Datasets:
Tasks:
Other
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Polish
Size:
10K - 100K
Tags:
structure-prediction
License:
annotations_creators: | |
- expert-generated | |
language_creators: | |
- found | |
language: | |
- pl | |
license: | |
- cc-by-3.0 | |
multilinguality: | |
- monolingual | |
size_categories: | |
- 18K | |
- 10K<n<100K | |
source_datasets: | |
- original | |
task_categories: | |
- other | |
task_ids: | |
- named-entity-recognition | |
pretty_name: KPWr-NER | |
tags: | |
- structure-prediction | |
# KPWR-NER | |
## Description | |
KPWR-NER is a part the Polish Corpus of Wrocław University of Technology (*Korpus Języka Polskiego Politechniki Wrocławskiej*). Its objective is named entity recognition for fine-grained categories of entities. It is the ‘n82’ version of the KPWr, which means that number of classes is restricted to 82 (originally 120). During corpus creation, texts were annotated by humans from various sources, covering many domains and genres. | |
## Tasks (input, output and metrics) | |
Named entity recognition (NER) - tagging entities in text with their corresponding type. | |
**Input** ('*tokens'* column): sequence of tokens | |
**Output** ('*ner'* column): sequence of predicted tokens’ classes in BIO notation (82 possible classes, described in detail in the annotation guidelines) | |
**Measurements**: F1-score (seqeval) | |
**Example**: | |
Input: `[‘Roboty’, ‘mają’, ‘kilkanaście’, ‘lat’, ‘i’, ‘pochodzą’, ‘z’, ‘USA’, ‘,’, ‘Wysokie’, ‘napięcie’, ‘jest’, ‘dużo’, ‘młodsze’, ‘,’, ‘powstało’, ‘w’, ‘Niemczech’, ‘.’]` | |
Input (translated by DeepL): `Robots are more than a dozen years old and come from the US, High Voltage is much younger, having been developed in Germany.` | |
Output: `[‘B-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-nam_loc_gpe_country’, ‘O’, ‘B-nam_pro_title’, ‘I-nam_pro_title’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-nam_loc_gpe_country’, ‘O’]` | |
## Data splits | |
| Subset | Cardinality (sentences) | | |
|--------|------------------------:| | |
| train | 13959 | | |
| dev | 0 | | |
| test | 4323 | | |
## Class distribution (without "O" and "I-*") | |
| Class | train | validation | test | | |
|:----------------------------|--------:|-------------:|----------:| | |
| B-nam_liv_person | 0.21910 | - | 0.21422 | | |
| B-nam_loc_gpe_city | 0.10101 | - | 0.09865 | | |
| B-nam_loc_gpe_country | 0.07467 | - | 0.08059 | | |
| B-nam_org_institution | 0.05893 | - | 0.06005 | | |
| B-nam_org_organization | 0.04448 | - | 0.05553 | | |
| B-nam_org_group_team | 0.03492 | - | 0.03363 | | |
| B-nam_adj_country | 0.03410 | - | 0.03747 | | |
| B-nam_org_company | 0.02439 | - | 0.01716 | | |
| B-nam_pro_media_periodic | 0.02250 | - | 0.01896 | | |
| B-nam_fac_road | 0.01995 | - | 0.02144 | | |
| B-nam_liv_god | 0.01934 | - | 0.00790 | | |
| B-nam_org_nation | 0.01739 | - | 0.01828 | | |
| B-nam_oth_tech | 0.01724 | - | 0.01377 | | |
| B-nam_pro_media_web | 0.01709 | - | 0.00903 | | |
| B-nam_fac_goe | 0.01596 | - | 0.01445 | | |
| B-nam_eve_human | 0.01573 | - | 0.01761 | | |
| B-nam_pro_title | 0.01558 | - | 0.00790 | | |
| B-nam_pro_brand | 0.01543 | - | 0.01038 | | |
| B-nam_org_political_party | 0.01264 | - | 0.01309 | | |
| B-nam_loc_gpe_admin1 | 0.01219 | - | 0.01445 | | |
| B-nam_eve_human_sport | 0.01174 | - | 0.01242 | | |
| B-nam_pro_software | 0.01091 | - | 0.02190 | | |
| B-nam_adj | 0.00963 | - | 0.01174 | | |
| B-nam_loc_gpe_admin3 | 0.00888 | - | 0.01061 | | |
| B-nam_pro_model_car | 0.00873 | - | 0.00587 | | |
| B-nam_loc_hydronym_river | 0.00843 | - | 0.01151 | | |
| B-nam_oth | 0.00775 | - | 0.00497 | | |
| B-nam_pro_title_document | 0.00738 | - | 0.01986 | | |
| B-nam_loc_astronomical | 0.00730 | - | - | | |
| B-nam_oth_currency | 0.00723 | - | 0.01151 | | |
| B-nam_adj_city | 0.00670 | - | 0.00948 | | |
| B-nam_org_group_band | 0.00587 | - | 0.00429 | | |
| B-nam_loc_gpe_admin2 | 0.00565 | - | 0.00813 | | |
| B-nam_loc_gpe_district | 0.00504 | - | 0.00406 | | |
| B-nam_loc_land_continent | 0.00459 | - | 0.00722 | | |
| B-nam_loc_country_region | 0.00459 | - | 0.00090 | | |
| B-nam_loc_land_mountain | 0.00414 | - | 0.00203 | | |
| B-nam_pro_title_book | 0.00384 | - | 0.00248 | | |
| B-nam_loc_historical_region | 0.00376 | - | 0.00497 | | |
| B-nam_loc | 0.00361 | - | 0.00090 | | |
| B-nam_eve | 0.00361 | - | 0.00181 | | |
| B-nam_org_group | 0.00331 | - | 0.00406 | | |
| B-nam_loc_land_island | 0.00331 | - | 0.00248 | | |
| B-nam_pro_media_tv | 0.00316 | - | 0.00158 | | |
| B-nam_liv_habitant | 0.00316 | - | 0.00158 | | |
| B-nam_eve_human_cultural | 0.00316 | - | 0.00497 | | |
| B-nam_pro_title_tv | 0.00309 | - | 0.00542 | | |
| B-nam_oth_license | 0.00286 | - | 0.00248 | | |
| B-nam_num_house | 0.00256 | - | 0.00248 | | |
| B-nam_pro_title_treaty | 0.00248 | - | 0.00045 | | |
| B-nam_fac_system | 0.00248 | - | 0.00587 | | |
| B-nam_loc_gpe_subdivision | 0.00241 | - | 0.00587 | | |
| B-nam_loc_land_region | 0.00226 | - | 0.00248 | | |
| B-nam_pro_title_album | 0.00218 | - | 0.00158 | | |
| B-nam_adj_person | 0.00203 | - | 0.00406 | | |
| B-nam_fac_square | 0.00196 | - | 0.00135 | | |
| B-nam_pro_award | 0.00188 | - | 0.00519 | | |
| B-nam_eve_human_holiday | 0.00188 | - | 0.00203 | | |
| B-nam_pro_title_song | 0.00166 | - | 0.00158 | | |
| B-nam_pro_media_radio | 0.00151 | - | 0.00068 | | |
| B-nam_pro_vehicle | 0.00151 | - | 0.00090 | | |
| B-nam_oth_position | 0.00143 | - | 0.00226 | | |
| B-nam_liv_animal | 0.00143 | - | 0.00248 | | |
| B-nam_pro | 0.00135 | - | 0.00045 | | |
| B-nam_oth_www | 0.00120 | - | 0.00451 | | |
| B-nam_num_phone | 0.00120 | - | 0.00045 | | |
| B-nam_pro_title_article | 0.00113 | - | - | | |
| B-nam_oth_data_format | 0.00113 | - | 0.00226 | | |
| B-nam_fac_bridge | 0.00105 | - | 0.00090 | | |
| B-nam_liv_character | 0.00098 | - | - | | |
| B-nam_pro_software_game | 0.00090 | - | 0.00068 | | |
| B-nam_loc_hydronym_lake | 0.00090 | - | 0.00045 | | |
| B-nam_loc_gpe_conurbation | 0.00090 | - | - | | |
| B-nam_pro_media | 0.00083 | - | 0.00181 | | |
| B-nam_loc_land | 0.00075 | - | 0.00045 | | |
| B-nam_loc_land_peak | 0.00075 | - | - | | |
| B-nam_fac_park | 0.00068 | - | 0.00226 | | |
| B-nam_org_organization_sub | 0.00060 | - | 0.00068 | | |
| B-nam_loc_hydronym | 0.00060 | - | 0.00023 | | |
| B-nam_loc_hydronym_sea | 0.00045 | - | 0.00068 | | |
| B-nam_loc_hydronym_ocean | 0.00045 | - | 0.00023 | | |
| B-nam_fac_goe_stop | 0.00038 | - | 0.00090 | | |
## Citation | |
``` | |
@inproceedings{broda-etal-2012-kpwr, | |
title = "{KPW}r: Towards a Free Corpus of {P}olish", | |
author = "Broda, Bartosz and | |
Marci{\'n}czuk, Micha{\l} and | |
Maziarz, Marek and | |
Radziszewski, Adam and | |
Wardy{\'n}ski, Adam", | |
booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}'12)", | |
month = may, | |
year = "2012", | |
address = "Istanbul, Turkey", | |
publisher = "European Language Resources Association (ELRA)", | |
url = "http://www.lrec-conf.org/proceedings/lrec2012/pdf/965_Paper.pdf", | |
pages = "3218--3222", | |
abstract = "This paper presents our efforts aimed at collecting and annotating a free Polish corpus. The corpus will serve for us as training and testing material for experiments with Machine Learning algorithms. As others may also benefit from the resource, we are going to release it under a Creative Commons licence, which is hoped to remove unnecessary usage restrictions, but also to facilitate reproduction of our experimental results. The corpus is being annotated with various types of linguistic entities: chunks and named entities, selected syntactic and semantic relations, word senses and anaphora. We report on the current state of the project as well as our ultimate goals.", | |
} | |
``` | |
## License | |
``` | |
Creative Commons Attribution 3.0 Unported Licence | |
``` | |
## Links | |
[HuggingFace](https://huggingface.co/datasets/clarin-pl/kpwr-ner) | |
[Source](https://clarin-pl.eu/index.php/kpwr-en/) | |
[Paper](https://aclanthology.org/L12-1574/) | |
[KPWr annotation guidelines](http://www.nlp.pwr.wroc.pl/narzedzia-i-zasoby/zasoby/kpwr-lemma/16-narzedzia-zasoby/79-wytyczne) | |
[KPWr annotation guidelines - named entities](https://clarin-pl.eu/dspace/handle/11321/294) | |
## Examples | |
### Loading | |
```python | |
from pprint import pprint | |
from datasets import load_dataset | |
dataset = load_dataset("clarin-pl/kpwr-ner") | |
pprint(dataset['train'][0]) | |
# {'lemmas': ['roborally', 'czy', 'wysoki', 'napięcie', '?'], | |
# 'ner': [73, 160, 73, 151, 160], | |
# 'orth': ['subst:sg:nom:n', | |
# 'qub', | |
# 'adj:sg:nom:n:pos', | |
# 'subst:sg:nom:n', | |
# 'interp'], | |
# 'tokens': ['RoboRally', 'czy', 'Wysokie', 'napięcie', '?']} | |
``` | |
### Evaluation | |
```python | |
import random | |
from pprint import pprint | |
from datasets import load_dataset, load_metric | |
dataset = load_dataset("clarin-pl/kpwr-ner") | |
references = dataset["test"]["ner"] | |
# generate random predictions | |
predictions = [ | |
[ | |
random.randrange(dataset["train"].features["ner"].feature.num_classes) | |
for _ in range(len(labels)) | |
] | |
for labels in references | |
] | |
# transform to original names of labels | |
references_named = [ | |
[dataset["train"].features["ner"].feature.names[label] for label in labels] | |
for labels in references | |
] | |
predictions_named = [ | |
[dataset["train"].features["ner"].feature.names[label] for label in labels] | |
for labels in predictions | |
] | |
# utilise seqeval to evaluate | |
seqeval = load_metric("seqeval") | |
seqeval_score = seqeval.compute( | |
predictions=predictions_named, references=references_named, scheme="IOB2" | |
) | |
pprint(seqeval_score, depth=1) | |
# {'nam_adj': {...}, | |
# 'nam_adj_city': {...}, | |
# 'nam_adj_country': {...}, | |
# 'nam_adj_person': {...}, | |
# 'nam_eve': {...}, | |
# 'nam_eve_human': {...}, | |
# 'nam_eve_human_cultural': {...}, | |
# 'nam_eve_human_holiday': {...}, | |
# 'nam_eve_human_sport': {...}, | |
# 'nam_fac_bridge': {...}, | |
# 'nam_fac_goe': {...}, | |
# 'nam_fac_goe_stop': {...}, | |
# 'nam_fac_park': {...}, | |
# 'nam_fac_road': {...}, | |
# 'nam_fac_square': {...}, | |
# 'nam_fac_system': {...}, | |
# 'nam_liv_animal': {...}, | |
# 'nam_liv_character': {...}, | |
# 'nam_liv_god': {...}, | |
# 'nam_liv_habitant': {...}, | |
# 'nam_liv_person': {...}, | |
# 'nam_loc': {...}, | |
# 'nam_loc_astronomical': {...}, | |
# 'nam_loc_country_region': {...}, | |
# 'nam_loc_gpe_admin1': {...}, | |
# 'nam_loc_gpe_admin2': {...}, | |
# 'nam_loc_gpe_admin3': {...}, | |
# 'nam_loc_gpe_city': {...}, | |
# 'nam_loc_gpe_conurbation': {...}, | |
# 'nam_loc_gpe_country': {...}, | |
# 'nam_loc_gpe_district': {...}, | |
# 'nam_loc_gpe_subdivision': {...}, | |
# 'nam_loc_historical_region': {...}, | |
# 'nam_loc_hydronym': {...}, | |
# 'nam_loc_hydronym_lake': {...}, | |
# 'nam_loc_hydronym_ocean': {...}, | |
# 'nam_loc_hydronym_river': {...}, | |
# 'nam_loc_hydronym_sea': {...}, | |
# 'nam_loc_land': {...}, | |
# 'nam_loc_land_continent': {...}, | |
# 'nam_loc_land_island': {...}, | |
# 'nam_loc_land_mountain': {...}, | |
# 'nam_loc_land_peak': {...}, | |
# 'nam_loc_land_region': {...}, | |
# 'nam_num_house': {...}, | |
# 'nam_num_phone': {...}, | |
# 'nam_org_company': {...}, | |
# 'nam_org_group': {...}, | |
# 'nam_org_group_band': {...}, | |
# 'nam_org_group_team': {...}, | |
# 'nam_org_institution': {...}, | |
# 'nam_org_nation': {...}, | |
# 'nam_org_organization': {...}, | |
# 'nam_org_organization_sub': {...}, | |
# 'nam_org_political_party': {...}, | |
# 'nam_oth': {...}, | |
# 'nam_oth_currency': {...}, | |
# 'nam_oth_data_format': {...}, | |
# 'nam_oth_license': {...}, | |
# 'nam_oth_position': {...}, | |
# 'nam_oth_tech': {...}, | |
# 'nam_oth_www': {...}, | |
# 'nam_pro': {...}, | |
# 'nam_pro_award': {...}, | |
# 'nam_pro_brand': {...}, | |
# 'nam_pro_media': {...}, | |
# 'nam_pro_media_periodic': {...}, | |
# 'nam_pro_media_radio': {...}, | |
# 'nam_pro_media_tv': {...}, | |
# 'nam_pro_media_web': {...}, | |
# 'nam_pro_model_car': {...}, | |
# 'nam_pro_software': {...}, | |
# 'nam_pro_software_game': {...}, | |
# 'nam_pro_title': {...}, | |
# 'nam_pro_title_album': {...}, | |
# 'nam_pro_title_article': {...}, | |
# 'nam_pro_title_book': {...}, | |
# 'nam_pro_title_document': {...}, | |
# 'nam_pro_title_song': {...}, | |
# 'nam_pro_title_treaty': {...}, | |
# 'nam_pro_title_tv': {...}, | |
# 'nam_pro_vehicle': {...}, | |
# 'overall_accuracy': 0.006156203762418094, | |
# 'overall_f1': 0.0009844258777797407, | |
# 'overall_precision': 0.0005213624939842789, | |
# 'overall_recall': 0.008803611738148984} | |
``` |