Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
tweet_id
stringlengths
11
19
label
class label
18 classes
1172627595080404992
5QADI_train_ids_AE
1142230383582486529
5QADI_train_ids_AE
1115907963330400257
5QADI_train_ids_AE
1113185042245746690
5QADI_train_ids_AE
1176960769633771522
5QADI_train_ids_AE
1176958196801560576
5QADI_train_ids_AE
1173834766048792577
5QADI_train_ids_AE
1173722707323695104
5QADI_train_ids_AE
1173308128320004096
5QADI_train_ids_AE
1171812119110660102
5QADI_train_ids_AE
1170356981149949963
5QADI_train_ids_AE
1170277737325572097
5QADI_train_ids_AE
1170276472663289856
5QADI_train_ids_AE
1170029663630106624
5QADI_train_ids_AE
1169957846559199233
5QADI_train_ids_AE
1169880699983151104
5QADI_train_ids_AE
1168025301751779331
5QADI_train_ids_AE
1165016270598750210
5QADI_train_ids_AE
1164972695282487296
5QADI_train_ids_AE
1164166009403691008
5QADI_train_ids_AE
1163481305549561856
5QADI_train_ids_AE
1162025194787094529
5QADI_train_ids_AE
1158650048831471617
5QADI_train_ids_AE
1158435244833464320
5QADI_train_ids_AE
1158265937650421767
5QADI_train_ids_AE
1155591868085874688
5QADI_train_ids_AE
1155566754145427456
5QADI_train_ids_AE
1154037494607777795
5QADI_train_ids_AE
1153303456859545600
5QADI_train_ids_AE
1152268359104376839
5QADI_train_ids_AE
1151427640932405248
5QADI_train_ids_AE
1151419119843123200
5QADI_train_ids_AE
1150082094565138432
5QADI_train_ids_AE
1149152602627747840
5QADI_train_ids_AE
1148550083824291840
5QADI_train_ids_AE
1148176444926939136
5QADI_train_ids_AE
1147813796288835584
5QADI_train_ids_AE
1147577001856966661
5QADI_train_ids_AE
1147221525269024768
5QADI_train_ids_AE
1146852845569937408
5QADI_train_ids_AE
1146628110705659905
5QADI_train_ids_AE
1146008844319023104
5QADI_train_ids_AE
1145476390663413760
5QADI_train_ids_AE
1144339079896739849
5QADI_train_ids_AE
1142562371451445249
5QADI_train_ids_AE
1139882322289971201
5QADI_train_ids_AE
1138225329200406528
5QADI_train_ids_AE
1138197947395575808
5QADI_train_ids_AE
1138192119162712066
5QADI_train_ids_AE
1137634203993067521
5QADI_train_ids_AE
1137577027396153344
5QADI_train_ids_AE
1137005374765248512
5QADI_train_ids_AE
1137004803417133058
5QADI_train_ids_AE
1136283331102990336
5QADI_train_ids_AE
1136223090369847297
5QADI_train_ids_AE
1136207393539395584
5QADI_train_ids_AE
1136154248121638912
5QADI_train_ids_AE
1136153772533719041
5QADI_train_ids_AE
1129981968077266944
5QADI_train_ids_AE
1129316888092315648
5QADI_train_ids_AE
1125057506194096130
5QADI_train_ids_AE
1120619073577132032
5QADI_train_ids_AE
1119988953891909634
5QADI_train_ids_AE
1119627511225376768
5QADI_train_ids_AE
1118741401293004800
5QADI_train_ids_AE
1116861214783619073
5QADI_train_ids_AE
1116140848012496896
5QADI_train_ids_AE
1116118626929709056
5QADI_train_ids_AE
1115660033499566086
5QADI_train_ids_AE
1114726345551044608
5QADI_train_ids_AE
1113903926804402180
5QADI_train_ids_AE
1112439038143795206
5QADI_train_ids_AE
1109700605558382592
5QADI_train_ids_AE
1106988090059620352
5QADI_train_ids_AE
1104963143334285314
5QADI_train_ids_AE
1098244427238248448
5QADI_train_ids_AE
1096639524933959680
5QADI_train_ids_AE
1096517197952884741
5QADI_train_ids_AE
1095208292861837313
5QADI_train_ids_AE
1095021568328118272
5QADI_train_ids_AE
1095016083172614145
5QADI_train_ids_AE
1093895953441046531
5QADI_train_ids_AE
1092410652008873985
5QADI_train_ids_AE
1091845600663011328
5QADI_train_ids_AE
1088477086900199429
5QADI_train_ids_AE
1087015929291124736
5QADI_train_ids_AE
1080685742593097729
5QADI_train_ids_AE
1075412680809291776
5QADI_train_ids_AE
1073127072703438851
5QADI_train_ids_AE
1064206652361060352
5QADI_train_ids_AE
1058908054715092992
5QADI_train_ids_AE
1054267321798189056
5QADI_train_ids_AE
1050485680659263488
5QADI_train_ids_AE
1048343517414772737
5QADI_train_ids_AE
1045799611397492736
5QADI_train_ids_AE
1045774056476340224
5QADI_train_ids_AE
1045763660201758720
5QADI_train_ids_AE
1043227308470009856
5QADI_train_ids_AE
1043194042832613381
5QADI_train_ids_AE
1042813539512197120
5QADI_train_ids_AE
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Dataset Card for QADI

Dataset Summary

[More Information Needed]

Supported Tasks and Leaderboards

[More Information Needed]

Languages

[More Information Needed]

Dataset Structure

Data Instances

[More Information Needed]

Data Fields

[More Information Needed]

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

@INPROCEEDINGS{hsajjad2020arabench,
author={Sajjad, Hassan and Abdelali, Ahmed and Durrani, Nadir and Dalvi, Fahim},
booktitle={GOLING},
title={AraBench: Benchmarking Dialectal Arabic-English Machine Translation},
year={2020},
month={Dec},
pages={123-456},
doi={doi:00000-0000}
}

Contributions

Thanks to @github-username for adding this dataset.

Downloads last month
7

Collection including arbml/QADI