keras-dreambooth/dreambooth_dosa_v2
Text-to-Image
•
Updated
•
23
image
imagewidth (px) 300
300
| label
class label 15
classes |
---|---|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
|
0biryani
|
This is a multi-category(multi-class classification) related Indian food dataset showcasing The-massive-Indian-Food-Dataset. This card has been generated using this raw template.
[More Information Needed]
English
{
"image": "Image(decode=True, id=None)",
"target": "ClassLabel(names=['biryani', 'cholebhature', 'dabeli', 'dal', 'dhokla', 'dosa', 'jalebi', 'kathiroll', 'kofta', 'naan', 'pakora', 'paneer', 'panipuri', 'pavbhaji', 'vadapav'], id=None)"
}
This dataset is split into a train and test split. The split sizes are as follows:
Split name | Num samples |
---|---|
train | 3809 |
test | 961 |
Each instance is a picture of the Indian food item, along with the category it belongs to.
Collection by Scraping data from Google Images + Leveraging some JS Functions. All the images are resized to (300,300) to maintain size uniformity.