text
stringlengths
0
15.3k
if hasattr(self, 'sampler'):
self.sampler.rnd = self.fewshot_rnd
@property
def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
if self.has_test_docs():
return self.test_docs()
elif self.has_validation_docs():
return self.validation_docs()
else:
raise ValueError(f'Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!')
def doc_iterator(self, *, rank: int=0, limit: Union[int, None]=None, world_size: int=1) -> Iterator[Tuple[int, Any]]:
limit = int(limit) if limit else None
doc_iterator = utils.create_iterator(enumerate(self.eval_docs), rank=int(rank), limit=limit, world_size=int(world_size))
return doc_iterator
class ConfigurableTask(Task):
VERSION = 'Yaml'
OUTPUT_TYPE = None
CONFIG = None
def __init__(self, data_dir=None, cache_dir=None, download_mode=None, config: Optional[dict]=None) -> None:
self._config = self.CONFIG
if self.config is None:
self._config = TaskConfig(**config)
elif config is not None:
self._config.__dict__.update(config)
if self.config is None:
raise ValueError('Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg')
if isinstance(self.config.metadata, dict):
if 'version' in self.config.metadata:
self.VERSION = self.config.metadata['version']
if self.config.output_type is not None:
if self.config.output_type not in ALL_OUTPUT_TYPES:
raise ValueError(f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'")
self.OUTPUT_TYPE = self.config.output_type
if self.config.dataset_path is not None:
self.DATASET_PATH = self.config.dataset_path
if self.config.dataset_name is not None:
self.DATASET_NAME = self.config.dataset_name
self._metric_fn_list = {}
self._metric_fn_kwargs = {}
self._aggregation_list = {}
self._higher_is_better = {}
if self.config.metric_list is None:
_metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]
for metric_name in _metric_list:
self._metric_fn_list[metric_name] = get_metric(metric_name)
self._metric_fn_kwargs[metric_name] = {}
self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
self._higher_is_better[metric_name] = is_higher_better(metric_name)
else:
for metric_config in self.config.metric_list:
if 'metric' not in metric_config:
raise ValueError("'metric' key not provided for an entry in 'metric_list', must be specified!")
metric_name = metric_config['metric']
kwargs = {key: metric_config[key] for key in metric_config if key not in ['metric', 'aggregation', 'higher_is_better', 'hf_evaluate']}
hf_evaluate_metric = 'hf_evaluate' in metric_config and metric_config['hf_evaluate'] is True
if self.config.process_results is not None:
self._metric_fn_list[metric_name] = None
self._metric_fn_kwargs[metric_name] = {}
elif callable(metric_name):
metric_fn = metric_name.__call__
metric_name = metric_name.__name__
self._metric_fn_list[metric_name] = metric_fn
self._metric_fn_kwargs[metric_name] = kwargs
else:
self._metric_fn_list[metric_name] = get_metric(metric_name, hf_evaluate_metric)
self._metric_fn_kwargs[metric_name] = kwargs
if 'aggregation' in metric_config:
agg_name = metric_config['aggregation']
if isinstance(agg_name, str):
self._aggregation_list[metric_name] = get_aggregation(agg_name)
elif callable(agg_name):
self._aggregation_list[metric_name] = metric_config['aggregation']
else:
INV_AGG_REGISTRY = {v: k for (k, v) in AGGREGATION_REGISTRY.items()}
metric_agg = get_metric_aggregation(metric_name)
eval_logger.warning(f'[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. using default aggregation={INV_AGG_REGISTRY[metric_agg]}')
self._aggregation_list[metric_name] = metric_agg
if 'higher_is_better' in metric_config:
self._higher_is_better[metric_name] = metric_config['higher_is_better']
else:
eval_logger.warning(f'[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. using default higher_is_better={is_higher_better(metric_name)}')
self._higher_is_better[metric_name] = is_higher_better(metric_name)
self.download(self.config.dataset_kwargs)
self._training_docs = None
self._fewshot_docs = None
if self.config.filter_list is not None:
self._filters = []
for filter_config in self.config.filter_list:
filter_name = filter_config['name']
filter_functions = filter_config['filter']
components = []
for function in filter_functions:
kwargs = {key: function[key] for key in function if key != 'function'}
components.append([function['function'], kwargs])
filter_pipeline = build_filter_ensemble(filter_name, components)
self._filters.append(filter_pipeline)