|
""" Classifier head and layer factory |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from collections import OrderedDict |
|
from functools import partial |
|
from typing import Optional, Union, Callable |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
from .adaptive_avgmax_pool import SelectAdaptivePool2d |
|
from .create_act import get_act_layer |
|
from .create_norm import get_norm_layer |
|
|
|
|
|
def _create_pool( |
|
num_features: int, |
|
num_classes: int, |
|
pool_type: str = 'avg', |
|
use_conv: bool = False, |
|
input_fmt: Optional[str] = None, |
|
): |
|
flatten_in_pool = not use_conv |
|
if not pool_type: |
|
flatten_in_pool = False |
|
global_pool = SelectAdaptivePool2d( |
|
pool_type=pool_type, |
|
flatten=flatten_in_pool, |
|
input_fmt=input_fmt, |
|
) |
|
num_pooled_features = num_features * global_pool.feat_mult() |
|
return global_pool, num_pooled_features |
|
|
|
|
|
def _create_fc(num_features, num_classes, use_conv=False): |
|
if num_classes <= 0: |
|
fc = nn.Identity() |
|
elif use_conv: |
|
fc = nn.Conv2d(num_features, num_classes, 1, bias=True) |
|
else: |
|
fc = nn.Linear(num_features, num_classes, bias=True) |
|
return fc |
|
|
|
|
|
def create_classifier( |
|
num_features: int, |
|
num_classes: int, |
|
pool_type: str = 'avg', |
|
use_conv: bool = False, |
|
input_fmt: str = 'NCHW', |
|
drop_rate: Optional[float] = None, |
|
): |
|
global_pool, num_pooled_features = _create_pool( |
|
num_features, |
|
num_classes, |
|
pool_type, |
|
use_conv=use_conv, |
|
input_fmt=input_fmt, |
|
) |
|
fc = _create_fc( |
|
num_pooled_features, |
|
num_classes, |
|
use_conv=use_conv, |
|
) |
|
if drop_rate is not None: |
|
dropout = nn.Dropout(drop_rate) |
|
return global_pool, dropout, fc |
|
return global_pool, fc |
|
|
|
|
|
class ClassifierHead(nn.Module): |
|
"""Classifier head w/ configurable global pooling and dropout.""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
num_classes: int, |
|
pool_type: str = 'avg', |
|
drop_rate: float = 0., |
|
use_conv: bool = False, |
|
input_fmt: str = 'NCHW', |
|
): |
|
""" |
|
Args: |
|
in_features: The number of input features. |
|
num_classes: The number of classes for the final classifier layer (output). |
|
pool_type: Global pooling type, pooling disabled if empty string (''). |
|
drop_rate: Pre-classifier dropout rate. |
|
""" |
|
super(ClassifierHead, self).__init__() |
|
self.in_features = in_features |
|
self.use_conv = use_conv |
|
self.input_fmt = input_fmt |
|
|
|
global_pool, fc = create_classifier( |
|
in_features, |
|
num_classes, |
|
pool_type, |
|
use_conv=use_conv, |
|
input_fmt=input_fmt, |
|
) |
|
self.global_pool = global_pool |
|
self.drop = nn.Dropout(drop_rate) |
|
self.fc = fc |
|
self.flatten = nn.Flatten(1) if use_conv and pool_type else nn.Identity() |
|
|
|
def reset(self, num_classes: int, pool_type: Optional[str] = None): |
|
if pool_type is not None and pool_type != self.global_pool.pool_type: |
|
self.global_pool, self.fc = create_classifier( |
|
self.in_features, |
|
num_classes, |
|
pool_type=pool_type, |
|
use_conv=self.use_conv, |
|
input_fmt=self.input_fmt, |
|
) |
|
self.flatten = nn.Flatten(1) if self.use_conv and pool_type else nn.Identity() |
|
else: |
|
num_pooled_features = self.in_features * self.global_pool.feat_mult() |
|
self.fc = _create_fc( |
|
num_pooled_features, |
|
num_classes, |
|
use_conv=self.use_conv, |
|
) |
|
|
|
def forward(self, x, pre_logits: bool = False): |
|
x = self.global_pool(x) |
|
x = self.drop(x) |
|
if pre_logits: |
|
return self.flatten(x) |
|
x = self.fc(x) |
|
return self.flatten(x) |
|
|
|
|
|
class NormMlpClassifierHead(nn.Module): |
|
""" A Pool -> Norm -> Mlp Classifier Head for '2D' NCHW tensors |
|
""" |
|
def __init__( |
|
self, |
|
in_features: int, |
|
num_classes: int, |
|
hidden_size: Optional[int] = None, |
|
pool_type: str = 'avg', |
|
drop_rate: float = 0., |
|
norm_layer: Union[str, Callable] = 'layernorm2d', |
|
act_layer: Union[str, Callable] = 'tanh', |
|
): |
|
""" |
|
Args: |
|
in_features: The number of input features. |
|
num_classes: The number of classes for the final classifier layer (output). |
|
hidden_size: The hidden size of the MLP (pre-logits FC layer) if not None. |
|
pool_type: Global pooling type, pooling disabled if empty string (''). |
|
drop_rate: Pre-classifier dropout rate. |
|
norm_layer: Normalization layer type. |
|
act_layer: MLP activation layer type (only used if hidden_size is not None). |
|
""" |
|
super().__init__() |
|
self.in_features = in_features |
|
self.hidden_size = hidden_size |
|
self.num_features = in_features |
|
self.use_conv = not pool_type |
|
norm_layer = get_norm_layer(norm_layer) |
|
act_layer = get_act_layer(act_layer) |
|
linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear |
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) |
|
self.norm = norm_layer(in_features) |
|
self.flatten = nn.Flatten(1) if pool_type else nn.Identity() |
|
if hidden_size: |
|
self.pre_logits = nn.Sequential(OrderedDict([ |
|
('fc', linear_layer(in_features, hidden_size)), |
|
('act', act_layer()), |
|
])) |
|
self.num_features = hidden_size |
|
else: |
|
self.pre_logits = nn.Identity() |
|
self.drop = nn.Dropout(drop_rate) |
|
self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def reset(self, num_classes: int, pool_type: Optional[str] = None): |
|
if pool_type is not None: |
|
self.global_pool = SelectAdaptivePool2d(pool_type=pool_type) |
|
self.flatten = nn.Flatten(1) if pool_type else nn.Identity() |
|
self.use_conv = self.global_pool.is_identity() |
|
linear_layer = partial(nn.Conv2d, kernel_size=1) if self.use_conv else nn.Linear |
|
if self.hidden_size: |
|
if ((isinstance(self.pre_logits.fc, nn.Conv2d) and not self.use_conv) or |
|
(isinstance(self.pre_logits.fc, nn.Linear) and self.use_conv)): |
|
with torch.no_grad(): |
|
new_fc = linear_layer(self.in_features, self.hidden_size) |
|
new_fc.weight.copy_(self.pre_logits.fc.weight.reshape(new_fc.weight.shape)) |
|
new_fc.bias.copy_(self.pre_logits.fc.bias) |
|
self.pre_logits.fc = new_fc |
|
self.fc = linear_layer(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward(self, x, pre_logits: bool = False): |
|
x = self.global_pool(x) |
|
x = self.norm(x) |
|
x = self.flatten(x) |
|
x = self.pre_logits(x) |
|
x = self.drop(x) |
|
if pre_logits: |
|
return x |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
class ClNormMlpClassifierHead(nn.Module): |
|
""" A Pool -> Norm -> Mlp Classifier Head for n-D NxxC tensors |
|
""" |
|
def __init__( |
|
self, |
|
in_features: int, |
|
num_classes: int, |
|
hidden_size: Optional[int] = None, |
|
pool_type: str = 'avg', |
|
drop_rate: float = 0., |
|
norm_layer: Union[str, Callable] = 'layernorm', |
|
act_layer: Union[str, Callable] = 'gelu', |
|
input_fmt: str = 'NHWC', |
|
): |
|
""" |
|
Args: |
|
in_features: The number of input features. |
|
num_classes: The number of classes for the final classifier layer (output). |
|
hidden_size: The hidden size of the MLP (pre-logits FC layer) if not None. |
|
pool_type: Global pooling type, pooling disabled if empty string (''). |
|
drop_rate: Pre-classifier dropout rate. |
|
norm_layer: Normalization layer type. |
|
act_layer: MLP activation layer type (only used if hidden_size is not None). |
|
""" |
|
super().__init__() |
|
self.in_features = in_features |
|
self.hidden_size = hidden_size |
|
self.num_features = in_features |
|
assert pool_type in ('', 'avg', 'max', 'avgmax') |
|
self.pool_type = pool_type |
|
assert input_fmt in ('NHWC', 'NLC') |
|
self.pool_dim = 1 if input_fmt == 'NLC' else (1, 2) |
|
norm_layer = get_norm_layer(norm_layer) |
|
act_layer = get_act_layer(act_layer) |
|
|
|
self.norm = norm_layer(in_features) |
|
if hidden_size: |
|
self.pre_logits = nn.Sequential(OrderedDict([ |
|
('fc', nn.Linear(in_features, hidden_size)), |
|
('act', act_layer()), |
|
])) |
|
self.num_features = hidden_size |
|
else: |
|
self.pre_logits = nn.Identity() |
|
self.drop = nn.Dropout(drop_rate) |
|
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def reset(self, num_classes: int, pool_type: Optional[str] = None, reset_other: bool = False): |
|
if pool_type is not None: |
|
self.pool_type = pool_type |
|
if reset_other: |
|
self.pre_logits = nn.Identity() |
|
self.norm = nn.Identity() |
|
self.fc = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def _global_pool(self, x): |
|
if self.pool_type: |
|
if self.pool_type == 'avg': |
|
x = x.mean(dim=self.pool_dim) |
|
elif self.pool_type == 'max': |
|
x = x.amax(dim=self.pool_dim) |
|
elif self.pool_type == 'avgmax': |
|
x = 0.5 * (x.amax(dim=self.pool_dim) + x.mean(dim=self.pool_dim)) |
|
return x |
|
|
|
def forward(self, x, pre_logits: bool = False): |
|
x = self._global_pool(x) |
|
x = self.norm(x) |
|
x = self.pre_logits(x) |
|
x = self.drop(x) |
|
if pre_logits: |
|
return x |
|
x = self.fc(x) |
|
return x |
|
|