a$는 사실 $$ a = \begin{bmatrix}2 \ 2\end{bmatrix} = 2 \begin{bmatrix}1 \ 0\end{bmatrix} + 2 \begin{bmatrix}0 \ 1 \end{bmatrix} = 2 e_1 + 2 e_2 $$ 새로운 기저 벡터가 $$ g_1 = \begin{bmatrix} \dfrac{1}{\sqrt{2}} \ \dfrac{1}{\sqrt{2}} \end{bmatrix} ,\;\; g_2 = \begin{bmatrix} -\dfrac{1}{\sqrt{2}} \ \dfrac{1}{\sqrt{2}} \end{bmatrix} ,\;\; $$ 이면 벡터 $a$의 좌표는 다음과 같이 바뀐다. $$ a = \begin{bmatrix}2 \ 2\end{bmatrix} \;\;\;\; \rightarrow \;\;\;\; a' = A^{-1}a = \begin{bmatrix} e'_1 & e'_2 \end{bmatrix} a = \begin{bmatrix} \dfrac{1}{\sqrt{2}} & -\dfrac{1}{\sqrt{2}} \ \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \end{bmatrix}^{-1} \begin{bmatrix}2 \ 2\end{bmatrix} = \begin{bmatrix} \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \ -\dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix}2 \ 2\end{bmatrix} = \begin{bmatrix}2\sqrt{2}\0\end{bmatrix} $$ End of explanation
555
Given the following text description, write Python code to implement the functionality described below step by step Description: Convolutional Neural Networks In this notebook, we train a CNN to classify images from the CIFAR-10 database. 1. Load CIFAR-10 Database Step1: 2. Visualize the First 24 Training Images Step2: 3. Rescale the Images by Dividing Every Pixel in Every Image by 255 Step3: 4. Break Dataset into Training, Testing, and Validation Sets Step4: 5. Define the Model Architecture Step5: 6. Compile the Model Step6: 7. Train the Model Step7: 8. Load the Model with the Best Validation Accuracy Step8: 9. Calculate Classification Accuracy on Test Set Step9: 10. Visualize Some Predictions This may give you some insight into why the network is misclassifying certain objects.
Python Code: import keras from keras.datasets import cifar10 # load the pre-shuffled train and test data (x_train, y_train), (x_test, y_test) = cifar10.load_data() Explanation: Convolutional Neural Networks In this notebook, we train a CNN to classify images from the CIFAR-10 database. 1. Load CIFAR-10 Database End of explanation import numpy as np import matplotlib.pyplot as plt %matplotlib inline fig = plt.figure(figsize=(20,5)) for i in range(36): ax = fig.add_subplot(3, 12, i + 1, xticks=[], yticks=[]) ax.imshow(np.squeeze(x_train[i])) Explanation: 2. Visualize the First 24 Training Images End of explanation # rescale [0,255] --> [0,1] x_train = x_train.astype('float32')/255 x_test = x_test.astype('float32')/255 Explanation: 3. Rescale the Images by Dividing Every Pixel in Every Image by 255 End of explanation from keras.utils import np_utils # one-hot encode the labels num_classes = len(np.unique(y_train)) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) # break training set into training and validation sets (x_train, x_valid) = x_train[5000:], x_train[:5000] (y_train, y_valid) = y_train[5000:], y_train[:5000] # print shape of training set print('x_train shape:', x_train.shape) # print number of training, validation, and test images print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print(x_valid.shape[0], 'validation samples') Explanation: 4. Break Dataset into Training, Testing, and Validation Sets End of explanation from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout model = Sequential() model.add(Conv2D(filters=16, kernel_size=2, padding='same', activation='relu', input_shape=(32, 32, 3))) model.add(MaxPooling2D(pool_size=2)) model.add(Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.3)) model.add(Flatten()) model.add(Dense(500, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) model.summary() Explanation: 5. Define the Model Architecture End of explanation # compile the model model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) Explanation: 6. Compile the Model End of explanation from keras.callbacks import ModelCheckpoint # train the model checkpointer = ModelCheckpoint(filepath='model.weights.best.hdf5', verbose=1, save_best_only=True) hist = model.fit(x_train, y_train, batch_size=32, epochs=100, validation_data=(x_valid, y_valid), callbacks=[checkpointer], verbose=2, shuffle=True) Explanation: 7. Train the Model End of explanation # load the weights that yielded the best validation accuracy model.load_weights('model.weights.best.hdf5') Explanation: 8. Load the Model with the Best Validation Accuracy End of explanation # evaluate and print test accuracy score = model.evaluate(x_test, y_test, verbose=0) print('\n', 'Test accuracy:', score[1]) Explanation: 9. Calculate Classification Accuracy on Test Set End of explanation # get predictions on the test set y_hat = model.predict(x_test) # define text labels (source: https://www.cs.toronto.edu/~kriz/cifar.html) cifar10_labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] # plot a random sample of test images, their predicted labels, and ground truth fig = plt.figure(figsize=(20, 8)) for i, idx in enumerate(np.random.choice(x_test.shape[0], size=32, replace=False)): ax = fig.add_subplot(4, 8, i + 1, xticks=[], yticks=[]) ax.imshow(np.squeeze(x_test[idx])) pred_idx = np.argmax(y_hat[idx]) true_idx = np.argmax(y_test[idx]) ax.set_title("{} ({})".format(cifar10_labels[pred_idx], cifar10_labels[true_idx]), color=("green" if pred_idx == true_idx else "red")) Explanation: 10. Visualize Some Predictions This may give you some insight into why the network is misclassifying certain objects. End of explanation
556
Given the following text description, write Python code to implement the functionality described below step by step Description: CNN for CIFAR10 CNN model that can be used for classification tasks. In this demo, we will train a 3-layer CNN on the CIFAR10 dataset. We will show 2 implementations of the CNN model. First is using PyTorch's built-in nn.Conv2d API. Second, is we will use tensor level convolution. Let us first import the required modules. Step1: CNN using PyTorch nn.Conv2D In this example, we use nn.Conv2D to create a 3-layer CNN model. Note the following Step2: Scratch pad idea on how to do convolution In the code below, the idea of convolution is tested on an image. A 3 x 3 kernel is used. All elements are set to 1. If this kernel is convolved with an RGB image, the result should be a grayscale image since each pixel is computed as the mean of dot product of 9 pixels with the kernel. Step3: PyTorch Lightning Module for CNN This is the PL module so we can easily change the implementation of the CNN and compare the results. More detailed results can be found on the wandb.ai page. Using model parameter, we can easily switch between different model implementations. We also benchmark the result using a ResNet18 model. Step4: Arguments Please change the --model argument to switch between the different models to be used as CIFAR10 classifier. The argument --conv2d can be used to switch between the two implementations 2d convolutional layer. Step5: Weights and Biases Callback The callback logs train and validation metrics to wandb. It also logs sample predictions. This is similar to our WandbCallback example for MNIST. Step6: Training and Validation of Different Models The validation accuracy of our SimpleCNN at ~73%. Meanwhile the ResNet18 model has accuracy of ~78%. Consider that SimpleCNN uses 113k parameters while ResNet18 uses 11.2M parameters. SimpleCNN is very efficient. Recall that our SimpleMLP hsa accuracy of ~53% only.
Python Code: import torch import torchvision import wandb import math import time import numpy as np import matplotlib.pyplot as plt from torch import nn from einops import rearrange from argparse import ArgumentParser from pytorch_lightning import LightningModule, Trainer, Callback from pytorch_lightning.loggers import WandbLogger from torchmetrics.functional import accuracy from torch.optim import Adam from torch.optim.lr_scheduler import CosineAnnealingLR from matplotlib import image Explanation: CNN for CIFAR10 CNN model that can be used for classification tasks. In this demo, we will train a 3-layer CNN on the CIFAR10 dataset. We will show 2 implementations of the CNN model. First is using PyTorch's built-in nn.Conv2d API. Second, is we will use tensor level convolution. Let us first import the required modules. End of explanation class SimpleCNN(nn.Module): def __init__(self, n_features=3, kernel_size=3, n_filters=32, num_classes=10, conv2d=nn.Conv2d): super().__init__() self.conv1 = conv2d(n_features, n_filters, kernel_size=kernel_size) self.conv2 = conv2d(n_filters, n_filters*2, kernel_size=kernel_size) self.conv3 = conv2d(n_filters*2, n_filters*4, kernel_size=kernel_size) self.fc1 = nn.Linear(2048, num_classes) def forward(self, x): y = nn.ReLU()(self.conv1(x)) y = nn.MaxPool2d(kernel_size=2)(y) y = nn.ReLU()(self.conv2(y)) y = nn.MaxPool2d(kernel_size=2)(y) y = nn.ReLU()(self.conv3(y)) y = rearrange(y, 'b c h w -> b (c h w)') y = self.fc1(y) return y # we dont need to compute softmax since it is already # built into the CE loss function in PyTorch #return F.log_softmax(y, dim=1) # use this to get the correct input shape for fc1. In this case, # comment out y=self.fc1(y) and run the code below. #model = SimpleCNN() #data = torch.Tensor(1, 3, 32, 32) #y = model(data) #print("Y.shape:", y.shape) Explanation: CNN using PyTorch nn.Conv2D In this example, we use nn.Conv2D to create a 3-layer CNN model. Note the following: 1. The first layer number of input features is equal to the number of input RGB channels (3). 2. The output of the first layer is equal to the number of input features of the second layer. 3. The same matching for the second and third (last) layer. 4. We use nn.MaxPool2d to reduce the output feature map size. 5. At the same, we increase the number of feature maps after every layer. 6. We use nn.ReLU to activate the output of the layer. 7. For the last linear layer nn.Linear, the number of input features has to be supplied manually. Below in comment is a simple script that can be used to calculate the number of input features. Ideas for experimentation: 1. Try other kernel sizes 2. Try deeper models 3. Try different activation functions 4. Try applying skip connections End of explanation # load a sample image from the filesystem img = image.imread("wonder_cat.jpg") / 255.0 #img = image.imread("aki_dog.jpg") / 255.0 print("Original Image shape:", img.shape) # split the image into p1 x p2 patches. # a kernel of size k, number of filters is 3, number of input filters is 3 (RGB) k = 3 n_filters = 3 n_features = 3 kernel = np.ones((n_features * k * k, n_filters)) # kernel = rearrange(kernel, 'b c h w -> (c h w) b') img = img[::,::,:] #y = [] wk = k * (img.shape[0] // k) hk = k * (img.shape[1] // k) wf = img.shape[0] % k hf = img.shape[1] % k print("Image shape:", img.shape) # Tensor z will be used to store output of convolution z = np.ones((img.shape[0]-k+1, img.shape[1]-k+1, img.shape[2])) print("Z shape:", z.shape) for i in range(k): hoff = i if hf >= i else (-k + i) for j in range(k): woff = j if wf >= j else (-k + j) x = img[i: hk + hoff:, j: wk + woff:, :] x = rearrange(x, "(h p1) (w p2) c -> h w (p1 p2 c)", p1=k, p2=k) x = x @ kernel # for testing like pooling # Note: (p1 h) (p2 w) is wrong #x = rearrange(x, "(h p1) (w p2) c -> h w p1 p2 c", p1=k, p2=k) #x = reduce(x, "h w p1 p2 c -> h w c", 'mean') z[i::k,j::k,:] = x plt.imshow(img) plt.axis('off') plt.show() print("max of z: ", np.max(z)) print("min of z: ", np.min(z)) z = z / np.max(z) plt.imshow(z) plt.axis('off') plt.show() class TensorConv2d(nn.Module): def __init__(self, n_features, n_filters, kernel_size): super().__init__() self.n_features = n_features self.kernel_size = kernel_size self.n_filters = n_filters self.kernel = nn.Parameter(torch.zeros((n_features * kernel_size * kernel_size, n_filters))) self.bias = nn.Parameter(torch.zeros(n_filters)) self.reset_parameters() def reset_parameters(self): nn.init.constant_(self.bias, 0) nn.init.kaiming_uniform_(self.kernel, a=math.sqrt(5)) def forward(self, x): k = self.kernel_size # make sure that kernel and bias are in the same device as x if self.kernel.device != x.device: self.kernel.to(x.device) self.bias.to(x.device) # batch, height, width b = x.shape[0] h = x.shape[2] w = x.shape[3] # making sure the feature map to be convolved is of the right size # and we dont go past beyond the the feature map boundary wk = k * (w // k) hk = k * (h // k) wf = w % k hf = h % k # Tensor Level Convolution # Basic idea: (Repeat kernel_size times per row and per col) # 1) convert an image into patches # 2) perform convolution on each patch which is equivalent to # - dot product of each patch with the kernel plus bias term # 4) move 1 feature point along the horizontal axis (to be done kernel_size times) # 5) go to 1) # 6) move 1 feature point along the vertical axis (to be done kernel_size times) # 7) go to 1) # Tensor z contains the output of the convolution # make sure tensor z is the correct device as x z = torch.empty((b, self.n_filters, h-k+1, w-k+1)).to(x.device) for i in range(k): # row offset # we need to perform offset k times hoff = i if hf >= i else (-k + i) for j in range(k): # column offset # we need to perform offset k times woff = j if wf >= j else (-k + j) # shift i row and j col y = x[:, :, i: hk + hoff:, j: wk + woff:] # convert to patches (p1 p2 c) y = rearrange(y, "b c (h p1) (w p2) -> b h w (p1 p2 c)", p1=k, p2=k) # dot product plus bias term y = y @ self.kernel + self.bias # sparse feature map: channel first y = rearrange(y, 'b h w c -> b c h w') # assign the feature map to the correct position in the output tensor z[:,:,i::k,j::k] = y return z Explanation: Scratch pad idea on how to do convolution In the code below, the idea of convolution is tested on an image. A 3 x 3 kernel is used. All elements are set to 1. If this kernel is convolved with an RGB image, the result should be a grayscale image since each pixel is computed as the mean of dot product of 9 pixels with the kernel. End of explanation class LitCIFAR10Model(LightningModule): def __init__(self, num_classes=10, lr=0.001, batch_size=64, num_workers=4, max_epochs=30, model=SimpleCNN, conv2d=nn.Conv2d): super().__init__() self.save_hyperparameters() self.model = model(num_classes=num_classes, conv2d=conv2d) self.loss = nn.CrossEntropyLoss() def forward(self, x): return self.model(x) # this is called during fit() def training_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = self.loss(y_hat, y) return {"loss": loss} # calls to self.log() are recorded in wandb def training_epoch_end(self, outputs): avg_loss = torch.stack([x["loss"] for x in outputs]).mean() self.log("train_loss", avg_loss, on_epoch=True) # this is called at the end of an epoch def test_step(self, batch, batch_idx): x, y = batch y_hat = self.forward(x) loss = self.loss(y_hat, y) acc = accuracy(y_hat, y) * 100. # we use y_hat to display predictions during callback return {"y_hat": y_hat, "test_loss": loss, "test_acc": acc} # this is called at the end of all epochs def test_epoch_end(self, outputs): avg_loss = torch.stack([x["test_loss"] for x in outputs]).mean() avg_acc = torch.stack([x["test_acc"] for x in outputs]).mean() self.log("test_loss", avg_loss, on_epoch=True, prog_bar=True) self.log("test_acc", avg_acc, on_epoch=True, prog_bar=True) # validation is the same as test def validation_step(self, batch, batch_idx): return self.test_step(batch, batch_idx) def validation_epoch_end(self, outputs): return self.test_epoch_end(outputs) # we use Adam optimizer def configure_optimizers(self): optimizer = Adam(self.parameters(), lr=self.hparams.lr) # this decays the learning rate to 0 after max_epochs using cosine annealing scheduler = CosineAnnealingLR(optimizer, T_max=self.hparams.max_epochs) return [optimizer], [scheduler] # this is called after model instatiation to initiliaze the datasets and dataloaders def setup(self, stage=None): self.train_dataloader() self.test_dataloader() # build train and test dataloaders using MNIST dataset # we use simple ToTensor transform def train_dataloader(self): return torch.utils.data.DataLoader( torchvision.datasets.CIFAR10( "./data", train=True, download=True, transform=torchvision.transforms.ToTensor() ), batch_size=self.hparams.batch_size, shuffle=True, num_workers=self.hparams.num_workers, pin_memory=True, ) def test_dataloader(self): return torch.utils.data.DataLoader( torchvision.datasets.CIFAR10( "./data", train=False, download=True, transform=torchvision.transforms.ToTensor() ), batch_size=self.hparams.batch_size, shuffle=False, num_workers=self.hparams.num_workers, pin_memory=True, ) def val_dataloader(self): return self.test_dataloader() Explanation: PyTorch Lightning Module for CNN This is the PL module so we can easily change the implementation of the CNN and compare the results. More detailed results can be found on the wandb.ai page. Using model parameter, we can easily switch between different model implementations. We also benchmark the result using a ResNet18 model. End of explanation def get_args(): parser = ArgumentParser(description="PyTorch Lightning CIFAR10 Example") parser.add_argument("--max-epochs", type=int, default=30, help="num epochs") parser.add_argument("--batch-size", type=int, default=64, help="batch size") parser.add_argument("--lr", type=float, default=0.001, help="learning rate") parser.add_argument("--num-classes", type=int, default=10, help="num classes") parser.add_argument("--devices", default=1) parser.add_argument("--accelerator", default='gpu') parser.add_argument("--num-workers", type=int, default=4, help="num workers") #parser.add_argument("--model", default=torchvision.models.resnet18) parser.add_argument("--model", default=SimpleCNN) parser.add_argument("--conv2d", default=nn.Conv2d) #parser.add_argument("--conv2d", default=TensorConv2d) args = parser.parse_args("") return args Explanation: Arguments Please change the --model argument to switch between the different models to be used as CIFAR10 classifier. The argument --conv2d can be used to switch between the two implementations 2d convolutional layer. End of explanation class WandbCallback(Callback): def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): # process first 10 images of the first batch if batch_idx == 0: label_human = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"] n = 10 x, y = batch outputs = outputs["y_hat"] outputs = torch.argmax(outputs, dim=1) # log image, ground truth and prediction on wandb table columns = ['image', 'ground truth', 'prediction'] data = [[wandb.Image(x_i), label_human[y_i], label_human[y_pred]] for x_i, y_i, y_pred in list( zip(x[:n], y[:n], outputs[:n]))] wandb_logger.log_table( key=pl_module.model.__class__.__name__, columns=columns, data=data) Explanation: Weights and Biases Callback The callback logs train and validation metrics to wandb. It also logs sample predictions. This is similar to our WandbCallback example for MNIST. End of explanation if __name__ == "__main__": args = get_args() model = LitCIFAR10Model(num_classes=args.num_classes, lr=args.lr, batch_size=args.batch_size, num_workers=args.num_workers, model=args.model, conv2d=args.conv2d) model.setup() # printing the model is useful for debugging print(model) print(model.model.__class__.__name__) # wandb is a great way to debug and visualize this model #wandb_logger = WandbLogger(project="cnn-cifar") start_time = time.time() trainer = Trainer(accelerator=args.accelerator, devices=args.devices, max_epochs=args.max_epochs,) #logger=wandb_logger, #callbacks=[WandbCallback()]) trainer.fit(model) trainer.test(model) elapsed_time = time.time() - start_time print("Elapsed time: {}".format(elapsed_time)) #wandb.finish() Explanation: Training and Validation of Different Models The validation accuracy of our SimpleCNN at ~73%. Meanwhile the ResNet18 model has accuracy of ~78%. Consider that SimpleCNN uses 113k parameters while ResNet18 uses 11.2M parameters. SimpleCNN is very efficient. Recall that our SimpleMLP hsa accuracy of ~53% only. End of explanation
557
Given the following text description, write Python code to implement the functionality described below step by step Description: Feature Extraction and Preprocessing Step1: DictVectorizer Step2: CountVectorizer Step3: Stop Word Filtering Step4: Stemming and Lemmatization Lemmatization is the process of determining the lemma, or the morphological root, of an inflected word based on its context. Lemmas are the base forms of words that are used to key the word in a dictionary. Stemming has a similar goal to lemmatization, but it does not attempt to produce the morphological roots of words. Instead, stemming removes all patterns of characters that appear to be affixes, resulting in a token that is not necessarily a valid word. Lemmatization frequently requires a lexical resource, like WordNet, and the word's part of speech. Stemming algorithms frequently use rules instead of lexical resources to produce stems and can operate on any token, even without its context. Step5: As we can see both sentences are having same meaning but their feature vectors have no elements in common. Let's use the lexical analysis on the data Step6: The Porter stemmer cannot consider the inflected form's part of speech and returns gather for both documents Step7: Extending bag-of-words with TF-IDF weights It is intuitive that the frequency with which a word appears in a document could indicate the extent to which a document pertains to that word. A long document that contains one occurrence of a word may discuss an entirely different topic than a document that contains many occurrences of the same word. In this section, we will create feature vectors that encode the frequencies of words, and discuss strategies to mitigate two problems caused by encoding term frequencies. Instead of using a binary value for each element in the feature vector, we will now use an integer that represents the number of times that the words appeared in the document. Step8: Data Standardization
Python Code: from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, HashingVectorizer from sklearn.metrics.pairwise import euclidean_distances from sklearn import preprocessing from nltk.stem.wordnet import WordNetLemmatizer from nltk.stem import PorterStemmer from nltk import word_tokenize from nltk import pos_tag import numpy as np Explanation: Feature Extraction and Preprocessing End of explanation onehot_encoder = DictVectorizer() instances = [ {'city': 'New York'}, {'city': 'San Francisco'}, {'city': 'Chapel Hill'} ] print (onehot_encoder.fit_transform(instances).toarray()) Explanation: DictVectorizer End of explanation corpus = [ 'UNC played Duke in basketball', 'Duke lost the basketball game' ] vectorizer = CountVectorizer() print (vectorizer.fit_transform(corpus).todense()) print (vectorizer.vocabulary_) # adding one more sentence in corpus corpus = [ 'UNC played Duke in basketball', 'Duke lost the basketball game', 'This is Atul Singh' ] vectorizer = CountVectorizer() print (vectorizer.fit_transform(corpus).todense()) print (vectorizer.vocabulary_) # checking the euclidean distance # converting sentence into CountVectorizer counts = vectorizer.fit_transform(corpus).todense() print("1 & 2", euclidean_distances(counts[0], counts[1])) print("2 & 3", euclidean_distances(counts[1], counts[2])) print("1 & 3", euclidean_distances(counts[0], counts[2])) Explanation: CountVectorizer End of explanation vectorizer = CountVectorizer(stop_words='english') # added one option which remove the grammer words from corpus print (vectorizer.fit_transform(corpus).todense()) print (vectorizer.vocabulary_) print("1 & 2", euclidean_distances(counts[0], counts[1])) print("2 & 3", euclidean_distances(counts[1], counts[2])) print("1 & 3", euclidean_distances(counts[0], counts[2])) Explanation: Stop Word Filtering End of explanation corpus = [ 'He ate the sandwiches', 'Every sandwich was eaten by him' ] vectorizer = CountVectorizer(stop_words='english') # added one option which remove the grammer words from corpus print (vectorizer.fit_transform(corpus).todense()) print (vectorizer.vocabulary_) Explanation: Stemming and Lemmatization Lemmatization is the process of determining the lemma, or the morphological root, of an inflected word based on its context. Lemmas are the base forms of words that are used to key the word in a dictionary. Stemming has a similar goal to lemmatization, but it does not attempt to produce the morphological roots of words. Instead, stemming removes all patterns of characters that appear to be affixes, resulting in a token that is not necessarily a valid word. Lemmatization frequently requires a lexical resource, like WordNet, and the word's part of speech. Stemming algorithms frequently use rules instead of lexical resources to produce stems and can operate on any token, even without its context. End of explanation lemmatizer = WordNetLemmatizer() print (lemmatizer.lemmatize('gathering', 'v')) print (lemmatizer.lemmatize('gathering', 'n')) Explanation: As we can see both sentences are having same meaning but their feature vectors have no elements in common. Let's use the lexical analysis on the data End of explanation stemmer = PorterStemmer() print (stemmer.stem('gathering')) wordnet_tags = ['n', 'v'] corpus = [ 'He ate the sandwiches', 'Every sandwich was eaten by him' ] stemmer = PorterStemmer() print ('Stemmed:', [[stemmer.stem(token) for token in word_tokenize(document)] for document in corpus]) def lemmatize(token, tag): if tag[0].lower() in ['n', 'v']: return lemmatizer.lemmatize(token, tag[0].lower()) return token lemmatizer = WordNetLemmatizer() tagged_corpus = [pos_tag(word_tokenize(document)) for document in corpus] print ('Lemmatized:', [[lemmatize(token, tag) for token, tag in document] for document in tagged_corpus]) Explanation: The Porter stemmer cannot consider the inflected form's part of speech and returns gather for both documents: End of explanation corpus = ['The dog ate a sandwich, the wizard transfigured a sandwich, and I ate a sandwich'] vectorizer = CountVectorizer(stop_words='english') print (vectorizer.fit_transform(corpus).todense()) print(vectorizer.vocabulary_) corpus = ['The dog ate a sandwich and I ate a sandwich', 'The wizard transfigured a sandwich'] vectorizer = TfidfVectorizer(stop_words='english') print (vectorizer.fit_transform(corpus).todense()) print(vectorizer.vocabulary_) corpus = ['The dog ate a sandwich and I ate a sandwich', 'The wizard transfigured a sandwich'] vectorizer = HashingVectorizer(n_features=6) print (vectorizer.fit_transform(corpus).todense()) Explanation: Extending bag-of-words with TF-IDF weights It is intuitive that the frequency with which a word appears in a document could indicate the extent to which a document pertains to that word. A long document that contains one occurrence of a word may discuss an entirely different topic than a document that contains many occurrences of the same word. In this section, we will create feature vectors that encode the frequencies of words, and discuss strategies to mitigate two problems caused by encoding term frequencies. Instead of using a binary value for each element in the feature vector, we will now use an integer that represents the number of times that the words appeared in the document. End of explanation X = [[1,2,3], [4,5,1], [3,6,2] ] print(preprocessing.scale(X)) x1 = preprocessing.StandardScaler() print(x1) print(x1.fit_transform(X)) Explanation: Data Standardization End of explanation
558
Given the following text description, write Python code to implement the functionality described below step by step Description: In this example you will learn how to make use of the periodicity of the electrodes. As seen in TB 4 the transmission calculation takes a considerable amount of time. In this example we will redo the same calculation, but speed it up (no approximations made). A large computational effort is made on calculating the self-energies which basically is inverting, multiplying and adding matrices, roughly 10-20 times per $k$-point, per energy point, per electrode. For systems with large electrodes compared to the full device, this becomes more demanding than calculating the Green function for the system. When there is periodicity in electrodes along the transverse semi-infinite direction (not along the transport direction) one can utilize Bloch's theorem to reduce the computational cost of calculating the self-energy. In ANY calculation if you have periodicity, please USE it. In this example you should scour the tbtrans manual on how to enable Bloch's theorem, and once enabled it should be roughly 3 - 4 times as fast, something that is non-negligeble for large systems. Step1: Note the below lines are differing from the same lines in TB 4, i.e. we save the electrode electronic structure without extending it 25 times. Step2: See TB 2 for details on why we choose repeat/tile on the Hamiltonian object and not on the geometry, prior to construction. Step3: Exercises Instead of analysing the same thing as in TB 4 you should perform the following actions to explore the available data-analysis capabilities of TBtrans. Please note the difference in run-time between example 04 and this example. Always use Bloch's theorem when applicable! HINT please copy as much as you like from example 04 to simplify the following tasks. Read in the resulting file into a variable called tbt. In the following we will concentrate on only looking at $\Gamma$-point related quantities. I.e. all quantities should only be plotted for this $k$-point. To extract information for one or more subset of points you should look into the function help(tbt.kindex) which may be used to find a resulting $k$-point index in the result file. Plot the transmission ($\Gamma$-point only). To extract a subset $k$-point you should read the documentation for the functions (hint
Python Code: graphene = sisl.geom.graphene(orthogonal=True) Explanation: In this example you will learn how to make use of the periodicity of the electrodes. As seen in TB 4 the transmission calculation takes a considerable amount of time. In this example we will redo the same calculation, but speed it up (no approximations made). A large computational effort is made on calculating the self-energies which basically is inverting, multiplying and adding matrices, roughly 10-20 times per $k$-point, per energy point, per electrode. For systems with large electrodes compared to the full device, this becomes more demanding than calculating the Green function for the system. When there is periodicity in electrodes along the transverse semi-infinite direction (not along the transport direction) one can utilize Bloch's theorem to reduce the computational cost of calculating the self-energy. In ANY calculation if you have periodicity, please USE it. In this example you should scour the tbtrans manual on how to enable Bloch's theorem, and once enabled it should be roughly 3 - 4 times as fast, something that is non-negligeble for large systems. End of explanation H_elec = sisl.Hamiltonian(graphene) H_elec.construct(([0.1, 1.43], [0., -2.7])) H_elec.write('ELEC.nc') Explanation: Note the below lines are differing from the same lines in TB 4, i.e. we save the electrode electronic structure without extending it 25 times. End of explanation H = H_elec.repeat(25, axis=0).tile(15, axis=1) H = H.remove( H.geometry.close( H.geometry.center(what='cell'), R=10.) ) dangling = [ia for ia in H.geometry.close(H.geometry.center(what='cell'), R=14.) if len(H.edges(ia)) < 3] H = H.remove(dangling) edge = [ia for ia in H.geometry.close(H.geometry.center(what='cell'), R=14.) if len(H.edges(ia)) < 4] edge = np.array(edge) # Pretty-print the list of atoms print(sisl.utils.list2str(edge + 1)) H.geometry.write('device.xyz') H.write('DEVICE.nc') Explanation: See TB 2 for details on why we choose repeat/tile on the Hamiltonian object and not on the geometry, prior to construction. End of explanation tbt = sisl.get_sile('siesta.TBT.nc') # Easier manipulation of the geometry geom = tbt.geometry a_dev = tbt.a_dev # the indices where we have DOS # Extract the DOS, per orbital (hence sum=False) DOS = tbt.ADOS(0, sum=False) # Normalize DOS for plotting (maximum size == 400) # This array has *all* energy points and orbitals DOS /= DOS.max() / 400 a_xyz = geom.xyz[a_dev, :2] %%capture fig = plt.figure(figsize=(12,4)); ax = plt.axes(); scatter = ax.scatter(a_xyz[:, 0], a_xyz[:, 1], 1); ax.set_xlabel(r'$x$ [Ang]'); ax.set_ylabel(r'$y$ [Ang]'); ax.axis('equal'); # If this animation does not work, then don't spend time on it! def animate(i): ax.set_title('Energy {:.3f} eV'.format(tbt.E[i])); scatter.set_sizes(DOS[i]); return scatter, anim = animation.FuncAnimation(fig, animate, frames=len(tbt.E), interval=100, repeat=False) HTML(anim.to_html5_video()) Explanation: Exercises Instead of analysing the same thing as in TB 4 you should perform the following actions to explore the available data-analysis capabilities of TBtrans. Please note the difference in run-time between example 04 and this example. Always use Bloch's theorem when applicable! HINT please copy as much as you like from example 04 to simplify the following tasks. Read in the resulting file into a variable called tbt. In the following we will concentrate on only looking at $\Gamma$-point related quantities. I.e. all quantities should only be plotted for this $k$-point. To extract information for one or more subset of points you should look into the function help(tbt.kindex) which may be used to find a resulting $k$-point index in the result file. Plot the transmission ($\Gamma$-point only). To extract a subset $k$-point you should read the documentation for the functions (hint: kavg is the keyword you are looking for). Full transmission Bulk transmission Plot the DOS with normalization according to the number of atoms ($\Gamma$ only) You may decide which atoms you examine. The Green function DOS The spectral DOS The bulk DOS TIME: Do the same calculation using only tiling. H_elec.tile(25, axis=0).tile(15, axis=1) instead of repeat/tile. Which of repeat or tile are faster? Transmission Density of states End of explanation
559
Given the following text description, write Python code to implement the functionality described below step by step Description: PyBroMo - GUI Trajectory explorer <small><i> This notebook is part of PyBroMo a python-based single-molecule Brownian motion diffusion simulator that simulates confocal smFRET experiments. You can find the full list of notebooks in Usage Examples. </i></small> Overview In this notebook implements an interactive 3-D trajectories visualizer. To visualize trajectories you need simulatte the trajectories first. For more info see PyBroMo Homepage. Simulation setup Together with a few standard python libraries we import PyBroMo using the short name pbm. All PyBroMo functions will be available as pbm.something. Step1: Load trajectories Step2: Plotting the emission Step3: For simulations using radial = False (i.e. the 3D trajectories saved) Step4: For simulations using radial = True (i.e. the z-r 2D trajectories saved)
Python Code: %matplotlib inline import numpy as np import tables import matplotlib.pyplot as plt plt.rcParams['path.simplify_threshold'] = 1.0 import pybromo as pbm print('Numpy version:', np.__version__) print('Matplotlib version:', plt.matplotlib.__version__) print('PyTables version:', tables.__version__) print('PyBroMo version:', pbm.__version__) Explanation: PyBroMo - GUI Trajectory explorer <small><i> This notebook is part of PyBroMo a python-based single-molecule Brownian motion diffusion simulator that simulates confocal smFRET experiments. You can find the full list of notebooks in Usage Examples. </i></small> Overview In this notebook implements an interactive 3-D trajectories visualizer. To visualize trajectories you need simulatte the trajectories first. For more info see PyBroMo Homepage. Simulation setup Together with a few standard python libraries we import PyBroMo using the short name pbm. All PyBroMo functions will be available as pbm.something. End of explanation #SIM_DIR = r'E:\Data\pybromo' S = pbm.ParticlesSimulation.from_datafile('016') #, path=SIM_DIR) Explanation: Load trajectories End of explanation %matplotlib qt p = pbm.plotter.EmissionPlotter(S, duration=0.1, decimate=100, color_pop=False) Explanation: Plotting the emission End of explanation p = pbm.plotter.TrackEmPlotter(S, duration=0.005, decimate=20) Explanation: For simulations using radial = False (i.e. the 3D trajectories saved): End of explanation p = pbm.plotter.TrackEmPlotterR(S, duration=0.01, decimate=100) Explanation: For simulations using radial = True (i.e. the z-r 2D trajectories saved): End of explanation
560
Given the following text description, write Python code to implement the functionality described below step by step Description: 2. Parámetros de ecuaciones de estado cúbicas (SRK, PR, RKPR) En esta sección se presenta una implementación en Python para calcular los parámetros de ecuaciones de estado cúbicas (SRK, PR, RKPR). Las 2 primeras ecuaciónes de estado SRK y PR, son ecuaciones clásicas y ampliamente utilizadas por la industria y la academia que cuentan con 2 parámetros (parámetro de atracción $a_C$ y de repulsión $b$) para describir el comportamiento de sustancias. Por otro lado, la ecuación de estado RKPR, la cual es una propuesta de una ecuación con un tercer parámetro $\delta_1$,el cual permite incluir el efecto estructural de la molécula de la sustancia a la que se quiere describir su comportamiento termodinámico. 2.1 Ecuaciones de estado Step1: importar las linrerías requeridas, en este caso se trata de las librerías numpy, pandas junto con pyther Step2: De esta forma se observa el calculo simple de los parámetros para la sustancia pura 3-METHYLHEPTANE_RKPR A continuación se realiza el mismo tipo de calculo pero tomando una serie de 9 sustancias puras, que se pueden extender facilmente a n sustancias, para obtener sus parámetros de nuevo con la ecuación de estado RKPR. Step3: Como se observa, los resultados obtenidos son organizados en un DataFrame permitiendo agilizar la manipulación de los datos de una serie de sustancias puras. Step4: En el siguiente ejemplo se utiliza la ecuación RKPR pero esta vez con la especificación de la temperatura y densidad de líquido saturado para el CARBON DIOXIDE y de esta forma encontrar el valor del parámetro delta que verifica la especificación realizada para la densidad de líquido saturado.
Python Code: import numpy as np import pandas as pd import pyther as pt Explanation: 2. Parámetros de ecuaciones de estado cúbicas (SRK, PR, RKPR) En esta sección se presenta una implementación en Python para calcular los parámetros de ecuaciones de estado cúbicas (SRK, PR, RKPR). Las 2 primeras ecuaciónes de estado SRK y PR, son ecuaciones clásicas y ampliamente utilizadas por la industria y la academia que cuentan con 2 parámetros (parámetro de atracción $a_C$ y de repulsión $b$) para describir el comportamiento de sustancias. Por otro lado, la ecuación de estado RKPR, la cual es una propuesta de una ecuación con un tercer parámetro $\delta_1$,el cual permite incluir el efecto estructural de la molécula de la sustancia a la que se quiere describir su comportamiento termodinámico. 2.1 Ecuaciones de estado: SRK y PR Como se mncionó anteriormente en el caso de las ecuaciones de estado (SRK y PR) se tienen los parámetro de atracción $a_C$ y de repulsión $b$ que pueden ser calculados por medio de expresiones que relacionan constantes como temperatura crítica $T_c$, presión crítica $P_c$, volumen crítico $V_c$ y factor acéntrico $\omega$ de una sustancia pura ademas de la constate universal de los gases R. 2.1.1 Especificación de las constantes: $T_c$, $P_c$, $V_c$ y $\omega$ En el caso de especificar las constantes $T_c$, $P_c$, $V_c$ y $\omega$, es simple calcular los parámetros $a_c$, $b$ y $m$ por medio de las siguientes ecuaciones: | Parámetros Ecuación de estado SRK | Parámetros Ecuación de estado PR | | ---------- | ---------- | | $ a_c = 0.077796070 \frac{R^2 T_c^2} {P_c}$ | $ a_c = 0.45723553 \frac{R^2 T_c^2} {P_c} $ | | $ b_c = 0.086640 \frac{ R T_c} {P_c}$ | $ b_c = 0.077796070 \frac{R T_c} {P_c} $ | | $ m = 0.480 + 1.574 \omega - 0.175 \omega^2$ | $m = 0.37464 + 1.54226 \omega - 0.26992 \omega ^2$ | 2.1.2 Especificación de los parámetros: $a_c$, $b$ y $m$ Ahora en el caso realizar una especificación para los valores de los parámetro de atracción $a_C$, de repulsión $b$ y $m$ para una sustancia pura, es simple obtener los valores correspondientes de las constantes $T_c$, $P_c$, $V_c$ y $\omega$ $$ T_c = \frac{\omega_b a_c} {\omega_a R b} $$ $$ P_c = \frac{\omega_b R T_c} {b} $$ $$ V_c = \frac{Z_c R T_c} {P_c} $$ En el caso del $ \omega$, se debe resolver una ecuación cuadratica que depende de unos determinados valores de constantes $c$, del parámetro $\delta_1$ y el parámetro $m$, que toman determinados valores para casa ecuación de estado: $$ \omega = 0.5 \frac{- c_2 + \sqrt{c_2^2 - 4 c_1 c_3}}{2c_1} $$ | Ecuación de estado SRK | Ecuación de estado PR | | ---------- | ---------- | | $\delta_1 = 1.0$ | $\delta_1 = 1.0 + \sqrt{2.0}$ | | $c_1 = -0.175$ | $c_1 = -0.26992$ | | $c_2 = 1.574$ | $c_2 = 1.54226$ | | $c_3 = 0.48 - m$ | $c_3 = 0.37464 - m$ | 2.2 Ecuación de estado RKPR En el caso de la ecuación de estado RKPR, se tiene una posibilidad adicional por medio de utilizar el parámetro estructural $\delta_1$ para correlacionar el valor del factor de compresibilidad $Z_c$ con el támaño de la molécula de la sustancia pura que se está tratando. De esta forma, a las especificaciones que se pueden hacer con las ecuaciones de estado (SRK y PR), como en el caso de especificar las constantes como temperatura crítica $T_c$, presión crítica $P_c$, volumen crítico $V_c$ y factor acéntrico $\omega$ de una sustancia pura, se tiene 3 posibles situaciones adicionales: La primera especificación corresponde a un valor del factor de compresibilidad crítico $Z_c$ y luego determinar el valor del parámetro $\delta_1$ que cumple con dicha especificación. Después se procede con el cálculo del parámetro $k$. La segunda especificación corresponde a un valor del parámetro $\delta_1$ para el posterior cálculo del parámetro $k$. La tercera opción es utilizar una correlación termodinámica para obtener un valor de la densidad de líquido saturado de una sustancia pura $\rho(T)_{sat}^{liq}$ y pasarlo como una especificación, para encontrar un valor de los parámetros $\delta_1$ y $k$, que cumplan con la imposición del valor de la densidad de líquido saturado. <img src="\rkpr_paramters_latex.png"> Figura 1. Diagrama conceptual del calculo de parámetros ecuación RKPR En la figura 1, los casos de Mode = 1, 2 y 3 corresponden a especificar las constantes ($T_c$, $P_c$, $\omega$) + alguna de las variables ($V_c$, $\delta_1$ , $\rho(T)_{sat}^{liq}$), mientras que el Mode = 4 se refiere a la especificación de los parámetros ($a_c$, $b$, $k$, $\delta_1$) y obtener el valor de las constantes ($T_c$, $P_c$, $V_c$, $\omega$). Este último cálculo se realiza de forma directa como en el caso de las ecuaciones (SRK y PR), por tanto, la siguiente breve explicación se centra en las 3 primeras opciones. 2.2.1 Especificación del parametro $\delta_1 $ La primera especificación corresponde a dar un valor del parámetro $\delta_1$, con est valor se calcula el factor de compresiblidad $Z_c$ por mediod e las siguientes ecuaciones: $$d_1 = (1 + \delta_1 ^2) / (1 + \delta_1)$$ $$y = 1 + (2 (1 + \delta_1) ^ \frac{1} {3} + \left (\frac{4} {1 + \delta_1} \right)^ \frac{1} {3}$$ $$ \omega_a = \frac{(3 y ^2 + 3 y d_1 + d_1 ^ 2 + d_1 - 1)} {(3 y + d_1 - 1) ^ 2} $$ $$ \omega_b = \frac{1} {3 y + d_1 - 1} $$ $$ Z_c = \frac{y} {3 y + d_1 - 1} $$ en $A_0$ factor de compresibilidad crítico $Z_c$, determinado por las constantes ($T_c$, $P_c$, $V_c$): $$ Z_c = \frac{P_c V_c}{R T_c}$$ para el posterior cálculo del parámetro $k$. 2.2.2 Especificación de las constantes: $T_c$, $P_c$, $V_c$ y $\omega$ La segunda especificación corresponde a un valor del factor de compresibilidad crítico $Z_c$, determinado por las constantes ($T_c$, $P_c$, $V_c$): $$ Z_c = \frac{P_c V_c}{R T_c}$$ que para luego determinar el correspondiente valor del parámetro d1 que cumple con dicha especificación. Después se procede con el cálculo del parámetro k. 2.2.3 Especificación de un valor de densidad de líqudo saturado $\rho(T)_{sat}^{liq}$ La tercera opción es la especificación de un valor para la densidad de líquido saturado a una temperatura. En este caso se debe encontrar un valor d1 y el correspondiente valor del parámetro k, que permita cumplir con la imposición del valor de la densidad de líquido saturado. En este caso, se puede utilizar la clase Thermodynamic_correlations() para obtener un valor para la densidad de líquido saturado de una sustancia pura a una determinada temperatura y luego pasar este valor, como una especificación en la obtención de los parámetros de la ecuación RKPR. En la figura 4 se muestran como variables de entrada las constantes Tc,Pc, w y alfa que puede ser una especificación de alguno de los 3 parámetros siguientes $(\delta_1, V_c, \rho(T)_{sat}^{liq})$. La función F1 corresponde a la estimación de un valor para el parámetro {d1} de acuerdo a una correlación preestablecida en el caso de {alfa = Vc}. La función F2 es el cálculo de los parámetros {ac} y {b} para el correspondiente valor del parámetro {d1}. En el caso de especificar el parámetro {alfa=d1}, el cálculo de los parámetros Zc, ac y b son directos y no requieren de iteración. Mientras que en el caso de alfa = {Vc} se requiere encontrar de forma iterativa el valor del parámetro d1 que verifique el valor de Zc correspondiente por medio del Vc previamente especificado. De manera similar se procede en el caso de {alfa = rho(T)_sat_liq}. 2.2.4 Especificación de los parámetros: $a_c, b, k, \delta_1$ En los ejemplos siguientes se utilizan los datos termodísicos de la base de datos DPPR. Para el caso se tiene como especificación la ecuación de estado RKPR y las constantes criticas para el componente 3-METHYLHEPTANE. 2.3 End of explanation properties_data = pt.Data_parse() component = "3-METHYLHEPTANE" component = "METHANE" component = "ETHANE" component = "PROPANE" component = "n-HEXATRIACONTANE" NMODEL = "RKPR" NMODEL = "PR" ICALC = "constants_eps" properties_component = properties_data.selec_component(component) pt.print_properties_component(component, properties_component) dinputs = np.array([properties_component[1]['Tc'], properties_component[1]['Pc'], properties_component[1]['Omega'], properties_component[1]['Vc']]) component_eos = pt.models_eos_cal(NMODEL, ICALC, dinputs) #ac = component_eos[0] print(component_eos) Explanation: importar las linrerías requeridas, en este caso se trata de las librerías numpy, pandas junto con pyther End of explanation properties_data = pt.Data_parse() components = ["ISOBUTANE", "CARBON DIOXIDE", 'METHANE', "ETHANE", "3-METHYLHEPTANE", "n-PENTACOSANE", "NAPHTHALENE", "m-ETHYLTOLUENE", "2-METHYL-1-HEXENE"] NMODEL = "RKPR" ICALC = "constants_eps" component_eos_list = np.zeros((len(components),4)) for index, component in enumerate(components): properties_component = properties_data.selec_component(component) pt.print_properties_component(component, properties_component) dinputs = np.array([properties_component[1]['Tc'], properties_component[1]['Pc'], properties_component[1]['Omega'], properties_component[1]['Vc']]) component_eos = pt.models_eos_cal(NMODEL, ICALC, dinputs) component_eos_list[index] = component_eos components_table = pd.DataFrame(component_eos_list, index=components, columns=['ac', 'b', 'rm', 'del1']) print(components_table) Explanation: De esta forma se observa el calculo simple de los parámetros para la sustancia pura 3-METHYLHEPTANE_RKPR A continuación se realiza el mismo tipo de calculo pero tomando una serie de 9 sustancias puras, que se pueden extender facilmente a n sustancias, para obtener sus parámetros de nuevo con la ecuación de estado RKPR. End of explanation components_table Explanation: Como se observa, los resultados obtenidos son organizados en un DataFrame permitiendo agilizar la manipulación de los datos de una serie de sustancias puras. End of explanation properties_data = pt.Data_parse() dppr_file = "PureFull.xls" component = "CARBON DIOXIDE" NMODEL = "RKPR" ICALC = "density" properties_component = properties_data.selec_component(dppr_file, component) pt.print_properties_component(component, properties_component) #dinputs = np.array([properties_component[1]['Tc'], properties_component[1]['Pc'], # properties_component[1]['Omega'], properties_component[1]['Vc']]) T_especific = 270.0 RHOLSat_esp = 21.4626 # valor initial of delta_1 delta_1 = 1.5 dinputs = np.array([properties_component[1]['Tc'], properties_component[1]['Pc'], properties_component[1]['Omega'], delta_1, T_especific, RHOLSat_esp]) component_eos = pt.models_eos_cal(NMODEL, ICALC, dinputs) print(component_eos) Explanation: En el siguiente ejemplo se utiliza la ecuación RKPR pero esta vez con la especificación de la temperatura y densidad de líquido saturado para el CARBON DIOXIDE y de esta forma encontrar el valor del parámetro delta que verifica la especificación realizada para la densidad de líquido saturado. End of explanation
561
Given the following text description, write Python code to implement the functionality described below step by step Description: <h1 align="center">TensorFlow Neural Network Lab</h1> <img src="image/notmnist.png"> In this lab, you'll use all the tools you learned from Introduction to TensorFlow to label images of English letters! The data you are using, <a href="http Step3: The notMNIST dataset is too large for many computers to handle. It contains 500,000 images for just training. You'll be using a subset of this data, 15,000 images for each label (A-J). Step5: <img src="image/Mean Variance - Image.png" style="height Step6: Checkpoint All your progress is now saved to the pickle file. If you need to leave and comeback to this lab, you no longer have to start from the beginning. Just run the code block below and it will load all the data and modules required to proceed. Step7: Problem 2 Now it's time to build a simple neural network using TensorFlow. Here, your network will be just an input layer and an output layer. <img src="image/network_diagram.png" style="height Step8: <img src="image/Learn Rate Tune - Image.png" style="height Step9: Test You're going to test your model against your hold out dataset/testing data. This will give you a good indicator of how well the model will do in the real world. You should have a test accuracy of at least 80%.
Python Code: import hashlib import os import pickle from urllib.request import urlretrieve import numpy as np from PIL import Image from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.utils import resample from tqdm import tqdm from zipfile import ZipFile print('All modules imported.') Explanation: <h1 align="center">TensorFlow Neural Network Lab</h1> <img src="image/notmnist.png"> In this lab, you'll use all the tools you learned from Introduction to TensorFlow to label images of English letters! The data you are using, <a href="http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html">notMNIST</a>, consists of images of a letter from A to J in differents font. The above images are a few examples of the data you'll be training on. After training the network, you will compare your prediction model against test data. Your goal, by the end of this lab, is to make predictions against that test set with at least an 80% accuracy. Let's jump in! To start this lab, you first need to import all the necessary modules. Run the code below. If it runs successfully, it will print "All modules imported". End of explanation def download(url, file): Download file from <url> :param url: URL to file :param file: Local file path if not os.path.isfile(file): print('Downloading ' + file + '...') urlretrieve(url, file) print('Download Finished') # Download the training and test dataset. download('https://s3.amazonaws.com/udacity-sdc/notMNIST_train.zip', 'notMNIST_train.zip') download('https://s3.amazonaws.com/udacity-sdc/notMNIST_test.zip', 'notMNIST_test.zip') # Make sure the files aren't corrupted assert hashlib.md5(open('notMNIST_train.zip', 'rb').read()).hexdigest() == 'c8673b3f28f489e9cdf3a3d74e2ac8fa',\ 'notMNIST_train.zip file is corrupted. Remove the file and try again.' assert hashlib.md5(open('notMNIST_test.zip', 'rb').read()).hexdigest() == '5d3c7e653e63471c88df796156a9dfa9',\ 'notMNIST_test.zip file is corrupted. Remove the file and try again.' # Wait until you see that all files have been downloaded. print('All files downloaded.') def uncompress_features_labels(file): Uncompress features and labels from a zip file :param file: The zip file to extract the data from features = [] labels = [] with ZipFile(file) as zipf: # Progress Bar filenames_pbar = tqdm(zipf.namelist(), unit='files') # Get features and labels from all files for filename in filenames_pbar: # Check if the file is a directory if not filename.endswith('/'): with zipf.open(filename) as image_file: image = Image.open(image_file) image.load() # Load image data as 1 dimensional array # We're using float32 to save on memory space feature = np.array(image, dtype=np.float32).flatten() # Get the the letter from the filename. This is the letter of the image. label = os.path.split(filename)[1][0] features.append(feature) labels.append(label) return np.array(features), np.array(labels) # Get the features and labels from the zip files train_features, train_labels = uncompress_features_labels('notMNIST_train.zip') test_features, test_labels = uncompress_features_labels('notMNIST_test.zip') # Limit the amount of data to work with a docker container docker_size_limit = 150000 train_features, train_labels = resample(train_features, train_labels, n_samples=docker_size_limit) # Set flags for feature engineering. This will prevent you from skipping an important step. is_features_normal = False is_labels_encod = False # Wait until you see that all features and labels have been uncompressed. print('All features and labels uncompressed.') Explanation: The notMNIST dataset is too large for many computers to handle. It contains 500,000 images for just training. You'll be using a subset of this data, 15,000 images for each label (A-J). End of explanation # Problem 1 - Implement Min-Max scaling for grayscale image data def normalize_grayscale(image_data): Normalize the image data with Min-Max scaling to a range of [0.1, 0.9] :param image_data: The image data to be normalized :return: Normalized image data # TODO: Implement Min-Max scaling for grayscale image data ### DON'T MODIFY ANYTHING BELOW ### # Test Cases np.testing.assert_array_almost_equal( normalize_grayscale(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 255])), [0.1, 0.103137254902, 0.106274509804, 0.109411764706, 0.112549019608, 0.11568627451, 0.118823529412, 0.121960784314, 0.125098039216, 0.128235294118, 0.13137254902, 0.9], decimal=3) np.testing.assert_array_almost_equal( normalize_grayscale(np.array([0, 1, 10, 20, 30, 40, 233, 244, 254,255])), [0.1, 0.103137254902, 0.13137254902, 0.162745098039, 0.194117647059, 0.225490196078, 0.830980392157, 0.865490196078, 0.896862745098, 0.9]) if not is_features_normal: train_features = normalize_grayscale(train_features) test_features = normalize_grayscale(test_features) is_features_normal = True print('Tests Passed!') if not is_labels_encod: # Turn labels into numbers and apply One-Hot Encoding encoder = LabelBinarizer() encoder.fit(train_labels) train_labels = encoder.transform(train_labels) test_labels = encoder.transform(test_labels) # Change to float32, so it can be multiplied against the features in TensorFlow, which are float32 train_labels = train_labels.astype(np.float32) test_labels = test_labels.astype(np.float32) is_labels_encod = True print('Labels One-Hot Encoded') assert is_features_normal, 'You skipped the step to normalize the features' assert is_labels_encod, 'You skipped the step to One-Hot Encode the labels' # Get randomized datasets for training and validation train_features, valid_features, train_labels, valid_labels = train_test_split( train_features, train_labels, test_size=0.05, random_state=832289) print('Training features and labels randomized and split.') # Save the data for easy access pickle_file = 'notMNIST.pickle' if not os.path.isfile(pickle_file): print('Saving data to pickle file...') try: with open('notMNIST.pickle', 'wb') as pfile: pickle.dump( { 'train_dataset': train_features, 'train_labels': train_labels, 'valid_dataset': valid_features, 'valid_labels': valid_labels, 'test_dataset': test_features, 'test_labels': test_labels, }, pfile, pickle.HIGHEST_PROTOCOL) except Exception as e: print('Unable to save data to', pickle_file, ':', e) raise print('Data cached in pickle file.') Explanation: <img src="image/Mean Variance - Image.png" style="height: 75%;width: 75%; position: relative; right: 5%"> Problem 1 The first problem involves normalizing the features for your training and test data. Implement Min-Max scaling in the normalize() function to a range of a=0.1 and b=0.9. After scaling, the values of the pixels in the input data should range from 0.1 to 0.9. Since the raw notMNIST image data is in grayscale, the current values range from a min of 0 to a max of 255. Min-Max Scaling: $ X'=a+{\frac {\left(X-X_{\min }\right)\left(b-a\right)}{X_{\max }-X_{\min }}} $ If you're having trouble solving problem 1, you can view the solution here. End of explanation %matplotlib inline # Load the modules import pickle import math import numpy as np import tensorflow as tf from tqdm import tqdm import matplotlib.pyplot as plt # Reload the data pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f) train_features = pickle_data['train_dataset'] train_labels = pickle_data['train_labels'] valid_features = pickle_data['valid_dataset'] valid_labels = pickle_data['valid_labels'] test_features = pickle_data['test_dataset'] test_labels = pickle_data['test_labels'] del pickle_data # Free up memory print('Data and modules loaded.') Explanation: Checkpoint All your progress is now saved to the pickle file. If you need to leave and comeback to this lab, you no longer have to start from the beginning. Just run the code block below and it will load all the data and modules required to proceed. End of explanation # All the pixels in the image (28 * 28 = 784) features_count = 784 # All the labels labels_count = 10 # TODO: Set the features and labels tensors # features = # labels = # TODO: Set the weights and biases tensors # weights = # biases = ### DON'T MODIFY ANYTHING BELOW ### #Test Cases from tensorflow.python.ops.variables import Variable assert features._op.name.startswith('Placeholder'), 'features must be a placeholder' assert labels._op.name.startswith('Placeholder'), 'labels must be a placeholder' assert isinstance(weights, Variable), 'weights must be a TensorFlow variable' assert isinstance(biases, Variable), 'biases must be a TensorFlow variable' assert features._shape == None or (\ features._shape.dims[0].value is None and\ features._shape.dims[1].value in [None, 784]), 'The shape of features is incorrect' assert labels._shape == None or (\ labels._shape.dims[0].value is None and\ labels._shape.dims[1].value in [None, 10]), 'The shape of labels is incorrect' assert weights._variable._shape == (784, 10), 'The shape of weights is incorrect' assert biases._variable._shape == (10), 'The shape of biases is incorrect' assert features._dtype == tf.float32, 'features must be type float32' assert labels._dtype == tf.float32, 'labels must be type float32' # Feed dicts for training, validation, and test session train_feed_dict = {features: train_features, labels: train_labels} valid_feed_dict = {features: valid_features, labels: valid_labels} test_feed_dict = {features: test_features, labels: test_labels} # Linear Function WX + b logits = tf.matmul(features, weights) + biases prediction = tf.nn.softmax(logits) # Cross entropy cross_entropy = -tf.reduce_sum(labels * tf.log(prediction), reduction_indices=1) # Training loss loss = tf.reduce_mean(cross_entropy) # Create an operation that initializes all variables init = tf.global_variables_initializer() # Test Cases with tf.Session() as session: session.run(init) session.run(loss, feed_dict=train_feed_dict) session.run(loss, feed_dict=valid_feed_dict) session.run(loss, feed_dict=test_feed_dict) biases_data = session.run(biases) assert not np.count_nonzero(biases_data), 'biases must be zeros' print('Tests Passed!') # Determine if the predictions are correct is_correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(labels, 1)) # Calculate the accuracy of the predictions accuracy = tf.reduce_mean(tf.cast(is_correct_prediction, tf.float32)) print('Accuracy function created.') Explanation: Problem 2 Now it's time to build a simple neural network using TensorFlow. Here, your network will be just an input layer and an output layer. <img src="image/network_diagram.png" style="height: 40%;width: 40%; position: relative; right: 10%"> For the input here the images have been flattened into a vector of $28 \times 28 = 784$ features. Then, we're trying to predict the image digit so there are 10 output units, one for each label. Of course, feel free to add hidden layers if you want, but this notebook is built to guide you through a single layer network. For the neural network to train on your data, you need the following <a href="https://www.tensorflow.org/resources/dims_types.html#data-types">float32</a> tensors: - features - Placeholder tensor for feature data (train_features/valid_features/test_features) - labels - Placeholder tensor for label data (train_labels/valid_labels/test_labels) - weights - Variable Tensor with random numbers from a truncated normal distribution. - See <a href="https://www.tensorflow.org/api_docs/python/constant_op.html#truncated_normal">tf.truncated_normal() documentation</a> for help. - biases - Variable Tensor with all zeros. - See <a href="https://www.tensorflow.org/api_docs/python/constant_op.html#zeros"> tf.zeros() documentation</a> for help. If you're having trouble solving problem 2, review "TensorFlow Linear Function" section of the class. If that doesn't help, the solution for this problem is available here. End of explanation # Change if you have memory restrictions batch_size = 128 # TODO: Find the best parameters for each configuration # epochs = # learning_rate = ### DON'T MODIFY ANYTHING BELOW ### # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # The accuracy measured against the validation set validation_accuracy = 0.0 # Measurements use for graphing loss and accuracy log_batch_step = 50 batches = [] loss_batch = [] train_acc_batch = [] valid_acc_batch = [] with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer and get loss _, l = session.run( [optimizer, loss], feed_dict={features: batch_features, labels: batch_labels}) # Log every 50 batches if not batch_i % log_batch_step: # Calculate Training and Validation accuracy training_accuracy = session.run(accuracy, feed_dict=train_feed_dict) validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) # Log batches previous_batch = batches[-1] if batches else 0 batches.append(log_batch_step + previous_batch) loss_batch.append(l) train_acc_batch.append(training_accuracy) valid_acc_batch.append(validation_accuracy) # Check accuracy against Validation data validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) loss_plot = plt.subplot(211) loss_plot.set_title('Loss') loss_plot.plot(batches, loss_batch, 'g') loss_plot.set_xlim([batches[0], batches[-1]]) acc_plot = plt.subplot(212) acc_plot.set_title('Accuracy') acc_plot.plot(batches, train_acc_batch, 'r', label='Training Accuracy') acc_plot.plot(batches, valid_acc_batch, 'x', label='Validation Accuracy') acc_plot.set_ylim([0, 1.0]) acc_plot.set_xlim([batches[0], batches[-1]]) acc_plot.legend(loc=4) plt.tight_layout() plt.show() print('Validation accuracy at {}'.format(validation_accuracy)) Explanation: <img src="image/Learn Rate Tune - Image.png" style="height: 70%;width: 70%"> Problem 3 Below are 2 parameter configurations for training the neural network. In each configuration, one of the parameters has multiple options. For each configuration, choose the option that gives the best acccuracy. Parameter configurations: Configuration 1 * Epochs: 1 * Learning Rate: * 0.8 * 0.5 * 0.1 * 0.05 * 0.01 Configuration 2 * Epochs: * 1 * 2 * 3 * 4 * 5 * Learning Rate: 0.2 The code will print out a Loss and Accuracy graph, so you can see how well the neural network performed. If you're having trouble solving problem 3, you can view the solution here. End of explanation ### DON'T MODIFY ANYTHING BELOW ### # The accuracy measured against the test set test_accuracy = 0.0 with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer _ = session.run(optimizer, feed_dict={features: batch_features, labels: batch_labels}) # Check accuracy against Test data test_accuracy = session.run(accuracy, feed_dict=test_feed_dict) assert test_accuracy >= 0.80, 'Test accuracy at {}, should be equal to or greater than 0.80'.format(test_accuracy) print('Nice Job! Test Accuracy is {}'.format(test_accuracy)) Explanation: Test You're going to test your model against your hold out dataset/testing data. This will give you a good indicator of how well the model will do in the real world. You should have a test accuracy of at least 80%. End of explanation
562
Given the following text description, write Python code to implement the functionality described below step by step Description: NMT-Keras tutorial 2. Creating and training a Neural Translation Model Now, we'll create and train a Neural Machine Translation (NMT) model. Since there is a significant number of hyperparameters, we'll use the default ones, specified in the config.py file. Note that almost every hardcoded parameter is automatically set from config if we run main.py. We'll create the so-called 'GroundHogModel'. It is defined in the model_zoo.py file. See the neural_machine_translation.pdf for an overview of such system. If you followed the notebook 1_dataset_tutorial.ipynb, you should have a dataset instance. Otherwise, you should follow that notebook first. First, we'll make some imports, load the default parameters and load the dataset. Step1: Since the number of words in the dataset may be unknown beforehand, we must update the params information according to the dataset instance Step2: Now, we create a TranslationModel instance Step3: Now, we must define the inputs and outputs mapping from our Dataset instance to our model Step4: We can add some callbacks for controlling the training (e.g. Sampling each N updates, early stop, learning rate annealing...). For instance, let's build an Early-Stop callback. After each 2 epochs, it will compute the 'coco' scores on the development set. If the metric 'Bleu_4' doesn't improve during more than 5 checkings, it will stop. We need to pass some variables to the callback (in the extra_vars dictionary) Step5: Now we are almost ready to train. We set up some training parameters... Step6: And train!
Python Code: from config import load_parameters from model_zoo import TranslationModel import utils from keras_wrapper.cnn_model import loadModel from keras_wrapper.dataset import loadDataset from keras_wrapper.extra.callbacks import PrintPerformanceMetricOnEpochEndOrEachNUpdates params = load_parameters() dataset = loadDataset('datasets/Dataset_tutorial_dataset.pkl') Explanation: NMT-Keras tutorial 2. Creating and training a Neural Translation Model Now, we'll create and train a Neural Machine Translation (NMT) model. Since there is a significant number of hyperparameters, we'll use the default ones, specified in the config.py file. Note that almost every hardcoded parameter is automatically set from config if we run main.py. We'll create the so-called 'GroundHogModel'. It is defined in the model_zoo.py file. See the neural_machine_translation.pdf for an overview of such system. If you followed the notebook 1_dataset_tutorial.ipynb, you should have a dataset instance. Otherwise, you should follow that notebook first. First, we'll make some imports, load the default parameters and load the dataset. End of explanation params['INPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len['source_text'] params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len['target_text'] Explanation: Since the number of words in the dataset may be unknown beforehand, we must update the params information according to the dataset instance: End of explanation nmt_model = TranslationModel(params, model_type='GroundHogModel', model_name='tutorial_model', vocabularies=dataset.vocabulary, store_path='trained_models/tutorial_model/', verbose=True) Explanation: Now, we create a TranslationModel instance: End of explanation inputMapping = dict() for i, id_in in enumerate(params['INPUTS_IDS_DATASET']): pos_source = dataset.ids_inputs.index(id_in) id_dest = nmt_model.ids_inputs[i] inputMapping[id_dest] = pos_source nmt_model.setInputsMapping(inputMapping) outputMapping = dict() for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']): pos_target = dataset.ids_outputs.index(id_out) id_dest = nmt_model.ids_outputs[i] outputMapping[id_dest] = pos_target nmt_model.setOutputsMapping(outputMapping) Explanation: Now, we must define the inputs and outputs mapping from our Dataset instance to our model End of explanation extra_vars = {'language': 'en', 'n_parallel_loaders': 8, 'tokenize_f': eval('dataset.' + 'tokenize_none'), 'beam_size': 12, 'maxlen': 50, 'model_inputs': ['source_text', 'state_below'], 'model_outputs': ['target_text'], 'dataset_inputs': ['source_text', 'state_below'], 'dataset_outputs': ['target_text'], 'normalize': True, 'alpha_factor': 0.6, 'val': {'references': dataset.extra_variables['val']['target_text']} } vocab = dataset.vocabulary['target_text']['idx2words'] callbacks = [] callbacks.append(PrintPerformanceMetricOnEpochEndOrEachNUpdates(nmt_model, dataset, gt_id='target_text', metric_name=['coco'], set_name=['val'], batch_size=50, each_n_epochs=2, extra_vars=extra_vars, reload_epoch=0, is_text=True, index2word_y=vocab, sampling_type='max_likelihood', beam_search=True, save_path=nmt_model.model_path, start_eval_on_epoch=0, write_samples=True, write_type='list', verbose=True)) Explanation: We can add some callbacks for controlling the training (e.g. Sampling each N updates, early stop, learning rate annealing...). For instance, let's build an Early-Stop callback. After each 2 epochs, it will compute the 'coco' scores on the development set. If the metric 'Bleu_4' doesn't improve during more than 5 checkings, it will stop. We need to pass some variables to the callback (in the extra_vars dictionary): End of explanation training_params = {'n_epochs': 100, 'batch_size': 40, 'maxlen': 30, 'epochs_for_save': 1, 'verbose': 0, 'eval_on_sets': [], 'n_parallel_loaders': 8, 'extra_callbacks': callbacks, 'reload_epoch': 0, 'epoch_offset': 0} Explanation: Now we are almost ready to train. We set up some training parameters... End of explanation nmt_model.trainNet(dataset, training_params) Explanation: And train! End of explanation
563
Given the following text description, write Python code to implement the functionality described below step by step Description: Morph surface source estimate This example demonstrates how to morph an individual subject's Step1: Setup paths Step2: Load example data Step3: Setting up SourceMorph for SourceEstimate In MNE, surface source estimates represent the source space simply as lists of vertices (see tut-source-estimate-class). This list can either be obtained from Step4: We also need to specify the set of vertices to morph to. This can be done using the spacing parameter, but for consistency it's better to pass the src_to parameter. <div class="alert alert-info"><h4>Note</h4><p>Since the default values of Step5: Apply morph to (Vector) SourceEstimate The morph will be applied to the source estimate data, by giving it as the first argument to the morph we computed above. Step6: Plot results Step7: As inflated surface Step8: Reading and writing SourceMorph from and to disk An instance of SourceMorph can be saved, by calling
Python Code: # Author: Tommy Clausner <[email protected]> # # License: BSD (3-clause) import os import os.path as op import mne from mne.datasets import sample print(__doc__) Explanation: Morph surface source estimate This example demonstrates how to morph an individual subject's :class:mne.SourceEstimate to a common reference space. We achieve this using :class:mne.SourceMorph. Pre-computed data will be morphed based on a spherical representation of the cortex computed using the spherical registration of FreeSurfer &lt;tut-freesurfer-mne&gt; (https://surfer.nmr.mgh.harvard.edu/fswiki/SurfaceRegAndTemplates) [1]_. This transform will be used to morph the surface vertices of the subject towards the reference vertices. Here we will use 'fsaverage' as a reference space (see https://surfer.nmr.mgh.harvard.edu/fswiki/FsAverage). The transformation will be applied to the surface source estimate. A plot depicting the successful morph will be created for the spherical and inflated surface representation of 'fsaverage', overlaid with the morphed surface source estimate. References .. [1] Greve D. N., Van der Haegen L., Cai Q., Stufflebeam S., Sabuncu M. R., Fischl B., Brysbaert M. A Surface-based Analysis of Language Lateralization and Cortical Asymmetry. Journal of Cognitive Neuroscience 25(9), 1477-1492, 2013. <div class="alert alert-info"><h4>Note</h4><p>For background information about morphing see `ch_morph`.</p></div> End of explanation data_path = sample.data_path() sample_dir = op.join(data_path, 'MEG', 'sample') subjects_dir = op.join(data_path, 'subjects') fname_src = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif') fname_fwd = op.join(sample_dir, 'sample_audvis-meg-oct-6-fwd.fif') fname_fsaverage_src = os.path.join(subjects_dir, 'fsaverage', 'bem', 'fsaverage-ico-5-src.fif') fname_stc = os.path.join(sample_dir, 'sample_audvis-meg') Explanation: Setup paths End of explanation # Read stc from file stc = mne.read_source_estimate(fname_stc, subject='sample') Explanation: Load example data End of explanation src_orig = mne.read_source_spaces(fname_src) print(src_orig) # n_used=4098, 4098 fwd = mne.read_forward_solution(fname_fwd) print(fwd['src']) # n_used=3732, 3766 print([len(v) for v in stc.vertices]) Explanation: Setting up SourceMorph for SourceEstimate In MNE, surface source estimates represent the source space simply as lists of vertices (see tut-source-estimate-class). This list can either be obtained from :class:mne.SourceSpaces (src) or from the stc itself. If you use the source space, be sure to use the source space from the forward or inverse operator, because vertices can be excluded during forward computation due to proximity to the BEM inner skull surface: End of explanation src_to = mne.read_source_spaces(fname_fsaverage_src) print(src_to[0]['vertno']) # special, np.arange(10242) morph = mne.compute_source_morph(stc, subject_from='sample', subject_to='fsaverage', src_to=src_to, subjects_dir=subjects_dir) Explanation: We also need to specify the set of vertices to morph to. This can be done using the spacing parameter, but for consistency it's better to pass the src_to parameter. <div class="alert alert-info"><h4>Note</h4><p>Since the default values of :func:`mne.compute_source_morph` are ``spacing=5, subject_to='fsaverage'``, in this example we could actually omit the ``src_to`` and ``subject_to`` arguments below. The ico-5 ``fsaverage`` source space contains the special values ``[np.arange(10242)] * 2``, but in general this will not be true for other spacings or other subjects. Thus it is recommended to always pass the destination ``src`` for consistency.</p></div> Initialize SourceMorph for SourceEstimate End of explanation stc_fsaverage = morph.apply(stc) Explanation: Apply morph to (Vector) SourceEstimate The morph will be applied to the source estimate data, by giving it as the first argument to the morph we computed above. End of explanation # Define plotting parameters surfer_kwargs = dict( hemi='lh', subjects_dir=subjects_dir, clim=dict(kind='value', lims=[8, 12, 15]), views='lateral', initial_time=0.09, time_unit='s', size=(800, 800), smoothing_steps=5) # As spherical surface brain = stc_fsaverage.plot(surface='sphere', **surfer_kwargs) # Add title brain.add_text(0.1, 0.9, 'Morphed to fsaverage (spherical)', 'title', font_size=16) Explanation: Plot results End of explanation brain_inf = stc_fsaverage.plot(surface='inflated', **surfer_kwargs) # Add title brain_inf.add_text(0.1, 0.9, 'Morphed to fsaverage (inflated)', 'title', font_size=16) Explanation: As inflated surface End of explanation stc_fsaverage = mne.compute_source_morph(stc, subjects_dir=subjects_dir).apply(stc) Explanation: Reading and writing SourceMorph from and to disk An instance of SourceMorph can be saved, by calling :meth:morph.save &lt;mne.SourceMorph.save&gt;. This method allows for specification of a filename under which the morph will be save in ".h5" format. If no file extension is provided, "-morph.h5" will be appended to the respective defined filename:: &gt;&gt;&gt; morph.save('my-file-name') Reading a saved source morph can be achieved by using :func:mne.read_source_morph:: &gt;&gt;&gt; morph = mne.read_source_morph('my-file-name-morph.h5') Once the environment is set up correctly, no information such as subject_from or subjects_dir must be provided, since it can be inferred from the data and use morph to 'fsaverage' by default. SourceMorph can further be used without creating an instance and assigning it to a variable. Instead :func:mne.compute_source_morph and :meth:mne.SourceMorph.apply can be easily chained into a handy one-liner. Taking this together the shortest possible way to morph data directly would be: End of explanation
564
Given the following text description, write Python code to implement the functionality described below step by step Description: Fractionating $2^k$ Factorial Designs Motivation The prior section showed an example of what an experimental design might like look like for 6 variables. However, this resulted in a $2^6 = 64$ experiment design campaign. This is potentially a major issue - if my experiments take 6 hours, and have to be staggered over working hours on weekdays, you're looking at almost 90 days turnaround time, assuming each experiment is carried out flawlessly. This is simply not a realistic view of experimentation. In addition, we saw that a five-coefficient model captured nearly as much detail as a 64-coefficient model. By reducing the number of input variables we looked at, we turned certain experiments into replicates (because the only thing changed bewteen them were insignificant variables or variable combinations). But we can halve or quarter our effort, and substantially improve our effectiveness in the lab, by carefully selecting experiments at each stage of the experiment to reveal a maximum amount of information, and avoiding as much as possible these kinds of duplicate experiments, through a fractional factorial design. Step1: After re-casting the problem in a general form, we begin with the experimental design matrix. If we were to construct the full factorial for our $2^6$ factorial example, we would again have 64 rows in our experimental design matrix dataframe, corresponding to 64 experiments to run. Step2: Design Matrix Let's talk a bit more about the design matrix. Each column of the design matrix corresponds to a unique coded input variable value $(-1,+1)$. But each experiment also has a corresponding coded value for each two-variable interaction $x_i,x_j$, and for each three-variable interaction $x_k,x_m,x_n$, and so on. These interactions are simply the product of each coded variable value. For example, if $$ x_1 = -1 \ x_2 = +1 \ x_3 = +1 $$ then two-variable interaction effects can be computed as Step3: The multi-variable columns can be used to fractionate our design. Half Factorial Suppose we pick a high-order interaction effect at random - e.g., $x_1 \times x_2 \times x_3 \times x_4$ - and assume it will be unimportant. Our assumption allows us to cut out any experiments that are intended to give us information about the effect of $x_1 x_2 x_3 x_4$. For any two groups of experiments, if one group has $$x_1 x_2 x_3 x_4 = +1$$ and the other group has $$x_1 x_2 x_3 x_4 = -1$$ then based on our assumption that that interaction effect will be unimportant, one of those two groups can be thrown out. Fortuitously, the first time a variable is eliminated, no matter which variable it is, the number of experiments is cut in half. Further eliminations of variables continue to cut the number of experiments in half. So a six-factor experimental design could be whittled down as follows Step4: Costs and Benefits The benefits are obvious - we've halved the number of experiments our experiment design requires. But at what cost? The first 32 experiments, where $x_1 x_2 x_3 x_4 = +1$, give us information at a positive level of that input variable combination. To get information at a negative level of that input variable combination (i.e., $x_1 x_2 x_3 x_4 = -1$), we need 32 additional experiments. Our assumption is that changing $x_1 x_2 x_3 x_4$ from high to low will have no effect on the observable $y$. This also modifies the information we get about higher-order interaction effects. For example, we've assumed Step5: Each of the dataframes above represents a different fractional factorial design. $\frac{1}{4}$ Fractional Designs To further reduce the number of experiments, two identities can be used. The number of experiments is cut in half for each identity. We already have one identity, $$ I = x_1 x_2 x_3 x_4 = 1 $$ now let's define another one
Python Code: import pandas as pd import itertools import numpy as np import seaborn as sns import pylab import scipy.stats as stats import statsmodels.api as sm Explanation: Fractionating $2^k$ Factorial Designs Motivation The prior section showed an example of what an experimental design might like look like for 6 variables. However, this resulted in a $2^6 = 64$ experiment design campaign. This is potentially a major issue - if my experiments take 6 hours, and have to be staggered over working hours on weekdays, you're looking at almost 90 days turnaround time, assuming each experiment is carried out flawlessly. This is simply not a realistic view of experimentation. In addition, we saw that a five-coefficient model captured nearly as much detail as a 64-coefficient model. By reducing the number of input variables we looked at, we turned certain experiments into replicates (because the only thing changed bewteen them were insignificant variables or variable combinations). But we can halve or quarter our effort, and substantially improve our effectiveness in the lab, by carefully selecting experiments at each stage of the experiment to reveal a maximum amount of information, and avoiding as much as possible these kinds of duplicate experiments, through a fractional factorial design. End of explanation column_labs = ['x%d'%(i+1) for i in range(6)] encoded_inputs = list( itertools.product([-1,1],[-1,1],[-1,1],[-1,1],[-1,1],[-1,1]) ) doe = pd.DataFrame(encoded_inputs,columns=column_labs) print(len(doe)) Explanation: After re-casting the problem in a general form, we begin with the experimental design matrix. If we were to construct the full factorial for our $2^6$ factorial example, we would again have 64 rows in our experimental design matrix dataframe, corresponding to 64 experiments to run. End of explanation doe['x1-x2-x3-x4'] = doe.apply( lambda z : z['x1']*z['x2']*z['x3']*z['x4'] , axis=1) doe['x4-x5-x6'] = doe.apply( lambda z : z['x4']*z['x5']*z['x6'] , axis=1) doe['x2-x4-x5'] = doe.apply( lambda z : z['x2']*z['x4']*z['x5'] , axis=1) doe[0:10] Explanation: Design Matrix Let's talk a bit more about the design matrix. Each column of the design matrix corresponds to a unique coded input variable value $(-1,+1)$. But each experiment also has a corresponding coded value for each two-variable interaction $x_i,x_j$, and for each three-variable interaction $x_k,x_m,x_n$, and so on. These interactions are simply the product of each coded variable value. For example, if $$ x_1 = -1 \ x_2 = +1 \ x_3 = +1 $$ then two-variable interaction effects can be computed as: $$ x_{12} = -1 \times +1 = -1 \ x_{13} = -1 \times +1 = -1 \ x_{23} = +1 \times +1 = +1 \ $$ and three-variable interaction effects are: $$ x_{123} = -1 \times -1 \times +1 = +1 $$ Now we can add new columns to our experimental design matrix dataframe, representing coded values for higher-order interaction effects: End of explanation print(len( doe[doe['x1-x2-x3-x4']==1] )) Explanation: The multi-variable columns can be used to fractionate our design. Half Factorial Suppose we pick a high-order interaction effect at random - e.g., $x_1 \times x_2 \times x_3 \times x_4$ - and assume it will be unimportant. Our assumption allows us to cut out any experiments that are intended to give us information about the effect of $x_1 x_2 x_3 x_4$. For any two groups of experiments, if one group has $$x_1 x_2 x_3 x_4 = +1$$ and the other group has $$x_1 x_2 x_3 x_4 = -1$$ then based on our assumption that that interaction effect will be unimportant, one of those two groups can be thrown out. Fortuitously, the first time a variable is eliminated, no matter which variable it is, the number of experiments is cut in half. Further eliminations of variables continue to cut the number of experiments in half. So a six-factor experimental design could be whittled down as follows: Six-factor, two-level experiment design: * $n=2$, $k=6$, $2^6$ experimental design * Full factorial: $2^6 = 64$ experiments * Half factorial: $2^{6-1} = 32$ experiments * $\frac{1}{4}$ Fractional factorial: $2^{6-2} = 16$ experiments * $\frac{1}{8}$ Fractional factorial: $2^{6-3} = 8$ experiments * $\frac{1}{16}$ Fractional factorial: $2^{6-4} = 4$ experiments In general, for an $n^k$ experiment design ($n$ factor, $k$ level), a $\dfrac{1}{2^p}$ fractional factorial can be defined as: $\dfrac{1}{2^p}$ Fractional factorial: $2^{n-p}$ experiments Note that as the fractional factorial gets narrower, and the experiments get fewer, the number of aliased interaction effects gets larger, until not even interaction effects can be distinguished, but only main effects. (Screening designs, such as Plackett-Burman designs, are based on this idea of highly-fractionated experiment design; we'll get into that later.) For now, let's look at the half factorial: 32 experiments, with the reduction in varaibles coming from aliasing the interaction effect $x_1 x_2 x_3 x_4$: End of explanation # Defining multiple DOE matrices: # DOE 1 based on identity I = x1 x2 x3 x4 doe1 = doe[doe['x1-x2-x3-x4']==1] # DOE 2 based on identity I = x4 x5 x6 doe2 = doe[doe['x4-x5-x6']==-1] # DOE 3 based on identity I = x2 x4 x5 doe3 = doe[doe['x2-x4-x5']==-1] doe1[column_labs].T doe2[column_labs].T doe3[column_labs].T Explanation: Costs and Benefits The benefits are obvious - we've halved the number of experiments our experiment design requires. But at what cost? The first 32 experiments, where $x_1 x_2 x_3 x_4 = +1$, give us information at a positive level of that input variable combination. To get information at a negative level of that input variable combination (i.e., $x_1 x_2 x_3 x_4 = -1$), we need 32 additional experiments. Our assumption is that changing $x_1 x_2 x_3 x_4$ from high to low will have no effect on the observable $y$. This also modifies the information we get about higher-order interaction effects. For example, we've assumed: $$ x_1 x_2 x_3 x_4 = +1 $$ We can use this identity to figure out what information we're missing when we cut out the 32 experiments. Our assumption about the fourth-order interaction also changes fifth- and sixth-order interactions: $$ (x_1 x_2 x_3 x_4) = (+1) \ (x_1 x_2 x_3 x_4) x_5 = (+1) x_5 \ x_1 x_2 x_3 x_4 x_5 = x_5 $$ meaning the fifth-order interaction effect $x_1 x_2 x_3 x_4 x_5$ has been aliased with the first-order main effect $x_5$. This is a safe assumption since it is extremely unlikely that a fifth-order interaction effect could be confounded with a first-order main effect. We can derive other relations, using the fact that any factor squared is equivalent to $(+1)$, so that: $$ (x_1 x_2 x_3 x_4) = +1 \ (x_1 x_2 x_3 x_4) x_1 = (+1) x_1 \ (x_1^2 x_2 x_3 x_4) = (+1) x_1 \ x_2 x_3 x_4 = x_1 $$ The sequence of variables selected as the interaction effect to be used as the experimental design basis is called the generator, and is denoted $I$: $$ I = x_1 x_2 x_3 x_4 $$ and we set $I=+1$ or $I=-1$. End of explanation quarter_fractional_doe = doe[ np.logical_and( doe['x1-x2-x3-x4']==1, doe['x4-x5-x6']==1 ) ] print("Number of experiments: %d"%(len(quarter_fractional_doe[column_labs]))) quarter_fractional_doe[column_labs].T Explanation: Each of the dataframes above represents a different fractional factorial design. $\frac{1}{4}$ Fractional Designs To further reduce the number of experiments, two identities can be used. The number of experiments is cut in half for each identity. We already have one identity, $$ I = x_1 x_2 x_3 x_4 = 1 $$ now let's define another one: $$ I_2 = x_4 x_5 x_6 = 1 $$ Our resulting factorial matrix can be reduced the same way. In Python, we use the logical_and function to ensure our two conditions are satisfied. End of explanation
565
Given the following text description, write Python code to implement the functionality described below step by step Description: Step1: Chicago taxi fare training experience This experiment using Scikit-learn Random Forest to train a ML model on Chicago taxi dataset to estimate taxi trip fare in a given time and start-end locations. Selected approach, feature engineering is based on https Step2: Query dataset Step3: Column info Watch amount of null values in 'Non-Null Count column' Step4: Raw descriptive statistics Step5: Feature engineering Step6: Remaining null values per column after feature engineering Step7: Data profiling (executing the next cell takes long time) Step8: Visual dropoff locations Step9: Location histograms Step10: Time based explorations Trip start distribution Step11: Trip loginess Step12: Fare by trip start hour Step13: Split dataframe to examples and output Step14: Training pipeline Step15: Option 1 Step16: Option 2 Step17: Prediction test Step18: Cross validation score to test set
Python Code: import numpy as np import pandas as pd from pandas_profiling import ProfileReport from scipy import stats from sklearn.ensemble import RandomForestRegressor from sklearn.compose import ColumnTransformer from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder, StandardScaler # MLflow import mlflow import mlflow.sklearn # plotting libraries: import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns # Google clients import google.auth from google.cloud import bigquery from google.cloud import bigquery_storage # Set default appearance # - overide maplot libs ugly colours. # - default figure size sns.set(color_codes=True) mpl.rcParams['figure.figsize'] = [13, 8] %matplotlib inline BQ_DATASET = 'chicago_taxi_trips' BQ_TABLE = 'taxi_trips' BQ_QUERY = with tmp_table as ( SELECT trip_seconds, trip_miles, fare, tolls, company, pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude, DATETIME(trip_start_timestamp, 'America/Chicago') trip_start_timestamp, DATETIME(trip_end_timestamp, 'America/Chicago') trip_end_timestamp, CASE WHEN (pickup_community_area IN (56, 64, 76)) OR (dropoff_community_area IN (56, 64, 76)) THEN 1 else 0 END is_airport, FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` WHERE dropoff_latitude IS NOT NULL and dropoff_longitude IS NOT NULL and pickup_latitude IS NOT NULL and pickup_longitude IS NOT NULL and fare > 0 and trip_miles > 0 and MOD(ABS(FARM_FINGERPRINT(unique_key)), 100) {} ORDER BY RAND() LIMIT 20000) SELECT *, EXTRACT(YEAR FROM trip_start_timestamp) trip_start_year, EXTRACT(MONTH FROM trip_start_timestamp) trip_start_month, EXTRACT(DAY FROM trip_start_timestamp) trip_start_day, EXTRACT(HOUR FROM trip_start_timestamp) trip_start_hour, FORMAT_DATE('%a', DATE(trip_start_timestamp)) trip_start_day_of_week FROM tmp_table # Create BigQuery client credentials, your_project_id = google.auth.default( scopes=['https://www.googleapis.com/auth/cloud-platform'] ) bqclient = bigquery.Client(credentials=credentials, project=your_project_id,) bqstorageclient = bigquery_storage.BigQueryReadClient(credentials=credentials) Explanation: Chicago taxi fare training experience This experiment using Scikit-learn Random Forest to train a ML model on Chicago taxi dataset to estimate taxi trip fare in a given time and start-end locations. Selected approach, feature engineering is based on https://github.com/v-loves-avocados/chicago-taxi data exploration and analysis by Aradhana Chaturvedi. End of explanation df = ( bqclient.query(BQ_QUERY.format('between 0 and 99')) .result() .to_dataframe(bqstorage_client=bqstorageclient) ) Explanation: Query dataset End of explanation display(df.info()) Explanation: Column info Watch amount of null values in 'Non-Null Count column' End of explanation display(df.describe()) Explanation: Raw descriptive statistics End of explanation def feature_engineering(data): # Add 'N/A' for missing 'Company' data.fillna(value={'company':'N/A','tolls':0}, inplace=True) # Drop rows contains null data. data.dropna(how='any', axis='rows', inplace=True) # Pickup and dropoff locations distance data['abs_distance'] = (np.hypot(data['dropoff_latitude']-data['pickup_latitude'], data['dropoff_longitude']-data['pickup_longitude']))*100 # Remove extremes, outliers possible_outliers_cols = ['trip_seconds', 'trip_miles', 'fare', 'abs_distance'] data=data[(np.abs(stats.zscore(data[possible_outliers_cols])) < 3).all(axis=1)].copy() # Reduce location accuracy data=data.round({'pickup_latitude': 3, 'pickup_longitude': 3, 'dropoff_latitude':3, 'dropoff_longitude':3}) return data df=feature_engineering(df) display(df.describe()) Explanation: Feature engineering End of explanation print(df.isnull().sum().sort_values(ascending=False)) Explanation: Remaining null values per column after feature engineering End of explanation ProfileReport(df, title='Chicago taxi dataset profiling Report').to_notebook_iframe() Explanation: Data profiling (executing the next cell takes long time) End of explanation sc = plt.scatter(df.dropoff_longitude, df.dropoff_latitude, c = df['fare'], cmap = 'summer') plt.colorbar(sc) Explanation: Visual dropoff locations End of explanation fig, axs = plt.subplots(2) fig.suptitle('Pickup location histograms') df.hist('pickup_longitude', bins=100, ax=axs[0]) df.hist('pickup_latitude', bins=100, ax=axs[1]) plt.show() fig, axs = plt.subplots(2) fig.suptitle('Dropoff location histograms') df.hist('dropoff_longitude', bins=100, ax=axs[0]) df.hist('dropoff_latitude', bins=100, ax=axs[1]) plt.show() Explanation: Location histograms End of explanation fig, axs = plt.subplots(4) fig.suptitle('Trip start histograms') fig.set_size_inches(18, 12, forward=True) df.hist('trip_start_year', bins=8, ax=axs[0], ) df.hist('trip_start_month', bins=12, ax=axs[1]) df.hist('trip_start_day', bins=31, ax=axs[2]) df.hist('trip_start_hour', bins=24, ax=axs[3]) plt.show() Explanation: Time based explorations Trip start distribution End of explanation fig, axs = plt.subplots(2) fig.set_size_inches(18, 8, forward=True) df.hist('trip_miles', bins=50, ax=axs[0]) df.hist('trip_seconds', bins=50, ax=axs[1]) plt.show() Explanation: Trip loginess End of explanation display(df.groupby('trip_start_hour')['fare'].mean().plot()) Explanation: Fare by trip start hour End of explanation # Drop complex fields and split dataframe to examples and output mlflow.log_param('training_shape', f'{df.shape}') X=df.drop(['trip_start_timestamp'],axis=1) y=df['fare'] Explanation: Split dataframe to examples and output End of explanation # global variables experiment_name = 'chicago-taxi-1' ct_pipe = ColumnTransformer(transformers=[ ('hourly_cat', OneHotEncoder(categories=[range(0,24)], sparse = False), ['trip_start_hour']), ('dow', OneHotEncoder(categories=[['Mon', 'Tue', 'Sun', 'Wed', 'Sat', 'Fri', 'Thu']], sparse = False), ['trip_start_day_of_week']), ('std_scaler', StandardScaler(), [ 'trip_start_year', 'abs_distance', 'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'trip_miles', 'trip_seconds']) ]) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=123) X_train=X_train.drop('fare', axis=1) # for more details: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html rfr_pipe = Pipeline([ ('ct', ct_pipe), ('forest_reg', RandomForestRegressor( n_estimators = 20, max_features = 'auto', n_jobs = -1, random_state = 3, max_depth=None, max_leaf_nodes=None, )) ]) rfr_score = cross_val_score(rfr_pipe, X_train, y_train, scoring = 'neg_mean_squared_error', cv = 5) rfr_rmse = np.sqrt(-rfr_score) rfr_rmse.mean() mlflow.log_metric('train_cross_valid_score_rmse_mean', np.sqrt(-rfr_score).mean()) mlflow.log_param('number_of_estimators', 20) Explanation: Training pipeline End of explanation # To see all RandomForestRegressor hyper parameters: # estimator=RandomForestRegressor() # display(estimator.get_params()) # Train model mlflow.set_experiment('chicago-taxi-0') # mlflow.sklearn.autolog() with mlflow.start_run(nested=True) as mlflow_run: final_model=rfr_pipe.fit(X_train, y_train) mlflow.sklearn.log_model(final_model, 'chicago_rnd_forest') Explanation: Option 1: Simple training (~fast) End of explanation param_grid = {'forest_reg__n_estimators': [5, 250], 'forest_reg__max_features': [6, 16, 'auto']} forest_gs = GridSearchCV(rfr_pipe, param_grid, cv = 5, scoring = 'neg_mean_squared_error', n_jobs = -1) forest_gs.fit(X_train, y_train) print(f'Best parameters: {forest_gs.best_params_}') print(f'Best score: {np.sqrt(-forest_gs.best_score_)}') print(f'(All scores: {np.sqrt(-forest_gs.cv_results_['mean_test_score'])})') final_model=forest_gs.best_estimator_ Explanation: Option 2: Parameter search + training (time consuming) End of explanation X_pred = pd.DataFrame(X_test, columns=X_test.columns) X_pred['fare_pred'] = final_model.predict(X_test.drop('fare',axis=1)) X_pred.head(5) Explanation: Prediction test End of explanation rfr_score = cross_val_score(final_model, X_test, y_test, scoring='neg_mean_squared_error', cv = 5) rfr_rmse = np.sqrt(-rfr_score) rfr_rmse.mean() mlflow.log_metric('eval_cross_valid_score_rmse_mean', np.sqrt(-rfr_score).mean()) # Comparer test def model_comparer(job_name, **kwargs): print(f'Model blessing: "{job_name}"') experiment = mlflow.get_experiment_by_name(experiment_name) filter_string = f"tags.job_name ILIKE '{job_name}_%'" df = mlflow.search_runs([experiment.experiment_id], filter_string=filter_string) display(df) # Compare # Available columns: # run_id experiment_id status artifact_uri start_time end_time metrics.train_cross_valid_score_rmse_mean params.number_of_estimators tags.job_name tags.mlflow.source.name tags.mlflow.user tags.mlflow.source.type tags.version eval_max = df.loc[df['metrics.eval_cross_valid_score_rmse_mean'].idxmax()] train_max= df.loc[df['metrics.train_cross_valid_score_rmse_mean'].idxmax()] display(eval_max) return eval_max # You need to set a previous training job name manually. Which is following this naming pattern: training_job_...time stamp... best_run = model_comparer('training_job_20210119T220534') client = mlflow.tracking.MlflowClient() def register_model(run_id, model_name): model_uri = f'runs:/{run_id}/{model_name}' registered_model = mlflow.register_model(model_uri, model_name) print(registered_model) registered_models=client.search_registered_models(filter_string=f"name='{experiment_name}'", max_results=1, order_by=['timestamp DESC']) if len(registered_models) ==0: register_model(best_run.run_id, experiment_name) else: last_version = registered_models[0].latest_versions[0] run = client.get_run(last_version.run_id) print(run) if not run: print(f'Registered version run missing!') last_eval_metric=run.data.metrics['eval_cross_valid_score_rmse_mean'] best_run_metric=best_run['metrics.eval_cross_valid_score_rmse_mean'] if last_eval_metric<best_run_metric: print(f'Register better version with metric: {best_run_metric}') register_model(best_run.run_id, experiment_name) else: print(f'Registered version still better. Metric: {last_eval_metric}') Explanation: Cross validation score to test set End of explanation
566
Given the following text description, write Python code to implement the functionality described below step by step Description: We start off with a single import statement. Nice! Note the TensorFlow backend... Step1: Great, now I have a model. Let's so something with it, like build a 34-layer residual network.
Python Code: model = KerasGraphModel() Explanation: We start off with a single import statement. Nice! Note the TensorFlow backend... End of explanation model.build_residual_network() model.graph.summary() from data_preparation.image_preparation import ImageLoader from pathlib import Path image_loader = ImageLoader() im_files = list(Path('data/train_photos').glob('*[0-9].jpg')) train_im_func = image_loader.graph_train_generator(im_files) # Note: no validation data yet # You could take a look at the dictionary if you want # test_train_dict = next(train_im_func) # {'input': train_tensor, 'output': target_tensor} # Fit on 5 mini-batches of 200 samples for 3 epochs model.graph.fit_generator(train_im_func, 200*5, 3) # TODO: model.generate_submission() Explanation: Great, now I have a model. Let's so something with it, like build a 34-layer residual network. End of explanation
567
Given the following text description, write Python code to implement the functionality described below step by step Description: Experimental data assessment and model parameters optimisation Data preparation The first step to generate three-dimensional (3D) models of a specific genomic regions is to filter columns with low counts and with no diagonal count in order to remove outliers or problematic columns from the interaction matrix. The particles associated with the filtered columns will be modelled, but will have no experimental data applied. Here we load the data previous data already normalised. Step1: Load raw data matrices, and normalized matrices Step2: It is a good practice to check that the data is there Step3: Focus on the genomic region to model. Step4: Data modellability assessment via MMP score We can use the Matrix Modeling Potential (MMP) score (Trussart M. et al. Nature Communication, 2017) to identify a priori whether the interaction matrices have the potential of being use for modeling. The MMP score ranges from 0 to 1 and combines three different measures Step5: Data Transformation and scoring function This step is automatically done in TADbit. A a weight is generated for each pair of interactions proportional to their interaction count as in formula Step6: Refine optimization in a small region Step7: For the other replicate, we can reduce the space of search
Python Code: from pytadbit import load_chromosome from pytadbit.parsers.hic_parser import load_hic_data_from_bam crm = load_chromosome('results/fragment/chr3.tdb') B, PSC = crm.experiments B, PSC Explanation: Experimental data assessment and model parameters optimisation Data preparation The first step to generate three-dimensional (3D) models of a specific genomic regions is to filter columns with low counts and with no diagonal count in order to remove outliers or problematic columns from the interaction matrix. The particles associated with the filtered columns will be modelled, but will have no experimental data applied. Here we load the data previous data already normalised. End of explanation base_path = 'results/fragment/{0}_both/03_filtering/valid_reads12_{0}.bam' bias_path = 'results/fragment/{0}_both/04_normalizing/biases_{0}_both_{1}kb.biases' reso = 100000 chrname = 'chr3' cel1 = 'mouse_B' cel2 = 'mouse_PSC' hic_data1 = load_hic_data_from_bam(base_path.format(cel1), resolution=reso, region='chr3', biases=bias_path.format(cel1, reso // 1000), ncpus=8) hic_data2 = load_hic_data_from_bam(base_path.format(cel2), resolution=reso, region='chr3', biases=bias_path.format(cel2, reso // 1000), ncpus=8) B.load_hic_data([hic_data1.get_matrix(focus='chr3')]) B.load_norm_data([hic_data1.get_matrix(focus='chr3', normalized=True)]) PSC.load_hic_data([hic_data2.get_matrix(focus='chr3')]) PSC.load_norm_data([hic_data2.get_matrix(focus='chr3', normalized=True)]) Explanation: Load raw data matrices, and normalized matrices End of explanation crm.visualize(['mouse_B', 'mouse_PSC'], normalized=True, paint_tads=True) Explanation: It is a good practice to check that the data is there: End of explanation crm.visualize(['mouse_B', 'mouse_PSC'], normalized=True, paint_tads=True, focus=(300, 360)) Explanation: Focus on the genomic region to model. End of explanation from pytadbit.utils.three_dim_stats import mmp_score mmp_score(hic_data1.get_matrix(focus='chr3:30000000-36000000'), savefig='results/fragment/{0}_both/mmp_score.png'.format(cel1)) Explanation: Data modellability assessment via MMP score We can use the Matrix Modeling Potential (MMP) score (Trussart M. et al. Nature Communication, 2017) to identify a priori whether the interaction matrices have the potential of being use for modeling. The MMP score ranges from 0 to 1 and combines three different measures: the contribution of the significant eigenvectors, the skewness and the kurtosis of the distribution of Z-scores. End of explanation opt_B = B.optimal_imp_parameters(start=300, end=360, n_models=40, n_keep=20, n_cpus=8, upfreq_range=(0, 0.6, 0.3), lowfreq_range=(-0.9, 0, 0.3), maxdist_range=(1000, 2000, 500), dcutoff_range=[2, 3, 4]) opt_B.plot_2d(show_best=10) Explanation: Data Transformation and scoring function This step is automatically done in TADbit. A a weight is generated for each pair of interactions proportional to their interaction count as in formula: $$weight(I, J) = \frac{\sum^N_{i=0}{\sum^N_{j=0}{(matrix(i, j))}}}{\sum^N_{i=0}{(matrix(i, J))} \times \sum^N_{j=0}{(matrix(I, j))}}$$ The raw data are then multiplied by this weight. In the case that multiple experiments are used, the weighted interaction values are normalised using a factor (default set as 1) in order to compare between experiments. Then, a Z-score of the off-diagonal normalised/weighted interaction is calculated as in formula: $$zscore(I, J) = \frac{log_{10}(weight(I, J) \times matrix(I, J)) - mean(log_{10}(weight \times matrix))}{stddev(log_{10}(weight \times matrix))}$$ The Z-scores are then transformed to distance restraints. To define the type of restraints between each pair of particles. we need to identified empirically three optimal parameters (i) a maximal distance between two non-interacting particles (maxdist), (ii) a lower-bound cutoff to define particles that do not interact frequently (lowfreq) and (iii) an upper-bound cutoff to define particles that do interact frequently (upfreq). In TADbit this is done via a grid search approach. The following picture shows the different component of the scoring funtion that is optimised during the Monte Carlo simulated annealing sampling protocol. Two consecutive particles are spatially restrained by a harmonic oscillator with an equilibrium distance that corresponds to the sum of their radii. Non-consecutive particles with contact frequencies above the upper-bound cutoff are restrained by a harmonic oscillator at an equilibrium distance, while those below the lower-bound cutoff are maintained further than an equilibrium distance by a lower bound harmonic oscillator. Optimization of parameters We need to identified empirically (via a grid-search optimisation) the optimal parameters for the mdoelling procedure: maxdist: maximal distance assosiated two interacting particles. upfreq: to define particles that do interact frequently (defines attraction) lowfreq: to define particles that do not interact frequently ( defines repulsion) dcutoff: the definition of "contact" in units of bead diameter. Value of 2 means that a contact will occur when 2 beads are closer than 2 times their diameter. This will be used to compare 3D models with Hi-C interaction maps. Pairs of beads interacting less than lowfreq (left dashed line) are penalized if they are closer than their assigned minimum distance (Harmonic lower bound). Pairs of beads interacting more than ufreq (right dashed line) are penalized if they are further apart than their assigned maximum distance (Harmonic upper bound). Pairs of beads which interaction fall in between lowfreq and upfreq are not penalized except if they are neighbours (Harmonic) In the parameter optimization step we are going to give a set of ranges for the different search parameters. For each possible combination TADbit will produce a set of models. In each individual model we consider that two beads are in contact if their distance in 3D space is lower than the specified distance cutoff. TADbit builds a cumulative contact map for each set of models as shown in the schema below. The contact map is then compared with the Hi-C interaction experiment by means of a Spearman correlation coefficient. The sets having higher correlation coefficients are those that best represents the original data. End of explanation opt_B.run_grid_search(upfreq_range=(0, 0.3, 0.3), lowfreq_range=(-0.9, -0.3, 0.3), maxdist_range=[1750], dcutoff_range=[2, 3], n_cpus=8) opt_B.plot_2d(show_best=5) opt_B.run_grid_search(upfreq_range=(0, 0.3, 0.3), lowfreq_range=(-0.3, 0, 0.1), maxdist_range=[2000, 2250], dcutoff_range=[2], n_cpus=8) opt_B.plot_2d(show_best=5) opt_B.run_grid_search(upfreq_range=(0, 0.3, 0.1), lowfreq_range=(-0.3, 0, 0.1), n_cpus=8, maxdist_range=[2000, 2250], dcutoff_range=[2]) opt_B.plot_2d(show_best=5) opt_B.get_best_parameters_dict() Explanation: Refine optimization in a small region: End of explanation opt_PSC = PSC.optimal_imp_parameters(start=300, end=360, n_models=40, n_keep=20, n_cpus=8, upfreq_range=(0, 0.3, 0.1), lowfreq_range=(-0.3, -0.1, 0.1), maxdist_range=(2000, 2250, 250), dcutoff_range=[2]) opt_PSC.plot_2d(show_best=5) opt_PSC.get_best_parameters_dict() Explanation: For the other replicate, we can reduce the space of search: End of explanation
568
Given the following text description, write Python code to implement the functionality described below step by step Description: Encoding Categorical Data Step1: Simple data frame with categorical data Represent each category as an integer. Trouble is, the meaning of each integer is specific to each feature, so the 1 in 'feature 1' does not mean the same thing as the one in 'feature 2'. Step2: Also create a dataframe of strings to make this a little more intuitive Step3: Label Encoder Step4: Transform categories into integers in one go Not very convenient because we need to unravel the dataframe values. Does not generalise to cases where the data contains non-categorical values. Step5: Transform categories into integers using LabelEncoder Step6: Note that the Label Encoder is not appropriate for regressions and similar techniques that compute the distance between samples. For example, the distance between 'red' and 'blue' is 3 in our case, whereas the distance between 'purple' and 'red' is 1. This would have an 'unphysical' effect on regression models. To avoid this, use the One Hot Encoder. The drawback of the one hot encoder is that it increases the number of features. Some algorithms, such as decision trees (e.g. random forests), do not use the pairwise distance so can be used in combination with Label Encoder. See http Step7: The categories in each column are mapped using the feature_indices_ attribute The categories in column i are mapped to range(feature_indices_[i], feature_indices_[i+1]) Step8: Each categorical feature is mapped to multiple boolean columns Step9: So our feature 1 will be transformed into two columns of booleans, (0 or 1), our feature 2 into 3 columns, and our feature 3 into 4 columns. The new columns are listed in the active_features_ attribute of our encoder Step10: Transforming samples This shows how a single sample in our original dataset is transformed into a new sample by our OneHot encoder. Step11: Transforming multiple samples
Python Code: import pandas as pd import numpy as np Explanation: Encoding Categorical Data End of explanation data = pd.DataFrame(data=[[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]], columns=['feature 1', 'feature 2', 'feature 3']) data Explanation: Simple data frame with categorical data Represent each category as an integer. Trouble is, the meaning of each integer is specific to each feature, so the 1 in 'feature 1' does not mean the same thing as the one in 'feature 2'. End of explanation gender = 'male', 'female' country = 'France', 'UK', 'Germany' color = 'blue', 'red', 'green', 'purple' df = data.copy() for i, category in enumerate([gender, country, color]): df.iloc[:,i] = data.iloc[:,i].apply(lambda j: category[j]) df.columns = ['gender', 'country', 'color'] df Explanation: Also create a dataframe of strings to make this a little more intuitive End of explanation from sklearn.preprocessing import LabelEncoder Explanation: Label Encoder End of explanation le = LabelEncoder() le.fit(gender + country + color) print(le.classes_) values_t = le.transform(df.values.ravel()).reshape(df.shape) values_t df_t = pd.DataFrame(data=values_t, columns=[c + '(int)' for c in df.columns]) df_t Explanation: Transform categories into integers in one go Not very convenient because we need to unravel the dataframe values. Does not generalise to cases where the data contains non-categorical values. End of explanation labenc_lst = [] df_t2 = df.copy() for category in df.columns: le2 = LabelEncoder() df_t2[category] = le2.fit_transform(df[category]) labenc_lst.append(le2) df_t2 Explanation: Transform categories into integers using LabelEncoder End of explanation enc.n_values_ Explanation: Note that the Label Encoder is not appropriate for regressions and similar techniques that compute the distance between samples. For example, the distance between 'red' and 'blue' is 3 in our case, whereas the distance between 'purple' and 'red' is 1. This would have an 'unphysical' effect on regression models. To avoid this, use the One Hot Encoder. The drawback of the one hot encoder is that it increases the number of features. Some algorithms, such as decision trees (e.g. random forests), do not use the pairwise distance so can be used in combination with Label Encoder. See http://stackoverflow.com/questions/17469835/one-hot-encoding-for-machine-learning for more discussion. One Hot Encoder Transforms a feature with N integer categories into N boolean category features (does this sample belong to this category or not?). We can get the number of categories in each column Thus, we see that we've got 9 different categories, so that our 4x3 dataset is actually a 4x9 dataset, where each feature is represented as a boolean (0 or 1). End of explanation enc.feature_indices_ Explanation: The categories in each column are mapped using the feature_indices_ attribute The categories in column i are mapped to range(feature_indices_[i], feature_indices_[i+1]) End of explanation mapping = {data.columns[i]: list(range(enc.feature_indices_[i], enc.feature_indices_[i+1])) for i in range(data.shape[1])} mapping Explanation: Each categorical feature is mapped to multiple boolean columns End of explanation enc.active_features_ Explanation: So our feature 1 will be transformed into two columns of booleans, (0 or 1), our feature 2 into 3 columns, and our feature 3 into 4 columns. The new columns are listed in the active_features_ attribute of our encoder End of explanation def make_dataframe(sample, columns, **kwargs): return pd.DataFrame(data=sample, columns=columns, **kwargs) original_features = 'feature 1', 'feature 2', 'feature 3' new_features = ['category ' + str(i) for i in enc.active_features_] x1 = make_dataframe([[0, 0, 0]], original_features) x1 x1_t = enc.transform(x1) make_dataframe(x1_t, new_features) make_dataframe(x1_t, new_features, dtype='bool') x2 = make_dataframe([[1,1,1]], original_features) x2 x2_t = make_dataframe(enc.transform(x2), new_features) x2_t Explanation: Transforming samples This shows how a single sample in our original dataset is transformed into a new sample by our OneHot encoder. End of explanation data_t = make_dataframe(enc.transform(data), new_features, dtype=bool) import matplotlib.pyplot as plt plt.spy(data_t) Explanation: Transforming multiple samples End of explanation
569
Given the following text description, write Python code to implement the functionality described below step by step Description: Finding the Root (Zero) of a Function Finding the root, or zero, of a function is a very common task in exploratory computing. This Notebook presents the Bisection method and Newton's method for finding the root, or 0, of a function. Step1: Bisection method Given a continuous function $f(x)$ and two values of $x_1$, $x_2$ such that $f(x_1)$ and $f(x_2)$ have opposite signs the Bisection method is a root-finding method that repeatedly bisects the interval $[x_1, x_2]$ and then selects a subinterval (in which a root must be) for further processing. (Since $f(x_1)$ and $f(x_2)$ have opposite signs, it follows that $f(x)$ is zero somewhere between $x_1$ and $x_2$.) The Bisection method iterate towards the zero of the function by cutting the root search interval in half at every iteration. The method calculates the middle point $x_m$ between $x_1$ and $x_2$ and compute $f(x_m)$ and then replaces either $x_1$ or $x_2$ by $x_m$ such the values of $f$ at the end points of the interval are of opposite signs. The process is repeated until the interval is small enough that its middle point can be considered a good approximation of the root of the function. In summary, the algorithm works as follows Step2: Implementation of the Bisection method We implement the bisection method as a function called bisection which takes as arguments Step3: We use the bisection method to find the root of the $exponential_function$ defined above Step4: and of $cos$ between 0 and 3. Step5: Newton's method The Bisection method is a brute-force method guaranteed to find a root of a continuous function $f$ on an interval $(x_1,x_2)$, if $(x_1,x_2)$ contains a root for $f$. The Bisection method is not very efficient and it requires a search interval that contains only one root. An alternative is Newton's method (also called the Newton-Raphson method). Consider the graph below. To find the root of the function represented by the blue line, Newton's method starts at a user-defined starting location, $x_0$ (the blue dot) and fits a straight line through the point $(x,y)=(x_0,f(x_0))$ in such a way that the line is tangent to $f(x)$ at $x_0$ (the red line). The intersection of the red line with the horizontal axis is the next estimate $x_1$ of the root of the function (the red dot). This process is repeated until a value of $f(x)$ is found that is sufficiently close to zero (within a specified tolerance), i.e., a straight line is fitted through the point $(x,y)=(x_1,f(x_1))$, tangent to the function, and the the next estimate of the root of the function is taken as the intersection of this line with the horizontal axis, until the value of f at the root estimate is very close to 0. Unfortunately, not guaranteed that it always works, as is explained below. <img src="http Step6: We test newtonsmethod by finding the root of $f(x)=\frac{1}{2}-\text{e}^{-x}$ using $x_0=1$ as the starting point of the search. How many iterations do we need if we start at $x=4$? Step7: We also demonstrate how newton works by finding the zero of $\sin(x)$, which has many roots Step8: Root finding methods in scipy The package scipy.optimize includes a number of routines for the minimization of a function and for finding the zeros of a function. Among them, bisect, newton, and fsolve. fsolve has the additional advantage of also estimating the derivative of the function. fsolve can be used to find an (approximate) answer for a system of non-linear equations. fsolve We demonstrate how to use thefsolve method of the scipy.optimize package by finding the value for which $\ln(x^2)=2$ Step9: Plotting the root We plot the function $f(x)=x+2\cos(x)$ for $x$ going from -2 to 4, and on the same graph, we also plot a red dot at the location where $f(x)=0$.
Python Code: import numpy as np import matplotlib.pyplot as plt %matplotlib inline Explanation: Finding the Root (Zero) of a Function Finding the root, or zero, of a function is a very common task in exploratory computing. This Notebook presents the Bisection method and Newton's method for finding the root, or 0, of a function. End of explanation def exponential_function(x): return 0.5 - np.exp(-x) x = np.linspace(0, 4, 100) y = exponential_function(x) plt.plot(x, y) plt.axhline(0, color='r', ls='--') Explanation: Bisection method Given a continuous function $f(x)$ and two values of $x_1$, $x_2$ such that $f(x_1)$ and $f(x_2)$ have opposite signs the Bisection method is a root-finding method that repeatedly bisects the interval $[x_1, x_2]$ and then selects a subinterval (in which a root must be) for further processing. (Since $f(x_1)$ and $f(x_2)$ have opposite signs, it follows that $f(x)$ is zero somewhere between $x_1$ and $x_2$.) The Bisection method iterate towards the zero of the function by cutting the root search interval in half at every iteration. The method calculates the middle point $x_m$ between $x_1$ and $x_2$ and compute $f(x_m)$ and then replaces either $x_1$ or $x_2$ by $x_m$ such the values of $f$ at the end points of the interval are of opposite signs. The process is repeated until the interval is small enough that its middle point can be considered a good approximation of the root of the function. In summary, the algorithm works as follows: Compute $f(x_1)$ and $f(x_2)$ Compute $x_m = \frac{1}{2}(x_1 + x_2)$. Compute $f(x_m)$. If $f(x_m)f(x_2) < 0$, replace $x_1$ by $x_m$, otherwise, replace $x_2$ by $x_m$. If $|x_1 - x_2|<\varepsilon$, where $\varepsilon$ is a user-specified tolerance, return $\frac{1}{2}(x_1 + x_2)$, otherwise return to step 2. Example: let $f(x)$ be $\frac{1}{2}-\text{e}^{-x}$ and $x_1$ and $x_2$ be 0 and 4, respectively. Notice that $f(x)$ has a zero somewhere on the plotted interval. End of explanation def bisection(func, x1, x2, tol=1e-3, nmax=10, silent=True): f1 = func(x1) f2 = func(x2) assert f1 * f2< 0, 'Error: zero not in interval x1-x2' for i in range(nmax): xm = 0.5*(x1 + x2) fm = func(xm) if fm * f2 < 0: x1 = xm f1 = fm else: x2 = xm f2 = fm if silent is False: print(x1, x2, f1, f2) if abs(x1 - x2) < tol: break if abs(func(x1)) > tol: print('Maximum number of iterations reached') return x1 Explanation: Implementation of the Bisection method We implement the bisection method as a function called bisection which takes as arguments: The function for which we want to find the root. $x_1$ and $x_2$ The tolerance tol to be used as a stopping criterion (by default 0.001). The maximum number of iterations nmax. Make nmax a keyword argument with a default value of, for example, 10. Our function returns the value of $x$ where $f(x)$ is (approximately) zero, or print a warning if the maximum number of iterations is reached before the tolerance is met. Steps 2-5 of the algorithm explained above are implemented as a loop to be run until the tolerance level is met, at most nmax times. End of explanation x1 = 0 x2 = 4 function = exponential_function xzero = bisection(function, x1, x2, tol=1e-3, nmax=20, silent=True) print ("The root of exponential_function between %.2f and %.2f is %f" % (x1, x2, xzero)) print ("The value of the function at the 'root' is %f" % exponential_function(xzero)) Explanation: We use the bisection method to find the root of the $exponential_function$ defined above End of explanation x1 = 0 x2 = 3 function = np.cos root = bisection(function, 0, 3, tol=1e-6, nmax=30) print ("The root of cos between %.2f and %.2f is %f" % (x1, x2, root)) Explanation: and of $cos$ between 0 and 3. End of explanation def newtonsmethod(func, funcp, xs, tol=1e-6, nmax=10, silent=True): f = func(xs) for i in range(nmax): fp = funcp(xs) xs = xs - f/fp f = func(xs) if silent is False: print(xs, func(xs)) if abs(f) < tol: return (xs,i+1) break if abs(f) > tol: #print('Max number of iterations reached before convergence') return (None, -1) Explanation: Newton's method The Bisection method is a brute-force method guaranteed to find a root of a continuous function $f$ on an interval $(x_1,x_2)$, if $(x_1,x_2)$ contains a root for $f$. The Bisection method is not very efficient and it requires a search interval that contains only one root. An alternative is Newton's method (also called the Newton-Raphson method). Consider the graph below. To find the root of the function represented by the blue line, Newton's method starts at a user-defined starting location, $x_0$ (the blue dot) and fits a straight line through the point $(x,y)=(x_0,f(x_0))$ in such a way that the line is tangent to $f(x)$ at $x_0$ (the red line). The intersection of the red line with the horizontal axis is the next estimate $x_1$ of the root of the function (the red dot). This process is repeated until a value of $f(x)$ is found that is sufficiently close to zero (within a specified tolerance), i.e., a straight line is fitted through the point $(x,y)=(x_1,f(x_1))$, tangent to the function, and the the next estimate of the root of the function is taken as the intersection of this line with the horizontal axis, until the value of f at the root estimate is very close to 0. Unfortunately, not guaranteed that it always works, as is explained below. <img src="http://i.imgur.com/tK1EOtD.png" alt="Newton's method on wikipedia"> The equation for a straight line with slope $a$ through the point $x_n,f(x_n)$ is: $$y = a(x-x_n) + f(x_n)$$ For the line to be tangent to the function $f(x)$ at the point $x=x_n$, the slope $a$ has to equal the derivative of $f(x)$ at $x_n$: $a=f'(x_n)$. The intersection of the line with the horizontal axis is the value of $x$ that results in $y=0$ and this is the next estimate $x_{n+1}$ of the root of the function. In order to find this estimate we need to solve: $$0 = f'(x_n) (x_{n+1}-x_n) + f(x_n)$$ which gives $$\boxed{x_{n+1} = x_n - f(x_n)/f'(x_n)}$$ The search for the root is completed when $|f(x)|$ is below a user-specified tolerance. An animated illustration of Newton's method can be found on Wikipedia: <img src="http://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif" alt="Newton's method on wikipedia" width="400px"> Newton's method is guaranteed to find the root of a function if the function is well behaved and the search starts close enough to the root. If those two conditions are met, Newton's method is very fast, but if they are not met, the method is not guaranteed to converge to the root. Another disadvantage of Newton's method is that we need to define the derivative of the function. Note that the function value does not necessarily go down at every iteration (as illustated in the animation above). Newton's Method Implementation We implement Newton's method as function newtonsmethod that takes in the following arguments: The function for which to find the root. The derivative of the function. The starting point of the search $x_0$. The tolerance tol used as a stopping criterion, by default $10^{-6}$. The maximum number of iterations nmax, by default 10. newtonsmethod returns the value of $x$ where $f(x)$ is (approximately) zero or prints a message if the maximum number of iterations is reached before the tolerance is met. End of explanation def fp(x): return np.exp(-x) xs = 1 func = exponential_function funcp = fp tol = 1e-6 nmax = 10 xzero, iterations = newtonsmethod(func, funcp, xs, tol, nmax) print("First Example") if xzero != None: print("Starting search from x = %.2f" % xs) print("root at x = %f, exponential_function(root) = %f" % (xzero, exponential_function(xzero))) print("tolerance reached in %d iterations" % iterations) else: print("Starting search from x = %.2f" % xs) print('Max number of iterations reached before convergence') print("") xs = 4 nmax = 40 xzero, iterations = newtonsmethod(func, funcp, xs, nmax) print("Second Example") if xzero != None: print("Starting search from x = %.2f" % xs) print("root at x = %f, exponential_function(root) = %f" % (xzero, exponential_function(xzero))) print("tolerance reached in %d iterations" % iterations) else: print("Starting search from x = %.2f" % xs) print('Max number of iterations reached before convergence') Explanation: We test newtonsmethod by finding the root of $f(x)=\frac{1}{2}-\text{e}^{-x}$ using $x_0=1$ as the starting point of the search. How many iterations do we need if we start at $x=4$? End of explanation xs = 1 xzero, iterations = newtonsmethod(func=np.sin, funcp=np.cos, xs=1) if xzero != None: print("Starting search from x = %.2f" % xs) print("root at x = %f, sin(root) = %e" % (xzero, np.sin(xzero))) print("tolerance reached in %d iterations" % iterations) print("root / pi = %f" % (xzero / np.pi)) else: print("Starting search from x = %.2f" % xs) print('Max number of iterations reached before convergence') print("") xs = 1.5 xzero, iterations = newtonsmethod(func=np.sin, funcp=np.cos, xs=1.5) if xzero != None: print("Starting search from x = %.2f" % xs) print("root at x = %f, sin(root) = %e" % (xzero, np.sin(xzero))) print("tolerance reached in %d iterations" % iterations) print("root / pi = %f" % (xzero / np.pi)) else: print("Starting search from x = %.2f" % xs) print('Max number of iterations reached before convergence') Explanation: We also demonstrate how newton works by finding the zero of $\sin(x)$, which has many roots: $-2\pi$, $-\pi$, $0$, $pi$, $2\pi$, etc. Which root do we find when starting at $x=1$ and which root do we find when starting at $x=1.5$? End of explanation from scipy.optimize import fsolve def h(x): return np.log(x ** 2) - 2 x0 = fsolve(h, 1) print("x_root = %f, function value(root) = %e" % (x0, h(x0))) Explanation: Root finding methods in scipy The package scipy.optimize includes a number of routines for the minimization of a function and for finding the zeros of a function. Among them, bisect, newton, and fsolve. fsolve has the additional advantage of also estimating the derivative of the function. fsolve can be used to find an (approximate) answer for a system of non-linear equations. fsolve We demonstrate how to use thefsolve method of the scipy.optimize package by finding the value for which $\ln(x^2)=2$ End of explanation from scipy.optimize import fsolve def g(x): return x + 2 * np.cos(x) x = np.linspace(-2, 4, 100) x0 = fsolve(g, 1) plt.plot(x, g(x)) plt.plot(x0, g(x0), 'ro') plt.axhline(y=0, color='r') Explanation: Plotting the root We plot the function $f(x)=x+2\cos(x)$ for $x$ going from -2 to 4, and on the same graph, we also plot a red dot at the location where $f(x)=0$. End of explanation
570
Given the following text description, write Python code to implement the functionality described below step by step Description: Step6: Game Tree Search We start with defining the abstract class Game, for turn-taking n-player games. We rely on, but do not define yet, the concept of a state of the game; we'll see later how individual games define states. For now, all we require is that a state has a state.to_move attribute, which gives the name of the player whose turn it is. ("Name" will be something like 'X' or 'O' for tic-tac-toe.) We also define play_game, which takes a game and a dictionary of {player_name Step9: Minimax-Based Game Search Algorithms We will define several game search algorithms. Each takes two inputs, the game we are playing and the current state of the game, and returns a a (value, move) pair, where value is the utility that the algorithm computes for the player whose turn it is to move, and move is the move itself. First we define minimax_search, which exhaustively searches the game tree to find an optimal move (assuming both players play optimally), and alphabeta_search, which does the same computation, but prunes parts of the tree that could not possibly have an affect on the optimnal move. Step16: A Simple Game Step18: States in tic-tac-toe (and other games) will be represented as a Board, which is a subclass of defaultdict that in general will consist of {(x, y) Step20: Players We need an interface for players. I'll represent a player as a callable that will be passed two arguments Step21: Playing a Game We're ready to play a game. I'll set up a match between a random_player (who chooses randomly from the legal moves) and a player(alphabeta_search) (who makes the optimal alpha-beta move; practical for tic-tac-toe, but not for large games). The player(alphabeta_search) will never lose, but if random_player is lucky, it will be a tie. Step22: The alpha-beta player will never lose, but sometimes the random player can stumble into a draw. When two optimal (alpha-beta or minimax) players compete, it will always be a draw Step24: Connect Four Connect Four is a variant of tic-tac-toe, played on a larger (7 x 6) board, and with the restriction that in any column you can only play in the lowest empty square in the column. Step26: Transposition Tables By treating the game tree as a tree, we can arrive at the same state through different paths, and end up duplicating effort. In state-space search, we kept a table of reached states to prevent this. For game-tree search, we can achieve the same effect by applying the @cache decorator to the min_value and max_value functions. We'll use the suffix _tt to indicate a function that uses these transisiton tables. Step28: For alpha-beta search, we can still use a cache, but it should be based just on the state, not on whatever values alpha and beta have. Step32: Heuristic Cutoffs Step33: Monte Carlo Tree Search Step34: Heuristic Search Algorithms
Python Code: from collections import namedtuple, Counter, defaultdict import random import math import functools cache = functools.lru_cache(10**6) class Game: A game is similar to a problem, but it has a terminal test instead of a goal test, and a utility for each terminal state. To create a game, subclass this class and implement `actions`, `result`, `is_terminal`, and `utility`. You will also need to set the .initial attribute to the initial state; this can be done in the constructor. def actions(self, state): Return a collection of the allowable moves from this state. raise NotImplementedError def result(self, state, move): Return the state that results from making a move from a state. raise NotImplementedError def is_terminal(self, state): Return True if this is a final state for the game. return not self.actions(state) def utility(self, state, player): Return the value of this final state to player. raise NotImplementedError def play_game(game, strategies: dict, verbose=False): Play a turn-taking game. `strategies` is a {player_name: function} dict, where function(state, game) is used to get the player's move. state = game.initial while not game.is_terminal(state): player = state.to_move move = strategies[player](game, state) state = game.result(state, move) if verbose: print('Player', player, 'move:', move) print(state) return state Explanation: Game Tree Search We start with defining the abstract class Game, for turn-taking n-player games. We rely on, but do not define yet, the concept of a state of the game; we'll see later how individual games define states. For now, all we require is that a state has a state.to_move attribute, which gives the name of the player whose turn it is. ("Name" will be something like 'X' or 'O' for tic-tac-toe.) We also define play_game, which takes a game and a dictionary of {player_name: strategy_function} pairs, and plays out the game, on each turn checking state.to_move to see whose turn it is, and then getting the strategy function for that player and applying it to the game and the state to get a move. End of explanation def minimax_search(game, state): Search game tree to determine best move; return (value, move) pair. player = state.to_move def max_value(state): if game.is_terminal(state): return game.utility(state, player), None v, move = -infinity, None for a in game.actions(state): v2, _ = min_value(game.result(state, a)) if v2 > v: v, move = v2, a return v, move def min_value(state): if game.is_terminal(state): return game.utility(state, player), None v, move = +infinity, None for a in game.actions(state): v2, _ = max_value(game.result(state, a)) if v2 < v: v, move = v2, a return v, move return max_value(state) infinity = math.inf def alphabeta_search(game, state): Search game to determine best action; use alpha-beta pruning. As in [Figure 5.7], this version searches all the way to the leaves. player = state.to_move def max_value(state, alpha, beta): if game.is_terminal(state): return game.utility(state, player), None v, move = -infinity, None for a in game.actions(state): v2, _ = min_value(game.result(state, a), alpha, beta) if v2 > v: v, move = v2, a alpha = max(alpha, v) if v >= beta: return v, move return v, move def min_value(state, alpha, beta): if game.is_terminal(state): return game.utility(state, player), None v, move = +infinity, None for a in game.actions(state): v2, _ = max_value(game.result(state, a), alpha, beta) if v2 < v: v, move = v2, a beta = min(beta, v) if v <= alpha: return v, move return v, move return max_value(state, -infinity, +infinity) Explanation: Minimax-Based Game Search Algorithms We will define several game search algorithms. Each takes two inputs, the game we are playing and the current state of the game, and returns a a (value, move) pair, where value is the utility that the algorithm computes for the player whose turn it is to move, and move is the move itself. First we define minimax_search, which exhaustively searches the game tree to find an optimal move (assuming both players play optimally), and alphabeta_search, which does the same computation, but prunes parts of the tree that could not possibly have an affect on the optimnal move. End of explanation class TicTacToe(Game): Play TicTacToe on an `height` by `width` board, needing `k` in a row to win. 'X' plays first against 'O'. def __init__(self, height=3, width=3, k=3): self.k = k # k in a row self.squares = {(x, y) for x in range(width) for y in range(height)} self.initial = Board(height=height, width=width, to_move='X', utility=0) def actions(self, board): Legal moves are any square not yet taken. return self.squares - set(board) def result(self, board, square): Place a marker for current player on square. player = board.to_move board = board.new({square: player}, to_move=('O' if player == 'X' else 'X')) win = k_in_row(board, player, square, self.k) board.utility = (0 if not win else +1 if player == 'X' else -1) return board def utility(self, board, player): Return the value to player; 1 for win, -1 for loss, 0 otherwise. return board.utility if player == 'X' else -board.utility def is_terminal(self, board): A board is a terminal state if it is won or there are no empty squares. return board.utility != 0 or len(self.squares) == len(board) def display(self, board): print(board) def k_in_row(board, player, square, k): True if player has k pieces in a line through square. def in_row(x, y, dx, dy): return 0 if board[x, y] != player else 1 + in_row(x + dx, y + dy, dx, dy) return any(in_row(*square, dx, dy) + in_row(*square, -dx, -dy) - 1 >= k for (dx, dy) in ((0, 1), (1, 0), (1, 1), (1, -1))) Explanation: A Simple Game: Tic-Tac-Toe We have the notion of an abstract game, we have some search functions; now it is time to define a real game; a simple one, tic-tac-toe. Moves are (x, y) pairs denoting squares, where (0, 0) is the top left, and (2, 2) is the bottom right (on a board of size height=width=3). End of explanation class Board(defaultdict): A board has the player to move, a cached utility value, and a dict of {(x, y): player} entries, where player is 'X' or 'O'. empty = '.' off = '#' def __init__(self, width=8, height=8, to_move=None, **kwds): self.__dict__.update(width=width, height=height, to_move=to_move, **kwds) def new(self, changes: dict, **kwds) -> 'Board': "Given a dict of {(x, y): contents} changes, return a new Board with the changes." board = Board(width=self.width, height=self.height, **kwds) board.update(self) board.update(changes) return board def __missing__(self, loc): x, y = loc if 0 <= x < self.width and 0 <= y < self.height: return self.empty else: return self.off def __hash__(self): return hash(tuple(sorted(self.items()))) + hash(self.to_move) def __repr__(self): def row(y): return ' '.join(self[x, y] for x in range(self.width)) return '\n'.join(map(row, range(self.height))) + '\n' Explanation: States in tic-tac-toe (and other games) will be represented as a Board, which is a subclass of defaultdict that in general will consist of {(x, y): contents} pairs, for example {(0, 0): 'X', (1, 1): 'O'} might be the state of the board after two moves. Besides the contents of squares, a board also has some attributes: - .to_move to name the player whose move it is; - .width and .height to give the size of the board (both 3 in tic-tac-toe, but other numbers in related games); - possibly other attributes, as specified by keywords. As a defaultdict, the Board class has a __missing__ method, which returns empty for squares that have no been assigned but are within the width × height boundaries, or off otherwise. The class has a __hash__ method, so instances can be stored in hash tables. End of explanation def random_player(game, state): return random.choice(list(game.actions(state))) def player(search_algorithm): A game player who uses the specified search algorithm return lambda game, state: search_algorithm(game, state)[1] Explanation: Players We need an interface for players. I'll represent a player as a callable that will be passed two arguments: (game, state) and will return a move. The function player creates a player out of a search algorithm, but you can create your own players as functions, as is done with random_player below: End of explanation play_game(TicTacToe(), dict(X=random_player, O=player(alphabeta_search)), verbose=True).utility Explanation: Playing a Game We're ready to play a game. I'll set up a match between a random_player (who chooses randomly from the legal moves) and a player(alphabeta_search) (who makes the optimal alpha-beta move; practical for tic-tac-toe, but not for large games). The player(alphabeta_search) will never lose, but if random_player is lucky, it will be a tie. End of explanation play_game(TicTacToe(), dict(X=player(alphabeta_search), O=player(minimax_search)), verbose=True).utility Explanation: The alpha-beta player will never lose, but sometimes the random player can stumble into a draw. When two optimal (alpha-beta or minimax) players compete, it will always be a draw: End of explanation class ConnectFour(TicTacToe): def __init__(self): super().__init__(width=7, height=6, k=4) def actions(self, board): In each column you can play only the lowest empty square in the column. return {(x, y) for (x, y) in self.squares - set(board) if y == board.height - 1 or (x, y + 1) in board} play_game(ConnectFour(), dict(X=random_player, O=random_player), verbose=True).utility Explanation: Connect Four Connect Four is a variant of tic-tac-toe, played on a larger (7 x 6) board, and with the restriction that in any column you can only play in the lowest empty square in the column. End of explanation def minimax_search_tt(game, state): Search game to determine best move; return (value, move) pair. player = state.to_move @cache def max_value(state): if game.is_terminal(state): return game.utility(state, player), None v, move = -infinity, None for a in game.actions(state): v2, _ = min_value(game.result(state, a)) if v2 > v: v, move = v2, a return v, move @cache def min_value(state): if game.is_terminal(state): return game.utility(state, player), None v, move = +infinity, None for a in game.actions(state): v2, _ = max_value(game.result(state, a)) if v2 < v: v, move = v2, a return v, move return max_value(state) Explanation: Transposition Tables By treating the game tree as a tree, we can arrive at the same state through different paths, and end up duplicating effort. In state-space search, we kept a table of reached states to prevent this. For game-tree search, we can achieve the same effect by applying the @cache decorator to the min_value and max_value functions. We'll use the suffix _tt to indicate a function that uses these transisiton tables. End of explanation def cache1(function): "Like lru_cache(None), but only considers the first argument of function." cache = {} def wrapped(x, *args): if x not in cache: cache[x] = function(x, *args) return cache[x] return wrapped def alphabeta_search_tt(game, state): Search game to determine best action; use alpha-beta pruning. As in [Figure 5.7], this version searches all the way to the leaves. player = state.to_move @cache1 def max_value(state, alpha, beta): if game.is_terminal(state): return game.utility(state, player), None v, move = -infinity, None for a in game.actions(state): v2, _ = min_value(game.result(state, a), alpha, beta) if v2 > v: v, move = v2, a alpha = max(alpha, v) if v >= beta: return v, move return v, move @cache1 def min_value(state, alpha, beta): if game.is_terminal(state): return game.utility(state, player), None v, move = +infinity, None for a in game.actions(state): v2, _ = max_value(game.result(state, a), alpha, beta) if v2 < v: v, move = v2, a beta = min(beta, v) if v <= alpha: return v, move return v, move return max_value(state, -infinity, +infinity) %time play_game(TicTacToe(), {'X':player(alphabeta_search_tt), 'O':player(minimax_search_tt)}) %time play_game(TicTacToe(), {'X':player(alphabeta_search), 'O':player(minimax_search)}) Explanation: For alpha-beta search, we can still use a cache, but it should be based just on the state, not on whatever values alpha and beta have. End of explanation def cutoff_depth(d): A cutoff function that searches to depth d. return lambda game, state, depth: depth > d def h_alphabeta_search(game, state, cutoff=cutoff_depth(6), h=lambda s, p: 0): Search game to determine best action; use alpha-beta pruning. As in [Figure 5.7], this version searches all the way to the leaves. player = state.to_move @cache1 def max_value(state, alpha, beta, depth): if game.is_terminal(state): return game.utility(state, player), None if cutoff(game, state, depth): return h(state, player), None v, move = -infinity, None for a in game.actions(state): v2, _ = min_value(game.result(state, a), alpha, beta, depth+1) if v2 > v: v, move = v2, a alpha = max(alpha, v) if v >= beta: return v, move return v, move @cache1 def min_value(state, alpha, beta, depth): if game.is_terminal(state): return game.utility(state, player), None if cutoff(game, state, depth): return h(state, player), None v, move = +infinity, None for a in game.actions(state): v2, _ = max_value(game.result(state, a), alpha, beta, depth + 1) if v2 < v: v, move = v2, a beta = min(beta, v) if v <= alpha: return v, move return v, move return max_value(state, -infinity, +infinity, 0) %time play_game(TicTacToe(), {'X':player(h_alphabeta_search), 'O':player(h_alphabeta_search)}) %time play_game(ConnectFour(), {'X':player(h_alphabeta_search), 'O':random_player}, verbose=True).utility %time play_game(ConnectFour(), {'X':player(h_alphabeta_search), 'O':player(h_alphabeta_search)}, verbose=True).utility class CountCalls: Delegate all attribute gets to the object, and count them in ._counts def __init__(self, obj): self._object = obj self._counts = Counter() def __getattr__(self, attr): "Delegate to the original object, after incrementing a counter." self._counts[attr] += 1 return getattr(self._object, attr) def report(game, searchers): for searcher in searchers: game = CountCalls(game) searcher(game, game.initial) print('Result states: {:7,d}; Terminal tests: {:7,d}; for {}'.format( game._counts['result'], game._counts['is_terminal'], searcher.__name__)) report(TicTacToe(), (alphabeta_search_tt, alphabeta_search, h_alphabeta_search, minimax_search_tt)) Explanation: Heuristic Cutoffs End of explanation class Node: def __init__(self, parent, ) def mcts(state, game, N=1000): Explanation: Monte Carlo Tree Search End of explanation t = CountCalls(TicTacToe()) play_game(t, dict(X=minimax_player, O=minimax_player), verbose=True) t._counts for tactic in (three, fork, center, opposite_corner, corner, any): for s in squares: if tactic(board, s,player): return s for s ins quares: if tactic(board, s, opponent): return s def ucb(U, N, C=2**0.5, parentN=100): return round(U/N + C * math.sqrt(math.log(parentN)/N), 2) {C: (ucb(60, 79, C), ucb(1, 10, C), ucb(2, 11, C)) for C in (1.4, 1.5)} def ucb(U, N, parentN=100, C=2): return U/N + C * math.sqrt(math.log(parentN)/N) C = 1.4 class Node: def __init__(self, name, children=(), U=0, N=0, parent=None, p=0.5): self.__dict__.update(name=name, U=U, N=N, parent=parent, children=children, p=p) for c in children: c.parent = self def __repr__(self): return '{}:{}/{}={:.0%}{}'.format(self.name, self.U, self.N, self.U/self.N, self.children) def select(n): if n.children: return select(max(n.children, key=ucb)) else: return n def back(n, amount): if n: n.N += 1 n.U += amount back(n.parent, 1 - amount) def one(root): n = select(root) amount = int(random.uniform(0, 1) < n.p) back(n, amount) def ucb(n): return (float('inf') if n.N == 0 else n.U / n.N + C * math.sqrt(math.log(n.parent.N)/n.N)) tree = Node('root', [Node('a', p=.8, children=[Node('a1', p=.05), Node('a2', p=.25, children=[Node('a2a', p=.7), Node('a2b')])]), Node('b', p=.5, children=[Node('b1', p=.6, children=[Node('b1a', p=.3), Node('b1b')]), Node('b2', p=.4)]), Node('c', p=.1)]) for i in range(100): one(tree); for c in tree.children: print(c) 'select', select(tree), 'tree', tree us = (100, 50, 25, 10, 5, 1) infinity = float('inf') @lru_cache(None) def f1(n, denom): return (0 if n == 0 else infinity if n < 0 or not denom else min(1 + f1(n - denom[0], denom), f1(n, denom[1:]))) @lru_cache(None) def f2(n, denom): @lru_cache(None) def f(n): return (0 if n == 0 else infinity if n < 0 else 1 + min(f(n - d) for d in denom)) return f(n) @lru_cache(None) def f3(n, denom): return (0 if n == 0 else infinity if n < 0 or not denom else min(k + f2(n - k * denom[0], denom[1:]) for k in range(1 + n // denom[0]))) def g(n, d=us): return f1(n, d), f2(n, d), f3(n, d) n = 12345 %time f1(n, us) %time f2(n, us) %time f3(n, us) Explanation: Heuristic Search Algorithms End of explanation
571
Given the following text description, write Python code to implement the functionality described below step by step Description: <h1>Table of Contents<span class="tocSkip"></span></h1> <div class="toc"><ul class="toc-item"><li><span><a href="#Compare-weighted-and-unweighted-mean-temperature" data-toc-modified-id="Compare-weighted-and-unweighted-mean-temperature-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Compare weighted and unweighted mean temperature</a></span><ul class="toc-item"><li><ul class="toc-item"><li><span><a href="#Data" data-toc-modified-id="Data-1.0.1"><span class="toc-item-num">1.0.1&nbsp;&nbsp;</span>Data</a></span></li><li><span><a href="#Creating-weights" data-toc-modified-id="Creating-weights-1.0.2"><span class="toc-item-num">1.0.2&nbsp;&nbsp;</span>Creating weights</a></span></li><li><span><a href="#Weighted-mean" data-toc-modified-id="Weighted-mean-1.0.3"><span class="toc-item-num">1.0.3&nbsp;&nbsp;</span>Weighted mean</a></span></li><li><span><a href="#Plot Step1: Data Load the data, convert to celsius, and resample to daily values Step2: Plot the first timestep Step3: Creating weights For a rectangular grid the cosine of the latitude is proportional to the grid cell area. Step4: Weighted mean Step5: Plot
Python Code: %matplotlib inline import cartopy.crs as ccrs import matplotlib.pyplot as plt import numpy as np import xarray as xr Explanation: <h1>Table of Contents<span class="tocSkip"></span></h1> <div class="toc"><ul class="toc-item"><li><span><a href="#Compare-weighted-and-unweighted-mean-temperature" data-toc-modified-id="Compare-weighted-and-unweighted-mean-temperature-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Compare weighted and unweighted mean temperature</a></span><ul class="toc-item"><li><ul class="toc-item"><li><span><a href="#Data" data-toc-modified-id="Data-1.0.1"><span class="toc-item-num">1.0.1&nbsp;&nbsp;</span>Data</a></span></li><li><span><a href="#Creating-weights" data-toc-modified-id="Creating-weights-1.0.2"><span class="toc-item-num">1.0.2&nbsp;&nbsp;</span>Creating weights</a></span></li><li><span><a href="#Weighted-mean" data-toc-modified-id="Weighted-mean-1.0.3"><span class="toc-item-num">1.0.3&nbsp;&nbsp;</span>Weighted mean</a></span></li><li><span><a href="#Plot:-comparison-with-unweighted-mean" data-toc-modified-id="Plot:-comparison-with-unweighted-mean-1.0.4"><span class="toc-item-num">1.0.4&nbsp;&nbsp;</span>Plot: comparison with unweighted mean</a></span></li></ul></li></ul></li></ul></div> Compare weighted and unweighted mean temperature Author: Mathias Hauser We use the air_temperature example dataset to calculate the area-weighted temperature over its domain. This dataset has a regular latitude/ longitude grid, thus the grid cell area decreases towards the pole. For this grid we can use the cosine of the latitude as proxy for the grid cell area. End of explanation ds = xr.tutorial.load_dataset("air_temperature") # to celsius air = ds.air - 273.15 # resample from 6-hourly to daily values air = air.resample(time="D").mean() air Explanation: Data Load the data, convert to celsius, and resample to daily values End of explanation projection = ccrs.LambertConformal(central_longitude=-95, central_latitude=45) f, ax = plt.subplots(subplot_kw=dict(projection=projection)) air.isel(time=0).plot(transform=ccrs.PlateCarree(), cbar_kwargs=dict(shrink=0.7)) ax.coastlines() Explanation: Plot the first timestep: End of explanation weights = np.cos(np.deg2rad(air.lat)) weights.name = "weights" weights Explanation: Creating weights For a rectangular grid the cosine of the latitude is proportional to the grid cell area. End of explanation air_weighted = air.weighted(weights) air_weighted weighted_mean = air_weighted.mean(("lon", "lat")) weighted_mean Explanation: Weighted mean End of explanation weighted_mean.plot(label="weighted") air.mean(("lon", "lat")).plot(label="unweighted") plt.legend() Explanation: Plot: comparison with unweighted mean Note how the weighted mean temperature is higher than the unweighted. End of explanation
572
Given the following text description, write Python code to implement the functionality described below step by step Description: <center> Shenfun - High-Performance Computing platform for the Spectral Galerkin method <div><img src="https Step1: Inside the terminal any Python code can be executed and if something is printed it is shown below. Step2: When in presentation mode like now, the terminal is not alive. However, this presentation is written with jupyter <center><img src="https Step3: Shen's bases with Dirichlet bcs <p style="margin-bottom Step4: Shen's bases with Neumann $u'(\pm 1) = 0$ <p style="margin-bottom Step5: Shen's biharmonic bases $u(\pm 1) = u'(\pm 1) = 0$ <p style="margin-bottom Step6: Multidimensional tensor product spaces <p style="margin-bottom Step7: Basis functions can be created for all bases Step8: The shenfun Function represents the solution uh = Function(L0) $$ u(x) = \sum_{k=0}^{N-1} \hat{u}k \phi{k}(x) $$ The function evaluated for all quadrature points, ${u(x_j)}_{j=0}^{N-1}$, is an Array uj = Array(L0) There is a (fast) backward transform for moving from Function to Array, and a forward transform to go the other way. Note that the Array is not a basis function! Step9: Operators in shenfun act on basis functions u is an instance of either TestFunction, TrialFunction or Function div(u) grad(u) curl(u) Dx(u, 0, 1) (partial derivative in x-direction) Assembly project inner Step10: Implementation closely matches mathematics <p style="margin-bottom Step11: A diagonal stiffness matrix! Complete Poisson solver with error verification in 1D Step12: 2D - Implementation still closely matching mathematics Step13: ? A is a list of two TPMatrix objects??? TPMatrix is a Tensor Product matrix A TPMatrix is the outer product of smaller matrices (2 in 2D, 3 in 3D etc). Consider the inner product Step14: 3D Poisson (with MPI and Fourier x 2) Step15: Contour plot of slice with constant y Step16: Run with MPI distribution of arrays Here we would normally run from a bash shell <p style="margin-bottom Step17: Note that Fourier bases are especially attractive because of features easily handled with MPI Step18: Mixed tensor product spaces Solve several equations simultaneously Coupled equations Block matrices and vectors Tensor spaces of vectors, like velocity $u \in [\mathbb{R}^3]^3$ Stokes equations lid-driven cavity - coupled solver <p style="margin-bottom Step19: Implementation Stokes - matrices and solve Step20: Block matrix M $$ M = \begin{bmatrix} A[0]+A[1] & 0 & G[0] \ 0 & A[2]+A[3] & G[1] \ D[0] & D[1] & 0 \end{bmatrix} $$ where $D = G^T$ for the Legendre basis, making $M$ symmetric. For Chebyshev $M$ will not be symmetric. Solver through scipy.sparse.linalg For Navier-Stokes of the lid-driven cavity, see https
Python Code: print('hello world icsca') Explanation: <center> Shenfun - High-Performance Computing platform for the Spectral Galerkin method <div><img src="https://rawcdn.githack.com/spectralDNS/spectralutilities/f3419a3e6c40dad55be5dcca51f6e0e21713dd90/figures/Chebyshev_Polynomials_of_the_First_Kind.svg" width="300"></div> <div class="sl-block" style="height: auto; width: 600px;"> <div> <p><center style="font-size:1.2em">Professor Mikael Mortensen</p> <p><center>Department of Mathematics, University of Oslo</p> <p><center>Presented at the International Conference on Scientific Computing and Applications (ICSCA), Xiamen, China, 29/5 - 2019</p> </div> </div> Shenfun - facts Shenfun is named in honour of <strong>Professor Jie Shen</strong> for his seminal work on the spectral Galerkin method:-) Shenfun is a high performance computing platform for solving partial differential equations (PDEs) with the spectral Galerkin method (with numerical integration). Shenfun has been run with 65,000 processors on a Cray XC40. Shenfun is a high-level <strong>Python</strong> package originally developed for large-scale pseudo-spectral turbulence simulations. <img src="https://rawcdn.githack.com/spectralDNS/spectralutilities/473129742f0b5f8d57e8c647809272c0ced99a45/movies/RB_200k_small.png" style="float:left" width="300"> <img src="https://rawcdn.githack.com/spectralDNS/spectralutilities/473129742f0b5f8d57e8c647809272c0ced99a45/movies/isotropic_cropped.gif" style="float:right" width="200"> <p style="clear: both;"> # Python is a scripting language <p style="margin-bottom:1cm;"> No compilation - just execute. Much like MATLAB. High-level coding very popular in the scientific computing community. In this presentation this is a Python terminal: End of explanation print(2+2) Explanation: Inside the terminal any Python code can be executed and if something is printed it is shown below. End of explanation from shenfun import * N = 8 C = FunctionSpace(N, 'Chebyshev') L = FunctionSpace(N, 'Legendre') x, w = C.points_and_weights() print(np.vstack((x, w)).T) Explanation: When in presentation mode like now, the terminal is not alive. However, this presentation is written with jupyter <center><img src="https://rawcdn.githack.com/spectralDNS/spectralutilities/a6cccf4e2959c13cd4b7a6cf9d092b0ef11e7d5e/figures/jupyter.jpg" width=100></center> and if opened in active mode, then all boxes like the one below would be live and active and ready to execute any Python code: If interested (it is really not necessary), then Open https://github.com/spectralDNS/shenfun/ and press the launch-binder button. Wait for binder to launch and choose the Shenfun presentation.ipynb file to get a live document. There are also some other demos there written in jupyter. <center> <div><img src="https://gifimage.net/wp-content/uploads/2017/09/ajax-loading-gif-transparent-background-2.gif" width="100"></div> <div class="sl-block" style="height: auto; width: 500px;"> <div> <p><center style="font-size:1.2em">Meanwhile (may take a few minutes and really not necessary) I'll go through some background material required for understanding how <strong>shenfun</strong> works 😀</p> </div> </div> The Spectral Galerkin method (in a nutshell) approximates solutions $u(x)$ using global <strong>trial</strong> functions $\phi_k(x)$ and unknown expansion coefficients $\hat{u}_k$ $$ u(x) = \sum_{k=0}^{N-1}\hat{u}_k \phi_k(x) $$ Multidimensional solutions are formed from outer products of 1D bases $$ u(x, y) = \sum_{k=0}^{N_0-1}\sum_{l=0}^{N_1-1}\hat{u}{kl} \phi{kl}(x, y)\quad \text{ or }\quad u(x, y, z) = \sum_{k=0}^{N_0-1}\sum_{l=0}^{N_1-1} \sum_{m=0}^{N_2-1}\hat{u}{klm} \phi{klm}(x, y, z) $$ where, for example $$ \begin{align} \phi_{kl}(x, y) &= T_k(x) L_l(y)\ \phi_{klm}(x, y, z) &= T_k(x) L_l(y) \exp(\text{i}mz) \end{align} $$ $T_k$ and $L_k$ are Chebyshev and Legendre polynomials. The Spectral Galerkin method solves PDEs, like Poisson's equation \begin{align} \nabla^2 u(x) &= f(x), \quad x \in [-1, 1] \ u(\pm 1) &= 0 \end{align} using variational forms by the <strong>method of weighted residuals</strong>. I.e., multiply PDE by a test function $v$ and integrate over the domain. For Poisson this leads to the problem: Find $u \in H^1_0$ such that $$(\nabla u, \nabla v)_w^N = -(f, v)_w^N \quad \forall v \in H^1_0$$ Here $(u, v)_w^{N}$ is a weighted inner product and $v(=\phi_j)$ is a <strong>test</strong> function. Note that test and trial functions are the same for the Galerkin method. Weighted inner products The weighted inner product is defined as $$ (u, v)w = \int{\Omega} u \overline{v} w \, d\Omega, $$ where $w(\mathbf{x})$ is a weight associated with the chosen basis (different bases have different weights). The overline represents a complex conjugate (for Fourier). $\Omega$ is a tensor product domain spanned by the chosen 1D bases. In Shenfun quadrature is used for the integrals 1D with Chebyshev basis: $$ (u, v)w ^N = \sum{i=0}^{N-1} u(x_i) v(x_i) \omega_i \approx \int_{-1}^1 \frac{u v}{\sqrt{1-x^2}} \, {dx}, $$ where ${\omega_i}{i=0}^{N-1}$ are the quadrature weights associated with the chosen basis and quadrature rule. The associated quadrature points are denoted as ${x_i}{i=0}^{N-1}$. 2D with mixed Chebyshev-Fourier: $$ (u, v)w^N = \int{-1}^1\int_{0}^{2\pi} \frac{u \overline{v}}{2\pi\sqrt{1-x^2}} \, {dxdy} \approx \sum_{i=0}^{N_0-1}\sum_{j=0}^{N_1-1} u(x_i, y_j) \overline{v}(x_i, y_j) \omega^{(x)}_i \omega_j^{(y)} , $$ Spectral Galerkin solution procedure Choose function space(s) satisfying correct boundary conditions Transform PDEs to variational forms with inner products Assemble variational forms and solve resulting linear algebra systems Orthogonal bases <p style="margin-bottom:1cm;"> | Family | Basis | Domain | | :---: | :---: | :---: | | Chebyshev | $$\{T_k\}_{k=0}^{N-1}$$ | $$[-1, 1]$$ | | Legendre | $$\{L_k\}_{k=0}^{N-1}$$ | $$[-1, 1]$$ | | Fourier | $$\{\exp(\text{i}kx)\}_{k=-N/2}^{N/2-1}$$| $$[0, 2\pi]$$ | | Hermite | $$\{H_k\}_{k=0}^{N-1}$$ | $$[-\infty, \infty]$$| | Laguerre | $$\{La_k\}_{k=0}^{N-1}$$ | $$[0, \infty]$$ | End of explanation C0 = FunctionSpace(N, 'Chebyshev', bc=(0, 0)) L0 = FunctionSpace(N, 'Legendre', bc=(0, 0)) H0 = FunctionSpace(N, 'Hermite') La = FunctionSpace(N, 'Laguerre', bc=(0, None)) Explanation: Shen's bases with Dirichlet bcs <p style="margin-bottom:1cm;"> | family | Basis | Boundary condition | |-----------|-----------------------|----------| | Chebyshev | $$\{T_k-T_{k+2}\}_{k=0}^{N-3}$$ | $$u(\pm 1) = 0$$ | | Legendre | $$\{L_k-L_{k+2}\}_{k=0}^{N-3}$$ | $$u(\pm 1) = 0$$ | | Hermite | $$\exp(-x^2)\{H_k\}_{k=0}^{N-1}$$ | $$u(\pm \infty) = 0$$ | | Laguerre | $$\exp(-x/2)\{La_k-La_{k+1}\}_{k=0}^{N-2}$$| $$u(0) = u(\infty) = 0$$ | End of explanation CN = FunctionSpace(N, 'Chebyshev', bc={'left': {'N': 0}, 'right': {'N': 0}}) LN = FunctionSpace(N, 'Legendre', bc={'left': {'N': 0}, 'right': {'N': 0}}) Explanation: Shen's bases with Neumann $u'(\pm 1) = 0$ <p style="margin-bottom:1cm;"> | family | Basis | |-----------|-----------------------| | Chebyshev | $$\left\{T_k-\frac{k^2}{(k+2)^2}T_{k+2}\right\}_{k=0}^{N-3}$$ | | Legendre | $$\left\{L_k-\frac{k(k+1)}{(k+2)(k+3)}L_{k+2}\right\}_{k=0}^{N-3}$$ | End of explanation CB = FunctionSpace(N, 'Chebyshev', bc=(0, 0, 0, 0)) LB = FunctionSpace(N, 'Legendre', bc=(0, 0, 0, 0)) Explanation: Shen's biharmonic bases $u(\pm 1) = u'(\pm 1) = 0$ <p style="margin-bottom:1cm;"> | family | Basis | |-----------| :-----------------: | | Chebyshev | $$\left\{T_k-\frac{2(k+2)}{k+3}T_{k+2}+\frac{k+1}{k+3} T_{k+4}\right\}_{k=0}^{N-5}$$ | | Legendre | $$\left\{L_k-\frac{2(2k+5)}{(2k+7)}L_{k+2}+\frac{2k+3}{2k+7}L_{k+4}\right\}_{k=0}^{N-5}$$ | End of explanation L0 = FunctionSpace(N, 'Legendre', bc=(0, 0)) C0 = FunctionSpace(N, 'Chebyshev', bc=(0, 0)) L1 = FunctionSpace(N, 'Legendre') LL = TensorProductSpace(comm, (L0, L1)) # comm is MPI.COMM_WORLD CL = TensorProductSpace(comm, (C0, L1)) Explanation: Multidimensional tensor product spaces <p style="margin-bottom:0.5cm;"> $$ \begin{align} L_0 &= \{L_k(x)-L_{k+2}(x)\}_{k=0}^{N-3} \\ C_0 &= \{T_k(x)-T_{k+2}(x)\}_{k=0}^{N-3} \\ L_1 &= \{L_l(y)\}_{l=0}^{N-1} \\ LL(x, y) &= L_0(x) \times L_1(y) \\ CL(x, y) &= C_0(x) \times L_1(y) \end{align} $$ End of explanation L0 = FunctionSpace(N, 'Legendre', bc=(0, 0)) L1 = FunctionSpace(N, 'Legendre') # 1D u = TrialFunction(L0) v = TestFunction(L0) uh = Function(L0) uj = Array(L0) # 2D LL = TensorProductSpace(comm, (L0, L1)) # comm is MPI.COMM_WORLD u = TrialFunction(LL) v = TestFunction(LL) uh = Function(LL) uj = Array(LL) Explanation: Basis functions can be created for all bases End of explanation L0 = FunctionSpace(N, 'Legendre', bc=(0, 0)) uh = Function(L0) uj = Array(L0) # Move back and forth uj = uh.backward(uj) uh = uj.forward(uh) Explanation: The shenfun Function represents the solution uh = Function(L0) $$ u(x) = \sum_{k=0}^{N-1} \hat{u}k \phi{k}(x) $$ The function evaluated for all quadrature points, ${u(x_j)}_{j=0}^{N-1}$, is an Array uj = Array(L0) There is a (fast) backward transform for moving from Function to Array, and a forward transform to go the other way. Note that the Array is not a basis function! End of explanation L0 = FunctionSpace(N, 'Legendre', bc=(0, 0)) L1 = FunctionSpace(N, 'Legendre') u = TrialFunction(L0) v = TestFunction(L0) uh = Function(L0) du = grad(u) # vector valued expression g = div(du) # scalar valued expression c = project(Dx(uh, 0, 1), L1) # project expressions with Functions Explanation: Operators in shenfun act on basis functions u is an instance of either TestFunction, TrialFunction or Function div(u) grad(u) curl(u) Dx(u, 0, 1) (partial derivative in x-direction) Assembly project inner End of explanation A = inner(grad(u), grad(v)) dict(A) print(A.diags().todense()) Explanation: Implementation closely matches mathematics <p style="margin-bottom:1cm;"> $$ A = (\nabla u, \nabla v)_w^N $$ End of explanation # Solve Poisson's equation from sympy import symbols, sin, lambdify from shenfun import * # Use sympy to compute manufactured solution x = symbols("x") ue = sin(4*np.pi*x)*(1-x**2) # `ue` is the manufactured solution fe = ue.diff(x, 2) # `fe` is Poisson's right hand side for `ue` SD = FunctionSpace(2000, 'L', bc=(0, 0)) u = TrialFunction(SD) v = TestFunction(SD) b = inner(v, Array(SD, buffer=fe)) # Array is initialized with `fe` A = inner(v, div(grad(u))) uh = Function(SD) uh = A.solve(b, uh) # Very fast O(N) solver print(uh.backward()-Array(SD, buffer=ue)) Explanation: A diagonal stiffness matrix! Complete Poisson solver with error verification in 1D End of explanation L0 = FunctionSpace(N, 'Legendre', bc=(0, 0)) F1 = FunctionSpace(N, 'Fourier', dtype='d') TP = TensorProductSpace(comm, (L0, F1)) u = TrialFunction(TP) v = TestFunction(TP) A = inner(grad(u), grad(v)) print(A) Explanation: 2D - Implementation still closely matching mathematics End of explanation A = inner(grad(u), grad(v)) # <- list of two TPMatrices print(A[0].mats) print('Or as dense matrices:') for mat in A[0].mats: print(mat.diags().todense()) print(A[1].mats) print(A[1].scale) # l^2 Explanation: ? A is a list of two TPMatrix objects??? TPMatrix is a Tensor Product matrix A TPMatrix is the outer product of smaller matrices (2 in 2D, 3 in 3D etc). Consider the inner product: $$ \begin{align} (\nabla u, \nabla v)w &=\int{-1}^{1}\int_{0}^{2\pi} \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \cdot \left(\frac{\partial \overline{v}}{\partial x}, \frac{\partial \overline{v}}{\partial y}\right) \frac{dxdy}{2\pi} \ (\nabla u, \nabla v)w &= \int{-1}^1 \int_{0}^{2\pi} \frac{\partial u}{\partial x}\frac{\partial \overline{v}}{\partial x} \frac{dxdy}{2\pi} + \int_{-1}^1 \int_{0}^{2\pi} \frac{\partial u}{\partial y}\frac{\partial \overline{v}}{\partial y} \frac{dxdy}{2\pi} \end{align} $$ which, like A, is a sum of two terms. These two terms are the two TPMatrixes returned by inner above. Now each one of these two terms can be written as the outer product of two smaller matrices. Consider the first, inserting for test and trial functions $$ \begin{align} v &= \phi_{kl} = (L_k(x)-L_{k+2}(x))\exp(\text{i}ly) \ u &= \phi_{mn} \end{align} $$ The first term becomes $$ \small \begin{align} \int_{-1}^1 \int_{0}^{2\pi} \frac{\partial u}{\partial x}\frac{\partial \overline{v}}{\partial x} \frac{dxdy}{2\pi} &= \underbrace{\int_{-1}^1 \frac{\partial (L_m-L_{m+2})}{\partial x}\frac{\partial (L_k-L_{k+2})}{\partial x} {dx}}{a{km}} \underbrace{\int_{0}^{2\pi} \exp(iny) \exp(-ily) \frac{dy}{2\pi}}{\delta{ln}} \ &= a_{km} \delta_{ln} \end{align} $$ and the second $$ \small \begin{align} \int_{-1}^1 \int_{0}^{2\pi} \frac{\partial u}{\partial y}\frac{\partial \overline{v}}{\partial y} \frac{dxdy}{2\pi} &= \underbrace{\int_{-1}^1 (L_m-L_{m+2})(L_k-L_{k+2}) {dx}}{b{km}} \underbrace{\int_{0}^{2\pi} ln \exp(iny) \exp(-ily)\frac{dy}{2\pi}}{l^2\delta{ln}} \ &= l^2 b_{km} \delta_{ln} \end{align} $$ All in all: $$ (\nabla u, \nabla v)w = \left(a{km} \delta_{ln} + l^2 b_{km} \delta_{ln}\right) $$ $$ (\nabla u, \nabla v)w = \left(a{km} \delta_{ln} + l^2 b_{km} \delta_{ln}\right) $$ End of explanation import matplotlib.pyplot as plt from sympy import symbols, sin, cos, lambdify from shenfun import * # Use sympy to compute manufactured solution x, y, z = symbols("x,y,z") ue = (cos(4*x) + sin(2*y) + sin(4*z))*(1-x**2) fe = ue.diff(x, 2) + ue.diff(y, 2) + ue.diff(z, 2) C0 = FunctionSpace(32, 'Chebyshev', bc=(0, 0)) F1 = FunctionSpace(32, 'Fourier', dtype='D') F2 = FunctionSpace(32, 'Fourier', dtype='d') T = TensorProductSpace(comm, (C0, F1, F2)) u = TrialFunction(T) v = TestFunction(T) # Assemble left and right hand f_hat = inner(v, Array(T, buffer=fe)) A = inner(v, div(grad(u))) # Solve solver = chebyshev.la.Helmholtz(*A) # Very fast O(N) solver u_hat = Function(T) u_hat = solver(f_hat, u_hat) assert np.linalg.norm(u_hat.backward()-Array(T, buffer=ue)) < 1e-12 print(u_hat.shape) Explanation: 3D Poisson (with MPI and Fourier x 2) End of explanation X = T.local_mesh() ua = u_hat.backward() plt.contourf(X[2][0, 0, :], X[0][:, 0, 0], ua[:, 2], 100) plt.colorbar() Explanation: Contour plot of slice with constant y End of explanation import subprocess subprocess.check_output('mpirun -np 4 python poisson3D.py', shell=True) Explanation: Run with MPI distribution of arrays Here we would normally run from a bash shell <p style="margin-bottom:0.5cm;"> <div style="color:black"> <strong>[bash shell] mpirun -np 4 python poisson3D.py </strong> </div> But since we are in a Jupyter notebook lets actually do this from python in a live cell:-) End of explanation V = VectorSpace(T) u = Array(V) u[:] = np.random.random(u.shape) w = np.sum(u*u, axis=0) wh = Function(T) wh = T.forward(w, wh) Explanation: Note that Fourier bases are especially attractive because of features easily handled with MPI: - diagonal matrices - fast transforms mpi4py-fft <p style="margin-bottom:1cm;"> <div class="sl-block is-focused" data-block-type="image" style="min-width: 4px; min-height: 4px; width: 256px; height: 65px; left: 0px; top: 280px;" data-origin-id="e9caa44395810f9c496e1903dd61aba2"><img data-natural-width="1280" data-natural-height="325" style="" data-lazy-loaded="" src="https://s3.amazonaws.com/media-p.slid.es/uploads/92046/images/4253090/BitBucket_SVG_Logo.svg.png"></div> by Mikael Mortensen and Lisandro Dalcin Highly configurable Python package for distributing multidimensional arrays and for computing fast Fourier Transforms (FFTs) in parallel. Wraps [FFTW](http://www.fftw.org/) and lies at the core of `shenfun` and distributes large arrays. <div> <img src="https://rawcdn.githack.com/spectralDNS/spectralutilities/7777e58e1e81887149d1eaf6053e33769ee4a3f5/figures/pencil2.png" style="float:left" width=320> <img src="https://rawcdn.githack.com/spectralDNS/spectralutilities/7777e58e1e81887149d1eaf6053e33769ee4a3f5/figures/pencil3.png" style="float:right" width=320> </div> [![mpi4py-fft](https://anaconda.org/conda-forge/mpi4py-fft/badges/downloads.svg)](https://anaconda.org/conda-forge/mpi4py-fft) # Nonlinearities and convolutions All treated with pseudo-spectral techniques. For example $$ \begin{align} \hat{w}_k &= \widehat{\mathbf{u} \cdot \mathbf{u}}_k \\ &\text{or} \\ \hat{w}_k &= \widehat{|\nabla f|^2}_k \end{align} $$ Nonlinear terms are computed in real space and then forward transformed to spectral space. 3/2-rule or 2/3-rule possible for dealiasing of Fourier. End of explanation N = (40, 40) D0X = FunctionSpace(N[0], 'Legendre', bc=(0, 0)) # For velocity components 0, 1 #D1Y = FunctionSpace(N[1], 'Legendre', bc=(0, 1)) # For velocity component 0 D1Y = FunctionSpace(N[1], 'Legendre', bc=(0, (1-x)**2*(1+x)**2)) # Regularized lid D0Y = FunctionSpace(N[1], 'Legendre', bc=(0, 0)) # For velocity component 1 PX = FunctionSpace(N[0], 'Legendre') PY = FunctionSpace(N[1], 'Legendre') # All required spaces V0 = TensorProductSpace(comm, (D0X, D1Y)) # velocity conponent 0 V1 = TensorProductSpace(comm, (D0X, D0Y)) # velocity component 1 Q = TensorProductSpace(comm, (PX, PY), modify_spaces_inplace=True) # pressure V = VectorSpace([V0, V1]) # Velocity vector (V0 x V1) VQ = CompositeSpace([V, Q]) # V x Q PX.slice = lambda: slice(0, PX.N-2) # For inf-sup PY.slice = lambda: slice(0, PY.N-2) # For inf-sup # All required test and trial functions up = TrialFunction(VQ) vq = TestFunction(VQ) u, p = up v, q = vq Explanation: Mixed tensor product spaces Solve several equations simultaneously Coupled equations Block matrices and vectors Tensor spaces of vectors, like velocity $u \in [\mathbb{R}^3]^3$ Stokes equations lid-driven cavity - coupled solver <p style="margin-bottom:0.25cm;"> $$ \begin{align*} \nabla^2 \mathbf{u} - \nabla p &= \mathbf{f} \quad \text{in } \Omega, \quad \quad \Omega = [-1, 1]\times[-1, 1]\\ \nabla \cdot \mathbf{u} &= h \quad \text{in } \Omega \\ \int_{\Omega} p dx &= 0 \\ \mathbf{u}(\pm 1, y) = \mathbf{u}(x, -1) = (0, 0) &\text{ and }\mathbf{u}(x, 1) = (1, 0) \text{ or } ((1-x^2)(1+x^2), 0) \end{align*} $$ Given appropriate spaces $V$ and $Q$ a variational form reads: find $(\mathbf{u}, p) \in V \times Q$ such that $$ \begin{equation} a((\mathbf{u}, p), (\mathbf{v}, q)) = L((\mathbf{v}, q)) \quad \forall (\mathbf{v}, q) \in V \times Q \end{equation} $$ where bilinear and linear forms are, respectively $$ \begin{equation} a((\mathbf{u}, p), (\mathbf{v}, q)) = \int_{\Omega} (\nabla^2 \mathbf{u} - \nabla p) \cdot {\mathbf{v}} \, dx_w + \int_{\Omega} \nabla \cdot \mathbf{u} \, {q} \, dx_w, \end{equation} $$ $$ \begin{equation} L((\mathbf{v}, q)) = \int_{\Omega} \mathbf{f} \cdot {\mathbf{v}}\, dx_w + \int_{\Omega} h {q} \, dx_w \end{equation} $$ Using integration by parts for Legendre (not really necessary, but looks nicer and more familiar:-) $$ \begin{equation} a((\mathbf{u}, p), (\mathbf{v}, q)) = -\int_{\Omega} \nabla \mathbf{u} \cdot \nabla{\mathbf{v}} \, dx_w + \int_{\Omega} \nabla \cdot \mathbf{v} \, {p} \, dx_w + \int_{\Omega} \nabla \cdot \mathbf{u} \, {q} \, dx_w, \end{equation} $$ # Implementation of spaces, basis functions End of explanation # Assemble matrices A = inner(grad(v), -grad(u)) G = inner(div(v), p) D = inner(q, div(u)) # Create Block matrix solver sol = la.BlockMatrixSolver(A+G+D) # Add Functions to hold solution and rhs up_hat = Function(VQ).set_boundary_dofs() fh_hat = Function(VQ) # Solve Stokes problem. Note constraint for pressure up_hat = sol(fh_hat, u=up_hat, constraints=((2, 0, 0),)) # Move solution to Array in real space up = up_hat.backward() u_, p_ = up X = Q.local_mesh(True) plt.quiver(X[0], X[1], u_[0], u_[1]) Explanation: Implementation Stokes - matrices and solve End of explanation %matplotlib notebook plt.figure(figsize=(6,4)) plt.spy(sol.mat.diags(), markersize=0.5) Explanation: Block matrix M $$ M = \begin{bmatrix} A[0]+A[1] & 0 & G[0] \ 0 & A[2]+A[3] & G[1] \ D[0] & D[1] & 0 \end{bmatrix} $$ where $D = G^T$ for the Legendre basis, making $M$ symmetric. For Chebyshev $M$ will not be symmetric. Solver through scipy.sparse.linalg For Navier-Stokes of the lid-driven cavity, see https://github.com/spectralDNS/shenfun/blob/master/demo/NavierStokesDrivenCavity.py Sparsity pattern $$ M = \begin{bmatrix} A[0]+A[1] & 0 & G[0] \ 0 & A[2]+A[3] & G[1] \ D[0] & D[1] & 0 \end{bmatrix} $$ End of explanation
573
Given the following text description, write Python code to implement the functionality described below step by step Description: Data generation @cesans Step1: dc.data.get_trajectory can be used to get an optimal trajectory for some initial conditions Step2: The trajectory can be visualized (xy) with dc.vis.vis_trajectory Step3: Or all the variables and control with dc.vis.vis_control Step4: Several random trajectories can be generated (in parallell) using a direct method with dc.data.generate_data Step5: All trajectories can then be loaded with dc.data.load_trajectories
Python Code: import matplotlib as plt %matplotlib inline import sys sys.path.append('..') import numpy as np import deep_control as dc Explanation: Data generation @cesans End of explanation conditions = {'x0': 200, 'z0': 1000, 'vx0':-30, 'vz0': 0, 'theta0': 0, 'm0': 10000} col_names = ['t', 'm', 'x', 'vx', 'z' , 'vz',' theta', 'u1', 'u2'] traj = dc.data.get_trajectory('../SpaceAMPL/lander/hs/main_rw_mass.mod', conditions, col_names=col_names) Explanation: dc.data.get_trajectory can be used to get an optimal trajectory for some initial conditions End of explanation dc.vis.vis_trajectory(traj) Explanation: The trajectory can be visualized (xy) with dc.vis.vis_trajectory End of explanation dc.vis.vis_control(traj,2) Explanation: Or all the variables and control with dc.vis.vis_control End of explanation params = {'x0': (-1000,1000), 'z0': (500,2000), 'vx0': (-100,100), 'vz0': (-30,10), 'theta0': (-np.pi/20,np.pi/20), 'm0': (8000,12000)} dc.data.generate_data('../SpaceAMPL/lander/hs/main_thrusters.mod', params, 100,10) Explanation: Several random trajectories can be generated (in parallell) using a direct method with dc.data.generate_data End of explanation col_names = ['t', 'm', 'x', 'vx', 'z', 'vz', 'theta', 'vtheta', 'u1', 'uR', 'uL'] trajs = dc.data.load_trajectories('data/main_thrusters/', col_names = col_names) trajs[0].head(5) Explanation: All trajectories can then be loaded with dc.data.load_trajectories End of explanation
574
Given the following text description, write Python code to implement the functionality described below step by step Description: Insert / read whole numpy arrays http Step1: Create a DB/table for storing results http Step2: Insert a single row into the results table Each insert is synchronous This is safest, but is about 20 times (or more) slower than syncing once after all the inserts are performed (see below). Step3: Read the row back to ensure the data is correct
Python Code: def adapt_array(arr): out = io.BytesIO() np.save(out, arr) out.seek(0) return sqlite3.Binary(out.read()) def convert_array(text): out = io.BytesIO(text) out.seek(0) return np.load(out) # Converts np.array to TEXT when inserting sqlite3.register_adapter(np.ndarray, adapt_array) # Converts TEXT to np.array when selecting sqlite3.register_converter("array", convert_array) x = np.arange(12).reshape(2,6) print x con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES) cur = con.cursor() cur.execute("create table test (arr array)") cur.execute("insert into test (arr) values (?)", (x, )) cur.execute("select arr from test") data = cur.fetchone()[0] print(data) print type(data) Explanation: Insert / read whole numpy arrays http://stackoverflow.com/questions/18621513/python-insert-numpy-array-into-sqlite3-database End of explanation def create_or_open_db(db_file): db_is_new = not os.path.exists(db_file) con = sqlite3.connect(db_file, detect_types=sqlite3.PARSE_DECLTYPES) if db_is_new: print 'Creating results schema' sql = '''CREATE TABLE IF NOT EXISTS results( run_id TEXT, run_step_num INTEGER, theta23 REAL, deltam31 REAL, metric REAL, minimizer_steps array, PRIMARY KEY (run_id, run_step_num) );''' with con: con.execute(sql) print 'Creating config schema' sql = '''CREATE TABLE IF NOT EXISTS config( run_id TEXT PRIMARY KEY, template_settings TEXT, minimizer_settings TEXT, grid_settings TEXT );''' with con: con.execute(sql) else: print 'Schema exists\n' return con Explanation: Create a DB/table for storing results http://www.numericalexpert.com/blog/sqlite_blob_time/sqlite_blob.html End of explanation rm ./test.db np.random.seed(0) con = create_or_open_db('./test.db') sql_insert_data = '''INSERT INTO results VALUES (?,?,?,?,?,?);''' n_inserts = 100 n_mod = 10 t0 = time.time() for n in xrange(n_inserts): if n % n_mod == 0: GUTIL.wstdout('.') input_data = ( 'msu_0', n, 1139.389, 0.723, 2e-3, np.random.rand(100,6) ) try: with con: con.execute(sql_insert_data, input_data) except sqlite3.IntegrityError as e: if not 'UNIQUE constraint failed' in e.args[0]: raise elif n % n_mod == 0: GUTIL.wstdout('x') dt = time.time()-t0 con.close() GUTIL.wstdout( '\n%s total (%s/insert)' % (GUTIL.timediffstamp(dt), GUTIL.timediffstamp(dt/float(n_inserts))) ) e.message ls -hl ./test.db rm ./test2.db np.random.seed(0) con = create_or_open_db('./test2.db') sql_insert = '''INSERT INTO results VALUES (?,?,?,?,?,?);''' t0=time.time() with con: for n in xrange(n_inserts): if n % n_mod == 0: GUTIL.wstdout('.') input_data = ( 'msu_0', n, 1139.389, 0.723, 2e-3, np.random.rand(100,6) ) try: con.execute(sql_insert, input_data) except sqlite3.IntegrityError as e: if not 'UNIQUE constraint failed' in e.args[0]: raise elif n % n_mod == 0: GUTIL.wstdout('o') dt = time.time()-t0 con.close() GUTIL.wstdout( '\n%s total (%s/insert)' % (GUTIL.timediffstamp(dt), GUTIL.timediffstamp(dt/float(n_inserts))) ) dt/n_inserts ls -hl ./test2.db Explanation: Insert a single row into the results table Each insert is synchronous This is safest, but is about 20 times (or more) slower than syncing once after all the inserts are performed (see below). End of explanation con = create_or_open_db('./test2.db') con.row_factory = sqlite3.Row sql = '''SELECT metric, theta23, deltam31, run_id, run_step_num, minimizer_steps FROM results''' cursor = con.execute(sql) for row in cursor: print row.keys()[:-1] print [x for x in row][:-1] print 'shape of', row.keys()[-1], row['minimizer_steps'].shape break ls -hl ./test.db a = row[-1] Explanation: Read the row back to ensure the data is correct End of explanation
575
Given the following text description, write Python code to implement the functionality described below step by step Description: Eccentricity (Volume Conservation) Setup Let's first make sure we have the latest version of PHOEBE 2.1 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). Step1: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. Step2: Relevant Parameters Step3: Relevant Constraints Step4: Influence on Meshes (volume conservation) Step5: Influence on Radial Velocities Step6: Influence on Light Curves (fluxes)
Python Code: !pip install -I "phoebe>=2.1,<2.2" Explanation: Eccentricity (Volume Conservation) Setup Let's first make sure we have the latest version of PHOEBE 2.1 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). End of explanation %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() Explanation: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. End of explanation print b.get(qualifier='ecc') print b.get(qualifier='ecosw', context='component') print b.get(qualifier='esinw', context='component') Explanation: Relevant Parameters End of explanation print b.get(qualifier='ecosw', context='constraint') print b.get(qualifier='esinw', context='constraint') Explanation: Relevant Constraints End of explanation b.add_dataset('mesh', times=np.linspace(0,1,11), columns=['volume']) b.set_value('ecc', 0.2) b.run_compute() print b['volume@primary@model'] afig, mplfig = b['mesh01'].plot(x='times', y='volume', show=True) b.remove_dataset('mesh01') Explanation: Influence on Meshes (volume conservation) End of explanation b.add_dataset('rv', times=np.linspace(0,1,51)) b.run_compute() afig, mplfig = b['rv@model'].plot(show=True) b.remove_dataset('rv01') Explanation: Influence on Radial Velocities End of explanation b.add_dataset('lc', times=np.linspace(0,1,51)) b.run_compute() afig, mplfig = b['lc@model'].plot(show=True) Explanation: Influence on Light Curves (fluxes) End of explanation
576
Given the following text description, write Python code to implement the functionality described below step by step Description: <br> Performing gauss, aperture and modelimg extractions with TDOSE<br> Step1: Performing default aperture extraction using corresponding setup file.<br> Hence, tdose will simply drop down apertures of the size specified in the<br> setup and extract the spectrum within it. Step2: Performing default gauss extraction using corresponding setup file.<br> Hence, tdose will model the reference image using a single multi-variate<br> Guassian for each object in the source catalog provided in the setup. Step3: Performing default modelimg extraction using corresponding setup file.<br> Hence, TDOSE will load reference image model (cube) directly from the<br> specified loaction in the setup, and base the extraction and contamination<br> handling on this model. In this case the model cubes were generated from<br> galfit multi-sersic models.
Python Code: print(' - Importing functions') import glob import tdose import tdose_utilities as tu workingdirectory = '../examples_workingdir' setupname = 'Rafelski-MXDF_ZAP_COR_V2' setupdir = workingdirectory+'tdose_setupfiles/' Explanation: <br> Performing gauss, aperture and modelimg extractions with TDOSE<br> End of explanation setups_aperture = setupdir+'tdose_setupfile_'+setupname+'*_aperture.txt' tdose.perform_extraction(setupfile=setups_aperture[0],performcutout=False,generatesourcecat=True, verbose=True,verbosefull=True,clobber=True,store1Dspectra=True,plot1Dspectra=True, skipextractedobjects=False,logterminaloutput=False) Explanation: Performing default aperture extraction using corresponding setup file.<br> Hence, tdose will simply drop down apertures of the size specified in the<br> setup and extract the spectrum within it. End of explanation setups_gauss = setupdir+'/tdose_setupfile_'+setupname+'*_gauss.txt' tdose.perform_extraction(setupfile=setups_gauss[0],performcutout=False,generatesourcecat=True, verbose=True,verbosefull=True,clobber=True,store1Dspectra=True,plot1Dspectra=True, skipextractedobjects=False,logterminaloutput=False) Explanation: Performing default gauss extraction using corresponding setup file.<br> Hence, tdose will model the reference image using a single multi-variate<br> Guassian for each object in the source catalog provided in the setup. End of explanation setups_modelimg = setupdir+'tdose_setupfile_'+setupname+'*_modelimg.txt' tdose.perform_extraction(setupfile=setups_modelimg[0],performcutout=False,generatesourcecat=True, verbose=True,verbosefull=True,clobber=True,store1Dspectra=True,plot1Dspectra=True, skipextractedobjects=False,logterminaloutput=False) Explanation: Performing default modelimg extraction using corresponding setup file.<br> Hence, TDOSE will load reference image model (cube) directly from the<br> specified loaction in the setup, and base the extraction and contamination<br> handling on this model. In this case the model cubes were generated from<br> galfit multi-sersic models. End of explanation
577
Given the following text description, write Python code to implement the functionality described below step by step Description: Tutorial 08 Step1: 2. Example Network In this tutorial, we use the Luxembourg SUMO Traffic (LuST) Scenario as an example use case. This example consists of a well-calibrated model of vehicles in Luxembourg. A representation of the simulation can be seen in the figure below. <img src="img/LuST_network.png" width="500"> <center><b>Figure 2</b> Step2: 3. Sumo Network Files Sumo generates several network and simulation-specifc template files prior to starting a simulation. This procedure when creating custom scenarios and scenarios from OpenStreetMap is covered by the scenario class. Three of these files (*.net.xml, *.rou.xml, and vtype.add.xml) can be imported once again via the scenario class to recreate a previously decided scenario. We start by creating the simulation parameters Step3: 3.1 Importing Network (*.net.xml) Files The *.net.xml file covers the network geometry within a simulation, and can be imported independently of the SUMO route file (see section 1.2). This can be done through the template parameter within NetParams as follows Step4: This network alone, similar to the OpenStreetMap file, does not cover the placement of vehicles or the routes vehicles can traverse. These, however, can be defined a they were in the previous tutorial for importing networks from OpenStreetMap. For the LuST network, this looks something similar to the following code snippet (note that the specific edges were not spoken for any specific reason). Step5: The simulation can then be executed as follows Step6: 3.2 Importing Additional Files Sumo templates will at times contain files other than the network templates that can be used to specify the positions, speeds, and properties of vehicles at the start of a simulation, as well as the departure times of vehicles while the scenario is running and the routes that all these vehicles are meant to traverse. All these files can also be imported under the template attribute in order to recreate the simulation in it's entirety. When incorporating files other that the net.xml file to the simulation, the template attribute is treated as a dictionary instead, with a different element for each of the additional files that are meant to be imported. Starting with the net.xml file, it is added to the template attribute as follows Step7: 3.2.1 Vehicle Type (vtype.add.xml) The vehicle types file describing the properties of different vehicle types in the network. These include parameters such as the max acceleration and comfortable deceleration of drivers. This file can be imported via the "vtype" attribute in template. Note that, when vehicle information is being imported from a template file, the VehicleParams object does not need be modified, unless you would like additionally vehicles to enter the network as well. Step8: 3.2.2 Route (*.rou.xml) Next, the routes can be imported from the *.rou.xml files that are generated by SUMO. These files help define which cars enter the network at which point in time, whether it be at the beginning of a simulation or some time during it run. The route files are passed to the "rou" key in the templates attribute. Moreover, since the vehicle routes can be spread over multiple files, the "rou" key that a list of string filenames. Step9: 3.2.3 Running the Modified Simulation Finally, the fully imported simulation can be run as follows. Warning Step10: 4. Aimsun Network Files Flow can run templates that have been created in Aimsun and saved into an *.ang file. Although it is possible to have control over the network, for instance add vehicles and monitor them directly from Flow, this tutorial only covers how to run the network. We will use the template located at tutorials/networks/test_template.ang, which looks like this Step11: As you can see, we need to specify the name of the replication we want to run as well as the centroid configuration that is to be used. There is an other optional parameter, subnetwork_name, that can be specified if only part of the network should be simulated. Please refer to the documentation for more information. The template can then be imported as follows Step12: Finally, we can run the simulation by specifying 'aimsun' as the simulator to be used
Python Code: # the TestEnv environment is used to simply simulate the network from flow.envs import TestEnv # the Experiment class is used for running simulations from flow.core.experiment import Experiment # the base scenario class from flow.scenarios import Scenario # all other imports are standard from flow.core.params import VehicleParams from flow.core.params import NetParams from flow.core.params import InitialConfig from flow.core.params import EnvParams # create some default parameters parameters env_params = EnvParams() initial_config = InitialConfig() vehicles = VehicleParams() vehicles.add('human', num_vehicles=1) Explanation: Tutorial 08: Networks from Custom Templates In the previous tutorial, we discussed how OpenStreetMap files can be simulated in Flow. These networks, however, may at time be imperfect, as we can see in the toll section of the Bay Bridge (see the figure below). The simulators SUMO and Aimsun both possess methods for augmenting the network after they have been imported, and store the changes in their own versions of the initial template (whether it was generated via a custom scenario class or a network imported from OpenStreetMap). In order to utilize these newly generated networks, we demonstrate in this tutorial how simulator-generated template files can be imported when running a simulation in Flow. <img src="img/osm_to_template.png"> <center> Figure 1: Example benefit of converting OpenStreetMap to a custom template </center> The remainder of the tutorial is organized as follows. In section 1, we begin by importing the classic set of parameters. In section 2, we introduce the template files that are used as examples for importing the template files. In section 3, we present how custom SUMO network templates, i.e. the generated .net.xml files, can be modified and simulated in Flow for the purposed of improving network features. Finally, in section 4, we demonstrate how custom Aimsun network files can be simulated in Flow. 1. Importing Modules Before we begin, let us import all relevant Flow parameters as we have done for previous tutorials. If you are unfamiliar with these parameters, you are encouraged to review tutorial 1. End of explanation LuST_dir = "/home/aboudy/LuSTScenario" Explanation: 2. Example Network In this tutorial, we use the Luxembourg SUMO Traffic (LuST) Scenario as an example use case. This example consists of a well-calibrated model of vehicles in Luxembourg. A representation of the simulation can be seen in the figure below. <img src="img/LuST_network.png" width="500"> <center><b>Figure 2</b>: Simulation of the LuST network </center> Before, continuing with this tutorial, please begin by cloning the LuST scenario repository by running the following command. git clone https://github.com/lcodeca/LuSTScenario.git Once you have cloned the repository, please modify the code snippet below to match correct location of the repository's main directory. End of explanation from flow.core.params import SumoParams sim_params = SumoParams(render=True, sim_step=1) Explanation: 3. Sumo Network Files Sumo generates several network and simulation-specifc template files prior to starting a simulation. This procedure when creating custom scenarios and scenarios from OpenStreetMap is covered by the scenario class. Three of these files (*.net.xml, *.rou.xml, and vtype.add.xml) can be imported once again via the scenario class to recreate a previously decided scenario. We start by creating the simulation parameters: End of explanation import os net_params = NetParams( template=os.path.join(LuST_dir, "scenario/lust.net.xml"), ) Explanation: 3.1 Importing Network (*.net.xml) Files The *.net.xml file covers the network geometry within a simulation, and can be imported independently of the SUMO route file (see section 1.2). This can be done through the template parameter within NetParams as follows: End of explanation # specify the edges vehicles can originate on initial_config = InitialConfig( edges_distribution=["-32410#3"] ) # specify the routes for vehicles in the network class TemplateScenario(Scenario): def specify_routes(self, net_params): return {"-32410#3": ["-32410#3"]} Explanation: This network alone, similar to the OpenStreetMap file, does not cover the placement of vehicles or the routes vehicles can traverse. These, however, can be defined a they were in the previous tutorial for importing networks from OpenStreetMap. For the LuST network, this looks something similar to the following code snippet (note that the specific edges were not spoken for any specific reason). End of explanation # create the scenario scenario = TemplateScenario( name="template", net_params=net_params, initial_config=initial_config, vehicles=vehicles ) # create the environment env = TestEnv( env_params=env_params, sim_params=sim_params, scenario=scenario ) # run the simulation for 1000 steps exp = Experiment(env=env) _ = exp.run(1, 1000) Explanation: The simulation can then be executed as follows: End of explanation new_net_params = NetParams( template={ # network geometry features "net": os.path.join(LuST_dir, "scenario/lust.net.xml") } ) Explanation: 3.2 Importing Additional Files Sumo templates will at times contain files other than the network templates that can be used to specify the positions, speeds, and properties of vehicles at the start of a simulation, as well as the departure times of vehicles while the scenario is running and the routes that all these vehicles are meant to traverse. All these files can also be imported under the template attribute in order to recreate the simulation in it's entirety. When incorporating files other that the net.xml file to the simulation, the template attribute is treated as a dictionary instead, with a different element for each of the additional files that are meant to be imported. Starting with the net.xml file, it is added to the template attribute as follows: End of explanation new_net_params = NetParams( template={ # network geometry features "net": os.path.join(LuST_dir, "scenario/lust.net.xml"), # features associated with the properties of drivers "vtype": os.path.join(LuST_dir, "scenario/vtype.add.xml") } ) # we no longer need to specify anything in VehicleParams new_vehicles = VehicleParams() Explanation: 3.2.1 Vehicle Type (vtype.add.xml) The vehicle types file describing the properties of different vehicle types in the network. These include parameters such as the max acceleration and comfortable deceleration of drivers. This file can be imported via the "vtype" attribute in template. Note that, when vehicle information is being imported from a template file, the VehicleParams object does not need be modified, unless you would like additionally vehicles to enter the network as well. End of explanation new_net_params = NetParams( template={ # network geometry features "net": os.path.join(LuST_dir, "scenario/lust.net.xml"), # features associated with the properties of drivers "vtype": os.path.join(LuST_dir, "scenario/vtypes.add.xml"), # features associated with the routes vehicles take "rou": [os.path.join(LuST_dir, "scenario/DUARoutes/local.0.rou.xml"), os.path.join(LuST_dir, "scenario/DUARoutes/local.1.rou.xml"), os.path.join(LuST_dir, "scenario/DUARoutes/local.2.rou.xml")] } ) # we no longer need to specify anything in VehicleParams new_vehicles = VehicleParams() Explanation: 3.2.2 Route (*.rou.xml) Next, the routes can be imported from the *.rou.xml files that are generated by SUMO. These files help define which cars enter the network at which point in time, whether it be at the beginning of a simulation or some time during it run. The route files are passed to the "rou" key in the templates attribute. Moreover, since the vehicle routes can be spread over multiple files, the "rou" key that a list of string filenames. End of explanation # create the scenario scenario = Scenario( name="template", net_params=new_net_params, vehicles=new_vehicles ) # create the environment env = TestEnv( env_params=env_params, sim_params=sim_params, scenario=scenario ) # run the simulation for 100000 steps exp = Experiment(env=env) _ = exp.run(1, 100000) Explanation: 3.2.3 Running the Modified Simulation Finally, the fully imported simulation can be run as follows. Warning: the network takes time to initialize while the departure positions and times and vehicles are specified. End of explanation from flow.core.params import AimsunParams sim_params = AimsunParams( sim_step=0.1, render=True, emission_path='data', replication_name="Replication 930", centroid_config_name="Centroid Configuration 910" ) Explanation: 4. Aimsun Network Files Flow can run templates that have been created in Aimsun and saved into an *.ang file. Although it is possible to have control over the network, for instance add vehicles and monitor them directly from Flow, this tutorial only covers how to run the network. We will use the template located at tutorials/networks/test_template.ang, which looks like this: <img src="img/test_template.png"> <center><b>Figure 2</b>: Simulation of <code>test_template.ang</code> in Aimsun</center> It contains two input and three output centroids that define the centroid configuration Centroid Configuration 910. The inflows are defined by two OD matrices, one for the type Car (in blue), the other for the type rl (in red). Note that there is no learning in this tutorial so the two types both act as regular cars. The two OD matrices form the traffic demand Traffic Demand 925 that is used by the scenario Dynamic Scenario 927. Finally, the experiment Micro SRC Experiment 928 and the replication Replication 930 are created, and we will run this replication in the following. First, we create the Aimsun-specific simulation parameters: End of explanation import os import flow.config as config net_params = NetParams( template=os.path.join(config.PROJECT_PATH, "tutorials/networks/test_template.ang") ) Explanation: As you can see, we need to specify the name of the replication we want to run as well as the centroid configuration that is to be used. There is an other optional parameter, subnetwork_name, that can be specified if only part of the network should be simulated. Please refer to the documentation for more information. The template can then be imported as follows: End of explanation scenario = Scenario( name="template", net_params=net_params, initial_config=initial_config, vehicles=vehicles ) env = TestEnv( env_params, sim_params, scenario, simulator='aimsun' ) exp = Experiment(env) exp.run(1, 1000) Explanation: Finally, we can run the simulation by specifying 'aimsun' as the simulator to be used: End of explanation
578
Given the following text description, write Python code to implement the functionality described below step by step Description: Modified introduction using forex data This is the trading rule example shown in the introduction but modified to use Interactive Brokers instead of CSV files as data source. IB requires a minimum equity and a monthly subscription to provide historical data on future contracts. This example was modified to use FX prices instead futures to make it runnable with free unfunded paper trading accounts. Note that Rob does not recommend trading FX spot data with IB due to their high fees. First, import the required packages and initialize ib_insync. Step1: Connecting to Interactive Brokers gateway... Step2: See what fx instruments we have configured. These are configured in sysbrokers/IB/ib_config_spot_FX.csv Step3: Now we select one instrument (EURUSD) and try to fetch historical data for it. Step4: Data can also be indexed as a python dict Step6: Create the trading rule Step7: Run a forecast with the previous rule Step8: The original introduction jumps directly to "Did we make any money?". I would like to see here the orders that were triggered by this forecast, but instead we jump directly into P&L. Still, these are the P&L numbers for this forecast and data
Python Code: from sysbrokers.IB.ib_connection import connectionIB from sysbrokers.IB.ib_Fx_prices_data import ibFxPricesData from ib_insync import util util.startLoop() #only required when running inside a notebook Explanation: Modified introduction using forex data This is the trading rule example shown in the introduction but modified to use Interactive Brokers instead of CSV files as data source. IB requires a minimum equity and a monthly subscription to provide historical data on future contracts. This example was modified to use FX prices instead futures to make it runnable with free unfunded paper trading accounts. Note that Rob does not recommend trading FX spot data with IB due to their high fees. First, import the required packages and initialize ib_insync. End of explanation conn = connectionIB(111) conn Explanation: Connecting to Interactive Brokers gateway... End of explanation ibfxpricedata = ibFxPricesData(conn) ibfxpricedata.get_list_of_fxcodes() Explanation: See what fx instruments we have configured. These are configured in sysbrokers/IB/ib_config_spot_FX.csv End of explanation ibfxpricedata.get_fx_prices('EURUSD') Explanation: Now we select one instrument (EURUSD) and try to fetch historical data for it. End of explanation ibfxpricedata['JPYUSD'] Explanation: Data can also be indexed as a python dict: End of explanation import pandas as pd from sysquant.estimators.vol import robust_vol_calc def calc_ewmac_forecast(price, Lfast, Lslow=None): Calculate the ewmac trading rule forecast, given a price and EWMA speeds Lfast, Lslow and vol_lookback if Lslow is None: Lslow = 4 * Lfast ## We don't need to calculate the decay parameter, just use the span directly fast_ewma = price.ewm(span=Lfast).mean() slow_ewma = price.ewm(span=Lslow).mean() raw_ewmac = fast_ewma - slow_ewma vol = robust_vol_calc(price.diff()) return raw_ewmac / vol Explanation: Create the trading rule End of explanation price=ibfxpricedata['EURUSD'] ewmac=calc_ewmac_forecast(price, 32, 128) ewmac.tail(5) import matplotlib.pyplot as plt plt.figure(figsize=(12,5)) ax1 = price.plot(color='blue', grid=True, label='Forecast') ax2 = ewmac.plot(color='red', grid=True, secondary_y=True, label='Price') h1, l1 = ax1.get_legend_handles_labels() h2, l2 = ax2.get_legend_handles_labels() plt.legend(h1+h2, l1+l2, loc=2) plt.show() Explanation: Run a forecast with the previous rule End of explanation from systems.accounts.account_forecast import pandl_for_instrument_forecast account = pandl_for_instrument_forecast(forecast = ewmac, price = price) account.percent.stats() account.curve().plot() plt.show() conn.close_connection() Explanation: The original introduction jumps directly to "Did we make any money?". I would like to see here the orders that were triggered by this forecast, but instead we jump directly into P&L. Still, these are the P&L numbers for this forecast and data: End of explanation
579
Given the following text description, write Python code to implement the functionality described below step by step Description: ${t\bar{t}H\left(b\bar{b}\right)}$ scikit-learn BDT for classification of ${t\bar{t}H}$ and ${t\bar{t}b\bar{b}}$ events For each signal region, information from the output of the reconstruction BDT is combined with kinematic variables for input to classification BDTs, with ${t\bar{t}H \left(H\to b\bar{b}\right)}$ as signal and ${t\bar{t}}$ as background. There is one BDT trained for events with exactly 5 jets or at least 6 jets. Step1: read Step2: features and targets Step3: accuracy
Python Code: import datetime import graphviz import matplotlib.pyplot as plt %matplotlib inline import numpy as np plt.rcParams["figure.figsize"] = (17, 10) import pandas as pd import seaborn as sns sns.set(context = "paper", font = "monospace") import sklearn.datasets from sklearn.preprocessing import MinMaxScaler import sklearn.tree import sqlite3 import warnings warnings.filterwarnings("ignore") pd.set_option("display.max_rows", 500) pd.set_option("display.max_columns", 500) Explanation: ${t\bar{t}H\left(b\bar{b}\right)}$ scikit-learn BDT for classification of ${t\bar{t}H}$ and ${t\bar{t}b\bar{b}}$ events For each signal region, information from the output of the reconstruction BDT is combined with kinematic variables for input to classification BDTs, with ${t\bar{t}H \left(H\to b\bar{b}\right)}$ as signal and ${t\bar{t}}$ as background. There is one BDT trained for events with exactly 5 jets or at least 6 jets. End of explanation df = pd.read_csv("ttHbb_data.csv") df.head() Explanation: read End of explanation features = list(df.columns[:-1]) X = df[features] y = df["target"] classifier = sklearn.tree.DecisionTreeClassifier(min_samples_split = 20, random_state = 99, max_depth = 5) classifier.fit(X, y) graph = graphviz.Source( sklearn.tree.export_graphviz( classifier, out_file = None, feature_names = list(df[features].columns.values), filled = True, rounded = True, special_characters = True ) ) graph Explanation: features and targets End of explanation y_predictions = classifier.predict(X) y_predictions sklearn.metrics.accuracy_score(y, y_predictions) _df = pd.DataFrame() _df["variable"] = X.columns.values _df["importance"] = classifier.feature_importances_ _df.index = _df["variable"].values del _df["variable"] _df = _df.sort_values(by = "importance", ascending = False) _df plt.rcParams["figure.figsize"] = (17, 10) _df.sort_values(by = "importance", ascending = True).plot(kind = "barh", legend = "False"); Explanation: accuracy End of explanation
580
Given the following text description, write Python code to implement the functionality described below step by step Description: Método de la secante El método de la secante es una extensión del método de Newton-Raphson, la derivada de la función se calcula usando una diferencia finita hacia atrás \begin{equation} f'(x_{i}) = \frac{f(x_{i-1}) - f(x_{i})}{x_{i-1} - x_{i}} \end{equation} y se reemplaza en la fórmula del método de Newton-Raphson \begin{equation} x_{i+1} = x_{i} - \frac{1}{f'(x_{i})} f(x_{i}) = x_{i} - \frac{x_{i-1} - x_{i}}{f(x_{i-1}) - f(x_{i})} f(x_{i}) \end{equation} Algoritmo x_-1 es la raiz aproximada anterior x_0 es la raiz aproximada actual x_1 = x_0 - f(x_0)*(x_-1 - x_0)/f(x_-1) - f(x_0) x_2 = x_1 - f(x_1)*(x_0 - x_1)/f(x_0) - f(x_1) x_3 = x_2 - f(x_2)*(x_1 - x_2)/f(x_1) - f(x_2) ... Ejemplo 1 Encontrar la raiz de \begin{equation} y = x^{5} + x^{3} + 3 \end{equation} usar $x = 0$ y $x = -1$ como valores iniciales Iteración 0 Raíz aproximada anterior \begin{equation} x_{-1} = 0 \end{equation} Raíz aproximada actual \begin{equation} x_{0} = -1 \end{equation} Error relativo \begin{equation} e_{r} = ? \end{equation} Iteración 1 Calculando las ordenadas en los puntos anteriores \begin{align} f(x_{-1}) &= f(0) = 3 \ f(x_{0}) &= f(-1) = 1 \end{align} Raíz aproximada anterior \begin{equation} x_{0} = -1 \end{equation} Raíz aproximada actual \begin{equation} x_{1} = x_{0} - \frac{x_{-1} - x_{0}}{f(x_{-1}) - f(x_{0})} f(x_{0}) = -1 - \frac{0 - (-1)}{3 - 1} 1 = -1.5 \end{equation} Error relativo \begin{equation} e_{r} = \bigg|\frac{x_{1} - x_{0}}{x_{1}}\bigg| \times 100\% = \bigg|\frac{-1.5 - (-1)}{-1.5}\bigg| \times 100\% = 33.33\% \end{equation} Iteración 2 Calculando las ordenadas en los puntos anteriores \begin{align} f(x_{0}) &= f(-1) = 1 \ f(x_{1}) &= f(-1.5) = -7.96875 \end{align} Raíz aproximada anterior \begin{equation} x_{1} = -1.5 \end{equation} Raíz aproximada actual \begin{equation} x_{2} = x_{1} - \frac{x_{0} - x_{1}}{f(x_{0}) - f(x_{1})} f(x_{1}) = -1.5 - \frac{-1 - (-1.5)}{1 - (-7.96875)} (-7.96875) = -1.055749 \end{equation} Error relativo \begin{equation} e_{r} = \bigg|\frac{x_{2} - x_{1}}{x_{2}}\bigg| \times 100\% = \bigg|\frac{-1.055749 - (-1.5)}{-1.055749}\bigg| \times 100\% = 42.08\% \end{equation} Iteración 3 Calculando las ordenadas en los puntos anteriores \begin{align} f(x_{1}) &= f(-1.5) = -7.96875 \ f(x_{2}) &= f(-1.055749) = 0.511650 \end{align} Raíz aproximada anterior \begin{equation} x_{2} = -1.055749 \end{equation} Raíz aproximada actual \begin{equation} x_{3} = x_{2} - \frac{x_{1} - x_{2}}{f(x_{1}) - f(x_{2})} f(x_{2}) = -1.055749 - \frac{-1.5 - (-1.055749)}{-7.96875 - 0.511650} 0.511650 = -1.082552 \end{equation} Error relativo \begin{equation} e_{r} = \bigg|\frac{x_{3} - x_{2}}{x_{3}}\bigg| \times 100\% = \bigg|\frac{-1.082552 - (-1.055749)}{-1.082552}\bigg| \times 100\% = 2.48\% \end{equation} Implementación de funciones auxiliares Seudocódigo para la derivada pascal function diferencia_atras(f(x), x_0, x_1) f'(x) = f(x_0) - f(x_1)/x_0 - x_1 return f'(x) end function Seudocódigo para obtener las últimas dos raices pascal function raiz(f(x), a, b) Step1: Implementación no vectorizada Seudocódigo pascal function secante(f(x), x_0, x_1) x_anterior = x_0 x_actual = x_1 error_permitido = 0.000001 while(True) x_anterior, x_actual = raiz(f(x), x_anterior, x_actual) if x_raiz_actual != 0 error_relativo = abs((x_raiz_actual - x_raiz_anterior)/x_raiz_actual)*100 end if if error_relativo &lt; error_permitido exit end if end while mostrar x_actual end function o también pascal function secante(f(x), x_0, x_1) x_anterior = x_0 x_actual = x_1 for 1 to maxima_iteracion do x_anterior, x_actual = raiz(f(x), x_anterior, x_actual) end for mostrar x_actual end function Step2: Ejemplo 2 Encontrar la raiz de \begin{equation} y = x^{5} + x^{3} + 3 \end{equation} usar $x_{-1} = 0$ y $x_{0} = -1$ Step3: Ejemplo 3 Encontrar la raiz de \begin{equation} y = x^{5} + x^{3} + 3 \end{equation} usar $x_{-1} = 0$ y $x_{0} = -0.5$
Python Code: def diferencia_atras(f, x_0, x_1): pendiente = (f(x_0) - f(x_1))/(x_0 - x_1) return pendiente def raiz(f, a, b): c = b - f(b)/diferencia_atras(f, a, b) return b, c Explanation: Método de la secante El método de la secante es una extensión del método de Newton-Raphson, la derivada de la función se calcula usando una diferencia finita hacia atrás \begin{equation} f'(x_{i}) = \frac{f(x_{i-1}) - f(x_{i})}{x_{i-1} - x_{i}} \end{equation} y se reemplaza en la fórmula del método de Newton-Raphson \begin{equation} x_{i+1} = x_{i} - \frac{1}{f'(x_{i})} f(x_{i}) = x_{i} - \frac{x_{i-1} - x_{i}}{f(x_{i-1}) - f(x_{i})} f(x_{i}) \end{equation} Algoritmo x_-1 es la raiz aproximada anterior x_0 es la raiz aproximada actual x_1 = x_0 - f(x_0)*(x_-1 - x_0)/f(x_-1) - f(x_0) x_2 = x_1 - f(x_1)*(x_0 - x_1)/f(x_0) - f(x_1) x_3 = x_2 - f(x_2)*(x_1 - x_2)/f(x_1) - f(x_2) ... Ejemplo 1 Encontrar la raiz de \begin{equation} y = x^{5} + x^{3} + 3 \end{equation} usar $x = 0$ y $x = -1$ como valores iniciales Iteración 0 Raíz aproximada anterior \begin{equation} x_{-1} = 0 \end{equation} Raíz aproximada actual \begin{equation} x_{0} = -1 \end{equation} Error relativo \begin{equation} e_{r} = ? \end{equation} Iteración 1 Calculando las ordenadas en los puntos anteriores \begin{align} f(x_{-1}) &= f(0) = 3 \ f(x_{0}) &= f(-1) = 1 \end{align} Raíz aproximada anterior \begin{equation} x_{0} = -1 \end{equation} Raíz aproximada actual \begin{equation} x_{1} = x_{0} - \frac{x_{-1} - x_{0}}{f(x_{-1}) - f(x_{0})} f(x_{0}) = -1 - \frac{0 - (-1)}{3 - 1} 1 = -1.5 \end{equation} Error relativo \begin{equation} e_{r} = \bigg|\frac{x_{1} - x_{0}}{x_{1}}\bigg| \times 100\% = \bigg|\frac{-1.5 - (-1)}{-1.5}\bigg| \times 100\% = 33.33\% \end{equation} Iteración 2 Calculando las ordenadas en los puntos anteriores \begin{align} f(x_{0}) &= f(-1) = 1 \ f(x_{1}) &= f(-1.5) = -7.96875 \end{align} Raíz aproximada anterior \begin{equation} x_{1} = -1.5 \end{equation} Raíz aproximada actual \begin{equation} x_{2} = x_{1} - \frac{x_{0} - x_{1}}{f(x_{0}) - f(x_{1})} f(x_{1}) = -1.5 - \frac{-1 - (-1.5)}{1 - (-7.96875)} (-7.96875) = -1.055749 \end{equation} Error relativo \begin{equation} e_{r} = \bigg|\frac{x_{2} - x_{1}}{x_{2}}\bigg| \times 100\% = \bigg|\frac{-1.055749 - (-1.5)}{-1.055749}\bigg| \times 100\% = 42.08\% \end{equation} Iteración 3 Calculando las ordenadas en los puntos anteriores \begin{align} f(x_{1}) &= f(-1.5) = -7.96875 \ f(x_{2}) &= f(-1.055749) = 0.511650 \end{align} Raíz aproximada anterior \begin{equation} x_{2} = -1.055749 \end{equation} Raíz aproximada actual \begin{equation} x_{3} = x_{2} - \frac{x_{1} - x_{2}}{f(x_{1}) - f(x_{2})} f(x_{2}) = -1.055749 - \frac{-1.5 - (-1.055749)}{-7.96875 - 0.511650} 0.511650 = -1.082552 \end{equation} Error relativo \begin{equation} e_{r} = \bigg|\frac{x_{3} - x_{2}}{x_{3}}\bigg| \times 100\% = \bigg|\frac{-1.082552 - (-1.055749)}{-1.082552}\bigg| \times 100\% = 2.48\% \end{equation} Implementación de funciones auxiliares Seudocódigo para la derivada pascal function diferencia_atras(f(x), x_0, x_1) f'(x) = f(x_0) - f(x_1)/x_0 - x_1 return f'(x) end function Seudocódigo para obtener las últimas dos raices pascal function raiz(f(x), a, b): c = b - f(b)/diferencia_atras(f(x), a, b) return b, c end function End of explanation def secante(f, x_0, x_1): print("{0:s} \t {1:15s} \t {2:15s} \t {3:15s}".format('i', 'x anterior', 'x actual', 'error relativo %')) x_anterior = x_0 x_actual = x_1 i = 0 print("{0:d} \t {1:.15f} \t {2:.15f} \t {3:15s}".format(i, x_anterior, x_actual, '???????????????')) error_permitido = 0.000001 while True: x_anterior, x_actual = raiz(f, x_anterior, x_actual) if x_actual != 0: error_relativo = abs((x_actual - x_anterior)/x_actual)*100 i = i + 1 print("{0:d} \t {1:.15f} \t {2:.15f} \t {3:15.11f}".format(i, x_anterior, x_actual, error_relativo)) if (error_relativo < error_permitido) or (i>=20): break print('\nx =', x_actual) Explanation: Implementación no vectorizada Seudocódigo pascal function secante(f(x), x_0, x_1) x_anterior = x_0 x_actual = x_1 error_permitido = 0.000001 while(True) x_anterior, x_actual = raiz(f(x), x_anterior, x_actual) if x_raiz_actual != 0 error_relativo = abs((x_raiz_actual - x_raiz_anterior)/x_raiz_actual)*100 end if if error_relativo &lt; error_permitido exit end if end while mostrar x_actual end function o también pascal function secante(f(x), x_0, x_1) x_anterior = x_0 x_actual = x_1 for 1 to maxima_iteracion do x_anterior, x_actual = raiz(f(x), x_anterior, x_actual) end for mostrar x_actual end function End of explanation def f(x): # f(x) = x^5 + x^3 + 3 y = x**5 + x**3 + 3 return y diferencia_atras(f, 0, -1) raiz(f, 0, -1) secante(f, 0, -1) Explanation: Ejemplo 2 Encontrar la raiz de \begin{equation} y = x^{5} + x^{3} + 3 \end{equation} usar $x_{-1} = 0$ y $x_{0} = -1$ End of explanation secante(f, 0, -0.5) Explanation: Ejemplo 3 Encontrar la raiz de \begin{equation} y = x^{5} + x^{3} + 3 \end{equation} usar $x_{-1} = 0$ y $x_{0} = -0.5$ End of explanation
581
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2020 The TensorFlow Authors. Step1: 양자화 인식 훈련 종합 가이드 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https Step2: 양자화 인식 모델을 정의합니다. 다음과 같은 방법으로 모델을 정의하면 개요 페이지에 나열된 백엔드에 배포할 수 있는 경로가 있습니다. 기본적으로 8bit 양자화가 사용됩니다. 참고 Step3: 일부 레이어 양자화하기 모델을 양자화하면 정확성에 부정적인 영향을 미칠 수 있습니다. 모델의 레이어를 선택적으로 양자화하여 정확성, 속도 및 모델 크기 간의 균형을 탐색할 수 있습니다. 사용 사례 Step4: 이 예에서는 레이어 유형을 사용하여 양자화할 레이어를 결정했지만, 특정 레이어를 양자화하는 가장 쉬운 방법은 name 속성을 설정하고 clone_function에서 해당 이름을 찾는 것입니다. Step5: 읽기 더 쉽지만 잠재적으로 모델 정확성이 낮음 양자화 인식 훈련을 통한 미세 조정과 호환되지 않으므로 위의 예보다 정확성이 떨어질 수 있습니다. 함수형 예 Step6: 순차 예 Step7: 체크포인트 및 역직렬화 사용 사례 Step8: 양자화된 모델 생성 및 배포하기 일반적으로, 사용할 배포 백엔드에 대한 설명서를 참조하세요. 다음은 TFLite 백엔드의 예입니다. Step9: 양자화 실험하기 사용 사례 Step10: 사용자 정의 Keras 레이어 양자화하기 이 예제에서는 DefaultDenseQuantizeConfig를 사용하여 CustomLayer를 양자화합니다. 구성 적용은 "양자화 실험하기" 사용 사례에서와 같습니다. CustomLayer에 tfmot.quantization.keras.quantize_annotate_layer를 적용하고 QuantizeConfig를 전달합니다. tfmot.quantization.keras.quantize_annotate_model을 사용하여 API 기본값으로 나머지 모델을 계속 양자화합니다. Step11: 양자화 매개변수 수정하기 일반적인 실수 Step12: 구성 적용은 "양자화 실험하기" 사용 사례에서와 같습니다. Apply tfmot.quantization.keras.quantize_annotate_layer to the Dense layer and pass in the QuantizeConfig. tfmot.quantization.keras.quantize_annotate_model을 사용하여 API 기본값으로 나머지 모델을 계속 양자화합니다. Step13: 양자화할 일부 레이어 수정하기 이 예제에서는 활성화 양자화를 건너뛰도록 Dense 레이어를 수정합니다. 나머지 모델은 계속해서 API 기본값을 사용합니다. Step14: 구성 적용은 "양자화 실험하기" 사용 사례에서와 같습니다. Dense 레이어에 tfmot.quantization.keras.quantize_annotate_layer를 적용하고 QuantizeConfig를 전달합니다. tfmot.quantization.keras.quantize_annotate_model을 사용하여 API 기본값으로 나머지 모델을 계속 양자화합니다. Step16: 사용자 정의 양자화 알고리즘 사용하기 tfmot.quantization.keras.quantizers.Quantizer 클래스는 입력에 모든 알고리즘을 적용할 수 있는 callable입니다. 이 예에서 입력은 가중치이며 FixedRangeQuantizer call 함수의 수학을 가중치에 적용합니다. 원래 가중치 값 대신 FixedRangeQuantizer의 출력이 이제 가중치를 사용하는 모든 항목으로 전달됩니다. Step17: Applying the configuration is the same across the "Experiment with quantization" use cases. Dense 레이어에 tfmot.quantization.keras.quantize_annotate_layer를 적용하고 QuantizeConfig를 전달합니다. Use tfmot.quantization.keras.quantize_annotate_model to continue to quantize the rest of the model with the API defaults.
Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Explanation: Copyright 2020 The TensorFlow Authors. End of explanation ! pip uninstall -y tensorflow ! pip install -q tf-nightly ! pip install -q tensorflow-model-optimization import tensorflow as tf import numpy as np import tensorflow_model_optimization as tfmot import tempfile input_shape = [20] x_train = np.random.randn(1, 20).astype(np.float32) y_train = tf.keras.utils.to_categorical(np.random.randn(1), num_classes=20) def setup_model(): model = tf.keras.Sequential([ tf.keras.layers.Dense(20, input_shape=input_shape), tf.keras.layers.Flatten() ]) return model def setup_pretrained_weights(): model= setup_model() model.compile( loss=tf.keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy'] ) model.fit(x_train, y_train) _, pretrained_weights = tempfile.mkstemp('.tf') model.save_weights(pretrained_weights) return pretrained_weights def setup_pretrained_model(): model = setup_model() pretrained_weights = setup_pretrained_weights() model.load_weights(pretrained_weights) return model setup_model() pretrained_weights = setup_pretrained_weights() Explanation: 양자화 인식 훈련 종합 가이드 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https://www.tensorflow.org/model_optimization/guide/quantization/training_comprehensive_guide"><img src="https://www.tensorflow.org/images/tf_logo_32px.png">TensorFlow.org에서 보기</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/ko/model_optimization/guide/quantization/training_comprehensive_guide.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png">Google Colab에서 실행하기</a></td> <td><a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/ko/model_optimization/guide/quantization/training_comprehensive_guide.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png">GitHub에서 소스 보기</a></td> <td><a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/ko/model_optimization/guide/quantization/training_comprehensive_guide.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png">노트북 다운로드하기</a></td> </table> Keras 양자화 인식 훈련에 관한 종합 가이드를 시작합니다. 이 페이지는 다양한 사용 사례를 문서화하고 각각에 대해 API를 사용하는 방법을 보여줍니다. 필요한 API를 알고 나면, API 문서에서 매개변수와 하위 수준의 세부 정보를 찾아보세요. 양자화 인식 훈련의 이점과 지원되는 기능을 보려면 개요를 참조하세요. 단일 엔드 투 엔드 예제는 양자화 인식 훈련 예제를 참조하세요. 다음 사용 사례를 다룹니다. 다음 단계에 따라 8bit 양자화로 모델을 배포합니다. 양자화 인식 모델을 정의합니다. Keras HDF5 모델의 경우에만 특수 체크포인트 및 역직렬화 로직을 사용합니다. 그렇지 않으면 훈련이 표준입니다. 양자화 인식 모델에서 양자화 모델을 만듭니다. 양자화로 실험합니다. 실험용으로 지원되는 배포 경로가 없습니다. 사용자 정의 Keras 레이어는 실험 중입니다. 설정 필요한 API를 찾고 목적을 이해하기 위해 실행할 수 있지만, 이 섹션은 건너뛸 수 있습니다. End of explanation base_model = setup_model() base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy quant_aware_model = tfmot.quantization.keras.quantize_model(base_model) quant_aware_model.summary() Explanation: 양자화 인식 모델을 정의합니다. 다음과 같은 방법으로 모델을 정의하면 개요 페이지에 나열된 백엔드에 배포할 수 있는 경로가 있습니다. 기본적으로 8bit 양자화가 사용됩니다. 참고: 양자화 인식 모델은 실제로 양자화되지 않습니다. 양자화된 모델을 만드는 것은 별도의 단계입니다. 전체 모델 양자화하기 사용 사례: 하위 클래스화된 모델은 지원되지 않습니다. 모델 정확성의 향상을 위한 팁: 정확성을 가장 많이 떨어뜨리는 레이어 양자화를 건너뛰려면 "일부 레이어 양자화"를 시도하세요. 일반적으로 처음부터 훈련하는 것보다 양자화 인식 훈련으로 미세 조정하는 것이 좋습니다. 전체 모델이 양자화를 인식하도록 하려면, tfmot.quantization.keras.quantize_model을 모델에 적용합니다. End of explanation # Create a base model base_model = setup_model() base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy # Helper function uses `quantize_annotate_layer` to annotate that only the # Dense layers should be quantized. def apply_quantization_to_dense(layer): if isinstance(layer, tf.keras.layers.Dense): return tfmot.quantization.keras.quantize_annotate_layer(layer) return layer # Use `tf.keras.models.clone_model` to apply `apply_quantization_to_dense` # to the layers of the model. annotated_model = tf.keras.models.clone_model( base_model, clone_function=apply_quantization_to_dense, ) # Now that the Dense layers are annotated, # `quantize_apply` actually makes the model quantization aware. quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model) quant_aware_model.summary() Explanation: 일부 레이어 양자화하기 모델을 양자화하면 정확성에 부정적인 영향을 미칠 수 있습니다. 모델의 레이어를 선택적으로 양자화하여 정확성, 속도 및 모델 크기 간의 균형을 탐색할 수 있습니다. 사용 사례: 완전히 양자화된 모델(예: EdgeTPU v1, 대부분의 DSP)에서만 잘 동작하는 백엔드에 배포하려면 "전체 모델 양자화하기"를 시도하세요. 모델 정확성의 향상을 위한 팁: 일반적으로 처음부터 훈련하는 것보다 양자화 인식 훈련으로 미세 조정하는 것이 좋습니다. 첫 번째 레이어 대신 이후 레이어를 양자화해보세요. 중요 레이어(예: attention 메커니즘)는 양자화하지 마세요. 아래 예에서는 Dense 레이어만 양자화합니다. End of explanation print(base_model.layers[0].name) Explanation: 이 예에서는 레이어 유형을 사용하여 양자화할 레이어를 결정했지만, 특정 레이어를 양자화하는 가장 쉬운 방법은 name 속성을 설정하고 clone_function에서 해당 이름을 찾는 것입니다. End of explanation # Use `quantize_annotate_layer` to annotate that the `Dense` layer # should be quantized. i = tf.keras.Input(shape=(20,)) x = tfmot.quantization.keras.quantize_annotate_layer(tf.keras.layers.Dense(10))(i) o = tf.keras.layers.Flatten()(x) annotated_model = tf.keras.Model(inputs=i, outputs=o) # Use `quantize_apply` to actually make the model quantization aware. quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model) # For deployment purposes, the tool adds `QuantizeLayer` after `InputLayer` so that the # quantized model can take in float inputs instead of only uint8. quant_aware_model.summary() Explanation: 읽기 더 쉽지만 잠재적으로 모델 정확성이 낮음 양자화 인식 훈련을 통한 미세 조정과 호환되지 않으므로 위의 예보다 정확성이 떨어질 수 있습니다. 함수형 예 End of explanation # Use `quantize_annotate_layer` to annotate that the `Dense` layer # should be quantized. annotated_model = tf.keras.Sequential([ tfmot.quantization.keras.quantize_annotate_layer(tf.keras.layers.Dense(20, input_shape=input_shape)), tf.keras.layers.Flatten() ]) # Use `quantize_apply` to actually make the model quantization aware. quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model) quant_aware_model.summary() Explanation: 순차 예 End of explanation # Define the model. base_model = setup_model() base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy quant_aware_model = tfmot.quantization.keras.quantize_model(base_model) # Save or checkpoint the model. _, keras_model_file = tempfile.mkstemp('.h5') quant_aware_model.save(keras_model_file) # `quantize_scope` is needed for deserializing HDF5 models. with tfmot.quantization.keras.quantize_scope(): loaded_model = tf.keras.models.load_model(keras_model_file) loaded_model.summary() Explanation: 체크포인트 및 역직렬화 사용 사례: 이 코드는 HDF5 모델 형식(HDF5 가중치 또는 기타 형식이 아님)에만 필요합니다. End of explanation base_model = setup_pretrained_model() quant_aware_model = tfmot.quantization.keras.quantize_model(base_model) # Typically you train the model here. converter = tf.lite.TFLiteConverter.from_keras_model(quant_aware_model) converter.optimizations = [tf.lite.Optimize.DEFAULT] quantized_tflite_model = converter.convert() Explanation: 양자화된 모델 생성 및 배포하기 일반적으로, 사용할 배포 백엔드에 대한 설명서를 참조하세요. 다음은 TFLite 백엔드의 예입니다. End of explanation LastValueQuantizer = tfmot.quantization.keras.quantizers.LastValueQuantizer MovingAverageQuantizer = tfmot.quantization.keras.quantizers.MovingAverageQuantizer class DefaultDenseQuantizeConfig(tfmot.quantization.keras.QuantizeConfig): # Configure how to quantize weights. def get_weights_and_quantizers(self, layer): return [(layer.kernel, LastValueQuantizer(num_bits=8, symmetric=True, narrow_range=False, per_axis=False))] # Configure how to quantize activations. def get_activations_and_quantizers(self, layer): return [(layer.activation, MovingAverageQuantizer(num_bits=8, symmetric=False, narrow_range=False, per_axis=False))] def set_quantize_weights(self, layer, quantize_weights): # Add this line for each item returned in `get_weights_and_quantizers` # , in the same order layer.kernel = quantize_weights[0] def set_quantize_activations(self, layer, quantize_activations): # Add this line for each item returned in `get_activations_and_quantizers` # , in the same order. layer.activation = quantize_activations[0] # Configure how to quantize outputs (may be equivalent to activations). def get_output_quantizers(self, layer): return [] def get_config(self): return {} Explanation: 양자화 실험하기 사용 사례: 다음 API를 사용하면 지원되는 배포 경로가 없습니다. 이들 기능은 실험적이며 이전 버전과의 호환성이 적용되지 않습니다. tfmot.quantization.keras.QuantizeConfig tfmot.quantization.keras.quantizers.Quantizer tfmot.quantization.keras.quantizers.LastValueQuantizer tfmot.quantization.keras.quantizers.MovingAverageQuantizer 설정: DefaultDenseQuantizeConfig 실험하려면 레이어의 가중치, 활성화 및 출력을 양자화하는 방법을 설명하는 tfmot.quantization.keras.QuantizeConfig를 사용해야 합니다. 아래는 API 기본값에서 Dense 레이어에 사용되는 같은 QuantizeConfig를 정의하는 예입니다. 이 예제에서 순방향 전파 중에 get_weights_and_quantizers에서 반환된 LastValueQuantizer는 입력으로 layer.kernel을 사용하여 호출되어 출력이 생성됩니다. 출력은 set_quantize_weights에 정의된 로직을 통해 Dense 레이어의 원래 순방향 전파에서 layer.kernel을 대체합니다. 같은 아이디어가 활성화 및 출력에 적용됩니다. End of explanation quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model quantize_scope = tfmot.quantization.keras.quantize_scope class CustomLayer(tf.keras.layers.Dense): pass model = quantize_annotate_model(tf.keras.Sequential([ quantize_annotate_layer(CustomLayer(20, input_shape=(20,)), DefaultDenseQuantizeConfig()), tf.keras.layers.Flatten() ])) # `quantize_apply` requires mentioning `DefaultDenseQuantizeConfig` with `quantize_scope` # as well as the custom Keras layer. with quantize_scope( {'DefaultDenseQuantizeConfig': DefaultDenseQuantizeConfig, 'CustomLayer': CustomLayer}): # Use `quantize_apply` to actually make the model quantization aware. quant_aware_model = tfmot.quantization.keras.quantize_apply(model) quant_aware_model.summary() Explanation: 사용자 정의 Keras 레이어 양자화하기 이 예제에서는 DefaultDenseQuantizeConfig를 사용하여 CustomLayer를 양자화합니다. 구성 적용은 "양자화 실험하기" 사용 사례에서와 같습니다. CustomLayer에 tfmot.quantization.keras.quantize_annotate_layer를 적용하고 QuantizeConfig를 전달합니다. tfmot.quantization.keras.quantize_annotate_model을 사용하여 API 기본값으로 나머지 모델을 계속 양자화합니다. End of explanation quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model quantize_scope = tfmot.quantization.keras.quantize_scope class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig): # Configure weights to quantize with 4-bit instead of 8-bits. def get_weights_and_quantizers(self, layer): return [(layer.kernel, LastValueQuantizer(num_bits=4, symmetric=True, narrow_range=False, per_axis=False))] Explanation: 양자화 매개변수 수정하기 일반적인 실수: 바이어스를 32bit 미만으로 양자화하면 일반적으로 모델 정확성이 너무 많이 손상됩니다. 이 예제에서는 기본 8bit 대신 가중치에 4bit를 사용하도록 Dense 레이어를 수정합니다. 나머지 모델은 계속해서 API 기본값을 사용합니다. End of explanation model = quantize_annotate_model(tf.keras.Sequential([ # Pass in modified `QuantizeConfig` to modify this Dense layer. quantize_annotate_layer(tf.keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()), tf.keras.layers.Flatten() ])) # `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`: with quantize_scope( {'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}): # Use `quantize_apply` to actually make the model quantization aware. quant_aware_model = tfmot.quantization.keras.quantize_apply(model) quant_aware_model.summary() Explanation: 구성 적용은 "양자화 실험하기" 사용 사례에서와 같습니다. Apply tfmot.quantization.keras.quantize_annotate_layer to the Dense layer and pass in the QuantizeConfig. tfmot.quantization.keras.quantize_annotate_model을 사용하여 API 기본값으로 나머지 모델을 계속 양자화합니다. End of explanation quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model quantize_scope = tfmot.quantization.keras.quantize_scope class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig): def get_activations_and_quantizers(self, layer): # Skip quantizing activations. return [] def set_quantize_activations(self, layer, quantize_activations): # Empty since `get_activaations_and_quantizers` returns # an empty list. return Explanation: 양자화할 일부 레이어 수정하기 이 예제에서는 활성화 양자화를 건너뛰도록 Dense 레이어를 수정합니다. 나머지 모델은 계속해서 API 기본값을 사용합니다. End of explanation model = quantize_annotate_model(tf.keras.Sequential([ # Pass in modified `QuantizeConfig` to modify this Dense layer. quantize_annotate_layer(tf.keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()), tf.keras.layers.Flatten() ])) # `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`: with quantize_scope( {'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}): # Use `quantize_apply` to actually make the model quantization aware. quant_aware_model = tfmot.quantization.keras.quantize_apply(model) quant_aware_model.summary() Explanation: 구성 적용은 "양자화 실험하기" 사용 사례에서와 같습니다. Dense 레이어에 tfmot.quantization.keras.quantize_annotate_layer를 적용하고 QuantizeConfig를 전달합니다. tfmot.quantization.keras.quantize_annotate_model을 사용하여 API 기본값으로 나머지 모델을 계속 양자화합니다. End of explanation quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model quantize_scope = tfmot.quantization.keras.quantize_scope class FixedRangeQuantizer(tfmot.quantization.keras.quantizers.Quantizer): Quantizer which forces outputs to be between -1 and 1. def build(self, tensor_shape, name, layer): # Not needed. No new TensorFlow variables needed. return {} def __call__(self, inputs, training, weights, **kwargs): return tf.keras.backend.clip(inputs, -1.0, 1.0) def get_config(self): # Not needed. No __init__ parameters to serialize. return {} class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig): # Configure weights to quantize with 4-bit instead of 8-bits. def get_weights_and_quantizers(self, layer): # Use custom algorithm defined in `FixedRangeQuantizer` instead of default Quantizer. return [(layer.kernel, FixedRangeQuantizer())] Explanation: 사용자 정의 양자화 알고리즘 사용하기 tfmot.quantization.keras.quantizers.Quantizer 클래스는 입력에 모든 알고리즘을 적용할 수 있는 callable입니다. 이 예에서 입력은 가중치이며 FixedRangeQuantizer call 함수의 수학을 가중치에 적용합니다. 원래 가중치 값 대신 FixedRangeQuantizer의 출력이 이제 가중치를 사용하는 모든 항목으로 전달됩니다. End of explanation model = quantize_annotate_model(tf.keras.Sequential([ # Pass in modified `QuantizeConfig` to modify this `Dense` layer. quantize_annotate_layer(tf.keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()), tf.keras.layers.Flatten() ])) # `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`: with quantize_scope( {'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}): # Use `quantize_apply` to actually make the model quantization aware. quant_aware_model = tfmot.quantization.keras.quantize_apply(model) quant_aware_model.summary() Explanation: Applying the configuration is the same across the "Experiment with quantization" use cases. Dense 레이어에 tfmot.quantization.keras.quantize_annotate_layer를 적용하고 QuantizeConfig를 전달합니다. Use tfmot.quantization.keras.quantize_annotate_model to continue to quantize the rest of the model with the API defaults. End of explanation
582
Given the following text description, write Python code to implement the functionality described below step by step Description: Integration Exercise 2 Imports Step1: Indefinite integrals Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc. Find five of these integrals and perform the following steps Step2: Integral 1 $$ I_1 = \int_0^a {\sqrt{a^2-x^2} dx} = \frac{\pi a^2}{4} $$ Step3: Integral 2 $$ I_2 = \int_0^{\frac{\pi}{2}} {\sin^2{x}}{ } {dx} = \frac{\pi}{4} $$ Step4: Integral 3 $$ I_3 = \int_0^{2\pi} \frac{dx}{a+b\sin{x}} = {\frac{2\pi}{\sqrt{a^2-b^2}}} $$ Step5: Integral 4 $$ I_4 = \int_0^{\infty} \frac{x}{e^{x}+1} = {\frac{\pi^2}{12}} $$ Step6: Integral 5 $$ I_5 = \int_0^{\infty} \frac{x}{e^{x}-1} = {\frac{\pi^2}{6}} $$
Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np import seaborn as sns from scipy import integrate Explanation: Integration Exercise 2 Imports End of explanation def integrand(x, a): return 1.0/(x**2 + a**2) def integral_approx(a): # Use the args keyword argument to feed extra arguments to your integrand I, e = integrate.quad(integrand, 0, np.inf, args=(a,)) return I def integral_exact(a): return 0.5*np.pi/a print("Numerical: ", integral_approx(1.0)) print("Exact : ", integral_exact(1.0)) assert True # leave this cell to grade the above integral Explanation: Indefinite integrals Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc. Find five of these integrals and perform the following steps: Typeset the integral using LateX in a Markdown cell. Define an integrand function that computes the value of the integrand. Define an integral_approx funciton that uses scipy.integrate.quad to peform the integral. Define an integral_exact function that computes the exact value of the integral. Call and print the return value of integral_approx and integral_exact for one set of parameters. Here is an example to show what your solutions should look like: Example Here is the integral I am performing: $$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$ End of explanation def integrand(x, a): return np.sqrt(a**2 - x**2) def integral_approx(a): # Use the args keyword argument to feed extra arguments to your integrand I, e = integrate.quad(integrand, 0, a, args=(a,)) return I def integral_exact(a): return 0.25*np.pi print("Numerical: ", integral_approx(1.0)) print("Exact : ", integral_exact(1.0)) assert True # leave this cell to grade the above integral Explanation: Integral 1 $$ I_1 = \int_0^a {\sqrt{a^2-x^2} dx} = \frac{\pi a^2}{4} $$ End of explanation def integrand(x): return np.sin(x)**2 def integral_approx(): I, e = integrate.quad(integrand, 0, np.pi/2) return I def integral_exact(): return 0.25*np.pi print("Numerical: ", integral_approx()) print("Exact : ", integral_exact()) assert True # leave this cell to grade the above integral Explanation: Integral 2 $$ I_2 = \int_0^{\frac{\pi}{2}} {\sin^2{x}}{ } {dx} = \frac{\pi}{4} $$ End of explanation def integrand(x,a,b): return 1/(a+ b*np.sin(x)) def integral_approx(a,b): I, e = integrate.quad(integrand, 0, 2*np.pi,args=(a,b)) return I def integral_exact(a,b): return 2*np.pi/np.sqrt(a**2-b**2) print("Numerical: ", integral_approx(10,0)) print("Exact : ", integral_exact(10,0)) assert True # leave this cell to grade the above integral Explanation: Integral 3 $$ I_3 = \int_0^{2\pi} \frac{dx}{a+b\sin{x}} = {\frac{2\pi}{\sqrt{a^2-b^2}}} $$ End of explanation def integrand(x): return x/(np.exp(x)+1) def integral_approx(): I, e = integrate.quad(integrand, 0, np.inf) return I def integral_exact(): return (1/12)*np.pi**2 print("Numerical: ", integral_approx()) print("Exact : ", integral_exact()) assert True # leave this cell to grade the above integral Explanation: Integral 4 $$ I_4 = \int_0^{\infty} \frac{x}{e^{x}+1} = {\frac{\pi^2}{12}} $$ End of explanation def integrand(x): return x/(np.exp(x)-1) def integral_approx(): I, e = integrate.quad(integrand, 0, np.inf) return I def integral_exact(): return (1/6)*np.pi**2 print("Numerical: ", integral_approx()) print("Exact : ", integral_exact()) assert True # leave this cell to grade the above integral Explanation: Integral 5 $$ I_5 = \int_0^{\infty} \frac{x}{e^{x}-1} = {\frac{\pi^2}{6}} $$ End of explanation
583
Given the following text description, write Python code to implement the functionality described below step by step Description: Transforms and Resampling <a href="https Step1: Creating and Manipulating Transforms A number of different spatial transforms are available in SimpleITK. The simplest is the Identity Transform. This transform simply returns input points unaltered. Step2: Transform are defined by two sets of parameters, the Parameters and FixedParameters. FixedParameters are not changed during the optimization process when performing registration. For the TranslationTransform, the Parameters are the values of the translation Offset. Step3: The affine transform is capable of representing translations, rotations, shearing, and scaling. Step4: A number of other transforms exist to represent non-affine deformations, well-behaved rotation in 3D, etc. See the Transforms tutorial for more information. Applying Transforms to Images Create a function to display the images that is aware of image spacing. Step5: Create a grid image. Step6: To apply the transform, a resampling operation is required. Step7: What happened? The translation is positive in both directions. Why does the output image move down and to the left? It important to keep in mind that a transform in a resampling operation defines the transform from the output space to the input space. Step8: An affine (line preserving) transformation, can perform translation Step9: or scaling Step10: or rotation Step11: or shearing Step12: Composite Transform It is possible to compose multiple transform together into a single transform object. With a composite transform, multiple resampling operations are prevented, so interpolation errors are not accumulated. For example, an affine transformation that consists of a translation and rotation, Step13: can also be represented with two Transform objects applied in sequence with a Composite Transform, Step14: Beware, tranforms are non-commutative -- order matters! Step15: Resampling <img src="resampling.svg"/><br><br> Resampling as the verb implies is the action of sampling an image, which itself is a sampling of an original continuous signal. Generally speaking, resampling in SimpleITK involves four components Step16: Common Errors It is not uncommon to end up with an empty (all black) image after resampling. This is due to Step17: Are you puzzled by the result? Is the output just a copy of the input? Add a rotation to the code above and see what happens (euler2d.SetAngle(0.79)). Resampling at a set of locations In some cases you may be interested in obtaining the intensity values at a set of points (e.g. coloring the vertices of a mesh model segmented from an image). The code below generates a random point set in the image and resamples the intensity values at these locations. It is written so that it works for all image-dimensions and types (scalar or vector pixels). Step18: <font color="red">Homework Step20: <font color="red">Homework
Python Code: import SimpleITK as sitk import numpy as np %matplotlib inline import gui from matplotlib import pyplot as plt from ipywidgets import interact, fixed # Utility method that either downloads data from the Girder repository or # if already downloaded returns the file name for reading from disk (cached data). %run update_path_to_download_script from downloaddata import fetch_data as fdata Explanation: Transforms and Resampling <a href="https://mybinder.org/v2/gh/InsightSoftwareConsortium/SimpleITK-Notebooks/master?filepath=Python%2F21_Transforms_and_Resampling.ipynb"><img style="float: right;" src="https://mybinder.org/badge_logo.svg"></a> This notebook explains how to apply transforms to images, and how to perform image resampling. End of explanation dimension = 2 print("*Identity Transform*") identity = sitk.Transform(dimension, sitk.sitkIdentity) print("Dimension: " + str(identity.GetDimension())) # Points are always defined in physical space point = (1.0, 1.0) def transform_point(transform, point): transformed_point = transform.TransformPoint(point) print("Point " + str(point) + " transformed is " + str(transformed_point)) transform_point(identity, point) Explanation: Creating and Manipulating Transforms A number of different spatial transforms are available in SimpleITK. The simplest is the Identity Transform. This transform simply returns input points unaltered. End of explanation print("*Translation Transform*") translation = sitk.TranslationTransform(dimension) print("Parameters: " + str(translation.GetParameters())) print("Offset: " + str(translation.GetOffset())) print("FixedParameters: " + str(translation.GetFixedParameters())) transform_point(translation, point) print("") translation.SetParameters((3.1, 4.4)) print("Parameters: " + str(translation.GetParameters())) transform_point(translation, point) Explanation: Transform are defined by two sets of parameters, the Parameters and FixedParameters. FixedParameters are not changed during the optimization process when performing registration. For the TranslationTransform, the Parameters are the values of the translation Offset. End of explanation print("*Affine Transform*") affine = sitk.AffineTransform(dimension) print("Parameters: " + str(affine.GetParameters())) print("FixedParameters: " + str(affine.GetFixedParameters())) transform_point(affine, point) print("") affine.SetTranslation((3.1, 4.4)) print("Parameters: " + str(affine.GetParameters())) transform_point(affine, point) Explanation: The affine transform is capable of representing translations, rotations, shearing, and scaling. End of explanation def myshow(img, title=None, margin=0.05, dpi=80): nda = sitk.GetArrayViewFromImage(img) spacing = img.GetSpacing() ysize = nda.shape[0] xsize = nda.shape[1] figsize = (1 + margin) * ysize / dpi, (1 + margin) * xsize / dpi fig = plt.figure(title, figsize=figsize, dpi=dpi) ax = fig.add_axes([margin, margin, 1 - 2 * margin, 1 - 2 * margin]) extent = (0, xsize * spacing[1], 0, ysize * spacing[0]) t = ax.imshow( nda, extent=extent, interpolation="hamming", cmap="gray", origin="lower" ) if title: plt.title(title) Explanation: A number of other transforms exist to represent non-affine deformations, well-behaved rotation in 3D, etc. See the Transforms tutorial for more information. Applying Transforms to Images Create a function to display the images that is aware of image spacing. End of explanation grid = sitk.GridSource( outputPixelType=sitk.sitkUInt16, size=(250, 250), sigma=(0.5, 0.5), gridSpacing=(5.0, 5.0), gridOffset=(0.0, 0.0), spacing=(0.2, 0.2), ) myshow(grid, "Grid Input") Explanation: Create a grid image. End of explanation def resample(image, transform): # Output image Origin, Spacing, Size, Direction are taken from the reference # image in this call to Resample reference_image = image interpolator = sitk.sitkCosineWindowedSinc default_value = 100.0 return sitk.Resample(image, reference_image, transform, interpolator, default_value) translation.SetOffset((3.1, 4.6)) transform_point(translation, point) resampled = resample(grid, translation) myshow(resampled, "Resampled Translation") Explanation: To apply the transform, a resampling operation is required. End of explanation translation.SetOffset(-1 * np.array(translation.GetParameters())) transform_point(translation, point) resampled = resample(grid, translation) myshow(resampled, "Inverse Resampled") Explanation: What happened? The translation is positive in both directions. Why does the output image move down and to the left? It important to keep in mind that a transform in a resampling operation defines the transform from the output space to the input space. End of explanation def affine_translate(transform, x_translation=3.1, y_translation=4.6): new_transform = sitk.AffineTransform(transform) new_transform.SetTranslation((x_translation, y_translation)) resampled = resample(grid, new_transform) myshow(resampled, "Translated") return new_transform affine = sitk.AffineTransform(dimension) interact( affine_translate, transform=fixed(affine), x_translation=(-5.0, 5.0), y_translation=(-5.0, 5.0), ); Explanation: An affine (line preserving) transformation, can perform translation: End of explanation def affine_scale(transform, x_scale=3.0, y_scale=0.7): new_transform = sitk.AffineTransform(transform) matrix = np.array(transform.GetMatrix()).reshape((dimension, dimension)) matrix[0, 0] = x_scale matrix[1, 1] = y_scale new_transform.SetMatrix(matrix.ravel()) resampled = resample(grid, new_transform) myshow(resampled, "Scaled") print(matrix) return new_transform affine = sitk.AffineTransform(dimension) interact(affine_scale, transform=fixed(affine), x_scale=(0.2, 5.0), y_scale=(0.2, 5.0)); Explanation: or scaling: End of explanation def affine_rotate(transform, degrees=15.0): parameters = np.array(transform.GetParameters()) new_transform = sitk.AffineTransform(transform) matrix = np.array(transform.GetMatrix()).reshape((dimension, dimension)) radians = -np.pi * degrees / 180.0 rotation = np.array( [[np.cos(radians), -np.sin(radians)], [np.sin(radians), np.cos(radians)]] ) new_matrix = np.dot(rotation, matrix) new_transform.SetMatrix(new_matrix.ravel()) resampled = resample(grid, new_transform) print(new_matrix) myshow(resampled, "Rotated") return new_transform affine = sitk.AffineTransform(dimension) interact(affine_rotate, transform=fixed(affine), degrees=(-90.0, 90.0)); Explanation: or rotation: End of explanation def affine_shear(transform, x_shear=0.3, y_shear=0.1): new_transform = sitk.AffineTransform(transform) matrix = np.array(transform.GetMatrix()).reshape((dimension, dimension)) matrix[0, 1] = -x_shear matrix[1, 0] = -y_shear new_transform.SetMatrix(matrix.ravel()) resampled = resample(grid, new_transform) myshow(resampled, "Sheared") print(matrix) return new_transform affine = sitk.AffineTransform(dimension) interact(affine_shear, transform=fixed(affine), x_shear=(0.1, 2.0), y_shear=(0.1, 2.0)); Explanation: or shearing: End of explanation translate = (8.0, 16.0) rotate = 20.0 affine = sitk.AffineTransform(dimension) affine = affine_translate(affine, translate[0], translate[1]) affine = affine_rotate(affine, rotate) resampled = resample(grid, affine) myshow(resampled, "Single Transform") Explanation: Composite Transform It is possible to compose multiple transform together into a single transform object. With a composite transform, multiple resampling operations are prevented, so interpolation errors are not accumulated. For example, an affine transformation that consists of a translation and rotation, End of explanation composite = sitk.CompositeTransform(dimension) translation = sitk.TranslationTransform(dimension) translation.SetOffset(-1 * np.array(translate)) composite.AddTransform(translation) affine = sitk.AffineTransform(dimension) affine = affine_rotate(affine, rotate) composite.AddTransform(translation) composite = sitk.CompositeTransform(dimension) composite.AddTransform(affine) resampled = resample(grid, composite) myshow(resampled, "Two Transforms") Explanation: can also be represented with two Transform objects applied in sequence with a Composite Transform, End of explanation composite = sitk.CompositeTransform(dimension) composite.AddTransform(affine) composite.AddTransform(translation) resampled = resample(grid, composite) myshow(resampled, "Composite transform in reverse order") Explanation: Beware, tranforms are non-commutative -- order matters! End of explanation def resample_display(image, euler2d_transform, tx, ty, theta): euler2d_transform.SetTranslation((tx, ty)) euler2d_transform.SetAngle(theta) resampled_image = sitk.Resample(image, euler2d_transform) plt.imshow(sitk.GetArrayFromImage(resampled_image)) plt.axis("off") plt.show() logo = sitk.ReadImage(fdata("SimpleITK.jpg")) euler2d = sitk.Euler2DTransform() # Why do we set the center? euler2d.SetCenter( logo.TransformContinuousIndexToPhysicalPoint(np.array(logo.GetSize()) / 2.0) ) interact( resample_display, image=fixed(logo), euler2d_transform=fixed(euler2d), tx=(-128.0, 128.0, 2.5), ty=(-64.0, 64.0), theta=(-np.pi / 4.0, np.pi / 4.0), ); Explanation: Resampling <img src="resampling.svg"/><br><br> Resampling as the verb implies is the action of sampling an image, which itself is a sampling of an original continuous signal. Generally speaking, resampling in SimpleITK involves four components: 1. Image - the image we resample, given in coordinate system $m$. 2. Resampling grid - a regular grid of points given in coordinate system $f$ which will be mapped to coordinate system $m$. 2. Transformation $T_f^m$ - maps points from coordinate system $f$ to coordinate system $m$, $^mp = T_f^m(^fp)$. 3. Interpolator - method for obtaining the intensity values at arbitrary points in coordinate system $m$ from the values of the points defined by the Image. While SimpleITK provides a large number of interpolation methods, the two most commonly used are sitkLinear and sitkNearestNeighbor. The former is used for most interpolation tasks, a compromise between accuracy and computational efficiency. The later is used to interpolate labeled images representing a segmentation, it is the only interpolation approach which will not introduce new labels into the result. SimpleITK's procedural API provides three methods for performing resampling, with the difference being the way you specify the resampling grid: Resample(const Image &amp;image1, Transform transform, InterpolatorEnum interpolator, double defaultPixelValue, PixelIDValueEnum outputPixelType) Resample(const Image &amp;image1, const Image &amp;referenceImage, Transform transform, InterpolatorEnum interpolator, double defaultPixelValue, PixelIDValueEnum outputPixelType) Resample(const Image &amp;image1, std::vector&lt; uint32_t &gt; size, Transform transform, InterpolatorEnum interpolator, std::vector&lt; double &gt; outputOrigin, std::vector&lt; double &gt; outputSpacing, std::vector&lt; double &gt; outputDirection, double defaultPixelValue, PixelIDValueEnum outputPixelType) End of explanation euler2d = sitk.Euler2DTransform() # Why do we set the center? euler2d.SetCenter( logo.TransformContinuousIndexToPhysicalPoint(np.array(logo.GetSize()) / 2.0) ) tx = 64 ty = 32 euler2d.SetTranslation((tx, ty)) extreme_points = [ logo.TransformIndexToPhysicalPoint((0, 0)), logo.TransformIndexToPhysicalPoint((logo.GetWidth(), 0)), logo.TransformIndexToPhysicalPoint((logo.GetWidth(), logo.GetHeight())), logo.TransformIndexToPhysicalPoint((0, logo.GetHeight())), ] inv_euler2d = euler2d.GetInverse() extreme_points_transformed = [inv_euler2d.TransformPoint(pnt) for pnt in extreme_points] min_x = min(extreme_points_transformed)[0] min_y = min(extreme_points_transformed, key=lambda p: p[1])[1] max_x = max(extreme_points_transformed)[0] max_y = max(extreme_points_transformed, key=lambda p: p[1])[1] # Use the original spacing (arbitrary decision). output_spacing = logo.GetSpacing() # Identity cosine matrix (arbitrary decision). output_direction = [1.0, 0.0, 0.0, 1.0] # Minimal x,y coordinates are the new origin. output_origin = [min_x, min_y] # Compute grid size based on the physical size and spacing. output_size = [ int((max_x - min_x) / output_spacing[0]), int((max_y - min_y) / output_spacing[1]), ] resampled_image = sitk.Resample( logo, output_size, euler2d, sitk.sitkLinear, output_origin, output_spacing, output_direction, ) plt.imshow(sitk.GetArrayViewFromImage(resampled_image)) plt.axis("off") plt.show() Explanation: Common Errors It is not uncommon to end up with an empty (all black) image after resampling. This is due to: 1. Using wrong settings for the resampling grid, not too common, but does happen. 2. Using the inverse of the transformation $T_f^m$. This is a relatively common error, which is readily addressed by invoking the transformations GetInverse method. Defining the Resampling Grid In the example above we arbitrarily used the original image grid as the resampling grid. As a result, for many of the transformations the resulting image contained black pixels, pixels which were mapped outside the spatial domain of the original image and a partial view of the original image. If we want the resulting image to contain all of the original image no matter the transformation, we will need to define the resampling grid using our knowledge of the original image's spatial domain and the inverse of the given transformation. Computing the bounds of the resampling grid when dealing with an affine transformation is straightforward. An affine transformation preserves convexity with extreme points mapped to extreme points. Thus we only need to apply the inverse transformation to the corners of the original image to obtain the bounds of the resampling grid. Computing the bounds of the resampling grid when dealing with a BSplineTransform or DisplacementFieldTransform is more involved as we are not guaranteed that extreme points are mapped to extreme points. This requires that we apply the inverse transformation to all points in the original image to obtain the bounds of the resampling grid. End of explanation img = logo # Generate random samples inside the image, we will obtain the intensity/color values at these points. num_samples = 10 physical_points = [] for pnt in zip(*[list(np.random.random(num_samples) * sz) for sz in img.GetSize()]): physical_points.append(img.TransformContinuousIndexToPhysicalPoint(pnt)) # Create an image of size [num_samples,1...1], actual size is dependent on the image dimensionality. The pixel # type is irrelevant, as the image is just defining the interpolation grid (sitkUInt8 has minimal memory footprint). interp_grid_img = sitk.Image( [num_samples] + [1] * (img.GetDimension() - 1), sitk.sitkUInt8 ) # Define the displacement field transformation, maps the points in the interp_grid_img to the points in the actual # image. displacement_img = sitk.Image( [num_samples] + [1] * (img.GetDimension() - 1), sitk.sitkVectorFloat64, img.GetDimension(), ) for i, pnt in enumerate(physical_points): displacement_img[[i] + [0] * (img.GetDimension() - 1)] = np.array(pnt) - np.array( interp_grid_img.TransformIndexToPhysicalPoint( [i] + [0] * (img.GetDimension() - 1) ) ) # Actually perform the resampling. The only relevant choice here is the interpolator. The default_output_pixel_value # is set to 0.0, but the resampling should never use it because we expect all points to be inside the image and this # value is only used if the point is outside the image extent. interpolator_enum = sitk.sitkLinear default_output_pixel_value = 0.0 output_pixel_type = ( sitk.sitkFloat32 if img.GetNumberOfComponentsPerPixel() == 1 else sitk.sitkVectorFloat32 ) resampled_points = sitk.Resample( img, interp_grid_img, sitk.DisplacementFieldTransform(displacement_img), interpolator_enum, default_output_pixel_value, output_pixel_type, ) # Print the interpolated values per point for i in range(resampled_points.GetWidth()): print( str(physical_points[i]) + ": " + str(resampled_points[[i] + [0] * (img.GetDimension() - 1)]) + "\n" ) Explanation: Are you puzzled by the result? Is the output just a copy of the input? Add a rotation to the code above and see what happens (euler2d.SetAngle(0.79)). Resampling at a set of locations In some cases you may be interested in obtaining the intensity values at a set of points (e.g. coloring the vertices of a mesh model segmented from an image). The code below generates a random point set in the image and resamples the intensity values at these locations. It is written so that it works for all image-dimensions and types (scalar or vector pixels). End of explanation file_names = ["cxr.dcm", "photo.dcm", "POPI/meta/00-P.mhd", "training_001_ct.mha"] images = [] image_file_reader = sitk.ImageFileReader() for fname in file_names: image_file_reader.SetFileName(fdata(fname)) image_file_reader.ReadImageInformation() image_size = list(image_file_reader.GetSize()) # 2D image posing as a 3D one if len(image_size) == 3 and image_size[2] == 1: image_size[2] = 0 image_file_reader.SetExtractSize(image_size) images.append(image_file_reader.Execute()) # 2D image elif len(image_size) == 2: images.append(image_file_reader.Execute()) # 3D image grab middle x-z slice elif len(image_size) == 3: start_index = [0, image_size[1] // 2, 0] image_size[1] = 0 image_file_reader.SetExtractSize(image_size) image_file_reader.SetExtractIndex(start_index) images.append(image_file_reader.Execute()) # 4/5D image else: raise ValueError(f"{image.GetDimension()}D image not supported.") # Notice that in the display the coronal slices are flipped. As we are # using matplotlib for display, it is not aware of radiological conventions # and treats the image as an isotropic array of pixels. gui.multi_image_display2D(images); Explanation: <font color="red">Homework:</font> creating a color mesh You will now use the code for resampling at arbitrary locations to create a colored mesh. Using the color image of the visible human head [img = sitk.ReadImage(fdata('vm_head_rgb.mha'))]: 1. Implement the marching cubes algorithm to obtain the set of triangles corresponding to the iso-surface of structures of interest (skin, white matter,...). 2. Find the color associated with each of the triangle vertices using the code above. 3. Save the data using the ASCII version of the PLY, Polygon File Format (a.k.a. Stanford Triangle Format). 4. Use meshlab to view your creation. Creating thumbnails - changing image size, spacing and intensity range As bio-medical images are most often an-isotropic, have a non uniform size (number of pixels), with a high dynamic range of intensities, some caution is required when converting them to an arbitrary desired size with isotropic spacing and the more common low dynamic intensity range. The code in the following cells illustrates how to take an arbitrary set of images with various sizes, spacings and intensities and resize all of them to a common arbitrary size, isotropic spacing, and low dynamic intensity range. End of explanation def resize_and_scale_uint8(image, new_size, outside_pixel_value=0): Resize the given image to the given size, with isotropic pixel spacing and scale the intensities to [0,255]. Resizing retains the original aspect ratio, with the original image centered in the new image. Padding is added outside the original image extent using the provided value. :param image: A SimpleITK image. :param new_size: List of ints specifying the new image size. :param outside_pixel_value: Value in [0,255] used for padding. :return: a 2D SimpleITK image with desired size and a pixel type of sitkUInt8 # Rescale intensities if scalar image with pixel type that isn't sitkUInt8. # We rescale first, so that the zero padding makes sense for all original image # ranges. If we resized first, a value of zero in a high dynamic range image may # be somewhere in the middle of the intensity range and the outer border has a # constant but arbitrary value. if ( image.GetNumberOfComponentsPerPixel() == 1 and image.GetPixelID() != sitk.sitkUInt8 ): final_image = sitk.Cast(sitk.RescaleIntensity(image), sitk.sitkUInt8) else: final_image = image new_spacing = [ ((osz - 1) * ospc) / (nsz - 1) for ospc, osz, nsz in zip( final_image.GetSpacing(), final_image.GetSize(), new_size ) ] new_spacing = [max(new_spacing)] * final_image.GetDimension() center = final_image.TransformContinuousIndexToPhysicalPoint( [sz / 2.0 for sz in final_image.GetSize()] ) new_origin = [ c - c_index * nspc for c, c_index, nspc in zip(center, [sz / 2.0 for sz in new_size], new_spacing) ] final_image = sitk.Resample( final_image, size=new_size, outputOrigin=new_origin, outputSpacing=new_spacing, defaultPixelValue=outside_pixel_value, ) return final_image # Select the arbitrary new size new_size = [128, 128] resized_images = [resize_and_scale_uint8(image, new_size, 50) for image in images] gui.multi_image_display2D(resized_images); Explanation: <font color="red">Homework:</font> Why do some of the images displayed above look different from others? What are the differences between the various images in the images list? Write code to query them and check their intensity ranges, sizes and spacings. The next cell illustrates how to resize all images to an arbitrary size, using isotropic spacing while maintaining the original aspect ratio. End of explanation
584
Given the following text description, write Python code to implement the functionality described below step by step Description: 1. Acquire the Data "Data is the new oil" Ways to acquire data (typical data source) Download from an internal system Obtained from client, or other 3rd party Extracted from a web-based API Scraped from a website Extracted from a PDF file Gathered manually and recorded Data Formats - Flat files (e.g. csv) - Excel files - Database (e.g. MySQL) - JSON - HDFS (Hadoop) Two Datasets - Price of Weed in US - Demographic data by US State 1.1 - Crowdsource the Price of Weed dataset The Price of Weed website - http Step1: 1.6 Viewing the Data Step2: 1.7 Slicing columns using pandas Step3: Exercise 1) Load the Demographics_State.csv dataset 2) Show the five first rows of the dataset 3) Select the column with the State name in the data frame 4) Get help 5) Change index to date 6) Get all the data for 2nd January 2014 Thinking in Vectors Difference between loops and vectors Step4: Exercise
Python Code: # Load the libraries import pandas as pd import numpy as np # Load the dataset df = pd.read_csv("data/Weed_Price.csv") # Shape of the dateset - rows & columns df.shape # Check for type of each variable df.dtypes # Lets load this again with date as date type df = pd.read_csv("data/Weed_Price.csv", parse_dates=[-1]) # Now check for type for each row df.dtypes # Get the names of all columns df.columns # Get the index of all rows df.index Explanation: 1. Acquire the Data "Data is the new oil" Ways to acquire data (typical data source) Download from an internal system Obtained from client, or other 3rd party Extracted from a web-based API Scraped from a website Extracted from a PDF file Gathered manually and recorded Data Formats - Flat files (e.g. csv) - Excel files - Database (e.g. MySQL) - JSON - HDFS (Hadoop) Two Datasets - Price of Weed in US - Demographic data by US State 1.1 - Crowdsource the Price of Weed dataset The Price of Weed website - http://www.priceofweed.com/ Crowdsources the price paid by people on the street to get weed. Self Reported. - Location is auto detected or can be choosen - Quality is classified in three categories - High - Medium - Low - Price by weight - an ounce - a half ounce - a quarter - an eighth - 10 grams - 5 grams - 1 gram - Strain (though not showed in the dataset) Reported at individual transaction level Here is a sample data set from United States - http://www.priceofweed.com/prices/United-States.html See note - Averages are corrected for outliers based on standard deviation from the mean. 1.2 Scrape the data Frank Bi from The Verge wrote a script to scrape the data daily. The daily prices are available on github at https://github.com/frankbi/price-of-weed Here is sample data from one day - 23rd July 2015 - https://github.com/frankbi/price-of-weed/blob/master/data/weedprices23072015.csv 1.3 Combine the data All the csv files for each day were combined into one large csv. Done by YHAT. http://blog.yhathq.com/posts/7-funny-datasets.html 1.4 Key Questions / Assumptions Data is an abstraction of the reality. What assumptions have been in this entire data collections process? Are we aware of the assumptions in this process? How to ensure that the data is accurate or representative for the question we are trying to answer? 1.5 Loading the Data End of explanation # Can we see some sample rows - the top 5 rows df.head() # Can we see some sample rows - the bottom 5 rows df.tail() # Get specific rows df[20:25] # Can we access a specific columns df["State"] # Using the dot notation df.State # Selecting specific column and rows df[0:5]["State"] # Works both ways df["State"][0:5] #Getting unique values of State pd.unique(df['State']) Explanation: 1.6 Viewing the Data End of explanation df.index df.loc[0] df.iloc[0,0] df.ix[0,0] Explanation: 1.7 Slicing columns using pandas End of explanation #Find weighted average price with respective weights of 0.6, 0.4 for HighQ and MedQ #Python approach. Loop over all rows. #For each row, multiply the respective columns by those weights. #Add the output to an array #It is easy to convert pandas series to numpy array. highq_np = np.array(df.HighQ) medq_np = np.array(df.MedQ) #Standard pythonic code def find_weighted_price(): global weighted_price weighted_price = [] for i in range(df.shape[0]): weighted_price.append(0.6*highq_np[i]*0.4*highq_np[i]) #print the weighted price find_weighted_price() print weighted_price Explanation: Exercise 1) Load the Demographics_State.csv dataset 2) Show the five first rows of the dataset 3) Select the column with the State name in the data frame 4) Get help 5) Change index to date 6) Get all the data for 2nd January 2014 Thinking in Vectors Difference between loops and vectors End of explanation #Vectorized Code weighted_price_vec = 0.6*highq_np + 0.4*medq_np Explanation: Exercise: Find the running time of the above program End of explanation
585
Given the following text description, write Python code to implement the functionality described below step by step Description: Step1: Point Charge Dynamics Akiva Lipshitz, February 2, 2017 Particles and their dynamics are incredibly fascinating, even wondrous. Give me some particles and some simple equations describing their interactions – some very interesting things can start happening. Currently studying electrostatics in my physics class, I am interested in not only the static force and field distributions but also in the dynamics of particles in such fields. To study the dynamics of electric particles is not an easy endeavor – in fact the differential equations governing their dynamics are quite complex and not easily solved manually, especially by someone who lacks a background in differential equations. Instead of relying on our analytical abilities, we may rely on our computational abilities and numerically solve the differential equations. Herein I will develop a scheme for computing the dynamics of $n$ electric particles en masse. It will not be computationally easy – the number of operations grows proportionally to $n^2$. For less than $10^4$ you should be able to simulate the particle dynamics for long enough time intervals to be useful. But for something like $10^6$ particles the problem is intractable. You'll need to do more than $10^12$ operations per iteration and a degree in numerical analysis. Governing Equations Given $n$ charges $q_1, q_2, ..., q_n$, with masses $m_1, m_2, ..., m_n$ located at positions $\vec{r}_1, \vec{r_2}, ..., \vec{r}_n$, the force induced on $q_i$ by $q_j$ is given by $$\vec{F}{j \to i} = k\frac{q_iq_j}{\left|\vec{r}_i-\vec{r}_j\right|^2}\hat{r}{ij}$$ where $$\hat{r}_{ij} = \vec{r}_i-\vec{r}_j$$ Now, the net marginal force on particle $q_i$ is given as the sum of the pairwise forces $$\vec{F}{N, i} = \sum{j \ne i}{\vec{F}_{j \to i}}$$ And then the net acceleration of particle $q_i$ just normalizes the force by the mass of the particle Step2: Let's define our time intervals, so that odeint knows which time stamps to iterate over. Step3: Some other constants Step4: We get to choose the initial positions and velocities of our particles. For our initial tests, we'll set up 3 particles to collide with eachother. Step5: And pack them into an initial state variable we can pass to odeint. Step6: The Fun Part – Doing the Integration Now, we'll actually do the integration
Python Code: import numpy as np import numpy.ma as ma from scipy.integrate import odeint mag = lambda r: np.sqrt(np.sum(np.power(r, 2))) def g(y, t, q, m, n,d, k): n: the number of particles d: the number of dimensions (for fun's sake I want this to work for k-dimensional systems) y: an (n*2,d) dimensional matrix where y[:n]_i is the position of the ith particle and y[n:]_i is the velocity of the ith particle qs: the particle charges ms: the particle masses k: the electric constant t: the current timestamp # r1, r2, dr1dt, dr2dt = np.copy(y.reshape((n*2,d))) # F = -1./mag(r2-r1)**2 # dy = [ # dr1dt, # dr2dt, # (F)*(r1-r2), # (F)*(r2-r1), # ] y = np.copy(y.reshape((n*2,d))) # rj across, ri down rs_from = np.tile(y[:n], (n,1,1)) # ri across, rj down rs_to = np.transpose(rs_from, axes=(1,0,2)) # directional distance between each r_i and r_j # dr_ij is the force from j onto i, i.e. r_i - r_j dr = rs_to - rs_from # Used as a mask nd_identity = np.eye(n).reshape((n,n,1)) # Force magnitudes drmag = ma.array( np.sqrt( np.sum( np.power(dr, 2), 2)), mask=nd_identity) # Pairwise q_i*q_j for force equation qsa = np.tile(q, (n,1)) qsb = np.tile(q, (n,1)).T qs = qsa*qsb # Directional forces Fs = (-qs/np.power(drmag,2)).reshape((n,n,1)) # Dividing by m to obtain acceleration vectors a = np.sum(Fs*dr, 1) # Sliding integrated acceleration # (i.e. velocity from previous iteration) # to the position derivative slot y[:n] = np.copy(y[n:]) # Entering the acceleration into the velocity slot y[n:] = np.copy(a) # Flattening it out for scipy.odeint to work return np.array(y).reshape(n*2*d) Explanation: Point Charge Dynamics Akiva Lipshitz, February 2, 2017 Particles and their dynamics are incredibly fascinating, even wondrous. Give me some particles and some simple equations describing their interactions – some very interesting things can start happening. Currently studying electrostatics in my physics class, I am interested in not only the static force and field distributions but also in the dynamics of particles in such fields. To study the dynamics of electric particles is not an easy endeavor – in fact the differential equations governing their dynamics are quite complex and not easily solved manually, especially by someone who lacks a background in differential equations. Instead of relying on our analytical abilities, we may rely on our computational abilities and numerically solve the differential equations. Herein I will develop a scheme for computing the dynamics of $n$ electric particles en masse. It will not be computationally easy – the number of operations grows proportionally to $n^2$. For less than $10^4$ you should be able to simulate the particle dynamics for long enough time intervals to be useful. But for something like $10^6$ particles the problem is intractable. You'll need to do more than $10^12$ operations per iteration and a degree in numerical analysis. Governing Equations Given $n$ charges $q_1, q_2, ..., q_n$, with masses $m_1, m_2, ..., m_n$ located at positions $\vec{r}_1, \vec{r_2}, ..., \vec{r}_n$, the force induced on $q_i$ by $q_j$ is given by $$\vec{F}{j \to i} = k\frac{q_iq_j}{\left|\vec{r}_i-\vec{r}_j\right|^2}\hat{r}{ij}$$ where $$\hat{r}_{ij} = \vec{r}_i-\vec{r}_j$$ Now, the net marginal force on particle $q_i$ is given as the sum of the pairwise forces $$\vec{F}{N, i} = \sum{j \ne i}{\vec{F}_{j \to i}}$$ And then the net acceleration of particle $q_i$ just normalizes the force by the mass of the particle: $$\vec{a}i = \frac{\vec{F}{N, i}}{m_i}$$ To implement this at scale, we're going to need to figure out a scheme for vectorizing all these operations, demonstrated below. We'll be using scipy.integrate.odeint for our numerical integration. Below, the function g(y, t, q, m, n, d, k) is a function that returns the derivatives for all our variables at each iteration. We pass it to odeint and then do the integration. End of explanation t_f = 10000 t = np.linspace(0, 10, num=t_f) Explanation: Let's define our time intervals, so that odeint knows which time stamps to iterate over. End of explanation # Number of dimensions d = 2 # Number of point charges n = 3 # charge magnitudes, currently all equal to 1 q = np.array([-10,0.2,-5]) # masses m = np.ones(n) # The electric constant # k=1/(4*pi*epsilon_naught) # Right now we will set it to 1 # because for our tests we are choosing all q_i =1. # Therefore, k*q is too large a number and causes # roundoff errors in the integrator. # In truth: # k = 8.99*10**9 # But for now: k=1. Explanation: Some other constants End of explanation r1i = np.array([-2., 0.0]) dr1dti = np.array([3.,0.]) r2i = np.array([20.,0.5]) dr2dti = np.array([-3., 0.]) r3i = np.array([11.,20]) dr3dti = np.array([0, -3.]) Explanation: We get to choose the initial positions and velocities of our particles. For our initial tests, we'll set up 3 particles to collide with eachother. End of explanation y0 = np.array([r1i, r2i, r3i, dr1dti, dr2dti, dr3dti]).reshape(n*2*d) Explanation: And pack them into an initial state variable we can pass to odeint. End of explanation # Doing the integration yf = odeint(g, y0, t, args=(q,m,n,d,k)).reshape(t_f,n*2,d) import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D %matplotlib inline fig = plt.figure(figsize=(20,20)) #ax = fig.add_subplot(111, projection='3d') ax = fig.add_subplot(111) ys1 = yf[:,0,1] xs1 = yf[:,0,0] xs2 = yf[:,1,0] ys2 = yf[:,1,1] xs3 = yf[:,2,0] ys3 = yf[:,2,1] ax.plot(xs1[1], ys1[1],'bv') ax.plot(xs1[-1], ys1[-1], 'rv') ax.plot(xs2[:1], ys2[:1], 'bv') ax.plot(xs2[-1:], ys2[-1:], 'rv') ax.plot(xs3[:1], ys3[:1], 'bv') ax.plot(xs3[-1:], ys3[-1:], 'rv') # # minx = np.min(y[:,[0,2],0]) # maxx = np.max(y[:,[0,2],0]) # miny = np.min(y[:,[0,2],1]) # maxy = np.max(y[:,[0,2],1]) ax.plot(xs1, ys1) ax.plot(xs2, ys2) ax.plot(xs3, ys3) # plt.xlim(xmin=minx, xmax=maxx) # plt.ylim(ymin=miny, ymax=maxy) plt.title("Paths of 3 Colliding Electric Particles") plt.ion() plt.show() Explanation: The Fun Part – Doing the Integration Now, we'll actually do the integration End of explanation
586
Given the following text description, write Python code to implement the functionality described below step by step Description: Testing the trained weight matrices (not in an ensemble) Step1: Load the weight matrices from the training Step2: Visualize the digit from one hot representation through the activity weight matrix to the image representation - Image is average digit from mnist dataset Step3: Visualize the rotation of the image using the weight matrix from activity to activity - does not use the weight matrix used on the recurrent connection
Python Code: import nengo import numpy as np import cPickle import matplotlib.pyplot as plt from matplotlib import pylab import matplotlib.animation as animation Explanation: Testing the trained weight matrices (not in an ensemble) End of explanation #Weight matrices generated by the neural network after training #Maps the label vectors to the neuron activity of the ensemble label_weights = cPickle.load(open("label_weights1000.p", "rb")) #Maps the activity of the neurons to the visual representation of the image activity_to_img_weights = cPickle.load(open("activity_to_img_weights_scale1000.p", "rb")) #Maps the activity of the neurons of an image with the activity of the neurons of an image scaled scale_up_weights = cPickle.load(open("scale_up_weights1000.p", "rb")) scale_down_weights = cPickle.load(open("scale_down_weights1000.p", "rb")) #Create the pointers for the numbers temp = np.diag([1]*10) ZERO = temp[0] ONE = temp[1] TWO = temp[2] THREE= temp[3] FOUR = temp[4] FIVE = temp[5] SIX = temp[6] SEVEN =temp[7] EIGHT= temp[8] NINE = temp[9] labels =[ZERO,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE] #Visualize the one hot representation print(ZERO) print(ONE) Explanation: Load the weight matrices from the training End of explanation #Change this to imagine different digits imagine = ZERO #Can also imagine combitnations of numbers (ZERO + ONE) #Label to activity test_activity = np.dot(imagine,label_weights) #Image decoded test_output_img = np.dot(test_activity, activity_to_img_weights) plt.imshow(test_output_img.reshape(28,28),cmap='gray') plt.show() Explanation: Visualize the digit from one hot representation through the activity weight matrix to the image representation - Image is average digit from mnist dataset End of explanation #Change this to visualize different digits imagine = ZERO #How long the animation should go for frames=5 #Make a list of the activation of rotated images and add first frame rot_seq = [] rot_seq.append(np.dot(imagine,label_weights)) #Map the label vector to the activity vector test_output_img = np.dot(rot_seq[0], activity_to_img_weights) #Map the activity to the visual representation #add the rest of the frames, using the previous frame to calculate the current frame for i in range(1,frames): rot_seq.append(np.dot(rot_seq[i-1],scale_down_weights)) #add the activity of the current image to the list test_output_img = np.dot(rot_seq[i], activity_to_img_weights) #map the new activity to the visual image for i in range(1,frames*2): rot_seq.append(np.dot(rot_seq[frames+i-2],scale_up_weights)) #add the activity of the current image to the list test_output_img = np.dot(rot_seq[i], activity_to_img_weights) #map the new activity to the visual image #Animation of rotation fig = plt.figure() def updatefig(i): image_vector = np.dot(rot_seq[i], activity_to_img_weights) #map the activity to the image representation im = pylab.imshow(np.reshape(image_vector,(28,28), 'F').T, cmap=plt.get_cmap('Greys_r'),animated=True) return im, ani = animation.FuncAnimation(fig, updatefig, interval=100, blit=True) plt.show() Explanation: Visualize the rotation of the image using the weight matrix from activity to activity - does not use the weight matrix used on the recurrent connection End of explanation
587
Given the following text description, write Python code to implement the functionality described below step by step Description: Archimedes and Pi by Paulo Marques, 2014/03/09 (Adapted in 2018/10/15 to Python from Julia) Since high school I've been fascinated with $\pi$ -- this infinite non-repeating irrational transcendent number. In fact, not only was I fascinated with $\pi$ but I was fascinated about everything related to it. In 11th grade I asked my math teacher about how to deduce the area of a circle. Her answer Step1: Our function aprox_pi() will compute the aproximation of $\pi$ for a $2^n$ polygon Step2: And the result is Step3: So, in 10 iterations we got a very good approximation of $\pi$ using a 1024-sided polygon. (Note that since $P_\infty \rightarrow 2 \pi$ we need to divide the final result by two. aprox_pi() is automatically doing so.) The error of the result is Step4: That's Interesting. Let's see how good are the approximations generated by aprox_pi(). Step5: So, what's going on? We should expect better approximations as the number of sides increases, right? But, the best result we get is with 14 iterations and a polygon of 16384 sides. After that the approximations of $\pi$ get worse. The problem is that our algorithm is not very good in terms of producing the end result. If you look at the expression $P_n = 2^n \times s_n$ what we are doing is multiplying a very large number (the number of sides) by a very small number (the length of a side). After a certain point, because we are using floating point, this is a recipe for disaster. In particular, for a 16384-sided polygon, the length of a side is approximatly
Python Code: from math import sqrt, pi def side_next(side): return sqrt(2. - sqrt(4. - side**2.0)) Explanation: Archimedes and Pi by Paulo Marques, 2014/03/09 (Adapted in 2018/10/15 to Python from Julia) Since high school I've been fascinated with $\pi$ -- this infinite non-repeating irrational transcendent number. In fact, not only was I fascinated with $\pi$ but I was fascinated about everything related to it. In 11th grade I asked my math teacher about how to deduce the area of a circle. Her answer: for that you need to learn how to integrate – wait until university. But I couldn't wait and head to the library where I found a single book that talked about the subject – an obscure calculus book by an author named Piskunov. And, to integrate I've learned – just because of $\pi$. But I digress. .. This story is not about calculus or "symbolic" integration. It's about how Archimedes calculated $\pi$ circa 200 B.C. In the "Measurement of a Circle" Archimedes states that: "The ratio of the circumference of any circle to its diameter is greater than $3\tfrac{10}{71}$ but less than $3\tfrac{1}{7}$" This is the first really accurate estimation of $\pi$. I.e., he calcuated $3.140845070422535 < \pi < 3.142857142857143$. A good approximation of $\pi$ is 3.141592653589793. So, this is two decimal places correct. That's pretty impressive. According to the story, Archimedes did this by inscribing and circumscribing a circle with regular polygons and measuring their perimeter. As the number of sides increases, the better these polygons approximate a circle. In the end Archimedes was using a 96-sided polygon. The next image illustrates the idea. One of the annoying things when books talk about this is that they always show this nice picture but never ever do the actual calculation. So, using Python how can we do this? Let's start by assuming that we are going to use a circle with a radius of 1 and we inscribe a square in it. (The square's side is going to be $\sqrt{2}$.) Now, assume that the side of this polygon is $s_n$ and you are going to double the number of sides where the length of each new side is $s_{n+1}$. We can draw several triangles in the figure that will help us out: If we take the side $\overline{AB}$, which measures $s_n$, and break it in two, we get the triangle $\overline{ACD}$. This triangle has a hypotenuse of $s_{n+1}$, an adjacent side of $s_n/2$ and a height of $h$. Note that the new polygon that we are forming is going to have eight sides (i.e., double the number of sides we had), each one measuring $s_{n+1}$. From this we can write: $$ h^2 + (\frac{s_n}{2})^2 = s_{n+1}^2 $$ Looking at the triangle $\overline{BCO}$, which is rectangle, we note that: its hypotenuse is 1, one side measures $1-h$ and the other measures $s_n/2$. Thus, we can write: $$ (1-h)^2 + (\frac{s_n}{2})^2 = 1^2 $$ These two relations will always apply as we contantly break the polygons into smaller polygons. As we progress, the perimeter of the polygon $P_n$, obtained after $n$ iterations, will approximate the perimeter of the circle, measuring $2 \pi$. What this means is that $\lim_{n \to \infty} P_n = 2 \pi $. Also note that every time we create a new polygon the number of sides doubles. Thus, after n steps we have a $2^n$ sided polygon and $P_n$ is: $ P_n = 2^n \times s_n $ Manipulating the two expressions above we get: $$ s_{n+1} = \sqrt{ 2 - \sqrt{4 - s_n^2} } $$ Since we started with a square we have: $s_2 = \sqrt 2$. We can also consider $s_1 = 2$ representing a diameter line. So, with this we have all equations needed to iteratively approximate $\pi$. Let's start by coding a function that gives us $s_{n+1}$: End of explanation def aprox_pi(n = 10): s = 2.0 for i in range(1, n): s = side_next(s) return 2.0**(n-1) * s Explanation: Our function aprox_pi() will compute the aproximation of $\pi$ for a $2^n$ polygon: End of explanation a_pi = aprox_pi() a_pi Explanation: And the result is: End of explanation abs(pi - a_pi) Explanation: So, in 10 iterations we got a very good approximation of $\pi$ using a 1024-sided polygon. (Note that since $P_\infty \rightarrow 2 \pi$ we need to divide the final result by two. aprox_pi() is automatically doing so.) The error of the result is: End of explanation print("%10s \t %10s \t %20s \t %10s" % ("i", "Sides", "Pi", "Error")) print("===================================================================") for i in range(1, 31): sides = 2.**i a_pi = aprox_pi(i) err = abs(pi - a_pi) print("%10d \t %10d \t %20.10f \t %10.2e" % (i, sides, a_pi, err)) Explanation: That's Interesting. Let's see how good are the approximations generated by aprox_pi(). End of explanation 2*pi/16384 Explanation: So, what's going on? We should expect better approximations as the number of sides increases, right? But, the best result we get is with 14 iterations and a polygon of 16384 sides. After that the approximations of $\pi$ get worse. The problem is that our algorithm is not very good in terms of producing the end result. If you look at the expression $P_n = 2^n \times s_n$ what we are doing is multiplying a very large number (the number of sides) by a very small number (the length of a side). After a certain point, because we are using floating point, this is a recipe for disaster. In particular, for a 16384-sided polygon, the length of a side is approximatly: End of explanation
588
Given the following text description, write Python code to implement the functionality described below step by step Description: Learning how to move a human arm In this tutorial we will show how to train a basic biomechanical model using keras-rl. Installation To make it work, follow the instructions in https Step1: Creating the actor and the critic The actor serves as a brain for controlling muscles. The critic is our approximation of how good is the brain performing for achieving the goal Step2: Train the actor and the critic We will now run keras-rl implementation of the DDPG algorithm which trains both networks. Step3: Evaluate the results Check how our trained 'brain' performs. Below we will also load a pretrained model (on the larger number of episodes), which should perform better. It was trained exactly the same way, just with a larger number of steps (parameter nb_steps in agent.fit.
Python Code: # Derived from keras-rl import opensim as osim import numpy as np import sys from keras.models import Sequential, Model from keras.layers import Dense, Activation, Flatten, Input, concatenate from keras.optimizers import Adam import numpy as np from rl.agents import DDPGAgent from rl.memory import SequentialMemory from rl.random import OrnsteinUhlenbeckProcess from osim.env.arm import ArmEnv from keras.optimizers import RMSprop import argparse import math # Load walking environment env = ArmEnv(True) env.reset() # Total number of steps in training nallsteps = 10000 nb_actions = env.action_space.shape[0] Explanation: Learning how to move a human arm In this tutorial we will show how to train a basic biomechanical model using keras-rl. Installation To make it work, follow the instructions in https://github.com/stanfordnmbl/osim-rl#getting-started i.e. run conda create -n opensim-rl -c kidzik opensim git python=2.7 source activate opensim-rl pip install git+https://github.com/stanfordnmbl/osim-rl.git Then run git clone https://github.com/stanfordnmbl/osim-rl.git conda install keras -c conda-forge pip install git+https://github.com/matthiasplappert/keras-rl.git cd osim-rl conda install jupyter follow the instructions and once jupyter is installed and type jupyter notebook This should open the browser with jupyter. Navigate to this notebook, i.e. to the file scripts/train.arm.ipynb. Preparing the environment The following two blocks load necessary libraries and create a simulator environment. End of explanation # Create networks for DDPG # Next, we build a very simple model. actor = Sequential() actor.add(Flatten(input_shape=(1,) + env.observation_space.shape)) actor.add(Dense(32)) actor.add(Activation('relu')) actor.add(Dense(32)) actor.add(Activation('relu')) actor.add(Dense(32)) actor.add(Activation('relu')) actor.add(Dense(nb_actions)) actor.add(Activation('sigmoid')) print(actor.summary()) action_input = Input(shape=(nb_actions,), name='action_input') observation_input = Input(shape=(1,) + env.observation_space.shape, name='observation_input') flattened_observation = Flatten()(observation_input) x = concatenate([action_input, flattened_observation]) x = Dense(64)(x) x = Activation('relu')(x) x = Dense(64)(x) x = Activation('relu')(x) x = Dense(64)(x) x = Activation('relu')(x) x = Dense(1)(x) x = Activation('linear')(x) critic = Model(inputs=[action_input, observation_input], outputs=x) print(critic.summary()) Explanation: Creating the actor and the critic The actor serves as a brain for controlling muscles. The critic is our approximation of how good is the brain performing for achieving the goal End of explanation # Set up the agent for training memory = SequentialMemory(limit=100000, window_length=1) random_process = OrnsteinUhlenbeckProcess(theta=.15, mu=0., sigma=.2, size=env.noutput) agent = DDPGAgent(nb_actions=nb_actions, actor=actor, critic=critic, critic_action_input=action_input, memory=memory, nb_steps_warmup_critic=100, nb_steps_warmup_actor=100, random_process=random_process, gamma=.99, target_model_update=1e-3, delta_clip=1.) agent.compile(Adam(lr=.001, clipnorm=1.), metrics=['mae']) # Okay, now it's time to learn something! We visualize the training here for show, but this # slows down training quite a lot. You can always safely abort the training prematurely using # Ctrl + C. agent.fit(env, nb_steps=2000, visualize=False, verbose=0, nb_max_episode_steps=200, log_interval=10000) # After training is done, we save the final weights. # agent.save_weights(args.model, overwrite=True) Explanation: Train the actor and the critic We will now run keras-rl implementation of the DDPG algorithm which trains both networks. End of explanation # agent.load_weights(args.model) # Finally, evaluate our algorithm for 1 episode. agent.test(env, nb_episodes=2, visualize=False, nb_max_episode_steps=1000) agent.load_weights("../models/example.h5f") # Finally, evaluate our algorithm for 1 episode. agent.test(env, nb_episodes=5, visualize=False, nb_max_episode_steps=1000) Explanation: Evaluate the results Check how our trained 'brain' performs. Below we will also load a pretrained model (on the larger number of episodes), which should perform better. It was trained exactly the same way, just with a larger number of steps (parameter nb_steps in agent.fit. End of explanation
589
Given the following text description, write Python code to implement the functionality described below step by step Description: 数据抓取: 使用Python编写网络爬虫 王成军 [email protected] 计算传播网 http Step1: 一般的数据抓取,使用urllib2和beautifulsoup配合就可以了。 尤其是对于翻页时url出现规则变化的网页,只需要处理规则化的url就可以了。 以简单的例子是抓取天涯论坛上关于某一个关键词的帖子。 在天涯论坛,关于雾霾的帖子的第一页是: http Step2: http Step3: 抓取天涯论坛PX帖子列表 回帖网络(Thread network)的结构 - 列表 - 主帖 - 回帖 Step4: 抓取作者信息 Step5: http Step6: http Step7: 作者:柠檬在追逐 时间:2012-10-28 21 Step8: 如何翻页 http Step9: 测试 Step10: 正式抓取! Step11: 读取数据 Step12: 总帖数是多少? http
Python Code: import urllib2 from bs4 import BeautifulSoup Explanation: 数据抓取: 使用Python编写网络爬虫 王成军 [email protected] 计算传播网 http://computational-communication.com 需要解决的问题 页面解析 获取Javascript隐藏源数据 自动翻页 自动登录 连接API接口 End of explanation from IPython.display import display_html, HTML HTML('<iframe src=http://bbs.tianya.cn/list.jsp?item=free&nextid=%d&order=8&k=PX width=1000 height=500></iframe>') # the webpage we would like to crawl page_num = 0 url = "http://bbs.tianya.cn/list.jsp?item=free&nextid=%d&order=8&k=PX" % page_num content = urllib2.urlopen(url).read() #获取网页的html文本 soup = BeautifulSoup(content, "lxml") articles = soup.find_all('tr') print articles[0] print articles[1] len(articles[1:]) Explanation: 一般的数据抓取,使用urllib2和beautifulsoup配合就可以了。 尤其是对于翻页时url出现规则变化的网页,只需要处理规则化的url就可以了。 以简单的例子是抓取天涯论坛上关于某一个关键词的帖子。 在天涯论坛,关于雾霾的帖子的第一页是: http://bbs.tianya.cn/list.jsp?item=free&nextid=0&order=8&k=雾霾 第二页是: http://bbs.tianya.cn/list.jsp?item=free&nextid=1&order=8&k=雾霾 数据抓取: 抓取天涯回帖网络 王成军 [email protected] 计算传播网 http://computational-communication.com End of explanation for t in articles[1].find_all('td'): print t td = articles[1].find_all('td') print td[0] print td[0] print td[0].text print td[0].text.strip() print td[0].a['href'] print td[1] print td[2] print td[3] print td[4] records = [] for i in articles[1:]: td = i.find_all('td') title = td[0].text.strip() title_url = td[0].a['href'] author = td[1].text author_url = td[1].a['href'] views = td[2].text replies = td[3].text date = td[4]['title'] record = title + '\t' + title_url+ '\t' + author + '\t'+ author_url + '\t' + views+ '\t' + replies+ '\t'+ date records.append(record) print records[2] Explanation: http://bbs.tianya.cn/list.jsp?item=free&nextid=0&order=8&k=PX 通过分析帖子列表的源代码,使用inspect方法,会发现所有要解析的内容都在‘td’这个层级下 End of explanation def crawler(page_num, file_name): try: # open the browser url = "http://bbs.tianya.cn/list.jsp?item=free&nextid=%d&order=8&k=PX" % page_num content = urllib2.urlopen(url).read() #获取网页的html文本 soup = BeautifulSoup(content, "lxml") articles = soup.find_all('tr') # write down info for i in articles[1:]: td = i.find_all('td') title = td[0].text.strip() title_url = td[0].a['href'] author = td[1].text author_url = td[1].a['href'] views = td[2].text replies = td[3].text date = td[4]['title'] record = title + '\t' + title_url+ '\t' + author + '\t'+ \ author_url + '\t' + views+ '\t' + replies+ '\t'+ date with open(file_name,'a') as p: # '''Note''':Append mode, run only once! p.write(record.encode('utf-8')+"\n") ##!!encode here to utf-8 to avoid encoding except Exception, e: print e pass # crawl all pages for page_num in range(10): print (page_num) crawler(page_num, '/Users/chengjun/bigdata/tianya_bbs_threads_list.txt') import pandas as pd df = pd.read_csv('/Users/chengjun/github/cjc2016/data/tianya_bbs_threads_list.txt', sep = "\t", header=None) df[:2] len(df) df=df.rename(columns = {0:'title', 1:'link', 2:'author',3:'author_page', 4:'click', 5:'reply', 6:'time'}) df[:2] len(df.link) Explanation: 抓取天涯论坛PX帖子列表 回帖网络(Thread network)的结构 - 列表 - 主帖 - 回帖 End of explanation df.author_page[:5] Explanation: 抓取作者信息 End of explanation # user_info url = df.author_page[1] content = urllib2.urlopen(url).read() #获取网页的html文本 soup1 = BeautifulSoup(content, "lxml") user_info = soup.find('div', {'class', 'userinfo'})('p') area, nid, freq_use, last_login_time, reg_time = [i.get_text()[4:] for i in user_info] print area, nid, freq_use, last_login_time, reg_time link_info = soup1.find_all('div', {'class', 'link-box'}) followed_num, fans_num = [i.a.text for i in link_info] print followed_num, fans_num activity = soup1.find_all('span', {'class', 'subtitle'}) post_num, reply_num = [j.text[2:] for i in activity[:1] for j in i('a')] print post_num, reply_num print activity[2] link_info = soup.find_all('div', {'class', 'link-box'}) followed_num, fans_num = [i.a.text for i in link_info] print followed_num, fans_num link_info[0].a.text # user_info = soup.find('div', {'class', 'userinfo'})('p') # user_infos = [i.get_text()[4:] for i in user_info] def author_crawler(url, file_name): try: content = urllib2.urlopen(url).read() #获取网页的html文本 soup = BeautifulSoup(content, "lxml") link_info = soup.find_all('div', {'class', 'link-box'}) followed_num, fans_num = [i.a.text for i in link_info] try: activity = soup.find_all('span', {'class', 'subtitle'}) post_num, reply_num = [j.text[2:] for i in activity[:1] for j in i('a')] except: post_num, reply_num = 1, 0 record = '\t'.join([url, followed_num, fans_num, post_num, reply_num]) with open(file_name,'a') as p: # '''Note''':Append mode, run only once! p.write(record.encode('utf-8')+"\n") ##!!encode here to utf-8 to avoid encoding except Exception, e: print e, url record = '\t'.join([url, 'na', 'na', 'na', 'na']) with open(file_name,'a') as p: # '''Note''':Append mode, run only once! p.write(record.encode('utf-8')+"\n") ##!!encode here to utf-8 to avoid encoding pass for k, url in enumerate(df.author_page): if k % 10==0: print k author_crawler(url, '/Users/chengjun/github/cjc2016/data/tianya_bbs_threads_author_info2.txt') Explanation: http://www.tianya.cn/62237033 http://www.tianya.cn/67896263 End of explanation df.link[0] url = 'http://bbs.tianya.cn' + df.link[2] url from IPython.display import display_html, HTML HTML('<iframe src=http://bbs.tianya.cn/post-free-2848797-1.shtml width=1000 height=500></iframe>') # the webpage we would like to crawl post = urllib2.urlopen(url).read() #获取网页的html文本 post_soup = BeautifulSoup(post, "lxml") #articles = soup.find_all('tr') print (post_soup.prettify())[:5000] pa = post_soup.find_all('div', {'class', 'atl-item'}) len(pa) print pa[0] print pa[1] print pa[89] Explanation: http://www.tianya.cn/50499450/follow 还可抓取他们的关注列表和粉丝列表 数据抓取: 使用Python抓取回帖 王成军 [email protected] 计算传播网 http://computational-communication.com End of explanation print pa[0].find('div', {'class', 'bbs-content'}).text.strip() print pa[87].find('div', {'class', 'bbs-content'}).text.strip() pa[1].a print pa[0].find('a', class_ = 'reportme a-link') print pa[0].find('a', class_ = 'reportme a-link')['replytime'] print pa[0].find('a', class_ = 'reportme a-link')['author'] for i in pa[:10]: p_info = i.find('a', class_ = 'reportme a-link') p_time = p_info['replytime'] p_author_id = p_info['authorid'] p_author_name = p_info['author'] p_content = i.find('div', {'class', 'bbs-content'}).text.strip() p_content = p_content.replace('\t', '') print p_time, '--->', p_author_id, '--->', p_author_name,'--->', p_content, '\n' Explanation: 作者:柠檬在追逐 时间:2012-10-28 21:33:55 @lice5 2012-10-28 20:37:17 作为宁波人 还是说一句:革命尚未成功 同志仍需努力 ----------------------------- 对 现在说成功还太乐观,就怕说一套做一套 作者:lice5 时间:2012-10-28 20:37:17 作为宁波人 还是说一句:革命尚未成功 同志仍需努力 4 /post-free-4242156-1.shtml 2014-04-09 15:55:35 61943225 野渡自渡人 @Y雷政府34楼2014-04-0422:30:34  野渡君雄文!支持是必须的。  -----------------------------  @清坪过客16楼2014-04-0804:09:48  绝对的权力导致绝对的腐败!  -----------------------------  @T大漠鱼T35楼2014-04-0810:17:27  @周丕东@普欣@拾月霜寒2012@小摸包@姚文嚼字@四號@凌宸@乔志峰@野渡自渡人@曾兵2010@缠绕夜色@曾颖@风青扬请关注 End of explanation post_soup.find('div', {'class', 'atl-pages'})#.['onsubmit'] post_pages = post_soup.find('div', {'class', 'atl-pages'}) post_pages = post_pages.form['onsubmit'].split(',')[-1].split(')')[0] post_pages #post_soup.select('.atl-pages')[0].select('form')[0].select('onsubmit') url = 'http://bbs.tianya.cn' + df.link[2] url_base = ''.join(url.split('-')[:-1]) + '-%d.shtml' url_base def parsePage(pa): records = [] for i in pa: p_info = i.find('a', class_ = 'reportme a-link') p_time = p_info['replytime'] p_author_id = p_info['authorid'] p_author_name = p_info['author'] p_content = i.find('div', {'class', 'bbs-content'}).text.strip() p_content = p_content.replace('\t', '').replace('\n', '')#.replace(' ', '') record = p_time + '\t' + p_author_id+ '\t' + p_author_name + '\t'+ p_content records.append(record) return records import sys def flushPrint(s): sys.stdout.write('\r') sys.stdout.write('%s' % s) sys.stdout.flush() url_1 = 'http://bbs.tianya.cn' + df.link[10] content = urllib2.urlopen(url_1).read() #获取网页的html文本 post_soup = BeautifulSoup(content, "lxml") pa = post_soup.find_all('div', {'class', 'atl-item'}) b = post_soup.find('div', class_= 'atl-pages') b url_1 = 'http://bbs.tianya.cn' + df.link[0] content = urllib2.urlopen(url_1).read() #获取网页的html文本 post_soup = BeautifulSoup(content, "lxml") pa = post_soup.find_all('div', {'class', 'atl-item'}) a = post_soup.find('div', {'class', 'atl-pages'}) a a.form if b.form: print 'true' else: print 'false' import random import time def crawler(url, file_name): try: # open the browser url_1 = 'http://bbs.tianya.cn' + url content = urllib2.urlopen(url_1).read() #获取网页的html文本 post_soup = BeautifulSoup(content, "lxml") # how many pages in a post post_form = post_soup.find('div', {'class', 'atl-pages'}) if post_form.form: post_pages = post_form.form['onsubmit'].split(',')[-1].split(')')[0] post_pages = int(post_pages) url_base = '-'.join(url_1.split('-')[:-1]) + '-%d.shtml' else: post_pages = 1 # for the first page pa = post_soup.find_all('div', {'class', 'atl-item'}) records = parsePage(pa) with open(file_name,'a') as p: # '''Note''':Append mode, run only once! for record in records: p.write('1'+ '\t' + url + '\t' + record.encode('utf-8')+"\n") # for the 2nd+ pages if post_pages > 1: for page_num in range(2, post_pages+1): time.sleep(random.random()) flushPrint(page_num) url2 =url_base % page_num content = urllib2.urlopen(url2).read() #获取网页的html文本 post_soup = BeautifulSoup(content, "lxml") pa = post_soup.find_all('div', {'class', 'atl-item'}) records = parsePage(pa) with open(file_name,'a') as p: # '''Note''':Append mode, run only once! for record in records: p.write(str(page_num) + '\t' +url + '\t' + record.encode('utf-8')+"\n") else: pass except Exception, e: print e pass Explanation: 如何翻页 http://bbs.tianya.cn/post-free-2848797-1.shtml http://bbs.tianya.cn/post-free-2848797-2.shtml http://bbs.tianya.cn/post-free-2848797-3.shtml End of explanation url = df.link[2] file_name = '/Users/chengjun/github/cjc2016/data/tianya_bbs_threads_2test.txt' crawler(url, file_name) Explanation: 测试 End of explanation for k, link in enumerate(df.link): flushPrint(link) if k % 10== 0: print 'This it the post of : ' + str(k) file_name = '/Users/chengjun/github/cjc2016/data/tianya_bbs_threads_network.txt' crawler(link, file_name) Explanation: 正式抓取! End of explanation dtt = [] with open('/Users/chengjun/github/cjc2016/data/tianya_bbs_threads_network.txt', 'r') as f: for line in f: pnum, link, time, author_id, author, content = line.replace('\n', '').split('\t') dtt.append([pnum, link, time, author_id, author, content]) len(dtt) dt = pd.DataFrame(dtt) dt[:5] dt=dt.rename(columns = {0:'page_num', 1:'link', 2:'time', 3:'author',4:'author_name', 5:'reply'}) dt[:5] dt.reply[:100] Explanation: 读取数据 End of explanation 18459/50 Explanation: 总帖数是多少? http://search.tianya.cn/bbs?q=PX 共有18459 条内容 End of explanation
590
Given the following text description, write Python code to implement the functionality described below step by step Description: The Power of IPython Notebook + Pandas + and Scikit-learn IPython Notebook, Numpy, Pandas, MongoDB, R — for the better part of a year now, I have been trying out these technologies as part of Udacity's Data Analyst Nanodegree. My undergrad education barely touched on data visualization or more broadly data science, and so I figured being exposed to the aforementioned technologies would be fun. And fun it has been, with R's powerful IDE-powered data mundging and visualization techniques having been particularly revelatory. I learned enough of R to create some complex visualizations, and was impressed by how easy is to import data into its Dataframe representations and then transform and visualize that data. I also thought RStudio's paradigm of continuously intermixed code editing and execution was superior to my habitual workflow of just endlessly cycling between tweaking and executing of Python scripts. Still, R is a not-quite-general-purpose-language and I hit upon multiple instances in which simple things were hard to do. In such times, I could not help but miss the powers of Python, a language I have tons of experience with and which is about as general purpose as it gets. Luckily, the courses also covered the equivalent of an R implementation for Python Step1: But working with this set of dictionaries would not be nearly as fast or easy as a Pandas dataframe, so I soon converted it to that and went ahead and summarized all the features with a single method call Step2: Looking through these, I found one instance of a valid outlier - Mark A. Frevert (CEO of Enron), and removed him from the dataset. I should emphasize the benefits of doing all this in IPython Notebook. Being able to tweak parts of the code without reexecuting all of it and reloading all the data made iterating on ideas much faster, and iterating on ideas fast is essential for exploratory data analysis and development of machine learned models. It's no accident that the Matlab IDE and RStudio, both tools commonly used in the sciences for data processing and analysis, have essentially the same structure. I did not understand the benefits of IPython Notebook when I was first made to use it for class assignments in College, but now it has finally dawned on me that it fills the same role as those IDEs and became popular because it is similaly well suited for working with data. Step3: This result suggested that most features have large outliers (larger than 3 standard deviations). In order to be careful not to remove any useful data, I manually inspected all rows with large outliers to see any values that seem appropriate for removal Step4: Looking through these, I found one instance of a valid outlier - Mark A. Frevert (CEO of Enron), and removed him from the dataset. I should emphasize the benefits of doing all this in IPython Notebook. Being able to tweak parts of the code without reexecuting all of it and reloading all the data made iterating on ideas much faster, and iterating on ideas fast is essential for exploratory data analysis and development of machine learned models. It's no accident that the Matlab IDE and RStudio, both tools commonly used in the sciences for data processing and analysis, have essentially the same structure. I did not understand the benefits of IPython Notebook when I was first made to use it for class assignments in College, but now it has finally dawned on me that it fills the same role as those IDEs and became popular because it is similaly well suited for working with data. Feature Visualization, Engineering and Selection The project also instructed me to choose a set of features, and to engineer some of my own. In order to get an initial idea of possible promising features and how I could use them to create new features, I computed the correlation of each feature to the Person of Interest classification Step5: The results indicated that 'exercised_stock_options', 'total_stock_value', and 'bonus' are the most promising features. Just for fun, I went ahead and plotted these features to see if I could visually verify their significance Step6: As well as one that is not strongly correlated Step7: The data and plots above indicated that the exercised_stock_options, total_stock_value, and restricted_stock, and to a lesser extent to payment related information (total_payments, salary, bonus, and expenses), are all correlated to Persons of Interest. Therefore, I created new features as sums and ratios of these ones. Working with Pandas made this incredibely easy due to vectorized operations, and though Numpy could similarly make this easy I think Pandas' Dataframe construct makes it especially easy. It was also easy to fix any problems with the data before starting to train machine learning models. In order to use the data for evaluation and training, I replaced null values with the mean of each feature so as to be able to use the dataset with Scikit-learn. I also scaled all features to a range of 1-0, to better work with Support Vector Machines Step8: Then, I scored features using Scikit-learn's SelectKBest to get an ordering of them to test with multiple algorithms afterward. Pandas Dataframes can be used directly with Scikit-learn, which is another great benefit of it Step9: It appeared that several of my features are among the most useful, as 'poi_email_ratio_to', 'stock_sum', and 'money_total' are all ranked highly. But, since the data is so small I had no need to get rid of any of the features and went ahead with testing several classifiers with several sets of features. Training and Evaluating Models Proceding with the project, I selected three algorithms to test and compare Step10: Then, I could go right back to Pandas to plot the results. Sure, I could do this with matplotlib just as well, but the flexibility and simplicity of the 'plot' function call on a DataFrame makes it much less annoying to use in my opinion.
Python Code: import matplotlib.pyplot as plt import matplotlib import pickle import pandas as pd import numpy as np from IPython.display import display %matplotlib notebook enron_data = pickle.load(open("./ud120-projects/final_project/final_project_dataset.pkl", "rb")) print("Number of people: %d"%len(enron_data.keys())) print("Number of features per person: %d"%len(list(enron_data.values())[0])) print("Number of POI: %d"%sum([1 if x['poi'] else 0 for x in enron_data.values()])) Explanation: The Power of IPython Notebook + Pandas + and Scikit-learn IPython Notebook, Numpy, Pandas, MongoDB, R — for the better part of a year now, I have been trying out these technologies as part of Udacity's Data Analyst Nanodegree. My undergrad education barely touched on data visualization or more broadly data science, and so I figured being exposed to the aforementioned technologies would be fun. And fun it has been, with R's powerful IDE-powered data mundging and visualization techniques having been particularly revelatory. I learned enough of R to create some complex visualizations, and was impressed by how easy is to import data into its Dataframe representations and then transform and visualize that data. I also thought RStudio's paradigm of continuously intermixed code editing and execution was superior to my habitual workflow of just endlessly cycling between tweaking and executing of Python scripts. Still, R is a not-quite-general-purpose-language and I hit upon multiple instances in which simple things were hard to do. In such times, I could not help but miss the powers of Python, a language I have tons of experience with and which is about as general purpose as it gets. Luckily, the courses also covered the equivalent of an R implementation for Python: the Python Data Analysis Library, Pandas. This let me use the features of R I now liked — dataframes, powerful plotting methods, elegant methods for transforming data — with Python's lovely syntax and libraries I already knew and loved. And soon I got to do just that, using both Pandas and the supremely good Machine Learning package Scikit-learn for the final project of Udacity's Intro to Machine Learning Course. Not only that, but I also used IPython Notebook for RStudio-esque intermixed code editing and execution and nice PDF output. I had such a nice experience with this combination of tools that I decided to dedicate a post to it, and what follows is mostly a summation of that experience. Reading it should be sufficient to get a general idea for why these tools are useful, whereas a much more detailed introdution and tutorial for Pandas can be found elsewhere (for instance here). Incidentally, this whole post was written in IPython Notebook and the source of that can be found here with the produced HTML here. Data Summarization First, a bit about the project. The task was to first explore and clean a given dataset, and then train classification models using it. The dataset contained dozens of features about roughly 150 important employees from the notoriously corrupt company Enron, witch were classified as either a "Person of Interest" or not based on the outcome of investigations into Enron's corruption. It's a tiny dataset and not what I would have chosen, but such were the instructions. The data was provided in a bunch of Python dictionaries, and at first I just used a Python script to change it into a CSV and started exploring it in RStudio. But, it soon dawned on me that I would be much better off just working entirely in Python, and the following code is taken verbatim from my final project submission. And so, the code. Following some imports and a '%matplotlib notebook' comment to allow plotting within IPython, I loaded the data using pickle and printed out some basic things about it (not yet using Pandas): End of explanation df = pd.DataFrame.from_dict(enron_data) del df['TOTAL'] df = df.transpose() numeric_df = df.apply(pd.to_numeric, errors='coerce') del numeric_df['email_address'] numeric_df.describe() Explanation: But working with this set of dictionaries would not be nearly as fast or easy as a Pandas dataframe, so I soon converted it to that and went ahead and summarized all the features with a single method call: End of explanation del numeric_df['loan_advances'] del numeric_df['restricted_stock_deferred'] del numeric_df['director_fees'] std = numeric_df.apply(lambda x: np.abs(x - x.mean()) / x.std()) std = std.fillna(std.mean()) std.describe() Explanation: Looking through these, I found one instance of a valid outlier - Mark A. Frevert (CEO of Enron), and removed him from the dataset. I should emphasize the benefits of doing all this in IPython Notebook. Being able to tweak parts of the code without reexecuting all of it and reloading all the data made iterating on ideas much faster, and iterating on ideas fast is essential for exploratory data analysis and development of machine learned models. It's no accident that the Matlab IDE and RStudio, both tools commonly used in the sciences for data processing and analysis, have essentially the same structure. I did not understand the benefits of IPython Notebook when I was first made to use it for class assignments in College, but now it has finally dawned on me that it fills the same role as those IDEs and became popular because it is similaly well suited for working with data. End of explanation outliers = std.apply(lambda x: x > 5).any(axis=1) outlier_df = pd.DataFrame(index=numeric_df[outliers].index) for col in numeric_df.columns: outlier_df[str((col,col+'_std'))] = list(zip(numeric_df[outliers][col],std[outliers][col])) display(outlier_df) numeric_df.drop('FREVERT MARK A',inplace=True) df.drop('FREVERT MARK A',inplace=True) Explanation: This result suggested that most features have large outliers (larger than 3 standard deviations). In order to be careful not to remove any useful data, I manually inspected all rows with large outliers to see any values that seem appropriate for removal: End of explanation corr = numeric_df.corr() print('\nCorrelations between features to POI:\n ' +str(corr['poi'])) Explanation: Looking through these, I found one instance of a valid outlier - Mark A. Frevert (CEO of Enron), and removed him from the dataset. I should emphasize the benefits of doing all this in IPython Notebook. Being able to tweak parts of the code without reexecuting all of it and reloading all the data made iterating on ideas much faster, and iterating on ideas fast is essential for exploratory data analysis and development of machine learned models. It's no accident that the Matlab IDE and RStudio, both tools commonly used in the sciences for data processing and analysis, have essentially the same structure. I did not understand the benefits of IPython Notebook when I was first made to use it for class assignments in College, but now it has finally dawned on me that it fills the same role as those IDEs and became popular because it is similaly well suited for working with data. Feature Visualization, Engineering and Selection The project also instructed me to choose a set of features, and to engineer some of my own. In order to get an initial idea of possible promising features and how I could use them to create new features, I computed the correlation of each feature to the Person of Interest classification: End of explanation numeric_df.hist(column='exercised_stock_options',by='poi',bins=25,sharex=True,sharey=True) plt.suptitle("exercised_stock_options by POI") numeric_df.hist(column='total_stock_value',by='poi',bins=25,sharex=True,sharey=True) plt.suptitle("total_stock_value by POI") numeric_df.hist(column='bonus',by='poi',bins=25,sharex=True,sharey=True) plt.suptitle("bonus by POI") Explanation: The results indicated that 'exercised_stock_options', 'total_stock_value', and 'bonus' are the most promising features. Just for fun, I went ahead and plotted these features to see if I could visually verify their significance: End of explanation numeric_df.hist(column='to_messages',by='poi',bins=25,sharex=True,sharey=True) plt.suptitle("to_messages by POI") Explanation: As well as one that is not strongly correlated: End of explanation #Get rid of label del numeric_df['poi'] poi = df['poi'] #Create new features numeric_df['stock_sum'] = numeric_df['exercised_stock_options'] +\ numeric_df['total_stock_value'] +\ numeric_df['restricted_stock'] numeric_df['stock_ratio'] = numeric_df['exercised_stock_options']/numeric_df['total_stock_value'] numeric_df['money_total'] = numeric_df['salary'] +\ numeric_df['bonus'] -\ numeric_df['expenses'] numeric_df['money_ratio'] = numeric_df['bonus']/numeric_df['salary'] numeric_df['email_ratio'] = numeric_df['from_messages']/(numeric_df['to_messages']+numeric_df['from_messages']) numeric_df['poi_email_ratio_from'] = numeric_df['from_poi_to_this_person']/numeric_df['to_messages'] numeric_df['poi_email_ratio_to'] = numeric_df['from_this_person_to_poi']/numeric_df['from_messages'] #Feel in NA values with 'marker' value outside range of real values numeric_df = numeric_df.fillna(numeric_df.mean()) #Scale to 1-0 numeric_df = (numeric_df-numeric_df.min())/(numeric_df.max()-numeric_df.min()) Explanation: The data and plots above indicated that the exercised_stock_options, total_stock_value, and restricted_stock, and to a lesser extent to payment related information (total_payments, salary, bonus, and expenses), are all correlated to Persons of Interest. Therefore, I created new features as sums and ratios of these ones. Working with Pandas made this incredibely easy due to vectorized operations, and though Numpy could similarly make this easy I think Pandas' Dataframe construct makes it especially easy. It was also easy to fix any problems with the data before starting to train machine learning models. In order to use the data for evaluation and training, I replaced null values with the mean of each feature so as to be able to use the dataset with Scikit-learn. I also scaled all features to a range of 1-0, to better work with Support Vector Machines: End of explanation from sklearn.feature_selection import SelectKBest selector = SelectKBest() selector.fit(numeric_df,poi.tolist()) scores = {numeric_df.columns[i]:selector.scores_[i] for i in range(len(numeric_df.columns))} sorted_features = sorted(scores,key=scores.get, reverse=True) for feature in sorted_features: print('Feature %s has value %f'%(feature,scores[feature])) Explanation: Then, I scored features using Scikit-learn's SelectKBest to get an ordering of them to test with multiple algorithms afterward. Pandas Dataframes can be used directly with Scikit-learn, which is another great benefit of it: End of explanation from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.grid_search import RandomizedSearchCV, GridSearchCV from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import precision_score, recall_score, accuracy_score from sklearn.cross_validation import StratifiedShuffleSplit import scipy import warnings warnings.filterwarnings('ignore') gnb_clf = GridSearchCV(GaussianNB(),{}) #No params to tune for for linear bayes, use for convenience svc_clf = SVC() svc_search_params = {'C': scipy.stats.expon(scale=1), 'gamma': scipy.stats.expon(scale=.1), 'kernel': ['linear','poly','rbf'], 'class_weight':['balanced',None]} svc_search = RandomizedSearchCV(svc_clf, param_distributions=svc_search_params, n_iter=25) tree_clf = DecisionTreeClassifier() tree_search_params = {'criterion':['gini','entropy'], 'max_leaf_nodes':[None,25,50,100,1000], 'min_samples_split':[2,3,4], 'max_features':[0.25,0.5,0.75,1.0]} tree_search = GridSearchCV(tree_clf, tree_search_params, scoring='recall') search_methods = [gnb_clf,svc_search,tree_search] average_accuracies = [[0],[0],[0]] average_precision = [[0],[0],[0]] average_recall = [[0],[0],[0]] num_splits = 10 train_split = 0.9 indices = list(StratifiedShuffleSplit(poi.tolist(), num_splits, test_size=1-train_split, random_state=0)) best_features = None max_score = 0 best_classifier = None num_features = 0 for num_features in range(1,len(sorted_features)+1): features = sorted_features[:num_features] feature_df = numeric_df[features] for classifier_idx in range(3): sum_values = [0,0,0] #Only do parameter search once, too wasteful to do a ton search_methods[classifier_idx].fit(feature_df.iloc[indices[0][0],:], poi[indices[0][0]].tolist()) classifier = search_methods[classifier_idx].best_estimator_ for split_idx in range(num_splits): train_indices, test_indices = indices[split_idx] train_data = (feature_df.iloc[train_indices,:],poi[train_indices].tolist()) test_data = (feature_df.iloc[test_indices,:],poi[test_indices].tolist()) classifier.fit(train_data[0],train_data[1]) predicted = classifier.predict(test_data[0]) sum_values[0]+=accuracy_score(predicted,test_data[1]) sum_values[1]+=precision_score(predicted,test_data[1]) sum_values[2]+=recall_score(predicted,test_data[1]) avg_acc,avg_prs,avg_recall = [val/num_splits for val in sum_values] average_accuracies[classifier_idx].append(avg_acc) average_precision[classifier_idx].append(avg_prs) average_recall[classifier_idx].append(avg_recall) score = (avg_prs+avg_recall)/2 if score>max_score and avg_prs>0.3 and avg_recall>0.3: max_score = score best_features = features best_classifier = search_methods[classifier_idx].best_estimator_ print('Best classifier found is %s \n\ with score (recall+precision)/2 of %f\n\ and feature set %s'%(str(best_classifier),max_score,best_features)) Explanation: It appeared that several of my features are among the most useful, as 'poi_email_ratio_to', 'stock_sum', and 'money_total' are all ranked highly. But, since the data is so small I had no need to get rid of any of the features and went ahead with testing several classifiers with several sets of features. Training and Evaluating Models Proceding with the project, I selected three algorithms to test and compare: Naive Bayes, Decision Trees, and Support Vector Machines. Naive Bayes is a good baseline for any ML task, and the other two fit well into the task of binary classification with many features and can both be automatically tuned using sklearn classes. A word on SkLearn: it is simply a very well designed Machine Learning toolkit, with great compatibility with Numpy (and therefore also Pandas) and an elegant and smart API structure that makes trying out different models and evaluating features and just about anything one might want short of Deep Learning easy. I think the code that follows will attest to that. I tested those three algorithms with a variable number of features, from one to all of them ordered by the SelectKBest scoring. Because the data is so small, I could afford an extensive validation scheme and did multiple random splits of the data into training and testing to get an average that best indicated the strength of each algorithm. I also went ahead and evaluated precision and recall besides accuracy, since those were to be the metric of performance. And all it took to do all that is maybe 50 lines of code: End of explanation results = pd.DataFrame.from_dict({'Naive Bayes': average_accuracies[0], 'SVC':average_accuracies[1], 'Decision Tree':average_accuracies[2]}) results.plot(xlim=(1,len(sorted_features)-1),ylim=(0,1)) plt.suptitle("Classifier accuracy by # of features") results = pd.DataFrame.from_dict({'Naive Bayes': average_precision[0], 'SVC':average_precision[1], 'Decision Tree':average_precision[2]}) results.plot(xlim=(1,len(sorted_features)-1),ylim=(0,1)) plt.suptitle("Classifier precision by # of features") results = pd.DataFrame.from_dict({'Naive Bayes': average_recall[0], 'SVC':average_recall[1], 'Decision Tree':average_recall[2]}) results.plot(xlim=(1,len(sorted_features)-1),ylim=(0,1)) plt.suptitle("Classifier recall by # of features") Explanation: Then, I could go right back to Pandas to plot the results. Sure, I could do this with matplotlib just as well, but the flexibility and simplicity of the 'plot' function call on a DataFrame makes it much less annoying to use in my opinion. End of explanation
591
Given the following text description, write Python code to implement the functionality described below step by step Description: you should use GPU but if it is busy then you always can fall back to your CPU Step1: Use indexing of tokens from vocabulary-embedding this does not clip the indexes of the words to vocab_size. Use the index of outside words to replace them with several oov words (oov , oov0, oov1, ...) that appear in the same description and headline. This will allow headline generator to replace the oov with the same word in the description Step2: implement the "simple" model from http Step3: input data (X) is made from maxlend description words followed by eos followed by headline words followed by eos if description is shorter than maxlend it will be left padded with empty if entire data is longer than maxlen it will be clipped and if it is shorter it will be right padded with empty. labels (Y) are the headline words followed by eos and clipped or padded to maxlenh In other words the input is made from a maxlend half in which the description is padded from the left and a maxlenh half in which eos is followed by a headline followed by another eos if there is enough space. The labels match only the second half and the first label matches the eos at the start of the second half (following the description in the first half) Step4: the out of the first activation_rnn_size nodes from the top LSTM layer will be used for activation and the rest will be used to select predicted word Step5: read word embedding Step6: when printing mark words outside vocabulary with ^ at their end Step7: Model Step8: start with a standaed stacked LSTM Step9: A special layer that reduces the input just to its headline part (second half). For each word in this part it concatenate the output of the previous layer (RNN) with a weighted average of the outputs of the description part. In this only the last rnn_size - activation_rnn_size are used from each output. The first activation_rnn_size output is used to computer the weights for the averaging. Step10: Load Step12: Test Step17: Sample generation this section is only used to generate examples. you can skip it if you just want to understand how the training works Step21: Data generator Data generator generates batches of inputs and outputs/labels for training. The inputs are each made from two parts. The first maxlend words are the original description, followed by eos followed by the headline which we want to predict, except for the last word in the headline which is always eos and then empty padding until maxlen words. For each, input, the output is the headline words (without the start eos but with the ending eos) padded with empty words up to maxlenh words. The output is also expanded to be y-hot encoding of each word. To be more realistic, the second part of the input should be the result of generation and not the original headline. Instead we will flip just nflips words to be from the generator, but even this is too hard and instead implement flipping in a naive way (which consumes less time.) Using the full input (description + eos + headline) generate predictions for outputs. For nflips random words from the output, replace the original word with the word with highest probability from the prediction. Step22: test fliping Step23: check that valgen repeats itself after nb_batches Step24: Train
Python Code: import os # os.environ['THEANO_FLAGS'] = 'device=cpu,floatX=float32' import keras keras.__version__ Explanation: you should use GPU but if it is busy then you always can fall back to your CPU End of explanation FN0 = 'vocabulary-embedding' Explanation: Use indexing of tokens from vocabulary-embedding this does not clip the indexes of the words to vocab_size. Use the index of outside words to replace them with several oov words (oov , oov0, oov1, ...) that appear in the same description and headline. This will allow headline generator to replace the oov with the same word in the description End of explanation FN1 = 'train' Explanation: implement the "simple" model from http://arxiv.org/pdf/1512.01712v1.pdf you can start training from a pre-existing model. This allows you to run this notebooks many times, each time using different parameters and passing the end result of one run to be the input of the next. I've started with maxlend=0 (see below) in which the description was ignored. I then moved to start with a high LR and the manually lowering it. I also started with nflips=0 in which the original headlines is used as-is and slowely moved to 12 in which half the input headline was fliped with the predictions made by the model (the paper used fixed 10%) End of explanation maxlend=25 # 0 - if we dont want to use description at all maxlenh=25 maxlen = maxlend + maxlenh rnn_size = 512 # must be same as 160330-word-gen rnn_layers = 3 # match FN1 batch_norm=False Explanation: input data (X) is made from maxlend description words followed by eos followed by headline words followed by eos if description is shorter than maxlend it will be left padded with empty if entire data is longer than maxlen it will be clipped and if it is shorter it will be right padded with empty. labels (Y) are the headline words followed by eos and clipped or padded to maxlenh In other words the input is made from a maxlend half in which the description is padded from the left and a maxlenh half in which eos is followed by a headline followed by another eos if there is enough space. The labels match only the second half and the first label matches the eos at the start of the second half (following the description in the first half) End of explanation activation_rnn_size = 40 if maxlend else 0 # training parameters seed=42 p_W, p_U, p_dense, p_emb, weight_decay = 0, 0, 0, 0, 0 optimizer = 'adam' LR = 1e-4 batch_size=64 nflips=10 nb_train_samples = 30000 nb_val_samples = 3000 Explanation: the out of the first activation_rnn_size nodes from the top LSTM layer will be used for activation and the rest will be used to select predicted word End of explanation import cPickle as pickle with open('data/%s.pkl'%FN0, 'rb') as fp: embedding, idx2word, word2idx, glove_idx2idx = pickle.load(fp) vocab_size, embedding_size = embedding.shape with open('data/%s.data.pkl'%FN0, 'rb') as fp: X, Y = pickle.load(fp) nb_unknown_words = 10 print 'number of examples',len(X),len(Y) print 'dimension of embedding space for words',embedding_size print 'vocabulary size', vocab_size, 'the last %d words can be used as place holders for unknown/oov words'%nb_unknown_words print 'total number of different words',len(idx2word), len(word2idx) print 'number of words outside vocabulary which we can substitue using glove similarity', len(glove_idx2idx) print 'number of words that will be regarded as unknonw(unk)/out-of-vocabulary(oov)',len(idx2word)-vocab_size-len(glove_idx2idx) for i in range(nb_unknown_words): idx2word[vocab_size-1-i] = '<%d>'%i Explanation: read word embedding End of explanation oov0 = vocab_size-nb_unknown_words for i in range(oov0, len(idx2word)): idx2word[i] = idx2word[i]+'^' from sklearn.cross_validation import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=nb_val_samples, random_state=seed) len(X_train), len(Y_train), len(X_test), len(Y_test) del X del Y empty = 0 eos = 1 idx2word[empty] = '_' idx2word[eos] = '~' import numpy as np from keras.preprocessing import sequence from keras.utils import np_utils import random, sys def prt(label, x): print label+':', for w in x: print idx2word[w], print i = 334 prt('H',Y_train[i]) prt('D',X_train[i]) i = 334 prt('H',Y_test[i]) prt('D',X_test[i]) Explanation: when printing mark words outside vocabulary with ^ at their end End of explanation from keras.models import Sequential from keras.layers.core import Dense, Activation, Dropout, RepeatVector, Merge from keras.layers.wrappers import TimeDistributed from keras.layers.recurrent import LSTM from keras.layers.embeddings import Embedding from keras.regularizers import l2 # seed weight initialization random.seed(seed) np.random.seed(seed) regularizer = l2(weight_decay) if weight_decay else None Explanation: Model End of explanation model = Sequential() model.add(Embedding(vocab_size, embedding_size, input_length=maxlen, W_regularizer=regularizer, dropout=p_emb, weights=[embedding], mask_zero=True, name='embedding_1')) for i in range(rnn_layers): lstm = LSTM(rnn_size, return_sequences=True, # batch_norm=batch_norm, W_regularizer=regularizer, U_regularizer=regularizer, b_regularizer=regularizer, dropout_W=p_W, dropout_U=p_U, name='lstm_%d'%(i+1) ) model.add(lstm) model.add(Dropout(p_dense,name='dropout_%d'%(i+1))) Explanation: start with a standaed stacked LSTM End of explanation from keras.layers.core import Lambda import keras.backend as K def simple_context(X, mask, n=activation_rnn_size, maxlend=maxlend, maxlenh=maxlenh): desc, head = X[:,:maxlend,:], X[:,maxlend:,:] head_activations, head_words = head[:,:,:n], head[:,:,n:] desc_activations, desc_words = desc[:,:,:n], desc[:,:,n:] # RTFM http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.batched_tensordot # activation for every head word and every desc word activation_energies = K.batch_dot(head_activations, desc_activations, axes=(2,2)) # make sure we dont use description words that are masked out activation_energies = activation_energies + -1e20*K.expand_dims(1.-K.cast(mask[:, :maxlend],'float32'),1) # for every head word compute weights for every desc word activation_energies = K.reshape(activation_energies,(-1,maxlend)) activation_weights = K.softmax(activation_energies) activation_weights = K.reshape(activation_weights,(-1,maxlenh,maxlend)) # for every head word compute weighted average of desc words desc_avg_word = K.batch_dot(activation_weights, desc_words, axes=(2,1)) return K.concatenate((desc_avg_word, head_words)) class SimpleContext(Lambda): def __init__(self,**kwargs): super(SimpleContext, self).__init__(simple_context,**kwargs) self.supports_masking = True def compute_mask(self, input, input_mask=None): return input_mask[:, maxlend:] def get_output_shape_for(self, input_shape): nb_samples = input_shape[0] n = 2*(rnn_size - activation_rnn_size) return (nb_samples, maxlenh, n) if activation_rnn_size: model.add(SimpleContext(name='simplecontext_1')) model.add(TimeDistributed(Dense(vocab_size, W_regularizer=regularizer, b_regularizer=regularizer, name = 'timedistributed_1'))) model.add(Activation('softmax', name='activation_1')) from keras.optimizers import Adam, RMSprop # usually I prefer Adam but article used rmsprop # opt = Adam(lr=LR) # keep calm and reduce learning rate model.compile(loss='categorical_crossentropy', optimizer=optimizer) %%javascript // new Audio("http://www.soundjay.com/button/beep-09.wav").play () K.set_value(model.optimizer.lr,np.float32(LR)) def str_shape(x): return 'x'.join(map(str,x.shape)) def inspect_model(model): for i,l in enumerate(model.layers): print i, 'cls=%s name=%s'%(type(l).__name__, l.name) weights = l.get_weights() for weight in weights: print str_shape(weight), print inspect_model(model) Explanation: A special layer that reduces the input just to its headline part (second half). For each word in this part it concatenate the output of the previous layer (RNN) with a weighted average of the outputs of the description part. In this only the last rnn_size - activation_rnn_size are used from each output. The first activation_rnn_size output is used to computer the weights for the averaging. End of explanation if FN1: model.load_weights('data/%s.hdf5'%FN1) Explanation: Load End of explanation def lpadd(x, maxlend=maxlend, eos=eos): left (pre) pad a description to maxlend and then add eos. The eos is the input to predicting the first word in the headline assert maxlend >= 0 if maxlend == 0: return [eos] n = len(x) if n > maxlend: x = x[-maxlend:] n = maxlend return [empty]*(maxlend-n) + x + [eos] samples = [lpadd([3]*26)] # pad from right (post) so the first maxlend will be description followed by headline data = sequence.pad_sequences(samples, maxlen=maxlen, value=empty, padding='post', truncating='post') np.all(data[:,maxlend] == eos) data.shape,map(len, samples) probs = model.predict(data, verbose=0, batch_size=1) probs.shape Explanation: Test End of explanation # variation to https://github.com/ryankiros/skip-thoughts/blob/master/decoding/search.py def beamsearch(predict, start=[empty]*maxlend + [eos], k=1, maxsample=maxlen, use_unk=True, empty=empty, eos=eos, temperature=1.0): return k samples (beams) and their NLL scores, each sample is a sequence of labels, all samples starts with an `empty` label and end with `eos` or truncated to length of `maxsample`. You need to supply `predict` which returns the label probability of each sample. `use_unk` allow usage of `oov` (out-of-vocabulary) label in samples def sample(energy, n, temperature=temperature): sample at most n elements according to their energy n = min(n,len(energy)) prb = np.exp(-np.array(energy) / temperature ) res = [] for i in xrange(n): z = np.sum(prb) r = np.argmax(np.random.multinomial(1, prb/z, 1)) res.append(r) prb[r] = 0. # make sure we select each element only once return res dead_k = 0 # samples that reached eos dead_samples = [] dead_scores = [] live_k = 1 # samples that did not yet reached eos live_samples = [list(start)] live_scores = [0] while live_k: # for every possible live sample calc prob for every possible label probs = predict(live_samples, empty=empty) # total score for every sample is sum of -log of word prb cand_scores = np.array(live_scores)[:,None] - np.log(probs) cand_scores[:,empty] = 1e20 if not use_unk: for i in range(nb_unknown_words): cand_scores[:,vocab_size - 1 - i] = 1e20 live_scores = list(cand_scores.flatten()) # find the best (lowest) scores we have from all possible dead samples and # all live samples and all possible new words added scores = dead_scores + live_scores ranks = sample(scores, k) n = len(dead_scores) ranks_dead = [r for r in ranks if r < n] ranks_live = [r - n for r in ranks if r >= n] dead_scores = [dead_scores[r] for r in ranks_dead] dead_samples = [dead_samples[r] for r in ranks_dead] live_scores = [live_scores[r] for r in ranks_live] # append the new words to their appropriate live sample voc_size = probs.shape[1] live_samples = [live_samples[r//voc_size]+[r%voc_size] for r in ranks_live] # live samples that should be dead are... # even if len(live_samples) == maxsample we dont want it dead because we want one # last prediction out of it to reach a headline of maxlenh zombie = [s[-1] == eos or len(s) > maxsample for s in live_samples] # add zombies to the dead dead_samples += [s for s,z in zip(live_samples,zombie) if z] dead_scores += [s for s,z in zip(live_scores,zombie) if z] dead_k = len(dead_samples) # remove zombies from the living live_samples = [s for s,z in zip(live_samples,zombie) if not z] live_scores = [s for s,z in zip(live_scores,zombie) if not z] live_k = len(live_samples) return dead_samples + live_samples, dead_scores + live_scores # !pip install python-Levenshtein def keras_rnn_predict(samples, empty=empty, model=model, maxlen=maxlen): for every sample, calculate probability for every possible label you need to supply your RNN model and maxlen - the length of sequences it can handle sample_lengths = map(len, samples) assert all(l > maxlend for l in sample_lengths) assert all(l[maxlend] == eos for l in samples) # pad from right (post) so the first maxlend will be description followed by headline data = sequence.pad_sequences(samples, maxlen=maxlen, value=empty, padding='post', truncating='post') probs = model.predict(data, verbose=0, batch_size=batch_size) return np.array([prob[sample_length-maxlend-1] for prob, sample_length in zip(probs, sample_lengths)]) def vocab_fold(xs): convert list of word indexes that may contain words outside vocab_size to words inside. If a word is outside, try first to use glove_idx2idx to find a similar word inside. If none exist then replace all accurancies of the same unknown word with <0>, <1>, ... xs = [x if x < oov0 else glove_idx2idx.get(x,x) for x in xs] # the more popular word is <0> and so on outside = sorted([x for x in xs if x >= oov0]) # if there are more than nb_unknown_words oov words then put them all in nb_unknown_words-1 outside = dict((x,vocab_size-1-min(i, nb_unknown_words-1)) for i, x in enumerate(outside)) xs = [outside.get(x,x) for x in xs] return xs def vocab_unfold(desc,xs): # assume desc is the unfolded version of the start of xs unfold = {} for i, unfold_idx in enumerate(desc): fold_idx = xs[i] if fold_idx >= oov0: unfold[fold_idx] = unfold_idx return [unfold.get(x,x) for x in xs] import sys import Levenshtein def gensamples(skips=2, k=10, batch_size=batch_size, short=True, temperature=1., use_unk=True): i = random.randint(0,len(X_test)-1) print 'HEAD:',' '.join(idx2word[w] for w in Y_test[i][:maxlenh]) print 'DESC:',' '.join(idx2word[w] for w in X_test[i][:maxlend]) sys.stdout.flush() print 'HEADS:' x = X_test[i] samples = [] if maxlend == 0: skips = [0] else: skips = range(min(maxlend,len(x)), max(maxlend,len(x)), abs(maxlend - len(x)) // skips + 1) for s in skips: start = lpadd(x[:s]) fold_start = vocab_fold(start) sample, score = beamsearch(predict=keras_rnn_predict, start=fold_start, k=k, temperature=temperature, use_unk=use_unk) assert all(s[maxlend] == eos for s in sample) samples += [(s,start,scr) for s,scr in zip(sample,score)] samples.sort(key=lambda x: x[-1]) codes = [] for sample, start, score in samples: code = '' words = [] sample = vocab_unfold(start, sample)[len(start):] for w in sample: if w == eos: break words.append(idx2word[w]) code += chr(w//(256*256)) + chr((w//256)%256) + chr(w%256) if short: distance = min([100] + [-Levenshtein.jaro(code,c) for c in codes]) if distance > -0.6: print score, ' '.join(words) # print '%s (%.2f) %f'%(' '.join(words), score, distance) else: print score, ' '.join(words) codes.append(code) gensamples(skips=2, batch_size=batch_size, k=10, temperature=1.) Explanation: Sample generation this section is only used to generate examples. you can skip it if you just want to understand how the training works End of explanation def flip_headline(x, nflips=None, model=None, debug=False): given a vectorized input (after `pad_sequences`) flip some of the words in the second half (headline) with words predicted by the model if nflips is None or model is None or nflips <= 0: return x batch_size = len(x) assert np.all(x[:,maxlend] == eos) probs = model.predict(x, verbose=0, batch_size=batch_size) x_out = x.copy() for b in range(batch_size): # pick locations we want to flip # 0...maxlend-1 are descriptions and should be fixed # maxlend is eos and should be fixed flips = sorted(random.sample(xrange(maxlend+1,maxlen), nflips)) if debug and b < debug: print b, for input_idx in flips: if x[b,input_idx] == empty or x[b,input_idx] == eos: continue # convert from input location to label location # the output at maxlend (when input is eos) is feed as input at maxlend+1 label_idx = input_idx - (maxlend+1) prob = probs[b, label_idx] w = prob.argmax() if w == empty: # replace accidental empty with oov w = oov0 if debug and b < debug: print '%s => %s'%(idx2word[x_out[b,input_idx]],idx2word[w]), x_out[b,input_idx] = w if debug and b < debug: print return x_out def conv_seq_labels(xds, xhs, nflips=None, model=None, debug=False): description and hedlines are converted to padded input vectors. headlines are one-hot to label batch_size = len(xhs) assert len(xds) == batch_size x = [vocab_fold(lpadd(xd)+xh) for xd,xh in zip(xds,xhs)] # the input does not have 2nd eos x = sequence.pad_sequences(x, maxlen=maxlen, value=empty, padding='post', truncating='post') x = flip_headline(x, nflips=nflips, model=model, debug=debug) y = np.zeros((batch_size, maxlenh, vocab_size)) for i, xh in enumerate(xhs): xh = vocab_fold(xh) + [eos] + [empty]*maxlenh # output does have a eos at end xh = xh[:maxlenh] y[i,:,:] = np_utils.to_categorical(xh, vocab_size) return x, y def gen(Xd, Xh, batch_size=batch_size, nb_batches=None, nflips=None, model=None, debug=False, seed=seed): yield batches. for training use nb_batches=None for validation generate deterministic results repeating every nb_batches while training it is good idea to flip once in a while the values of the headlines from the value taken from Xh to value generated by the model. c = nb_batches if nb_batches else 0 while True: xds = [] xhs = [] if nb_batches and c >= nb_batches: c = 0 new_seed = random.randint(0, sys.maxint) random.seed(c+123456789+seed) for b in range(batch_size): t = random.randint(0,len(Xd)-1) xd = Xd[t] s = random.randint(min(maxlend,len(xd)), max(maxlend,len(xd))) xds.append(xd[:s]) xh = Xh[t] s = random.randint(min(maxlenh,len(xh)), max(maxlenh,len(xh))) xhs.append(xh[:s]) # undo the seeding before we yield inorder not to affect the caller c+= 1 random.seed(new_seed) yield conv_seq_labels(xds, xhs, nflips=nflips, model=model, debug=debug) r = next(gen(X_train, Y_train, batch_size=batch_size)) r[0].shape, r[1].shape, len(r) def test_gen(gen, n=5): Xtr,Ytr = next(gen) for i in range(n): assert Xtr[i,maxlend] == eos x = Xtr[i,:maxlend] y = Xtr[i,maxlend:] yy = Ytr[i,:] yy = np.where(yy)[1] prt('L',yy) prt('H',y) if maxlend: prt('D',x) test_gen(gen(X_train, Y_train, batch_size=batch_size)) Explanation: Data generator Data generator generates batches of inputs and outputs/labels for training. The inputs are each made from two parts. The first maxlend words are the original description, followed by eos followed by the headline which we want to predict, except for the last word in the headline which is always eos and then empty padding until maxlen words. For each, input, the output is the headline words (without the start eos but with the ending eos) padded with empty words up to maxlenh words. The output is also expanded to be y-hot encoding of each word. To be more realistic, the second part of the input should be the result of generation and not the original headline. Instead we will flip just nflips words to be from the generator, but even this is too hard and instead implement flipping in a naive way (which consumes less time.) Using the full input (description + eos + headline) generate predictions for outputs. For nflips random words from the output, replace the original word with the word with highest probability from the prediction. End of explanation test_gen(gen(X_train, Y_train, nflips=6, model=model, debug=False, batch_size=batch_size)) valgen = gen(X_test, Y_test,nb_batches=3, batch_size=batch_size) Explanation: test fliping End of explanation for i in range(4): test_gen(valgen, n=1) Explanation: check that valgen repeats itself after nb_batches End of explanation history = {} traingen = gen(X_train, Y_train, batch_size=batch_size, nflips=nflips, model=model) valgen = gen(X_test, Y_test, nb_batches=nb_val_samples//batch_size, batch_size=batch_size) r = next(traingen) r[0].shape, r[1].shape, len(r) for iteration in range(500): print 'Iteration', iteration h = model.fit_generator(traingen, samples_per_epoch=nb_train_samples, nb_epoch=1, validation_data=valgen, nb_val_samples=nb_val_samples ) for k,v in h.history.iteritems(): history[k] = history.get(k,[]) + v with open('data/%s.history.pkl'%FN,'wb') as fp: pickle.dump(history,fp,-1) model.save_weights('data/%s.hdf5'%FN, overwrite=True) gensamples(batch_size=batch_size) Explanation: Train End of explanation
592
Given the following text description, write Python code to implement the functionality described below step by step Description: <!--BOOK_INFORMATION--> <a href="https Step1: Then, loading the dataset is a one-liner Step2: The structure of the boston object is identical to the iris object. We can get more information about the dataset by looking at the fields of the boston object Step3: The dataset contains a total of 506 data points, each of which has 13 features Step4: Of course, we have only a single target value, which is the housing price Step5: Training the model Believe it or not, OpenCV does not offer any good implementation of linear regression. Some people online say that you can use cv2.fitLine, but that is different. This is a perfect opportunity to get familiar with scikit-learn's API Step6: In the preceding command, we want to split the data into training and test sets. We are free to make the split as we see fit, but usually it is a good idea to reserve between 10 percent and 30 percent for testing. Here, we choose 10 percent, using the test_size argument Step7: In scikit-learn, the train function is called fit, but otherwise behaves exactly the same as in OpenCV Step8: We can look at the mean squared error of our predictions by comparing the true housing prices, y_train, to our predictions, linreg.predict(X_train) Step9: The score method of the linreg object returns the coefficient of determination (R squared) Step10: Testing the model In order to test the generalization performance of the model, we calculate the mean squared error on the test data Step11: We note that the mean squared error is a little lower on the test set than the training set. This is good news, as we care mostly about the test error. However, from these numbers, it is really hard to understand how good the model really is. Perhaps it's better to plot the data Step12: This makes more sense! Here we see the ground truth housing prices for all test samples in blue and our predicted housing prices in red. Pretty close, if you ask me. It is interesting to note though that the model tends to be off the most for really high or really low housing prices, such as the peak values of data point 12, 18, and 42. We can formalize the amount of variance in the data that we were able to explain by calculating $R^2$
Python Code: import numpy as np import cv2 from sklearn import datasets from sklearn import metrics from sklearn import model_selection from sklearn import linear_model %matplotlib inline import matplotlib.pyplot as plt plt.style.use('ggplot') plt.rcParams.update({'font.size': 16}) Explanation: <!--BOOK_INFORMATION--> <a href="https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-opencv" target="_blank"><img align="left" src="data/cover.jpg" style="width: 76px; height: 100px; background: white; padding: 1px; border: 1px solid black; margin-right:10px;"></a> This notebook contains an excerpt from the book Machine Learning for OpenCV by Michael Beyeler. The code is released under the MIT license, and is available on GitHub. Note that this excerpt contains only the raw code - the book is rich with additional explanations and illustrations. If you find this content useful, please consider supporting the work by buying the book! <!--NAVIGATION--> < Understanding the k-NN Classifier | Contents | Applying Lasso and Ridge Regression > Using Regression Models to Predict Continuous Outcomes Now let's turn our attention to a regression problem. Regression is all about predicting continuous outcomes rather than predicting discrete class labels. Using linear regression to predict Boston housing prices The easiest regression model is called linear regression. The idea behind linear regression is to describe a target variable (such as Boston house pricing) with a linear combination of features. If you want to understand how the math behind linear regression works, please refer to the book (p.65ff.). To get a better understanding of linear regression, we want to build a simple model that can be applied to one of the most famous machine learning datasets known as the Boston housing prices dataset. Here, the goal is to predict the value of homes in several Boston neighborhoods in the 1970s, using information such as crime rate, property tax rate, distance to employment centers, and highway accessibility. Loading the dataset We can again thank scikit-learn for easy access to the dataset. We first import all the necessary modules, as we did earlier: End of explanation boston = datasets.load_boston() Explanation: Then, loading the dataset is a one-liner: End of explanation dir(boston) Explanation: The structure of the boston object is identical to the iris object. We can get more information about the dataset by looking at the fields of the boston object: - DESCR: Get a description of the data - data: The actual data, <num_samples x num_features> - feature_names: The names of the features - target: The class labels, <num_samples x 1> - target_names: The names of the class labels End of explanation boston.data.shape Explanation: The dataset contains a total of 506 data points, each of which has 13 features: End of explanation boston.target.shape Explanation: Of course, we have only a single target value, which is the housing price: End of explanation linreg = linear_model.LinearRegression() Explanation: Training the model Believe it or not, OpenCV does not offer any good implementation of linear regression. Some people online say that you can use cv2.fitLine, but that is different. This is a perfect opportunity to get familiar with scikit-learn's API: End of explanation X_train, X_test, y_train, y_test = model_selection.train_test_split( boston.data, boston.target, test_size=0.1, random_state=42 ) Explanation: In the preceding command, we want to split the data into training and test sets. We are free to make the split as we see fit, but usually it is a good idea to reserve between 10 percent and 30 percent for testing. Here, we choose 10 percent, using the test_size argument: End of explanation linreg.fit(X_train, y_train) Explanation: In scikit-learn, the train function is called fit, but otherwise behaves exactly the same as in OpenCV: End of explanation metrics.mean_squared_error(y_train, linreg.predict(X_train)) Explanation: We can look at the mean squared error of our predictions by comparing the true housing prices, y_train, to our predictions, linreg.predict(X_train): End of explanation linreg.score(X_train, y_train) Explanation: The score method of the linreg object returns the coefficient of determination (R squared): End of explanation y_pred = linreg.predict(X_test) metrics.mean_squared_error(y_test, y_pred) Explanation: Testing the model In order to test the generalization performance of the model, we calculate the mean squared error on the test data: End of explanation plt.figure(figsize=(10, 6)) plt.plot(y_test, linewidth=3, label='ground truth') plt.plot(y_pred, linewidth=3, label='predicted') plt.legend(loc='best') plt.xlabel('test data points') plt.ylabel('target value') Explanation: We note that the mean squared error is a little lower on the test set than the training set. This is good news, as we care mostly about the test error. However, from these numbers, it is really hard to understand how good the model really is. Perhaps it's better to plot the data: End of explanation plt.figure(figsize=(10, 6)) plt.plot(y_test, y_pred, 'o') plt.plot([-10, 60], [-10, 60], 'k--') plt.axis([-10, 60, -10, 60]) plt.xlabel('ground truth') plt.ylabel('predicted') scorestr = r'R$^2$ = %.3f' % linreg.score(X_test, y_test) errstr = 'MSE = %.3f' % metrics.mean_squared_error(y_test, y_pred) plt.text(-5, 50, scorestr, fontsize=12) plt.text(-5, 45, errstr, fontsize=12); Explanation: This makes more sense! Here we see the ground truth housing prices for all test samples in blue and our predicted housing prices in red. Pretty close, if you ask me. It is interesting to note though that the model tends to be off the most for really high or really low housing prices, such as the peak values of data point 12, 18, and 42. We can formalize the amount of variance in the data that we were able to explain by calculating $R^2$: End of explanation
593
Given the following text description, write Python code to implement the functionality described below step by step Description: Copyright 2020 The TensorFlow Authors. Step1: TensorFlow Addons Losses Step2: Prepare the Data Step3: Build the Model Step4: Train and Evaluate
Python Code: #@title Licensed under the Apache License, Version 2.0 # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Explanation: Copyright 2020 The TensorFlow Authors. End of explanation !pip install -U tensorflow-addons import io import numpy as np import tensorflow as tf import tensorflow_addons as tfa import tensorflow_datasets as tfds Explanation: TensorFlow Addons Losses: TripletSemiHardLoss <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://www.tensorflow.org/addons/tutorials/losses_triplet"><img src="https://www.tensorflow.org/images/tf_logo_32px.png" />View on TensorFlow.org</a> </td> <td> <a target="_blank" href="https://colab.research.google.com/github/tensorflow/addons/blob/master/docs/tutorials/losses_triplet.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/tensorflow/addons/blob/master/docs/tutorials/losses_triplet.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View source on GitHub</a> </td> <td> <a href="https://storage.googleapis.com/tensorflow_docs/addons/docs/tutorials/losses_triplet.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png" />Download notebook</a> </td> </table> Overview This notebook will demonstrate how to use the TripletSemiHardLoss function in TensorFlow Addons. Resources: FaceNet: A Unified Embedding for Face Recognition and Clustering Oliver Moindrot's blog does an excellent job of describing the algorithm in detail TripletLoss As first introduced in the FaceNet paper, TripletLoss is a loss function that trains a neural network to closely embed features of the same class while maximizing the distance between embeddings of different classes. To do this an anchor is chosen along with one negative and one positive sample. The loss function is described as a Euclidean distance function: Where A is our anchor input, P is the positive sample input, N is the negative sample input, and alpha is some margin you use to specify when a triplet has become too "easy" and you no longer want to adjust the weights from it. SemiHard Online Learning As shown in the paper, the best results are from triplets known as "Semi-Hard". These are defined as triplets where the negative is farther from the anchor than the positive, but still produces a positive loss. To efficiently find these triplets you utilize online learning and only train from the Semi-Hard examples in each batch. Setup End of explanation def _normalize_img(img, label): img = tf.cast(img, tf.float32) / 255. return (img, label) train_dataset, test_dataset = tfds.load(name="mnist", split=['train', 'test'], as_supervised=True) # Build your input pipelines train_dataset = train_dataset.shuffle(1024).batch(32) train_dataset = train_dataset.map(_normalize_img) test_dataset = test_dataset.batch(32) test_dataset = test_dataset.map(_normalize_img) Explanation: Prepare the Data End of explanation model = tf.keras.Sequential([ tf.keras.layers.Conv2D(filters=64, kernel_size=2, padding='same', activation='relu', input_shape=(28,28,1)), tf.keras.layers.MaxPooling2D(pool_size=2), tf.keras.layers.Dropout(0.3), tf.keras.layers.Conv2D(filters=32, kernel_size=2, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=2), tf.keras.layers.Dropout(0.3), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation=None), # No activation on final dense layer tf.keras.layers.Lambda(lambda x: tf.math.l2_normalize(x, axis=1)) # L2 normalize embeddings ]) Explanation: Build the Model End of explanation # Compile the model model.compile( optimizer=tf.keras.optimizers.Adam(0.001), loss=tfa.losses.TripletSemiHardLoss()) # Train the network history = model.fit( train_dataset, epochs=5) # Evaluate the network results = model.predict(test_dataset) # Save test embeddings for visualization in projector np.savetxt("vecs.tsv", results, delimiter='\t') out_m = io.open('meta.tsv', 'w', encoding='utf-8') for img, labels in tfds.as_numpy(test_dataset): [out_m.write(str(x) + "\n") for x in labels] out_m.close() try: from google.colab import files files.download('vecs.tsv') files.download('meta.tsv') except: pass Explanation: Train and Evaluate End of explanation
594
Given the following text description, write Python code to implement the functionality described below step by step Description: Regression Week 1 Step1: Load house sales data Dataset is from house sales in King County, the region where the city of Seattle, WA is located. Step2: Split data into training and testing We use seed=0 so that everyone running this notebook gets the same results. In practice, you may set a random seed (or let GraphLab Create pick a random seed for you). Step3: Useful SFrame summary functions In order to make use of the closed form soltion as well as take advantage of graphlab's built in functions we will review some important ones. In particular Step4: As we see we get the same answer both ways Step5: Aside Step6: We can test that our function works by passing it something where we know the answer. In particular we can generate a feature and then put the output exactly on a line Step7: Now that we know it works let's build a regression model for predicting price based on sqft_living. Rembember that we train on train_data! Step8: Predicting Values Now that we have the model parameters Step9: Now that we can calculate a prediction given the slop and intercept let's make a prediction. Use (or alter) the following to find out the estimated price for a house with 2650 squarefeet according to the squarefeet model we estiamted above. Quiz Question Step10: Residual Sum of Squares Now that we have a model and can make predictions let's evaluate our model using Residual Sum of Squares (RSS). Recall that RSS is the sum of the squares of the residuals and the residuals is just a fancy word for the difference between the predicted output and the true output. Complete the following (or write your own) function to compute the RSS of a simple linear regression model given the input_feature, output, intercept and slope Step11: Let's test our get_residual_sum_of_squares function by applying it to the test model where the data lie exactly on a line. Since they lie exactly on a line the residual sum of squares should be zero! Step12: Now use your function to calculate the RSS on training data from the squarefeet model calculated above. Quiz Question Step13: Predict the squarefeet given price What if we want to predict the squarefoot given the price? Since we have an equation y = a + b*x we can solve the function for x. So that if we have the intercept (a) and the slope (b) and the price (y) we can solve for the estimated squarefeet (x). Comlplete the following function to compute the inverse regression estimate, i.e. predict the input_feature given the output! Step14: Now that we have a function to compute the squarefeet given the price from our simple regression model let's see how big we might expect a house that coses $800,000 to be. Quiz Question Step15: New Model Step16: Test your Linear Regression Algorithm Now we have two models for predicting the price of a house. How do we know which one is better? Calculate the RSS on the TEST data (remember this data wasn't involved in learning the model). Compute the RSS from predicting prices using bedrooms and from predicting prices using squarefeet. Quiz Question
Python Code: import graphlab Explanation: Regression Week 1: Simple Linear Regression In this notebook we will use data on house sales in King County to predict house prices using simple (one input) linear regression. You will: * Use graphlab SArray and SFrame functions to compute important summary statistics * Write a function to compute the Simple Linear Regression weights using the closed form solution * Write a function to make predictions of the output given the input feature * Turn the regression around to predict the input given the output * Compare two different models for predicting house prices In this notebook you will be provided with some already complete code as well as some code that you should complete yourself in order to answer quiz questions. The code we provide to complte is optional and is there to assist you with solving the problems but feel free to ignore the helper code and write your own. Fire up graphlab create End of explanation sales = graphlab.SFrame('kc_house_data.gl/') Explanation: Load house sales data Dataset is from house sales in King County, the region where the city of Seattle, WA is located. End of explanation train_data,test_data = sales.random_split(.8,seed=0) Explanation: Split data into training and testing We use seed=0 so that everyone running this notebook gets the same results. In practice, you may set a random seed (or let GraphLab Create pick a random seed for you). End of explanation # Let's compute the mean of the House Prices in King County in 2 different ways. prices = sales['price'] # extract the price column of the sales SFrame -- this is now an SArray # recall that the arithmetic average (the mean) is the sum of the prices divided by the total number of houses: sum_prices = prices.sum() num_houses = prices.size() # when prices is an SArray .size() returns its length avg_price_1 = sum_prices/num_houses avg_price_2 = prices.mean() # if you just want the average, the .mean() function print "average price via method 1: " + str(avg_price_1) print "average price via method 2: " + str(avg_price_2) Explanation: Useful SFrame summary functions In order to make use of the closed form soltion as well as take advantage of graphlab's built in functions we will review some important ones. In particular: * Computing the sum of an SArray * Computing the arithmetic average (mean) of an SArray * multiplying SArrays by constants * multiplying SArrays by other SArrays End of explanation # if we want to multiply every price by 0.5 it's a simple as: half_prices = 0.5*prices # Let's compute the sum of squares of price. We can multiply two SArrays of the same length elementwise also with * prices_squared = prices*prices sum_prices_squared = prices_squared.sum() # price_squared is an SArray of the squares and we want to add them up. print "the sum of price squared is: " + str(sum_prices_squared) Explanation: As we see we get the same answer both ways End of explanation def simple_linear_regression(input_feature, output): # compute the mean of input_feature and output x = input_feature y = output avg_x = x.mean() avg_y = y.mean() n = x.size() # compute the product of the output and the input_feature and its mean # compute the squared value of the input_feature and its mean # use the formula for the slope x_err = x-avg_x slope = (y*x_err).sum()/(x*x_err).sum() # use the formula for the intercept intercept = y.mean() - x.mean()*slope return (intercept, slope) Explanation: Aside: The python notation x.xxe+yy means x.xx * 10^(yy). e.g 100 = 10^2 = 1*10^2 = 1e2 Build a generic simple linear regression function Armed with these SArray functions we can use the closed form solution found from lecture to compute the slope and intercept for a simple linear regression on observations stored as SArrays: input_feature, output. Complete the following function (or write your own) to compute the simple linear regression slope and intercept: End of explanation test_feature = graphlab.SArray(range(5)) test_output = graphlab.SArray(1 + 1*test_feature) (test_intercept, test_slope) = simple_linear_regression(test_feature, test_output) print "Intercept: " + str(test_intercept) print "Slope: " + str(test_slope) Explanation: We can test that our function works by passing it something where we know the answer. In particular we can generate a feature and then put the output exactly on a line: output = 1 + 1*input_feature then we know both our slope and intercept should be 1 End of explanation sqft_intercept, sqft_slope = simple_linear_regression(train_data['sqft_living'], train_data['price']) print "Intercept: " + str(sqft_intercept) print "Slope: " + str(sqft_slope) Explanation: Now that we know it works let's build a regression model for predicting price based on sqft_living. Rembember that we train on train_data! End of explanation def get_regression_predictions(input_feature, intercept, slope): # calculate the predicted values: predicted_values = intercept + slope * input_feature return predicted_values Explanation: Predicting Values Now that we have the model parameters: intercept & slope we can make predictions. Using SArrays it's easy to multiply an SArray by a constant and add a constant value. Complete the following function to return the predicted output given the input_feature, slope and intercept: End of explanation my_house_sqft = 2650 estimated_price = get_regression_predictions(my_house_sqft, sqft_intercept, sqft_slope) print "The estimated price for a house with %d squarefeet is $%.2f" % (my_house_sqft, estimated_price) Explanation: Now that we can calculate a prediction given the slop and intercept let's make a prediction. Use (or alter) the following to find out the estimated price for a house with 2650 squarefeet according to the squarefeet model we estiamted above. Quiz Question: Using your Slope and Intercept from (4), What is the predicted price for a house with 2650 sqft? End of explanation def get_residual_sum_of_squares(input_feature, output, intercept, slope): # First get the predictions predictions = get_regression_predictions(input_feature, intercept, slope) # then compute the residuals (since we are squaring it doesn't matter which order you subtract) resd = predictions-output # square the residuals and add them up RSS = (resd*resd).sum() return(RSS) Explanation: Residual Sum of Squares Now that we have a model and can make predictions let's evaluate our model using Residual Sum of Squares (RSS). Recall that RSS is the sum of the squares of the residuals and the residuals is just a fancy word for the difference between the predicted output and the true output. Complete the following (or write your own) function to compute the RSS of a simple linear regression model given the input_feature, output, intercept and slope: End of explanation print get_residual_sum_of_squares(test_feature, test_output, test_intercept, test_slope) # should be 0.0 Explanation: Let's test our get_residual_sum_of_squares function by applying it to the test model where the data lie exactly on a line. Since they lie exactly on a line the residual sum of squares should be zero! End of explanation rss_prices_on_sqft = get_residual_sum_of_squares(train_data['sqft_living'], train_data['price'], sqft_intercept, sqft_slope) print 'The RSS of predicting Prices based on Square Feet is : ' + str(rss_prices_on_sqft) Explanation: Now use your function to calculate the RSS on training data from the squarefeet model calculated above. Quiz Question: According to this function and the slope and intercept from the squarefeet model What is the RSS for the simple linear regression using squarefeet to predict prices on TRAINING data? End of explanation def inverse_regression_predictions(output, intercept, slope): # solve output = intercept + slope*input_feature for input_feature. Use this equation to compute the inverse predictions: estimated_feature = (output - intercept)/slope return estimated_feature Explanation: Predict the squarefeet given price What if we want to predict the squarefoot given the price? Since we have an equation y = a + b*x we can solve the function for x. So that if we have the intercept (a) and the slope (b) and the price (y) we can solve for the estimated squarefeet (x). Comlplete the following function to compute the inverse regression estimate, i.e. predict the input_feature given the output! End of explanation my_house_price = 800000 estimated_squarefeet = inverse_regression_predictions(my_house_price, sqft_intercept, sqft_slope) print "The estimated squarefeet for a house worth $%.2f is %d" % (my_house_price, estimated_squarefeet) Explanation: Now that we have a function to compute the squarefeet given the price from our simple regression model let's see how big we might expect a house that coses $800,000 to be. Quiz Question: According to this function and the regression slope and intercept from (3) what is the estimated square-feet for a house costing $800,000? End of explanation # Estimate the slope and intercept for predicting 'price' based on 'bedrooms' bedrooms_intercept, bedrooms_slope = simple_linear_regression(train_data['bedrooms'], train_data['price']) Explanation: New Model: estimate prices from bedrooms We have made one model for predicting house prices using squarefeet, but there are many other features in the sales SFrame. Use your simple linear regression function to estimate the regression parameters from predicting Prices based on number of bedrooms. Use the training data! End of explanation # Compute RSS when using bedrooms on TEST data: get_residual_sum_of_squares(test_data['bedrooms'], test_data['price'], sqft_intercept, sqft_slope) # Compute RSS when using squarfeet on TEST data: get_residual_sum_of_squares(test_data['sqft_living'], test_data['price'], sqft_intercept, sqft_slope) Explanation: Test your Linear Regression Algorithm Now we have two models for predicting the price of a house. How do we know which one is better? Calculate the RSS on the TEST data (remember this data wasn't involved in learning the model). Compute the RSS from predicting prices using bedrooms and from predicting prices using squarefeet. Quiz Question: Which model (square feet or bedrooms) has lowest RSS on TEST data? Think about why this might be the case. End of explanation
595
Given the following text description, write Python code to implement the functionality described below step by step Description: Weighted-residual method Let us consider the equation $$A u = f\quad \text{in } \Omega$$ For an approximation $u_N$ of $u$, the residual, $R_N$, is defined by $$R_N \equiv Au_N - f$$ When the residual is made orthogonal to the subspace spanned by a base ${\psi_k}$, we have a weighted-residual method, i.e., $$\langle R_N, \psi_k\rangle =0 \quad k=1, 2, \cdots, N$$ Step2: Ritz method Step4: Bubnov-Galerkin method The Bubnov-Galerkint methood is a generalization of the Ritz method. As in the Ritz method, it seeks an approximate solution as a linear combination of base functions $$u_N = \sum_{i=1}^{N} c_i \phi_i\, .$$ In this case, the coefficients $c_i$ are determined from the condition that the residual $R_N$ is orthogonal to the basis functions $\phi_1, \phi_2, \cdots, \phi_N$ Step5: The following cell change the style of the notebook.
Python Code: from __future__ import division, print_function import numpy as np from sympy import * from sympy.plotting import plot3d from scipy.linalg import eigh from scipy.special import jn_zeros as Jn_zeros, jn as Jn import matplotlib.pyplot as plt init_session() %matplotlib inline plt.style.use("seaborn-notebook") Explanation: Weighted-residual method Let us consider the equation $$A u = f\quad \text{in } \Omega$$ For an approximation $u_N$ of $u$, the residual, $R_N$, is defined by $$R_N \equiv Au_N - f$$ When the residual is made orthogonal to the subspace spanned by a base ${\psi_k}$, we have a weighted-residual method, i.e., $$\langle R_N, \psi_k\rangle =0 \quad k=1, 2, \cdots, N$$ End of explanation def u_fun(r, m): Trial function. c = symbols('c0:%i' % m) w = (1 - r**2) *sum(c[k]*r**(2*k) for k in range (0, m)) return w, c r = symbols('r') m = 7 u, coef = u_fun(r, m) T_inte = u**2 U_inte = diff(u, r)**2 display(U_inte) display(T_inte) U = integrate(expand(r*U_inte), (r, 0, 1)) T = integrate(expand(r*T_inte), (r, 0, 1)) K = Matrix(m, m, lambda ii, jj: diff(U, coef[ii], coef[jj])) K M = Matrix(m, m, lambda ii, jj: diff(T, coef[ii], coef[jj])) M Kn = np.array(K).astype(np.float64) Mn = np.array(M).astype(np.float64) vals, vecs = eigh(Kn, Mn, eigvals=(0, m-1)) np.sqrt(vals) lam = Jn_zeros(0, m) r_vec = np.linspace(0, 1, 60) plt.figure(figsize=(14, 5)) ax1 = plt.subplot(1, 2, 1) ax2 = plt.subplot(1, 2, 2) for num in range(5): u_num = lambdify((r), u.subs({coef[kk]: vecs[kk, num] for kk in range(m)}), "numpy") ax1.plot(r_vec, u_num(r_vec)/u_num(0)) ax1.set_title("Approximated solution") ax2.plot(r_vec, Jn(0, lam[num]*r_vec), label=r"$m=%i$"%num) ax2.set_title("Exact solution") plt.legend(loc="best", framealpha=0); Explanation: Ritz method: Axisymmetric modes in a circular membrane End of explanation def u_fun(r, m): Trial function. c = symbols('c0:%i' % m) w = (1 - r**2) *sum(c[k]*r**(2*k) for k in range (0, m)) return w, c r = symbols('r') m = 7 u, coef = u_fun(r, m) u U = -integrate(diff(r*diff(u, r), r)*u, (r, 0, 1)) T = integrate(r*u**2, (r, 0, 1)) K = Matrix(m, m, lambda ii, jj: diff(U, coef[ii], coef[jj])) K M = Matrix(m, m, lambda ii, jj: diff(T, coef[ii], coef[jj])) M Kn = np.array(K).astype(np.float64) Mn = np.array(M).astype(np.float64) vals, vecs = eigh(Kn, Mn, eigvals=(0, m-1)) np.sqrt(vals) Explanation: Bubnov-Galerkin method The Bubnov-Galerkint methood is a generalization of the Ritz method. As in the Ritz method, it seeks an approximate solution as a linear combination of base functions $$u_N = \sum_{i=1}^{N} c_i \phi_i\, .$$ In this case, the coefficients $c_i$ are determined from the condition that the residual $R_N$ is orthogonal to the basis functions $\phi_1, \phi_2, \cdots, \phi_N$: $$\langle R_N, \phi_k\rangle =0\quad k=1, 2, \cdots, N \, .$$ If the operator is positive-definite then $A=T^*T$ and the problem can be rewritten identically to the Ritz method. End of explanation from IPython.core.display import HTML def css_styling(): styles = open('../styles/custom_barba.css', 'r').read() return HTML(styles) css_styling() Explanation: The following cell change the style of the notebook. End of explanation
596
Given the following text description, write Python code to implement the functionality described below step by step Description: Most of the public Colour API is available from the colour namespace. Step1: For example, computing the CIE 2017 Colour Fidelity Index of a light source can be done as follows Step2: The correlated colour temperature of a CIE Standard Illuminant can be calculated easily Step3: Colour also implements various plotting functions via to Matplotlib
Python Code: import colour Explanation: Most of the public Colour API is available from the colour namespace. End of explanation sd = colour.SDS_ILLUMINANTS.get('FL2') colour.colour_fidelity_index(sd) Explanation: For example, computing the CIE 2017 Colour Fidelity Index of a light source can be done as follows: End of explanation il = colour.CCS_ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['D50'] colour.xy_to_CCT(il, method='Hernandez 1999') Explanation: The correlated colour temperature of a CIE Standard Illuminant can be calculated easily: End of explanation colour.plotting.colour_style() colour.plotting.plot_visible_spectrum(); Explanation: Colour also implements various plotting functions via to Matplotlib: End of explanation
597
Given the following text description, write Python code to implement the functionality described below step by step Description: San Diego Burrito Analytics Step1: Load data Step2: Process Step3: Process Cali burrito data
Python Code: %config InlineBackend.figure_format = 'retina' %matplotlib inline import numpy as np import scipy as sp import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set_style("white") Explanation: San Diego Burrito Analytics: Coordinates Determine the longitude and latitude for each restaurant based on its address Default imports End of explanation import util2 df, dfRestaurants, dfIngredients = util2.load_burritos() N = df.shape[0] Explanation: Load data End of explanation dfRestaurants=dfRestaurants.reset_index().drop('index',axis=1) dfRestaurants Explanation: Process End of explanation dfAvg = df.groupby('Location').agg({'Cost': np.mean,'Volume': np.mean,'Hunger': np.mean, 'Tortilla': np.mean,'Temp': np.mean,'Meat': np.mean, 'Fillings': np.mean,'Meat:filling': np.mean,'Uniformity': np.mean, 'Salsa': np.mean,'Synergy': np.mean,'Wrap': np.mean, 'overall': np.mean, 'Location':np.size}) dfAvg.rename(columns={'Location': 'N'}, inplace=True) dfAvg['Location'] = list(dfAvg.index) # Calculate latitutude and longitude for each city import geocoder addresses = dfRestaurants['Address'] + ', San Diego, CA' lats = np.zeros(len(addresses)) longs = np.zeros(len(addresses)) for i, address in enumerate(addresses): g = geocoder.google(address) Ntries = 1 while g.latlng ==[]: g = geocoder.google(address) Ntries +=1 print 'try again: ' + address if Ntries >= 5: if 'Marshall College' in address: address = '9500 Gilman Drive, La Jolla, CA' g = geocoder.google(address) Ntries = 1 while g.latlng ==[]: g = geocoder.google(address) Ntries +=1 print 'try again: ' + address if Ntries >= 5: raise ValueError('Address not found: ' + address) else: raise ValueError('Address not found: ' + address) lats[i], longs[i] = g.latlng # # Check for nonsense lats and longs if sum(np.logical_or(lats>34,lats<32)): raise ValueError('Address not in san diego') if sum(np.logical_or(longs<-118,longs>-117)): raise ValueError('Address not in san diego') # Incorporate lats and longs into restaurants data dfRestaurants['Latitude'] = lats dfRestaurants['Longitude'] = longs # Merge restaurant data with burrito data dfTableau = pd.merge(dfRestaurants,dfAvg,on='Location') dfTableau.head() dfTableau.to_csv('df_burrito_tableau.csv') Explanation: Process Cali burrito data: Averages for each restaurant End of explanation
598
Given the following text description, write Python code to implement the functionality described below step by step Description: python 3.0以后, reduce已经不在built-in function里了, 要用它就得from functools import reduce. reduce函数即为化简,它是这样一个过程:每次迭代,将上一次的迭代结果(第一次时为init的元素,如没有init则为seq的第一个元素)与下一个元素一同执行一个二元的func函数。在reduce函数中,init是可选的,如果使用,则作为第一次迭代的第一个元素使用。 Step1: 简单来说,可以用这样一个形象化的式子来说明: Step2: 下面是reduce函数的工作过程图: <img src="http
Python Code: 格式:reduce( func, seq[, init] ) Explanation: python 3.0以后, reduce已经不在built-in function里了, 要用它就得from functools import reduce. reduce函数即为化简,它是这样一个过程:每次迭代,将上一次的迭代结果(第一次时为init的元素,如没有init则为seq的第一个元素)与下一个元素一同执行一个二元的func函数。在reduce函数中,init是可选的,如果使用,则作为第一次迭代的第一个元素使用。 End of explanation reduce( func, [1, 2, 3] ) = func( func(1, 2), 3) Explanation: 简单来说,可以用这样一个形象化的式子来说明: End of explanation from functools import reduce n = 5 print('{}'reduce(lambda x, y: x * y, range(1, n + 1))) # 1 * 2 * 3 * 4 * 5 Explanation: 下面是reduce函数的工作过程图: <img src="http://www.pythoner.com/wp-content/uploads/2013/01/reduce.png" /> 举个例子来说,阶乘是一个常见的数学方法,Python中并没有给出一个阶乘的内建函数,我们可以使用reduce实现一个阶乘的代码。 End of explanation
599
Given the following text description, write Python code to implement the functionality described below step by step Description: Vertex AI Pipelines Step1: Install the latest GA version of google-cloud-storage library as well. Step2: Install the latest GA version of google-cloud-pipeline-components library as well. Step3: Restart the kernel Once you've installed the additional packages, you need to restart the notebook kernel so it can find the packages. Step4: Check the versions of the packages you installed. The KFP SDK version should be >=1.6. Step5: Before you begin GPU runtime This tutorial does not require a GPU runtime. Set up your Google Cloud project The following steps are required, regardless of your notebook environment. Select or create a Google Cloud project. When you first create an account, you get a $300 free credit towards your compute/storage costs. Make sure that billing is enabled for your project. Enable the Vertex AI APIs, Compute Engine APIs, and Cloud Storage. The Google Cloud SDK is already installed in Google Cloud Notebook. Enter your project ID in the cell below. Then run the cell to make sure the Cloud SDK uses the right project for all the commands in this notebook. Note Step6: Region You can also change the REGION variable, which is used for operations throughout the rest of this notebook. Below are regions supported for Vertex AI. We recommend that you choose the region closest to you. Americas Step7: Timestamp If you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append the timestamp onto the name of resources you create in this tutorial. Step8: Authenticate your Google Cloud account If you are using Google Cloud Notebook, your environment is already authenticated. Skip this step. If you are using Colab, run the cell below and follow the instructions when prompted to authenticate your account via oAuth. Otherwise, follow these steps Step9: Create a Cloud Storage bucket The following steps are required, regardless of your notebook environment. When you initialize the Vertex AI SDK for Python, you specify a Cloud Storage staging bucket. The staging bucket is where all the data associated with your dataset and model resources are retained across sessions. Set the name of your Cloud Storage bucket below. Bucket names must be globally unique across all Google Cloud projects, including those outside of your organization. Step10: Only if your bucket doesn't already exist Step11: Finally, validate access to your Cloud Storage bucket by examining its contents Step12: Service Account If you don't know your service account, try to get your service account using gcloud command by executing the second cell below. Step13: Set service account access for Vertex AI Pipelines Run the following commands to grant your service account access to read and write pipeline artifacts in the bucket that you created in the previous step -- you only need to run these once per service account. Step14: Set up variables Next, set up some variables used throughout the tutorial. Import libraries and define constants Step15: Vertex AI Pipelines constants Setup up the following constants for Vertex AI Pipelines Step16: Additional imports. Step17: Initialize Vertex AI SDK for Python Initialize the Vertex AI SDK for Python for your project and corresponding bucket. Step18: Define AutoML text classification model pipeline that uses components from google_cloud_pipeline_components Next, you define the pipeline. Create and deploy an AutoML text classification Model resource using a Dataset resource. Step19: Compile the pipeline Next, compile the pipeline. Step20: Run the pipeline Next, run the pipeline. Step21: Click on the generated link to see your run in the Cloud Console. <!-- It should look something like this as it is running
Python Code: import os # Google Cloud Notebook if os.path.exists("/opt/deeplearning/metadata/env_version"): USER_FLAG = "--user" else: USER_FLAG = "" ! pip3 install --upgrade google-cloud-aiplatform $USER_FLAG Explanation: Vertex AI Pipelines: AutoML text classification pipelines using google-cloud-pipeline-components <table align="left"> <td> <a href="https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb"> <img src="https://cloud.google.com/ml-engine/images/colab-logo-32px.png" alt="Colab logo"> Run in Colab </a> </td> <td> <a href="https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb"> <img src="https://cloud.google.com/ml-engine/images/github-logo-32px.png" alt="GitHub logo"> View on GitHub </a> </td> <td> <a href="https://console.cloud.google.com/vertex-ai/notebooks/deploy-notebook?download_url=https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb"> Open in Vertex AI Workbench </a> </td> </table> <br/><br/><br/> Overview This notebook shows how to use the components defined in google_cloud_pipeline_components to build an AutoML text classification workflow on Vertex AI Pipelines. Dataset The dataset used for this tutorial is the Happy Moments dataset from Kaggle Datasets. The version of the dataset you will use in this tutorial is stored in a public Cloud Storage bucket. Objective In this tutorial, you create an AutoML text classification using a pipeline with components from google_cloud_pipeline_components. The steps performed include: Create a Dataset resource. Train an AutoML Model resource. Creates an Endpoint resource. Deploys the Model resource to the Endpoint resource. The components are documented here. Costs This tutorial uses billable components of Google Cloud: Vertex AI Cloud Storage Learn about Vertex AI pricing and Cloud Storage pricing, and use the Pricing Calculator to generate a cost estimate based on your projected usage. Set up your local development environment If you are using Colab or Google Cloud Notebook, your environment already meets all the requirements to run this notebook. You can skip this step. Otherwise, make sure your environment meets this notebook's requirements. You need the following: The Cloud Storage SDK Git Python 3 virtualenv Jupyter notebook running in a virtual environment with Python 3 The Cloud Storage guide to Setting up a Python development environment and the Jupyter installation guide provide detailed instructions for meeting these requirements. The following steps provide a condensed set of instructions: Install and initialize the SDK. Install Python 3. Install virtualenv and create a virtual environment that uses Python 3. Activate that environment and run pip3 install Jupyter in a terminal shell to install Jupyter. Run jupyter notebook on the command line in a terminal shell to launch Jupyter. Open this notebook in the Jupyter Notebook Dashboard. Installation Install the latest version of Vertex AI SDK for Python. End of explanation ! pip3 install -U google-cloud-storage $USER_FLAG Explanation: Install the latest GA version of google-cloud-storage library as well. End of explanation ! pip3 install $USER kfp google-cloud-pipeline-components --upgrade Explanation: Install the latest GA version of google-cloud-pipeline-components library as well. End of explanation import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) Explanation: Restart the kernel Once you've installed the additional packages, you need to restart the notebook kernel so it can find the packages. End of explanation ! python3 -c "import kfp; print('KFP SDK version: {}'.format(kfp.__version__))" ! python3 -c "import google_cloud_pipeline_components; print('google_cloud_pipeline_components version: {}'.format(google_cloud_pipeline_components.__version__))" Explanation: Check the versions of the packages you installed. The KFP SDK version should be >=1.6. End of explanation PROJECT_ID = "[your-project-id]" # @param {type:"string"} if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "[your-project-id]": # Get your GCP project id from gcloud shell_output = ! gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID:", PROJECT_ID) ! gcloud config set project $PROJECT_ID Explanation: Before you begin GPU runtime This tutorial does not require a GPU runtime. Set up your Google Cloud project The following steps are required, regardless of your notebook environment. Select or create a Google Cloud project. When you first create an account, you get a $300 free credit towards your compute/storage costs. Make sure that billing is enabled for your project. Enable the Vertex AI APIs, Compute Engine APIs, and Cloud Storage. The Google Cloud SDK is already installed in Google Cloud Notebook. Enter your project ID in the cell below. Then run the cell to make sure the Cloud SDK uses the right project for all the commands in this notebook. Note: Jupyter runs lines prefixed with ! as shell commands, and it interpolates Python variables prefixed with $. End of explanation REGION = "us-central1" # @param {type: "string"} Explanation: Region You can also change the REGION variable, which is used for operations throughout the rest of this notebook. Below are regions supported for Vertex AI. We recommend that you choose the region closest to you. Americas: us-central1 Europe: europe-west4 Asia Pacific: asia-east1 You may not use a multi-regional bucket for training with Vertex AI. Not all regions provide support for all Vertex AI services. Learn more about Vertex AI regions End of explanation from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") Explanation: Timestamp If you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append the timestamp onto the name of resources you create in this tutorial. End of explanation # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. import os import sys # If on Google Cloud Notebook, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' Explanation: Authenticate your Google Cloud account If you are using Google Cloud Notebook, your environment is already authenticated. Skip this step. If you are using Colab, run the cell below and follow the instructions when prompted to authenticate your account via oAuth. Otherwise, follow these steps: In the Cloud Console, go to the Create service account key page. Click Create service account. In the Service account name field, enter a name, and click Create. In the Grant this service account access to project section, click the Role drop-down list. Type "Vertex" into the filter box, and select Vertex Administrator. Type "Storage Object Admin" into the filter box, and select Storage Object Admin. Click Create. A JSON file that contains your key downloads to your local environment. Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell. End of explanation BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP Explanation: Create a Cloud Storage bucket The following steps are required, regardless of your notebook environment. When you initialize the Vertex AI SDK for Python, you specify a Cloud Storage staging bucket. The staging bucket is where all the data associated with your dataset and model resources are retained across sessions. Set the name of your Cloud Storage bucket below. Bucket names must be globally unique across all Google Cloud projects, including those outside of your organization. End of explanation ! gsutil mb -l $REGION $BUCKET_NAME Explanation: Only if your bucket doesn't already exist: Run the following cell to create your Cloud Storage bucket. End of explanation ! gsutil ls -al $BUCKET_NAME Explanation: Finally, validate access to your Cloud Storage bucket by examining its contents: End of explanation SERVICE_ACCOUNT = "[your-service-account]" # @param {type:"string"} if ( SERVICE_ACCOUNT == "" or SERVICE_ACCOUNT is None or SERVICE_ACCOUNT == "[your-service-account]" ): # Get your GCP project id from gcloud shell_output = !gcloud auth list 2>/dev/null SERVICE_ACCOUNT = shell_output[2].strip() print("Service Account:", SERVICE_ACCOUNT) Explanation: Service Account If you don't know your service account, try to get your service account using gcloud command by executing the second cell below. End of explanation ! gsutil iam ch serviceAccount:{SERVICE_ACCOUNT}:roles/storage.objectCreator $BUCKET_NAME ! gsutil iam ch serviceAccount:{SERVICE_ACCOUNT}:roles/storage.objectViewer $BUCKET_NAME Explanation: Set service account access for Vertex AI Pipelines Run the following commands to grant your service account access to read and write pipeline artifacts in the bucket that you created in the previous step -- you only need to run these once per service account. End of explanation import google.cloud.aiplatform as aip Explanation: Set up variables Next, set up some variables used throughout the tutorial. Import libraries and define constants End of explanation PIPELINE_ROOT = "{}/pipeline_root/happydb".format(BUCKET_NAME) Explanation: Vertex AI Pipelines constants Setup up the following constants for Vertex AI Pipelines: End of explanation import kfp Explanation: Additional imports. End of explanation aip.init(project=PROJECT_ID, staging_bucket=BUCKET_NAME) Explanation: Initialize Vertex AI SDK for Python Initialize the Vertex AI SDK for Python for your project and corresponding bucket. End of explanation IMPORT_FILE = "gs://cloud-ml-data/NL-classification/happiness.csv" @kfp.dsl.pipeline(name="automl-text-classification" + TIMESTAMP) def pipeline( project: str = PROJECT_ID, region: str = REGION, import_file: str = IMPORT_FILE ): from google_cloud_pipeline_components import aiplatform as gcc_aip from google_cloud_pipeline_components.v1.endpoint import (EndpointCreateOp, ModelDeployOp) dataset_create_task = gcc_aip.TextDatasetCreateOp( display_name="train-automl-happydb", gcs_source=import_file, import_schema_uri=aip.schema.dataset.ioformat.text.multi_label_classification, project=project, ) training_run_task = gcc_aip.AutoMLTextTrainingJobRunOp( dataset=dataset_create_task.outputs["dataset"], display_name="train-automl-happydb", prediction_type="classification", multi_label=True, training_fraction_split=0.6, validation_fraction_split=0.2, test_fraction_split=0.2, model_display_name="train-automl-happydb", project=project, ) endpoint_op = EndpointCreateOp( project=project, location=region, display_name="train-automl-flowers", ) ModelDeployOp( model=training_run_task.outputs["model"], endpoint=endpoint_op.outputs["endpoint"], automatic_resources_min_replica_count=1, automatic_resources_max_replica_count=1, ) Explanation: Define AutoML text classification model pipeline that uses components from google_cloud_pipeline_components Next, you define the pipeline. Create and deploy an AutoML text classification Model resource using a Dataset resource. End of explanation from kfp.v2 import compiler # noqa: F811 compiler.Compiler().compile( pipeline_func=pipeline, package_path="text classification_pipeline.json".replace(" ", "_"), ) Explanation: Compile the pipeline Next, compile the pipeline. End of explanation DISPLAY_NAME = "happydb_" + TIMESTAMP job = aip.PipelineJob( display_name=DISPLAY_NAME, template_path="text classification_pipeline.json".replace(" ", "_"), pipeline_root=PIPELINE_ROOT, enable_caching=False, ) job.run() ! rm text_classification_pipeline.json Explanation: Run the pipeline Next, run the pipeline. End of explanation delete_dataset = True delete_pipeline = True delete_model = True delete_endpoint = True delete_batchjob = True delete_customjob = True delete_hptjob = True delete_bucket = True try: if delete_model and "DISPLAY_NAME" in globals(): models = aip.Model.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) model = models[0] aip.Model.delete(model) print("Deleted model:", model) except Exception as e: print(e) try: if delete_endpoint and "DISPLAY_NAME" in globals(): endpoints = aip.Endpoint.list( filter=f"display_name={DISPLAY_NAME}_endpoint", order_by="create_time" ) endpoint = endpoints[0] endpoint.undeploy_all() aip.Endpoint.delete(endpoint.resource_name) print("Deleted endpoint:", endpoint) except Exception as e: print(e) if delete_dataset and "DISPLAY_NAME" in globals(): if "text" == "tabular": try: datasets = aip.TabularDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.TabularDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) if "text" == "image": try: datasets = aip.ImageDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.ImageDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) if "text" == "text": try: datasets = aip.TextDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.TextDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) if "text" == "video": try: datasets = aip.VideoDataset.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) dataset = datasets[0] aip.VideoDataset.delete(dataset.resource_name) print("Deleted dataset:", dataset) except Exception as e: print(e) try: if delete_pipeline and "DISPLAY_NAME" in globals(): pipelines = aip.PipelineJob.list( filter=f"display_name={DISPLAY_NAME}", order_by="create_time" ) pipeline = pipelines[0] aip.PipelineJob.delete(pipeline.resource_name) print("Deleted pipeline:", pipeline) except Exception as e: print(e) if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil rm -r $BUCKET_NAME Explanation: Click on the generated link to see your run in the Cloud Console. <!-- It should look something like this as it is running: <a href="https://storage.googleapis.com/amy-jo/images/mp/automl_tabular_classif.png" target="_blank"><img src="https://storage.googleapis.com/amy-jo/images/mp/automl_tabular_classif.png" width="40%"/></a> --> In the UI, many of the pipeline DAG nodes will expand or collapse when you click on them. Here is a partially-expanded view of the DAG (click image to see larger version). <a href="https://storage.googleapis.com/amy-jo/images/mp/automl_text_classif.png" target="_blank"><img src="https://storage.googleapis.com/amy-jo/images/mp/automl_text_classif.png" width="40%"/></a> Cleaning up To clean up all Google Cloud resources used in this project, you can delete the Google Cloud project you used for the tutorial. Otherwise, you can delete the individual resources you created in this tutorial -- Note: this is auto-generated and not all resources may be applicable for this tutorial: Dataset Pipeline Model Endpoint Batch Job Custom Job Hyperparameter Tuning Job Cloud Storage Bucket End of explanation