Search is not available for this dataset
image
imagewidth (px) 1.28k
1.28k
| label
class label 2
classes |
---|---|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
|
0train2017
|
End of preview. Expand
in Dataset Viewer.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
FridgeIT Custom Dataset
This is a database collected manually using an iPhone 12 Pro Max cell phone.
The collected images contain objects from the following five classes:
Butter, cottage cheese, milk, cream, mustard
Our dataset contains 2094 images in the training set and 526 images in the validation set. We expect the directory structure to be the following:
path/to/coco/
├ annotations/ # JSON annotations
│ ├ annotations/custom_train.json
│ └ annotations/custom_val.json
├ train2017/ # training images
└ val2017/ # validation images
Installation
- Create the directory where you want to clone the finetuned_detr repository.
- Open the terminal and navigate to the directory you just created or just open the terminal from this directory.
- Run the following command to install Git Large File Storage (LFS) for handling large files:
git lfs install
- Clone the Hugging Face repository by running the following command:
git clone https://huggingface.co/datasets/coralavital/fridgeit_dataset
- Downloads last month
- 9