Datasets:

Modalities:
Text
Formats:
text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
text
stringlengths
32
32
8314f0c299d79625580da9614190c3b6
62394b368ec663ce2b2cef72aa0a0967
d2383b2f74f11ef2f3ef8ab1b31faddd
60bf23a4a214b489afbc812b4fe977bb
97042199b004d4975cc409001a8d27a8
156b884b7eefb7a8dce3e03ca06e35ee
bc72d6ec88141cad5734271b6e1e25a7
7a0d7bd15a6f48008d894d983de0d34c
8c1a03b65903255817d7b85c9121fcf0
218f1fdaa654abde81087c38fc6a62bd
5b7e18d35899b0658a98861bc722fcfd
f1b6ad505d576ef37c750030f8cc0171
aae1255b851cc02f77d4a457b1b5f24d
b39efe7268af9bba92b2bbc424382159
83594aaef01d87ba49d2f856365ac5dc
0aba8b2825ead1f6c52ff70863676f8d
c94d218041b3c29c59aeea5208767f13
b523ac798f978366de7fcde355ebf89a
235f98786894d0bb98b546bdbeac2684
806bda6fcf4a36dab3d7f09726578f43
2834ec74a9b211e2c6c902f5737d05a3
7632f5bdf1fb05914a0ceb2928638125
2e4870c2fc8dd7f65d1cbdd65515959e
ccf97cc3854caac90ac643beac818115
1d450883888db2ac255ad17eb1026f2e
d301e6dc57bbe12c103f298ad2d0e08b
a4cdde4cfb6413f6fd16ebe806f6bcd8
9fb84d8967a53c953caaa19d4a564d28
834d170378750a087d23696161124f7a
78e2f4cfd12b921ed9c8a1ad5f9de4fa
868a6eec7118c81d1a4381a50396e856
c110fd38cf9d69fda61d7d949062e251
491424a2db491ef5d4f331570c760a05
63237d09f84c654c6f49e89669dbead9
16c0f9f4724ff971d98acb369eaac47e
7cc46cc08c5d6bd55f82af75a07e9b16
cc5848a2b35dd5410ca9aff4d6e8847e
e3b6d0aec6f0b850d3f29bbf898bae07
e216de8cc2c80a99f8dbda1c5a0c6495
602d20c5308018002abf990aed19db2b
7743588dac8aa7b5dafcc58cbcd98995
84a5323f3b6aedd50c82f2ffff6aec18
51b13b03d48c048125f0d068b56c7616
b52fd993ba0d2949c1abbb4023af47f4
7f0bca9e17587cd163a40336c3bde68d
6bc0929902b20a0591251f5c24457901
e20787766f0fa6df97f04e1e4fd48382
c67f761ba7a6a4b306f458e01471a08f
0c4081366b8da85846e124251cb50fc6
780df586649212169784a361f156945c
2ee56b66e24c465696c0ee2a8279f483
6b6c56915e6b9e3359a62d9ba31e00e8
457f8b803af869e859b6b4e75e05740c
11ed62299e8c443e1873cfd54e9f50ea
4971a13e9c6dccb74b8b14c8b61ad5ad
a864210862bc208f741bd3415591d07a
1b8d4e0512f1125be254e5d368938b3d
77796c05eb44e9c874716d5f59249fde
76f825afb2485a75b370aa89b9a4aee2
9e084a783c1e6f80482ca5021f7c0d59
e3b3242b7c218a4b8b6e7e09891ebcbd
a42b82de6dfaee41f51232352573c893
881bedbca889ed4e622391f63f097b4b
0cdafdbaaca53f1beb0c0c47f8b07c39
29d59b2d525dbc0f4f69fa1436334285
b148996feb8fbbffeaef0d2ad34c952b
60233a82737df62738b1e17ded15f099
86bf18624aafc2d62016db19ea7356d6
ffc75e7029663e788641660876b74ca9
9140c7de07ef9a8df09e9f0a5807bc1d
aa59b708b845e47598ff164eaf4154ea
7da64132228df152d9e36d9ac260f37a
b3fb7a7b1b838b4e35ec6557b5814834
e13501fc9ca23b7889d6339be6e08429
7f02e73222ba2fa871a5ba9cdc6aa49e
c947cc8f264749e40a7dce1b5eca89b0
ae12a4db1b0a6cfb7e7c3e178e12e7ba
3baaecb35d463023407f35b42e0fb991
d513e6f38d5b2f34d818c6c0786e3659
64a823fc20aff9b6a988f98ad80a8db4
ebebaf0ee74891d730c28b9c5bd25bb7
bce67692a6d2d2b25161ad191cec6b5a
d58739adec46f5066c7fc71158023013
ea0d591ea38f23e6109cea67d36ce9a0
57e72bae79194eb95614394716162b13
b7c7d1d94068d3b7274343bb5e19968b
1052f547fb62dbf9b16fc0da957f1464
2987f8e8566acb2385bbabcafd08e520
fc07087ed2717237ec5af6761d8e12a9
1272666241a0f955de659cd241065342
b3f7889f75034ab22794f6f6083ee812
511501dab991daae0df87b4528d92fe7
71195d21f20da193ee2611a3d4a431a8
f80630dc93fd79d6e2ceac008e3ad693
7be8c87f4ad8b03f854a1f56de3d765e
a3050c2246ab240183b50decd7bd0042
f2ff7dffcc0a3d42fe38e20de2315c2d
a189fbff3d4abc026bc2689644ff7d8f
6d2df0ec9e9a66973b3ef484ddefd6a1
119b82b9c43f553750f16a531db9a26a

Dataset Card for DataComp-12M

This dataset contains UIDs of DataComp-12M that is a 12M subset of DataComp-1B-BestPool. Image-text models trained on DataComp-12M are significantly better than on CC-12M/YFCC-15M as well as DataComp-Small/Medium. For details on this dataset and the improved DataCompDR-12M, please visit our MobileCLIP paper. The dataset with the original captions is now available at mlfoundations/DataComp-12M. The UIDs per shards match between mlfoundations/DataComp-12M and apple/DataCompDR-12M.

Dataset Details

Dataset Description

DataCompDR is an image-text dataset and an enhancement to the DataComp dataset. We reinforce the DataComp dataset using our multi-modal dataset reinforcement strategy. In particular, we create DataCompDR-1B and DataCompDR-12M by reinforcing the DataComp-1B (BestPool filtering) and a uniform subset of 12.8M samples, DataCompDR-12M. We have a one-time generation process, the cost of which is amortized over multiple architectures and extensive ablations. We generate 5 synthetic captions per image using the coca_ViT-L-14 model in OpenCLIP, and strong random image augmentations (10 for DataCompDR-1B and 30 for DataCompDR-12M). We compute embeddings of an ensemble of two strong teachers (ViT-L-14 with pretrained weights datacomp_xl_s13b_b90k and openai in OpenCLIP) on augmented images as well as real and synthetic captions. Embeddings are 1536-D concatenations of 2x768-D vectors. One seen sample for DataCompDR is a triplet of one randomly augmented image, one ground-truth caption, and one randomly picked synthetic caption.

  • Curated by: Original data by DataComp and metadata by Apple.
  • License: We distribute our metadata under our license. The original image url-text samples and metadata were released by DataComp under Creative Common CC-BY-4.0 license. The individual images are under their own copyrights.
  • Repository: ml-mobileclip GitHub
  • Paper: MobileCLIP paper
  • Demo: Coming Soon

Uses

Training with DataCompDR shows significant learning efficiency improvement compared to the standard CLIP training. For example, with a single node of 8×A100 GPUs, we achieve 61.7% zero-shot classification on ImageNet-val in approximately one day when training a ViT-B/16 based CLIP from scratch on DataCompDR-12M. Training with DataCompDR-1B sets new state-of-the-art performance on several metrics (Fig. 2) while still using a fraction of the training compute budget compared to previous works. Using DataCompDR, we demonstrate 10x-1000x learning efficiency in comparison to DataComp.

Dataset Structure

- uids.txt: List of 12779520 (65536*195) UIDs, one UID per line.
- uids.npy: List of 12779520 (65536*195) UIDs as a NumPy array of type `numpy.dtype("u8,u8")`.

Citation

MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training. (CVPR 2024) Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, Oncel Tuzel.

@InProceedings{mobileclip2024,
  author = {Pavan Kumar Anasosalu Vasu, Hadi Pouransari, Fartash Faghri, Raviteja Vemulapalli, Oncel Tuzel},
  title = {MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2024},
}
Downloads last month
42

Collection including apple/DataComp-12M