id
string
_server_id
string
text
string
label.responses
sequence
label.responses.users
sequence
label.responses.status
sequence
label.suggestion
string
label.suggestion.score
null
label.suggestion.agent
null
topics.suggestion
sequence
topics.suggestion.score
sequence
topics.suggestion.agent
null
comment.suggestion.agent
null
span.suggestion.agent
null
comment_score
float64
rating.suggestion.score
null
span.suggestion
list
ranking.suggestion.score
null
comment.suggestion.score
float64
span.suggestion.score
null
ranking.suggestion
sequence
vector
sequence
rating.suggestion.agent
null
ranking.suggestion.agent
null
comment.suggestion
string
rating.suggestion
int64
4f56e32b-9582-47de-a2b1-b230732bb07b
8aaf57d2-cb8e-4673-a7ce-2f684b60adf5
Hello World, how are you?
[ "positive" ]
[ "06f7d4c0-e048-43d2-ab3f-06f147616ac6" ]
[ "draft" ]
positive
null
null
[ "topic1", "topic2" ]
[ 0.9, 0.8 ]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
e8d07261-fd60-41e3-9a19-83927c71c9b9
c2bb965d-5ff8-44bd-9544-5cd541ef47ad
Hello World, how are you?
[ "negative" ]
[ "06f7d4c0-e048-43d2-ab3f-06f147616ac6" ]
[ "draft" ]
negative
null
null
[ "topic3" ]
[ 0.9 ]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
0dd28bfc-114a-4266-8e12-a6c057dfd6c0
0827f3d3-27b1-4c36-aad5-1e0fa802930e
Hello World, how are you?
[ "positive" ]
[ "06f7d4c0-e048-43d2-ab3f-06f147616ac6" ]
[ "draft" ]
positive
null
null
[ "topic1", "topic2", "topic3" ]
[ 0.9, 0.8, 0.7 ]
null
null
null
0.9
null
[ { "end": 5, "label": "label1", "start": 0 }, { "end": 11, "label": "label2", "start": 6 }, { "end": 17, "label": "label3", "start": 12 } ]
null
0.9
null
[ "label1", "label2", "label3" ]
[ 1, 2, 3 ]
null
null
I'm doing great, thank you!
1
2df310f6-fe45-4b0b-9286-86d7b00d9718
2de0b6ab-9c09-4a96-9730-c250cd965886
Hello World, how are you?
[ "positive" ]
[ "0c7bd999-b3c0-4d7f-b0a3-0c3596906554" ]
[ "draft" ]
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null

Dataset Card for test-argilla-dataset

This dataset has been created with Argilla. As shown in the sections below, this dataset can be loaded into your Argilla server as explained in Load with Argilla, or used directly with the datasets library in Load with datasets.

Using this dataset with Argilla

To load with Argilla, you'll just need to install Argilla as pip install argilla --pre --upgrade and then use the following code:

import argilla as rg

ds = rg.Dataset.from_hub("burtenshaw/test-argilla-dataset")

This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation.

Using this dataset with datasets

To load the records of this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code:

from datasets import load_dataset

ds = load_dataset("burtenshaw/test-argilla-dataset")

This will only load the records of the dataset, but not the Argilla settings.

Dataset Structure

This dataset repo contains:

  • Dataset records in a format compatible with HuggingFace datasets. These records will be loaded automatically when using rg.Dataset.from_hub and can be loaded independently using the datasets library via load_dataset.
  • The annotation guidelines that have been used for building and curating the dataset, if they've been defined in Argilla.
  • A dataset configuration folder conforming to the Argilla dataset format in .argilla.

The dataset is created in Argilla with: fields, questions, suggestions, metadata, vectors, and guidelines.

Fields

The fields are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset.

Field Name Title Type Required Markdown
text text text True False

Questions

The questions are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.

Question Name Title Type Required Description Values/Labels
label label label_selection True N/A ['positive', 'negative']
rating rating rating True N/A [1, 2, 3, 4, 5]
ranking ranking ranking True N/A ['label1', 'label2', 'label3']
comment comment text True N/A N/A
topics topics multi_label_selection True N/A ['topic1', 'topic2', 'topic3']
span span span True N/A N/A

Metadata

The metadata is a dictionary that can be used to provide additional information about the dataset record.

Metadata Name Title Type Values Visible for Annotators
comment_score comment_score None - None True

Vectors

The vectors contain a vector representation of the record that can be used in search.

Vector Name Title Dimensions
vector vector [1, 3]

Data Instances

An example of a dataset instance in Argilla looks as follows:

{
    "_server_id": "8aaf57d2-cb8e-4673-a7ce-2f684b60adf5",
    "fields": {
        "text": "Hello World, how are you?"
    },
    "id": "4f56e32b-9582-47de-a2b1-b230732bb07b",
    "metadata": {},
    "responses": {
        "label": [
            {
                "user_id": "06f7d4c0-e048-43d2-ab3f-06f147616ac6",
                "value": "positive"
            }
        ]
    },
    "suggestions": {
        "label": {
            "agent": null,
            "score": null,
            "value": "positive"
        },
        "topics": {
            "agent": null,
            "score": [
                0.9,
                0.8
            ],
            "value": [
                "topic1",
                "topic2"
            ]
        }
    },
    "vectors": {}
}

While the same record in HuggingFace datasets looks as follows:

{
    "_server_id": "8aaf57d2-cb8e-4673-a7ce-2f684b60adf5",
    "comment.suggestion": null,
    "comment.suggestion.agent": null,
    "comment.suggestion.score": null,
    "comment_score": null,
    "id": "4f56e32b-9582-47de-a2b1-b230732bb07b",
    "label.responses": [
        "positive"
    ],
    "label.responses.status": [
        "draft"
    ],
    "label.responses.users": [
        "06f7d4c0-e048-43d2-ab3f-06f147616ac6"
    ],
    "label.suggestion": "positive",
    "label.suggestion.agent": null,
    "label.suggestion.score": null,
    "ranking.suggestion": null,
    "ranking.suggestion.agent": null,
    "ranking.suggestion.score": null,
    "rating.suggestion": null,
    "rating.suggestion.agent": null,
    "rating.suggestion.score": null,
    "span.suggestion": null,
    "span.suggestion.agent": null,
    "span.suggestion.score": null,
    "text": "Hello World, how are you?",
    "topics.suggestion": [
        "topic1",
        "topic2"
    ],
    "topics.suggestion.agent": null,
    "topics.suggestion.score": [
        0.9,
        0.8
    ],
    "vector": null
}

Data Splits

The dataset contains a single split, which is train.

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation guidelines

[More Information Needed]

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

[More Information Needed]

Downloads last month
62
Edit dataset card