text
stringlengths
0
15.3k
from lm_eval.api.model import LM
eval_logger = logging.getLogger('lm-eval')
MODEL_REGISTRY = {}
def register_model(*names):
def decorate(cls):
for name in names:
assert issubclass(cls, LM), f"Model '{name}' ({cls.__name__}) must extend LM class"
assert name not in MODEL_REGISTRY, f"Model named '{name}' conflicts with existing model! Please register with a non-conflicting alias instead."
MODEL_REGISTRY[name] = cls
return cls
return decorate
def get_model(model_name):
try:
return MODEL_REGISTRY[model_name]
except KeyError:
raise ValueError(f"Attempted to load model '{model_name}', but no model for this name found! Supported model names: {', '.join(MODEL_REGISTRY.keys())}")
TASK_REGISTRY = {}
GROUP_REGISTRY = {}
ALL_TASKS = set()
func2task_index = {}
def register_task(name):
def decorate(fn):
assert name not in TASK_REGISTRY, f"task named '{name}' conflicts with existing registered task!"
TASK_REGISTRY[name] = fn
ALL_TASKS.add(name)
func2task_index[fn.__name__] = name
return fn
return decorate
def register_group(name):
def decorate(fn):
func_name = func2task_index[fn.__name__]
if name in GROUP_REGISTRY:
GROUP_REGISTRY[name].append(func_name)
else:
GROUP_REGISTRY[name] = [func_name]
ALL_TASKS.add(name)
return fn
return decorate
OUTPUT_TYPE_REGISTRY = {}
METRIC_REGISTRY = {}
METRIC_AGGREGATION_REGISTRY = {}
AGGREGATION_REGISTRY: Dict[str, Callable[[], Dict[str, Callable]]] = {}
HIGHER_IS_BETTER_REGISTRY = {}
FILTER_REGISTRY = {}
DEFAULT_METRIC_REGISTRY = {'loglikelihood': ['perplexity', 'acc'], 'loglikelihood_rolling': ['word_perplexity', 'byte_perplexity', 'bits_per_byte'], 'multiple_choice': ['acc', 'acc_norm'], 'generate_until': ['exact_match']}
def register_metric(**args):
def decorate(fn):
assert 'metric' in args
name = args['metric']
for (key, registry) in [('metric', METRIC_REGISTRY), ('higher_is_better', HIGHER_IS_BETTER_REGISTRY), ('aggregation', METRIC_AGGREGATION_REGISTRY)]:
if key in args:
value = args[key]
assert value not in registry, f"{key} named '{value}' conflicts with existing registered {key}!"
if key == 'metric':
registry[name] = fn
elif key == 'aggregation':
registry[name] = AGGREGATION_REGISTRY[value]
else:
registry[name] = value
return fn
return decorate
def get_metric(name: str, hf_evaluate_metric=False) -> Callable:
if not hf_evaluate_metric:
if name in METRIC_REGISTRY:
return METRIC_REGISTRY[name]
else:
eval_logger.warning(f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library...")
try:
metric_object = hf_evaluate.load(name)
return metric_object.compute
except Exception:
eval_logger.error(f'{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric')
def register_aggregation(name: str):
def decorate(fn):
assert name not in AGGREGATION_REGISTRY, f"aggregation named '{name}' conflicts with existing registered aggregation!"
AGGREGATION_REGISTRY[name] = fn
return fn
return decorate
def get_aggregation(name: str) -> Callable[[], Dict[str, Callable]]:
try:
return AGGREGATION_REGISTRY[name]
except KeyError:
eval_logger.warning(f'{name} not a registered aggregation metric!')
def get_metric_aggregation(name: str) -> Callable[[], Dict[str, Callable]]:
try:
return METRIC_AGGREGATION_REGISTRY[name]