meg's picture
meg HF staff
Upload folder using huggingface_hub
53a37bd verified
""" Adan Optimizer
Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022.
https://arxiv.org/abs/2208.06677
Implementation adapted from https://github.com/sail-sg/Adan
"""
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple
import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer
class MultiTensorApply(object):
available = False
warned = False
def __init__(self, chunk_size):
try:
MultiTensorApply.available = True
self.chunk_size = chunk_size
except ImportError as err:
MultiTensorApply.available = False
MultiTensorApply.import_err = err
def __call__(self, op, noop_flag_buffer, tensor_lists, *args):
return op(self.chunk_size, noop_flag_buffer, tensor_lists, *args)
class Adan(Optimizer):
""" Implements a pytorch variant of Adan.
Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models
https://arxiv.org/abs/2208.06677
Arguments:
params: Iterable of parameters to optimize or dicts defining parameter groups.
lr: Learning rate.
betas: Coefficients used for first- and second-order moments.
eps: Term added to the denominator to improve numerical stability.
weight_decay: Decoupled weight decay (L2 penalty)
no_prox: How to perform the weight decay
caution: Enable caution from 'Cautious Optimizers'
foreach: If True would use torch._foreach implementation. Faster but uses slightly more memory.
"""
def __init__(self,
params,
lr: float = 1e-3,
betas: Tuple[float, float, float] = (0.98, 0.92, 0.99),
eps: float = 1e-8,
weight_decay: float = 0.0,
no_prox: bool = False,
caution: bool = False,
foreach: Optional[bool] = None,
):
if not 0.0 <= lr:
raise ValueError('Invalid learning rate: {}'.format(lr))
if not 0.0 <= eps:
raise ValueError('Invalid epsilon value: {}'.format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
if not 0.0 <= betas[2] < 1.0:
raise ValueError('Invalid beta parameter at index 2: {}'.format(betas[2]))
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
no_prox=no_prox,
caution=caution,
foreach=foreach,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super(Adan, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('no_prox', False)
group.setdefault('caution', False)
@torch.no_grad()
def restart_opt(self):
for group in self.param_groups:
group['step'] = 0
for p in group['params']:
if p.requires_grad:
state = self.state[p]
# State initialization
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p)
# Exponential moving average of gradient difference
state['exp_avg_diff'] = torch.zeros_like(p)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step."""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
try:
has_scalar_maximum = 'Scalar' in torch.ops.aten._foreach_maximum_.overloads()
except:
has_scalar_maximum = False
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
exp_avg_diffs = []
neg_pre_grads = []
beta1, beta2, beta3 = group['betas']
# assume same step across group now to simplify things
# per parameter step can be easily supported by making it a tensor, or pass list into kernel
if 'step' in group:
group['step'] += 1
else:
group['step'] = 1
bias_correction1 = 1.0 - beta1 ** group['step']
bias_correction2 = 1.0 - beta2 ** group['step']
bias_correction3 = 1.0 - beta3 ** group['step']
for p in group['params']:
if p.grad is None:
continue
params_with_grad.append(p)
grads.append(p.grad)
state = self.state[p]
if len(state) == 0:
state['exp_avg'] = torch.zeros_like(p)
state['exp_avg_sq'] = torch.zeros_like(p)
state['exp_avg_diff'] = torch.zeros_like(p)
if 'neg_pre_grad' not in state or group['step'] == 1:
state['neg_pre_grad'] = -p.grad.clone()
exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])
exp_avg_diffs.append(state['exp_avg_diff'])
neg_pre_grads.append(state['neg_pre_grad'])
if not params_with_grad:
continue
if group['foreach'] is None:
use_foreach = not group['caution'] or has_scalar_maximum
else:
use_foreach = group['foreach']
if use_foreach:
func = _multi_tensor_adan
else:
func = _single_tensor_adan
func(
params_with_grad,
grads,
exp_avgs=exp_avgs,
exp_avg_sqs=exp_avg_sqs,
exp_avg_diffs=exp_avg_diffs,
neg_pre_grads=neg_pre_grads,
beta1=beta1,
beta2=beta2,
beta3=beta3,
bias_correction1=bias_correction1,
bias_correction2=bias_correction2,
bias_correction3_sqrt=math.sqrt(bias_correction3),
lr=group['lr'],
weight_decay=group['weight_decay'],
eps=group['eps'],
no_prox=group['no_prox'],
caution=group['caution'],
)
return loss
def _single_tensor_adan(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
exp_avg_diffs: List[Tensor],
neg_pre_grads: List[Tensor],
*,
beta1: float,
beta2: float,
beta3: float,
bias_correction1: float,
bias_correction2: float,
bias_correction3_sqrt: float,
lr: float,
weight_decay: float,
eps: float,
no_prox: bool,
caution: bool,
):
for i, param in enumerate(params):
grad = grads[i]
exp_avg = exp_avgs[i]
exp_avg_sq = exp_avg_sqs[i]
exp_avg_diff = exp_avg_diffs[i]
neg_grad_or_diff = neg_pre_grads[i]
# for memory saving, we use `neg_grad_or_diff` to get some temp variable in an inplace way
neg_grad_or_diff.add_(grad)
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # m_t
exp_avg_diff.mul_(beta2).add_(neg_grad_or_diff, alpha=1 - beta2) # diff_t
neg_grad_or_diff.mul_(beta2).add_(grad)
exp_avg_sq.mul_(beta3).addcmul_(neg_grad_or_diff, neg_grad_or_diff, value=1 - beta3) # n_t
denom = (exp_avg_sq.sqrt() / bias_correction3_sqrt).add_(eps)
step_size_diff = lr * beta2 / bias_correction2
step_size = lr / bias_correction1
if caution:
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
mask = (exp_avg * grad > 0).to(grad.dtype)
mask.div_(mask.mean().clamp_(min=1e-3))
exp_avg = exp_avg * mask
if no_prox:
param.mul_(1 - lr * weight_decay)
param.addcdiv_(exp_avg, denom, value=-step_size)
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
else:
param.addcdiv_(exp_avg, denom, value=-step_size)
param.addcdiv_(exp_avg_diff, denom, value=-step_size_diff)
param.div_(1 + lr * weight_decay)
neg_grad_or_diff.zero_().add_(grad, alpha=-1.0)
def _multi_tensor_adan(
params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
exp_avg_diffs: List[Tensor],
neg_pre_grads: List[Tensor],
*,
beta1: float,
beta2: float,
beta3: float,
bias_correction1: float,
bias_correction2: float,
bias_correction3_sqrt: float,
lr: float,
weight_decay: float,
eps: float,
no_prox: bool,
caution: bool,
):
if len(params) == 0:
return
# for memory saving, we use `neg_pre_grads` to get some temp variable in a inplace way
torch._foreach_add_(neg_pre_grads, grads)
torch._foreach_mul_(exp_avgs, beta1)
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1) # m_t
torch._foreach_mul_(exp_avg_diffs, beta2)
torch._foreach_add_(exp_avg_diffs, neg_pre_grads, alpha=1 - beta2) # diff_t
torch._foreach_mul_(neg_pre_grads, beta2)
torch._foreach_add_(neg_pre_grads, grads)
torch._foreach_mul_(exp_avg_sqs, beta3)
torch._foreach_addcmul_(exp_avg_sqs, neg_pre_grads, neg_pre_grads, value=1 - beta3) # n_t
denom = torch._foreach_sqrt(exp_avg_sqs)
torch._foreach_div_(denom, bias_correction3_sqrt)
torch._foreach_add_(denom, eps)
step_size_diff = lr * beta2 / bias_correction2
step_size = lr / bias_correction1
if caution:
# Apply caution as per 'Cautious Optimizers' - https://arxiv.org/abs/2411.16085
masks = torch._foreach_mul(exp_avgs, grads)
masks = [(m > 0).to(g.dtype) for m, g in zip(masks, grads)]
mask_scale = [m.mean() for m in masks]
torch._foreach_maximum_(mask_scale, 1e-3)
torch._foreach_div_(masks, mask_scale)
exp_avgs = torch._foreach_mul(exp_avgs, masks)
if no_prox:
torch._foreach_mul_(params, 1 - lr * weight_decay)
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
else:
torch._foreach_addcdiv_(params, exp_avgs, denom, value=-step_size)
torch._foreach_addcdiv_(params, exp_avg_diffs, denom, value=-step_size_diff)
torch._foreach_div_(params, 1 + lr * weight_decay)
torch._foreach_zero_(neg_pre_grads)
torch._foreach_add_(neg_pre_grads, grads, alpha=-1.0)