|
# File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/cli.py |
|
import sys |
|
import typer |
|
from pathlib import Path |
|
from loguru import logger |
|
from typing import Optional |
|
from enum import Enum |
|
app = typer.Typer() |
|
|
|
class Dtype(str, Enum): |
|
float32 = 'float32' |
|
float16 = 'float16' |
|
bloat16 = 'bfloat16' |
|
|
|
@app.command() |
|
def serve(model_path: Path, dtype: Dtype='float32', uds_path: Path='/tmp/text-embeddings-server', logger_level: str='INFO', json_output: bool=False, otlp_endpoint: Optional[str]=None, otlp_service_name: str='text-embeddings-inference.server'): |
|
logger.remove() |
|
logger.add(sys.stdout, format='{message}', filter='text_embeddings_server', level=logger_level, serialize=json_output, backtrace=True, diagnose=False) |
|
from text_embeddings_server import server |
|
from text_embeddings_server.utils.tracing import setup_tracing |
|
if otlp_endpoint is not None: |
|
setup_tracing(otlp_endpoint=otlp_endpoint, otlp_service_name=otlp_service_name) |
|
dtype = None if dtype is None else dtype.value |
|
server.serve(model_path, dtype, uds_path) |
|
if __name__ == '__main__': |
|
app() |
|
|
|
# File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/__init__.py |
|
import torch |
|
from loguru import logger |
|
from pathlib import Path |
|
from typing import Optional |
|
from transformers import AutoConfig |
|
from transformers.models.bert import BertConfig |
|
from text_embeddings_server.models.model import Model |
|
from text_embeddings_server.models.default_model import DefaultModel |
|
__all__ = ['Model'] |
|
torch.set_grad_enabled(False) |
|
FLASH_ATTENTION = True |
|
try: |
|
from text_embeddings_server.models.flash_bert import FlashBert |
|
except ImportError as e: |
|
logger.warning(f'Could not import Flash Attention enabled models: {e}') |
|
FLASH_ATTENTION = False |
|
if FLASH_ATTENTION: |
|
__all__.append(FlashBert) |
|
|
|
def get_model(model_path: Path, dtype: Optional[str]): |
|
if dtype == 'float32': |
|
dtype = torch.float32 |
|
elif dtype == 'float16': |
|
dtype = torch.float16 |
|
elif dtype == 'bfloat16': |
|
dtype = torch.bfloat16 |
|
else: |
|
raise RuntimeError(f'Unknown dtype {dtype}') |
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
else: |
|
if dtype != torch.float32: |
|
raise ValueError('CPU device only supports float32 dtype') |
|
device = torch.device('cpu') |
|
config = AutoConfig.from_pretrained(model_path) |
|
if config.model_type == 'bert': |
|
config: BertConfig |
|
if device.type == 'cuda' and config.position_embedding_type == 'absolute' and (dtype in [torch.float16, torch.bfloat16]) and FLASH_ATTENTION: |
|
return FlashBert(model_path, device, dtype) |
|
else: |
|
return DefaultModel(model_path, device, dtype) |
|
raise NotImplementedError |
|
|
|
# File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/default_model.py |
|
import inspect |
|
import torch |
|
from pathlib import Path |
|
from typing import Type, List |
|
from transformers import AutoModel |
|
from opentelemetry import trace |
|
from text_embeddings_server.models import Model |
|
from text_embeddings_server.models.types import PaddedBatch, Embedding |
|
tracer = trace.get_tracer(__name__) |
|
|
|
class DefaultModel(Model): |
|
|
|
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype): |
|
model = AutoModel.from_pretrained(model_path).to(dtype).to(device) |
|
self.hidden_size = model.config.hidden_size |
|
self.has_position_ids = inspect.signature(model.forward).parameters.get('position_ids', None) is not None |
|
self.has_token_type_ids = inspect.signature(model.forward).parameters.get('token_type_ids', None) is not None |
|
super(DefaultModel, self).__init__(model=model, dtype=dtype, device=device) |
|
|
|
@property |
|
def batch_type(self) -> Type[PaddedBatch]: |
|
return PaddedBatch |
|
|
|
@tracer.start_as_current_span('embed') |
|
def embed(self, batch: PaddedBatch) -> List[Embedding]: |
|
kwargs = {'input_ids': batch.input_ids, 'attention_mask': batch.attention_mask} |
|
if self.has_token_type_ids: |
|
kwargs['token_type_ids'] = batch.token_type_ids |
|
if self.has_position_ids: |
|
kwargs['position_ids'] = batch.position_ids |
|
output = self.model(**kwargs) |
|
embedding = output[0][:, 0] |
|
cpu_results = embedding.view(-1).tolist() |
|
return [Embedding(values=cpu_results[i * self.hidden_size:(i + 1) * self.hidden_size]) for i in range(len(batch))] |
|
|
|
# File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/flash_bert.py |
|
import torch |
|
from pathlib import Path |
|
from torch import nn |
|
from typing import Type, List |
|
from safetensors import safe_open |
|
from transformers.activations import ACT2FN |
|
from transformers.models.bert import BertConfig |
|
from opentelemetry import trace |
|
import dropout_layer_norm |
|
from text_embeddings_server.models import Model |
|
from text_embeddings_server.models.types import FlashBatch, Embedding |
|
from text_embeddings_server.utils.flash_attn import attention |
|
tracer = trace.get_tracer(__name__) |
|
|
|
class FastLayerNorm: |
|
|
|
def __init__(self, prefix, handle, device, dtype, config: BertConfig): |
|
self.weight = handle.get_tensor(f'{prefix}.weight').to(dtype).to(device) |
|
self.bias = handle.get_tensor(f'{prefix}.bias').to(dtype).to(device) |
|
self.variance_epsilon = config.layer_norm_eps |
|
|
|
def forward(self, hidden_states, residual=None): |
|
(normed_hidden_states, res, *rest) = dropout_layer_norm.dropout_add_ln_fwd(hidden_states, residual, self.weight, self.bias, None, None, None, None, 0.0, self.variance_epsilon, 1.0, 0, None, False, False) |
|
if res is None: |
|
res = hidden_states |
|
return (normed_hidden_states, res) |
|
|
|
class BertEmbeddings: |
|
|
|
def __init__(self, prefix, handle, device, dtype, config: BertConfig): |
|
self.word_embeddings_weight = handle.get_tensor(f'{prefix}.word_embeddings.weight').to(dtype).to(device) |
|
self.token_type_embeddings_weight = handle.get_tensor(f'{prefix}.token_type_embeddings.weight').to(dtype).to(device) |
|
if config.position_embedding_type == 'absolute': |
|
self.position_embeddings_weight = handle.get_tensor(f'{prefix}.position_embeddings.weight').to(dtype).to(device) |
|
else: |
|
raise NotImplementedError('FlashBert only supports absolute position embeddings') |
|
self.layer_norm = FastLayerNorm(f'{prefix}.LayerNorm', handle, device, dtype, config) |
|
|
|
def forward(self, input_ids, token_type_ids, position_ids): |
|
inputs_embeds = nn.functional.embedding(input_ids, self.word_embeddings_weight) |
|
token_type_embeds = nn.functional.embedding(token_type_ids, self.token_type_embeddings_weight) |
|
position_embeds = nn.functional.embedding(position_ids, self.position_embeddings_weight) |
|
inputs_embeds += position_embeds |
|
(embeddings, _) = self.layer_norm.forward(inputs_embeds, token_type_embeds) |
|
return embeddings |
|
|
|
class BertAttention: |
|
|
|
def __init__(self, prefix, handle, device, dtype, config: BertConfig): |
|
query_weight = handle.get_tensor(f'{prefix}.self.query.weight') |
|
query_bias = handle.get_tensor(f'{prefix}.self.query.bias') |
|
key_weight = handle.get_tensor(f'{prefix}.self.key.weight') |
|
key_bias = handle.get_tensor(f'{prefix}.self.key.bias') |
|
value_weight = handle.get_tensor(f'{prefix}.self.value.weight') |
|
value_bias = handle.get_tensor(f'{prefix}.self.value.bias') |
|
self.qkv_weight = torch.cat([query_weight, key_weight, value_weight]).T.to(dtype).to(device) |
|
self.qkv_bias = torch.cat([query_bias, key_bias, value_bias]).to(dtype).to(device) |
|
self.dense_weight = handle.get_tensor(f'{prefix}.output.dense.weight').T.to(dtype).to(device) |
|
self.dense_bias = handle.get_tensor(f'{prefix}.output.dense.bias').to(dtype).to(device) |
|
self.layer_norm = FastLayerNorm(f'{prefix}.output.LayerNorm', handle, device, dtype, config) |
|
self.head_size = config.hidden_size // config.num_attention_heads |
|
self.softmax_scale = self.head_size ** (-0.5) |
|
self.num_heads = config.num_attention_heads |
|
|
|
def forward(self, hidden_states, cu_seqlens, max_s): |
|
residual = hidden_states |
|
qkv = torch.addmm(self.qkv_bias, hidden_states, self.qkv_weight) |
|
(q, k, v) = qkv.view(-1, self.num_heads * 3, self.head_size).split(self.num_heads, dim=1) |
|
attn_output = torch.empty_like(q) |
|
attention(q, k, v, attn_output, cu_seqlens, max_s, self.softmax_scale) |
|
hidden_states = torch.addmm(self.dense_bias, attn_output.view(-1, self.num_heads * self.head_size), self.dense_weight) |
|
(hidden_states, _) = self.layer_norm.forward(hidden_states, residual) |
|
return hidden_states |
|
|
|
class BertLayer: |
|
|
|
def __init__(self, prefix, handle, device, dtype, config: BertConfig): |
|
self.attention = BertAttention(f'{prefix}.attention', handle, device, dtype, config) |
|
self.intermediate_weight = handle.get_tensor(f'{prefix}.intermediate.dense.weight').T.to(dtype).to(device) |
|
self.intermediate_bias = handle.get_tensor(f'{prefix}.intermediate.dense.bias').to(dtype).to(device) |
|
act = config.hidden_act |
|
self.intermediate_act_fn = ACT2FN[act] if 'gelu' not in act else lambda x: torch.nn.functional.gelu(x, approximate='tanh' if act in ['gelu_fast', 'gelu_pytorch_tanh'] else 'none') |
|
self.output_weight = handle.get_tensor(f'{prefix}.output.dense.weight').T.to(dtype).to(device) |
|
self.output_bias = handle.get_tensor(f'{prefix}.output.dense.bias').to(dtype).to(device) |
|
self.layer_norm = FastLayerNorm(f'{prefix}.output.LayerNorm', handle, device, dtype, config) |
|
|
|
def forward(self, hidden_states, cu_seqlens, max_s): |
|
hidden_states = self.attention.forward(hidden_states, cu_seqlens, max_s) |
|
residual = hidden_states |
|
hidden_states = torch.addmm(self.intermediate_bias, hidden_states, self.intermediate_weight) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
hidden_states = torch.addmm(self.output_bias, hidden_states, self.output_weight) |
|
(hidden_states, _) = self.layer_norm.forward(hidden_states, residual) |
|
return hidden_states |
|
|
|
class BertEncoder: |
|
|
|
def __init__(self, prefix, handle, device, dtype, config: BertConfig): |
|
self.layers = [BertLayer(f'{prefix}.layer.{i}', handle, device, dtype, config) for i in range(config.num_hidden_layers)] |
|
|
|
def forward(self, hidden_states, cu_seqlens, max_s): |
|
for layer in self.layers: |
|
hidden_states = layer.forward(hidden_states, cu_seqlens, max_s) |
|
return hidden_states |
|
|
|
class FlashBertModel: |
|
|
|
def __init__(self, handle, device, dtype, config: BertConfig): |
|
self.embeddings = BertEmbeddings('embeddings', handle, device, dtype, config) |
|
self.encoder = BertEncoder('encoder', handle, device, dtype, config) |
|
|
|
def forward(self, input_ids, token_type_ids, position_ids, cu_seqlens, max_s): |
|
embeddings = self.embeddings.forward(input_ids, token_type_ids, position_ids) |
|
encoder_outputs = self.encoder.forward(embeddings, cu_seqlens, max_s) |
|
return encoder_outputs[cu_seqlens[:-1]] |
|
|
|
class FlashBert(Model): |
|
|
|
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype): |
|
config = BertConfig.from_pretrained(model_path) |
|
with safe_open(model_path / 'model.safetensors', framework='pt') as f: |
|
model = FlashBertModel(f, device, dtype, config) |
|
self.hidden_size = config.hidden_size |
|
super(FlashBert, self).__init__(model=model, dtype=dtype, device=device) |
|
|
|
@property |
|
def batch_type(self) -> Type[FlashBatch]: |
|
return FlashBatch |
|
|
|
@tracer.start_as_current_span('embed') |
|
def embed(self, batch: FlashBatch) -> List[Embedding]: |
|
embedding = self.model.forward(input_ids=batch.input_ids, token_type_ids=batch.token_type_ids, position_ids=batch.position_ids, cu_seqlens=batch.cu_seqlens, max_s=batch.max_s) |
|
cpu_results = embedding.view(-1).tolist() |
|
return [Embedding(values=cpu_results[i * self.hidden_size:(i + 1) * self.hidden_size]) for i in range(len(batch))] |
|
|
|
# File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/model.py |
|
import torch |
|
from abc import ABC, abstractmethod |
|
from typing import List, TypeVar, Type |
|
from text_embeddings_server.models.types import Batch, Embedding |
|
B = TypeVar('B', bound=Batch) |
|
|
|
class Model(ABC): |
|
|
|
def __init__(self, model, dtype: torch.dtype, device: torch.device): |
|
self.model = model |
|
self.dtype = dtype |
|
self.device = device |
|
|
|
@property |
|
@abstractmethod |
|
def batch_type(self) -> Type[B]: |
|
raise NotImplementedError |
|
|
|
@abstractmethod |
|
def embed(self, batch: B) -> List[Embedding]: |
|
raise NotImplementedError |
|
|
|
# File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/models/types.py |
|
import torch |
|
from abc import ABC, abstractmethod |
|
from dataclasses import dataclass |
|
from opentelemetry import trace |
|
from text_embeddings_server.pb import embed_pb2 |
|
from text_embeddings_server.pb.embed_pb2 import Embedding |
|
tracer = trace.get_tracer(__name__) |
|
|
|
class Batch(ABC): |
|
|
|
@classmethod |
|
@abstractmethod |
|
def from_pb(cls, pb: embed_pb2.EmbedRequest, device: torch.device) -> 'Batch': |
|
raise NotImplementedError |
|
|
|
@abstractmethod |
|
def __len__(self): |
|
raise NotImplementedError |
|
|
|
@dataclass |
|
class PaddedBatch(Batch): |
|
input_ids: torch.Tensor |
|
token_type_ids: torch.Tensor |
|
position_ids: torch.Tensor |
|
attention_mask: torch.Tensor |
|
|
|
@classmethod |
|
@tracer.start_as_current_span('from_pb') |
|
def from_pb(cls, pb: embed_pb2.EmbedRequest, device: torch.device) -> 'PaddedBatch': |
|
all_tensors = torch.zeros([4, len(pb.cu_seq_lengths) - 1, pb.max_length], dtype=torch.int32) |
|
for (i, start_index) in enumerate(pb.cu_seq_lengths[:-1]): |
|
end_index = pb.cu_seq_lengths[i + 1] |
|
input_length = end_index - start_index |
|
all_tensors[0, i, :input_length] = torch.tensor(pb.input_ids[start_index:end_index], dtype=torch.int32) |
|
all_tensors[1, i, :input_length] = torch.tensor(pb.token_type_ids[start_index:end_index], dtype=torch.int32) |
|
all_tensors[2, i, :input_length] = torch.tensor(pb.position_ids[start_index:end_index], dtype=torch.int32) |
|
all_tensors[3, i, :input_length] = 1 |
|
all_tensors = all_tensors.to(device) |
|
return PaddedBatch(input_ids=all_tensors[0], token_type_ids=all_tensors[1], position_ids=all_tensors[2], attention_mask=all_tensors[3]) |
|
|
|
def __len__(self): |
|
return len(self.input_ids) |
|
|
|
@dataclass |
|
class FlashBatch(Batch): |
|
input_ids: torch.Tensor |
|
token_type_ids: torch.Tensor |
|
position_ids: torch.Tensor |
|
cu_seqlens: torch.Tensor |
|
max_s: int |
|
size: int |
|
|
|
@classmethod |
|
@tracer.start_as_current_span('from_pb') |
|
def from_pb(cls, pb: embed_pb2.EmbedRequest, device: torch.device) -> 'FlashBatch': |
|
if device.type != 'cuda': |
|
raise RuntimeError(f'FlashBatch does not support device {device}') |
|
batch_input_ids = torch.tensor(pb.input_ids, dtype=torch.int32, device=device) |
|
batch_token_type_ids = torch.tensor(pb.token_type_ids, dtype=torch.int32, device=device) |
|
batch_position_ids = torch.tensor(pb.position_ids, dtype=torch.int32, device=device) |
|
cu_seqlens = torch.tensor(pb.cu_seq_lengths, dtype=torch.int32, device=device) |
|
return FlashBatch(input_ids=batch_input_ids, token_type_ids=batch_token_type_ids, position_ids=batch_position_ids, cu_seqlens=cu_seqlens, max_s=pb.max_length, size=len(cu_seqlens) - 1) |
|
|
|
def __len__(self): |
|
return self.size |
|
|
|
# File: text-embeddings-inference-main/backends/python/server/text_embeddings_server/server.py |
|
import asyncio |
|
import torch |
|
from grpc import aio |
|
from loguru import logger |
|
from grpc_reflection.v1alpha import reflection |
|
from pathlib import Path |
|
from typing import Optional |
|
from text_embeddings_server.models import Model, get_model |
|
from text_embeddings_server.pb import embed_pb2_grpc, embed_pb2 |
|
from text_embeddings_server.utils.tracing import UDSOpenTelemetryAioServerInterceptor |
|
from text_embeddings_server.utils.interceptor import ExceptionInterceptor |
|
|
|
class EmbeddingService(embed_pb2_grpc.EmbeddingServiceServicer): |
|
|
|
def __init__(self, model: Model): |
|
self.model = model |
|
self._inference_mode_raii_guard = torch._C._InferenceMode(True) |
|
|
|
async def Health(self, request, context): |
|
if self.model.device.type == 'cuda': |
|
torch.zeros((2, 2), device='cuda') |
|
return embed_pb2.HealthResponse() |
|
|
|
async def Embed(self, request, context): |
|
batch = self.model.batch_type.from_pb(request, self.model.device) |
|
embeddings = self.model.embed(batch) |
|
return embed_pb2.EmbedResponse(embeddings=embeddings) |
|
|
|
def serve(model_path: Path, dtype: Optional[str], uds_path: Path): |
|
|
|
async def serve_inner(model_path: Path, dtype: Optional[str]=None): |
|
unix_socket = f'unix://{uds_path}' |
|
try: |
|
model = get_model(model_path, dtype) |
|
except Exception: |
|
logger.exception('Error when initializing model') |
|
raise |
|
server = aio.server(interceptors=[ExceptionInterceptor(), UDSOpenTelemetryAioServerInterceptor()]) |
|
embed_pb2_grpc.add_EmbeddingServiceServicer_to_server(EmbeddingService(model), server) |
|
SERVICE_NAMES = (embed_pb2.DESCRIPTOR.services_by_name['EmbeddingService'].full_name, reflection.SERVICE_NAME) |
|
reflection.enable_server_reflection(SERVICE_NAMES, server) |
|
server.add_insecure_port(unix_socket) |
|
await server.start() |
|
logger.info(f'Server started at {unix_socket}') |
|
try: |
|
await server.wait_for_termination() |
|
except KeyboardInterrupt: |
|
logger.info('Signal received. Shutting down') |
|
await server.stop(0) |
|
asyncio.run(serve_inner(model_path, dtype)) |
|
|
|
|