|
--- |
|
language: |
|
- en |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 100K<n<1M |
|
task_categories: |
|
- conditional-text-generation |
|
task_ids: |
|
- summarization |
|
--- |
|
|
|
# MediaSum dataset for summarization |
|
|
|
Summarization dataset copied from [MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization](https://github.com/zcgzcgzcg1/MediaSum) |
|
|
|
This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable: |
|
```python |
|
"ccdv/mediasum": ("document", "summary") |
|
``` |
|
|
|
# Configs |
|
4 possibles configs: |
|
- `roberta` will concatenate documents with "\</s\>" |
|
- `newline` will concatenate documents with "\n" |
|
- `bert` will concatenate documents with "[SEP]" |
|
- `list` will return the list of documents instead of a single string |
|
|
|
Add `_prepended` to config name to prepend the speaker name before each dialogue: `speaker: text` \ |
|
Default is `roberta_prepended` (compatible with BART). |
|
|
|
### Data Fields |
|
|
|
- `id`: paper id |
|
- `document`: a string/list containing the body of a set of documents |
|
- `summary`: a string containing the abstract of the set |
|
|
|
### Data Splits |
|
|
|
This dataset has 3 splits: _train_, _validation_, and _test_. \ |
|
|
|
| Dataset Split | Number of Instances | |
|
| ------------- | --------------------| |
|
| Train | 443596 | |
|
| Validation | 10000 | |
|
| Test | 10000 | |
|
|
|
|
|
# Cite original article |
|
``` |
|
@article{zhu2021mediasum, |
|
title={MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization}, |
|
author={Zhu, Chenguang and Liu, Yang and Mei, Jie and Zeng, Michael}, |
|
journal={arXiv preprint arXiv:2103.06410}, |
|
year={2021} |
|
} |
|
``` |