text
stringlengths
0
15.3k
def brier_score_fn(items):
return items
@register_metric(metric='acc', higher_is_better=True, output_type=['loglikelihood', 'multiple_choice'], aggregation='mean')
def acc_fn(items):
return items
@register_metric(metric='acc_norm', higher_is_better=True, output_type=['loglikelihood', 'multiple_choice'], aggregation='mean')
def acc_norm_fn(items):
return items
@register_metric(metric='acc_mutual_info', higher_is_better=True, output_type='multiple_choice', aggregation='mean')
def acc_mutual_info_fn(items):
return items
def exact_match_hf_evaluate(predictions, references, regexes_to_ignore=None, ignore_case=False, ignore_punctuation=False, ignore_numbers=False):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
predictions = np.array([re.sub(s, '', x) for x in predictions])
references = np.array([re.sub(s, '', x) for x in references])
else:
predictions = np.asarray(predictions)
references = np.asarray(references)
if ignore_case:
predictions = np.char.lower(predictions)
references = np.char.lower(references)
if ignore_punctuation:
repl_table = string.punctuation.maketrans('', '', string.punctuation)
predictions = np.char.translate(predictions, table=repl_table)
references = np.char.translate(references, table=repl_table)
if ignore_numbers:
repl_table = string.digits.maketrans('', '', string.digits)
predictions = np.char.translate(predictions, table=repl_table)
references = np.char.translate(references, table=repl_table)
score_list = predictions == references
return {'exact_match': np.mean(score_list)}
@register_metric(metric='exact_match', higher_is_better=True, output_type='generate_until', aggregation='mean')
def exact_match_fn(**kwargs):
return exact_match_hf_evaluate(**kwargs)
@register_metric(metric='perplexity', higher_is_better=False, output_type='loglikelihood', aggregation='perplexity')
def perplexity_fn(items):
return items
@register_metric(metric='word_perplexity', higher_is_better=False, output_type='loglikelihood_rolling', aggregation='weighted_perplexity')
def word_perplexity_fn(items):
return items
@register_metric(metric='byte_perplexity', higher_is_better=False, output_type='loglikelihood_rolling', aggregation='weighted_perplexity')
def byte_perplexity_fn(items):
return items
@register_metric(metric='bits_per_byte', higher_is_better=False, output_type='loglikelihood_rolling', aggregation='bits_per_byte')
def bits_per_byte_fn(items):
return items
def pop_stddev(arr):
mu = mean(arr)
return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / len(arr))
def sample_stddev(arr):
mu = mean(arr)
return math.sqrt(sum([(x - mu) ** 2 for x in arr]) / (len(arr) - 1))
def mean_stderr(arr):
return sample_stddev(arr) / math.sqrt(len(arr))
@register_metric(metric='bypass', higher_is_better=True, output_type=['loglikelihood', 'multiple_choice', 'generate_until'], aggregation='bypass')
def bypass(items):
return None
@register_metric(metric='mcc', higher_is_better=True, output_type='multiple_choice', aggregation='matthews_corrcoef')
def mcc_fn(items):
return items
@register_metric(metric='f1', higher_is_better=True, output_type='multiple_choice', aggregation='f1')
def f1_fn(items):
return items
@register_metric(metric='bleu', higher_is_better=True, output_type='generate_until', aggregation='bleu')
def bleu_fn(items):
return items
@register_metric(metric='chrf', higher_is_better=True, output_type='generate_until', aggregation='chrf')
def chrf_fn(items):
return items
@register_metric(metric='ter', higher_is_better=True, output_type='generate_until', aggregation='ter')
def ter_fn(items):
return items
@register_metric(metric='acc_all', higher_is_better=True, output_type='loglikelihood', aggregation='mean')
def acc_all(items):
question_scoring_dict = {}
preds = list(zip(*items))[0]
docs = list(zip(*items))[1]
for (doc, pred) in zip(docs, preds):
paragraph_id = doc['idx']['paragraph']
question_id = doc['idx']['question']