File size: 3,623 Bytes
11e381d
 
 
597aa56
11e381d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e55d1e
11e381d
 
 
 
 
 
 
 
 
 
6e55d1e
11e381d
 
6e55d1e
 
 
11e381d
 
 
597aa56
11e381d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import csv

import datasets
from datasets.tasks import TextClassification


_CITATION = """\
@inproceedings{saravia-etal-2018-carer,
    title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
    author = "Saravia, Elvis  and
      Liu, Hsien-Chi Toby  and
      Huang, Yen-Hao  and
      Wu, Junlin  and
      Chen, Yi-Shin",
    booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
    month = oct # "-" # nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/D18-1404",
    doi = "10.18653/v1/D18-1404",
    pages = "3687--3697",
    abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
}
"""

_DESCRIPTION = """\
Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.
"""
_URL = "https://github.com/dair-ai/emotion_dataset"
# use dl=1 to force browser to download data instead of displaying it
_TRAIN_DOWNLOAD_URL = "https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1"
_VALIDATION_DOWNLOAD_URL = "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1"
_TEST_DOWNLOAD_URL = "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1"


class Emotion(datasets.GeneratorBasedBuilder):
    def _info(self):
        class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"]
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {"text": datasets.Value("string"), "label": datasets.ClassLabel(names=class_names)}
            ),
            supervised_keys=("text", "label"),
            homepage=_URL,
            citation=_CITATION,
            task_templates=[TextClassification(text_column="text", label_column="label")],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
        valid_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL)
        test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
        ]

    def _generate_examples(self, filepath):
        """Generate examples."""
        with open(filepath, encoding="utf-8") as csv_file:
            csv_reader = csv.reader(csv_file, delimiter=";")
            for id_, row in enumerate(csv_reader):
                text, label = row
                yield id_, {"text": text, "label": label}