|
""" Adan Optimizer |
|
|
|
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022. |
|
https://arxiv.org/abs/2208.06677 |
|
|
|
Implementation adapted from https://github.com/sail-sg/Adan |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch.optim.optimizer import Optimizer |
|
|
|
|
|
class MultiTensorApply(object): |
|
available = False |
|
warned = False |
|
|
|
def __init__(self, chunk_size): |
|
try: |
|
MultiTensorApply.available = True |
|
self.chunk_size = chunk_size |
|
except ImportError as err: |
|
MultiTensorApply.available = False |
|
MultiTensorApply.import_err = err |
|
|
|
def __call__(self, op, noop_flag_buffer, tensor_lists, *args): |
|
return op(self.chunk_size, noop_flag_buffer, tensor_lists, *args) |
|
|
|
|
|
class Adan(Optimizer): |
|
""" Implements a pytorch variant of Adan. |
|
|
|
Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models |
|
https://arxiv.org/abs/2208.06677 |
|
|
|
Arguments: |
|
params: Iterable of parameters to optimize or dicts defining parameter groups. |
|
lr: Learning rate. |
|
betas: Coefficients used for first- and second-order moments. |
|
eps: Term added to the denominator to improve numerical stability. |
|
weight_decay: Decoupled weight decay (L2 penalty) |
|
no_prox: How to perform the weight decay |
|
caution: Enable caution from 'Cautious Optimizers' |
|
foreach: If True would use torch._foreach implementation. Faster but uses slightly more memory. |
|
""" |
|
|
|
def __init__(self, |
|
params, |
|
lr: float = 1e-3, |
|
betas: Tuple[float, float, float] = (0.98, 0.92, 0.99), |
|
eps: float = 1e-8, |
|
weight_decay: float = 0.0, |
|
no_prox: bool = False, |
|
caution: bool = False, |
|
foreach: Optional[bool] = None, |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError('Invalid learning rate: {}'.format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError('Invalid epsilon value: {}'.format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1])) |
|
if not 0.0 <= betas[2] < 1.0: |
|
raise ValueError('Invalid beta parameter at index 2: {}'.format(betas[2])) |
|
|
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
no_prox=no_prox, |
|
caution=caution, |
|
foreach=foreach, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(Adan, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault('no_prox', False) |
|
group.setdefault('caution', False) |
|
|
|
@torch.no_grad() |
|
def restart_opt(self): |
|
for group in self.param_groups: |
|
group['step'] = 0 |
|
for p in group['params']: |
|
if p.requires_grad: |
|
state = self.state[p] |
|
|
|
|
|
|
|
state['exp_avg'] = torch.zeros_like(p) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p) |
|
|
|
state['exp_avg_diff'] = torch.zeros_like(p) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step.""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
try: |
|
has_scalar_maximum = 'Scalar' in torch.ops.aten._foreach_maximum_.overloads() |
|
except: |
|
has_scalar_maximum = False |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
grads = [] |
|
exp_avgs = [] |
|
exp_avg_sqs = [] |
|
exp_avg_diffs = [] |
|
neg_pre_grads = [] |
|
|
|
beta1, beta2, beta3 = group['betas'] |
|
|
|
|
|
if 'step' in group: |
|
group['step'] += 1 |
|
else: |
|
group['step'] = 1 |
|
|
|
bias_correction1 = 1.0 - beta1 ** group['step'] |
|
bias_correction2 = 1.0 - beta2 ** group['step'] |
|
bias_correction3 = 1.0 - beta3 ** group['step'] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
params_with_grad.append(p) |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
if len(state) == 0: |
|
state['exp_avg'] = torch.zeros_like(p) |
|
state['exp_avg_sq'] = torch.zeros_like(p) |
|
state['exp_avg_diff'] = torch.zeros_like(p) |
|
|
|
if 'neg_pre_grad' not in state or group['step'] == 1: |
|
state['neg_pre_grad'] = -p.grad.clone() |
|
|
|
exp_avgs.append(state['exp_avg']) |
|
exp_avg_sqs.append(state['exp_avg_sq']) |
|
exp_avg_diffs.append(state['exp_avg_diff']) |
|
neg_pre_grads.append(state['neg_pre_grad']) |
|
|
|
if not params_with_grad: |
|
continue |
|
|
|
if group['foreach'] is None: |
|
use_foreach = not group['caution'] or has_scalar_maximum |
|
else: |
|
use_foreach = group['foreach'] |
|
|
|
if use_foreach: |
|
func = _multi_tensor_adan |
|
else: |
|
func = _single_tensor_adan |
|
|
|
func( |
|
params_with_grad, |
|
grads, |
|
exp_avgs=exp_avgs, |
|
exp_avg_sqs=exp_avg_sqs, |
|
exp_avg_diffs=exp_avg_diffs, |
|
neg_pre_grads=neg_pre_grads, |
|
beta1=beta1, |
|
beta2=beta2, |
|
beta3=beta3, |
|
bias_correction1=bias_correction1, |
|
bias_correction2=bias_correction2, |
|
bias_correction3_sqrt=math.sqrt(bias_correction3), |
|
lr=group['lr'], |
|
weight_decay=group['weight_decay'], |
|
eps=group['eps'], |
|
no_prox=group['no_prox'], |
|
caution=group['caution'], |
|
) |
|
|
|
return loss |
|
|
|
|
|
def _single_tensor_adan( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
exp_avg_diffs: List[Tensor], |
|
neg_pre_grads: List[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
beta3: float, |
|
bias_correction1: float, |
|
bias_correction2: float, |
|
bias_correction3_sqrt: float, |
|
lr: float, |
|
weight_decay: float, |
|
eps: float, |
|
no_prox: bool, |
|
caution: bool, |
|
): |
|
for i, param in enumerate(params): |
|
grad = grads[i] |
|
exp_avg = exp_avgs[i] |
|
exp_avg_sq = exp_avg_sqs[i] |
|
exp_avg_diff = exp_avg_diffs[i] |
|
neg_grad_or_diff = neg_pre_grads[i] |
|
|
|
|
|
neg_grad_or_diff.add_(grad) |
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2) |
|
|
|
neg_grad_or_diff.mul_(beta2).add_(grad) |
|
exp_avg_sq.mul_(beta3).addcmul_(neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3) |
|
|
|
denom = (exp_avg_sq.sqrt() / bias_correction3_sqrt).add_(eps) |
|
step_size_diff = lr * beta2 / bias_correction2 |
|
step_size = lr / bias_correction1 |
|
|
|
if caution: |
|
|
|
mask = (exp_avg * grad > 0).to(grad.dtype) |
|
mask.div_(mask.mean().clamp_(min=1e-3)) |
|
exp_avg = exp_avg * mask |
|
|
|
if no_prox: |
|
param.mul_(1 - lr * weight_decay) |
|
param.addcdiv_(exp_avg, denom, value=-step_size) |
|
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) |
|
else: |
|
param.addcdiv_(exp_avg, denom, value=-step_size) |
|
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff) |
|
param.div_(1 + lr * weight_decay) |
|
|
|
neg_grad_or_diff.zero_().add_(grad, alpha=-1.0) |
|
|
|
|
|
def _multi_tensor_adan( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
exp_avg_diffs: List[Tensor], |
|
neg_pre_grads: List[Tensor], |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
beta3: float, |
|
bias_correction1: float, |
|
bias_correction2: float, |
|
bias_correction3_sqrt: float, |
|
lr: float, |
|
weight_decay: float, |
|
eps: float, |
|
no_prox: bool, |
|
caution: bool, |
|
): |
|
if len(params) == 0: |
|
return |
|
|
|
|
|
torch._foreach_add_(neg_pre_grads, grads) |
|
|
|
torch._foreach_mul_(exp_avgs, beta1) |
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) |
|
|
|
torch._foreach_mul_(exp_avg_diffs, beta2) |
|
torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2) |
|
|
|
torch._foreach_mul_(neg_pre_grads, beta2) |
|
torch._foreach_add_(neg_pre_grads, grads) |
|
torch._foreach_mul_(exp_avg_sqs, beta3) |
|
torch._foreach_addcmul_(exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3) |
|
|
|
denom = torch._foreach_sqrt(exp_avg_sqs) |
|
torch._foreach_div_(denom, bias_correction3_sqrt) |
|
torch._foreach_add_(denom, eps) |
|
|
|
step_size_diff = lr * beta2 / bias_correction2 |
|
step_size = lr / bias_correction1 |
|
|
|
if caution: |
|
|
|
masks = torch._foreach_mul(exp_avgs, grads) |
|
masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)] |
|
mask_scale = [m.mean() for m in masks] |
|
torch._foreach_maximum_(mask_scale, 1e-3) |
|
torch._foreach_div_(masks, mask_scale) |
|
exp_avgs = torch._foreach_mul(exp_avgs, masks) |
|
|
|
if no_prox: |
|
torch._foreach_mul_(params, 1 - lr * weight_decay) |
|
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) |
|
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) |
|
else: |
|
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size) |
|
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff) |
|
torch._foreach_div_(params, 1 + lr * weight_decay) |
|
|
|
torch._foreach_zero_(neg_pre_grads) |
|
torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0) |
|
|