|
""" ADOPT PyTorch Optimizer |
|
|
|
ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate: https://arxiv.org/abs/2411.02853 |
|
|
|
Modified for reduced dependencies on PyTorch internals from original at: https://github.com/iShohei220/adopt |
|
|
|
@inproceedings{taniguchi2024adopt, |
|
author={Taniguchi, Shohei and Harada, Keno and Minegishi, Gouki and Oshima, Yuta and Jeong, Seong Cheol and Nagahara, Go and Iiyama, Tomoshi and Suzuki, Masahiro and Iwasawa, Yusuke and Matsuo, Yutaka}, |
|
booktitle = {Advances in Neural Information Processing Systems}, |
|
title = {ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate}, |
|
year = {2024} |
|
} |
|
""" |
|
from typing import cast, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch.optim.optimizer import Optimizer |
|
|
|
from ._types import ParamsT |
|
|
|
__all__ = ["Adopt", "adopt"] |
|
|
|
def _view_as_real(params, *state_and_grads): |
|
for i, p in enumerate(params): |
|
if torch.is_complex(p): |
|
params[i] = torch.view_as_real(params[i]) |
|
for s in state_and_grads: |
|
s[i] = torch.view_as_real(s[i]) |
|
|
|
|
|
def _get_scalar_dtype(is_fused=None): |
|
if is_fused: |
|
return torch.float32 |
|
return ( |
|
torch.float64 if torch.get_default_dtype() == torch.float64 else torch.float32 |
|
) |
|
|
|
|
|
def _is_compiling(): |
|
if hasattr(torch, 'compiler') and hasattr(torch.compiler, 'is_compiling'): |
|
return torch.compiler.is_compiling() |
|
else: |
|
return False |
|
|
|
|
|
def _get_value(x): |
|
|
|
if not torch.jit.is_scripting() and _is_compiling(): |
|
return x |
|
else: |
|
return x.item() if isinstance(x, torch.Tensor) else x |
|
|
|
|
|
class Adopt(Optimizer): |
|
""" |
|
ADOPT: Modified Adam Can Converge with Any β2 with the Optimal Rate: https://arxiv.org/abs/2411.02853 |
|
|
|
""" |
|
def __init__( |
|
self, |
|
params: ParamsT, |
|
lr: Union[float, Tensor] = 1e-3, |
|
betas: Tuple[float, float] = (0.9, 0.9999), |
|
eps: float = 1e-6, |
|
clip_exp: Optional[float] = 0.333, |
|
weight_decay: float = 0.0, |
|
decoupled: bool = False, |
|
*, |
|
caution: bool = False, |
|
foreach: Optional[bool] = False, |
|
maximize: bool = False, |
|
capturable: bool = False, |
|
differentiable: bool = False, |
|
): |
|
if isinstance(lr, Tensor): |
|
if foreach and not capturable: |
|
raise ValueError( |
|
"lr as a Tensor is not supported for capturable=False and foreach=True" |
|
) |
|
if lr.numel() != 1: |
|
raise ValueError("Tensor lr must be 1-element") |
|
if not 0.0 <= lr: |
|
raise ValueError(f"Invalid learning rate: {lr}") |
|
if not 0.0 <= eps: |
|
raise ValueError(f"Invalid epsilon value: {eps}") |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") |
|
if not 0.0 <= weight_decay: |
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}") |
|
|
|
defaults = dict( |
|
lr=lr, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
clip_exp=clip_exp, |
|
decoupled=decoupled, |
|
caution=caution, |
|
maximize=maximize, |
|
foreach=foreach, |
|
capturable=capturable, |
|
differentiable=differentiable, |
|
) |
|
super().__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super().__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("maximize", False) |
|
group.setdefault("foreach", None) |
|
group.setdefault("capturable", False) |
|
group.setdefault("differentiable", False) |
|
group.setdefault("clip_exp", None) |
|
group.setdefault("caution", False) |
|
for p in group["params"]: |
|
p_state = self.state.get(p, []) |
|
if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): |
|
step_val = float(p_state["step"]) |
|
p_state["step"] = ( |
|
torch.tensor( |
|
step_val, |
|
dtype=_get_scalar_dtype(), |
|
device=p.device, |
|
) |
|
if group["capturable"] |
|
else torch.tensor(step_val, dtype=_get_scalar_dtype()) |
|
) |
|
|
|
def _init_group( |
|
self, |
|
group, |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
state_steps, |
|
): |
|
has_complex = False |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
has_complex |= torch.is_complex(p) |
|
params_with_grad.append(p) |
|
if p.grad.is_sparse: |
|
raise RuntimeError("ADOPT does not support sparse gradients") |
|
grads.append(p.grad) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
|
|
|
|
|
|
state["step"] = ( |
|
torch.zeros((), dtype=_get_scalar_dtype(), device=p.grad.device) |
|
if group["capturable"] |
|
else torch.tensor(0.0, dtype=_get_scalar_dtype()) |
|
) |
|
|
|
state["exp_avg"] = torch.zeros_like(p.grad, memory_format=torch.preserve_format) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p.grad, memory_format=torch.preserve_format) |
|
|
|
exp_avgs.append(state["exp_avg"]) |
|
exp_avg_sqs.append(state["exp_avg_sq"]) |
|
|
|
if group["differentiable"] and state["step"].requires_grad: |
|
raise RuntimeError("`requires_grad` is not supported for `step` in differentiable mode") |
|
|
|
|
|
if group["foreach"] and torch.is_tensor(group["lr"]) and not group["capturable"]: |
|
raise RuntimeError("lr as a Tensor is not supported for capturable=False and foreach=True") |
|
|
|
state_steps.append(state["step"]) |
|
return has_complex |
|
|
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Perform a single optimization step. |
|
|
|
Args: |
|
closure (Callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
self._cuda_graph_capture_health_check() |
|
|
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad: List[Tensor] = [] |
|
grads: List[Tensor] = [] |
|
exp_avgs: List[Tensor] = [] |
|
exp_avg_sqs: List[Tensor] = [] |
|
state_steps: List[Tensor] = [] |
|
beta1, beta2 = group["betas"] |
|
|
|
has_complex = self._init_group( |
|
group, |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
state_steps, |
|
) |
|
|
|
adopt( |
|
params_with_grad, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
state_steps, |
|
has_complex=has_complex, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=group["lr"], |
|
weight_decay=group["weight_decay"], |
|
clip_exp=group["clip_exp"], |
|
decoupled=group["decoupled"], |
|
eps=group["eps"], |
|
caution=group["caution"], |
|
maximize=group["maximize"], |
|
foreach=group["foreach"], |
|
capturable=group["capturable"], |
|
differentiable=group["differentiable"], |
|
grad_scale=getattr(self, "grad_scale", None), |
|
found_inf=getattr(self, "found_inf", None), |
|
) |
|
|
|
return loss |
|
|
|
|
|
def _single_tensor_adopt( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
state_steps: List[Tensor], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
has_complex: bool, |
|
beta1: float, |
|
beta2: float, |
|
lr: Union[float, Tensor], |
|
weight_decay: float, |
|
clip_exp: Optional[float], |
|
decoupled: bool, |
|
eps: float, |
|
caution: bool, |
|
maximize: bool, |
|
capturable: bool, |
|
differentiable: bool, |
|
): |
|
assert grad_scale is None and found_inf is None |
|
|
|
if torch.jit.is_scripting(): |
|
|
|
|
|
|
|
assert isinstance(lr, float) |
|
|
|
for i, param in enumerate(params): |
|
grad = grads[i] if not maximize else -grads[i] |
|
exp_avg = exp_avgs[i] |
|
exp_avg_sq = exp_avg_sqs[i] |
|
step_t = state_steps[i] |
|
|
|
|
|
if capturable and not _is_compiling(): |
|
from torch.optim.optimizer import _get_capturable_supported_devices |
|
capturable_supported_devices = _get_capturable_supported_devices() |
|
assert param.device.type == step_t.device.type and param.device.type in capturable_supported_devices,\ |
|
f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
|
|
step_t += 1 |
|
|
|
if torch.is_complex(param): |
|
grad = torch.view_as_real(grad) |
|
if exp_avg is not None: |
|
exp_avg = torch.view_as_real(exp_avg) |
|
if exp_avg_sq is not None: |
|
exp_avg_sq = torch.view_as_real(exp_avg_sq) |
|
param = torch.view_as_real(param) |
|
|
|
if weight_decay != 0 and not decoupled: |
|
grad = grad.add(param, alpha=weight_decay) |
|
|
|
step = step_t if capturable or differentiable else _get_value(step_t) |
|
if step == 1: |
|
exp_avg_sq.addcmul_(grad, grad.conj()) |
|
continue |
|
|
|
if weight_decay != 0 and decoupled: |
|
param.add_(param, alpha=-lr * weight_decay) |
|
|
|
denom = torch.clamp(exp_avg_sq.sqrt(), eps) |
|
normed_grad = grad.div(denom) |
|
|
|
if clip_exp is not None: |
|
clip_val = (step - 1) ** clip_exp |
|
normed_grad.clamp_(-clip_val, clip_val) |
|
|
|
exp_avg.lerp_(normed_grad, 1 - beta1) |
|
|
|
if caution: |
|
|
|
mask = (exp_avg * grad > 0).to(grad.dtype) |
|
mask.div_(mask.mean().clamp_(min=1e-3)) |
|
exp_avg = exp_avg * mask |
|
|
|
param.add_(exp_avg, alpha=-lr) |
|
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2) |
|
|
|
|
|
def _multi_tensor_adopt( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
state_steps: List[Tensor], |
|
grad_scale: Optional[Tensor], |
|
found_inf: Optional[Tensor], |
|
*, |
|
has_complex: bool, |
|
beta1: float, |
|
beta2: float, |
|
lr: Union[float, Tensor], |
|
weight_decay: float, |
|
clip_exp: Optional[float], |
|
decoupled: bool, |
|
eps: float, |
|
caution: bool, |
|
maximize: bool, |
|
capturable: bool, |
|
differentiable: bool, |
|
): |
|
if len(params) == 0: |
|
return |
|
|
|
if isinstance(lr, Tensor) and not capturable: |
|
raise RuntimeError( |
|
"lr as a Tensor is not supported for capturable=False and foreach=True" |
|
) |
|
|
|
|
|
if capturable and not _is_compiling(): |
|
from torch.optim.optimizer import _get_capturable_supported_devices |
|
capturable_supported_devices = _get_capturable_supported_devices( |
|
supports_xla=False |
|
) |
|
assert all( |
|
p.device.type == step.device.type and p.device.type in capturable_supported_devices |
|
for p, step in zip(params, state_steps) |
|
), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." |
|
|
|
assert grad_scale is None and found_inf is None |
|
|
|
assert not differentiable, "_foreach ops don't support autograd" |
|
|
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( |
|
[params, grads, exp_avgs, exp_avg_sqs, state_steps] |
|
) |
|
for ( |
|
device_params_, |
|
device_grads_, |
|
device_exp_avgs_, |
|
device_exp_avg_sqs_, |
|
device_state_steps_, |
|
), _ in grouped_tensors.values(): |
|
device_params = cast(List[Tensor], device_params_) |
|
device_grads = cast(List[Tensor], device_grads_) |
|
device_exp_avgs = cast(List[Tensor], device_exp_avgs_) |
|
device_exp_avg_sqs = cast(List[Tensor], device_exp_avg_sqs_) |
|
device_state_steps = cast(List[Tensor], device_state_steps_) |
|
|
|
|
|
if has_complex: |
|
_view_as_real(device_params, device_grads, device_exp_avgs, device_exp_avg_sqs) |
|
|
|
if maximize: |
|
device_grads = torch._foreach_neg(device_grads) |
|
|
|
|
|
|
|
|
|
|
|
if not _is_compiling() and device_state_steps[0].is_cpu: |
|
torch._foreach_add_(device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0) |
|
else: |
|
torch._foreach_add_(device_state_steps, 1) |
|
|
|
if weight_decay != 0 and not decoupled: |
|
|
|
if maximize: |
|
torch._foreach_add_(device_grads, device_params, alpha=weight_decay) |
|
else: |
|
device_grads = torch._foreach_add(device_grads, device_params, alpha=weight_decay) |
|
|
|
if device_state_steps[0] == 1: |
|
torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads) |
|
continue |
|
|
|
if weight_decay != 0 and decoupled: |
|
torch._foreach_add_(device_params, device_params, alpha=-lr * weight_decay) |
|
|
|
exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) |
|
torch._foreach_maximum_(exp_avg_sq_sqrt, eps) |
|
|
|
normed_grad = torch._foreach_div(device_grads, exp_avg_sq_sqrt) |
|
|
|
if clip_exp is not None: |
|
clip_val = (device_state_steps[0] - 1) ** clip_exp |
|
torch._foreach_maximum_(normed_grad, -clip_val) |
|
torch._foreach_minimum_(normed_grad, clip_val) |
|
|
|
torch._foreach_lerp_(device_exp_avgs, normed_grad, 1 - beta1) |
|
|
|
if caution: |
|
|
|
masks = torch._foreach_mul(device_exp_avgs, device_grads) |
|
masks = [(m > 0).to(g.dtype) for m, g in zip(masks, device_grads)] |
|
mask_scale = [m.mean() for m in masks] |
|
torch._foreach_maximum_(mask_scale, 1e-3) |
|
torch._foreach_div_(masks, mask_scale) |
|
device_exp_avgs = torch._foreach_mul(device_exp_avgs, masks) |
|
|
|
torch._foreach_add_(device_params, device_exp_avgs, alpha=-lr) |
|
|
|
torch._foreach_mul_(device_exp_avg_sqs, beta2) |
|
torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads, value=1 - beta2) |
|
|
|
|
|
|
|
def adopt( |
|
params: List[Tensor], |
|
grads: List[Tensor], |
|
exp_avgs: List[Tensor], |
|
exp_avg_sqs: List[Tensor], |
|
state_steps: List[Tensor], |
|
|
|
|
|
foreach: Optional[bool] = None, |
|
capturable: bool = False, |
|
differentiable: bool = False, |
|
grad_scale: Optional[Tensor] = None, |
|
found_inf: Optional[Tensor] = None, |
|
has_complex: bool = False, |
|
*, |
|
beta1: float, |
|
beta2: float, |
|
lr: Union[float, Tensor], |
|
weight_decay: float, |
|
clip_exp: Optional[float], |
|
decoupled: bool, |
|
eps: float, |
|
caution: bool, |
|
maximize: bool, |
|
): |
|
r"""Functional API that performs ADOPT algorithm computation. |
|
|
|
""" |
|
if foreach is None: |
|
foreach = False |
|
|
|
|
|
|
|
if not _is_compiling() and not all(isinstance(t, torch.Tensor) for t in state_steps): |
|
raise RuntimeError( |
|
"API has changed, `state_steps` argument must contain a list of singleton tensors" |
|
) |
|
|
|
if foreach and torch.jit.is_scripting(): |
|
raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
|
|
|
if foreach and not torch.jit.is_scripting(): |
|
func = _multi_tensor_adopt |
|
else: |
|
func = _single_tensor_adopt |
|
|
|
func( |
|
params, |
|
grads, |
|
exp_avgs, |
|
exp_avg_sqs, |
|
state_steps, |
|
has_complex=has_complex, |
|
beta1=beta1, |
|
beta2=beta2, |
|
lr=lr, |
|
weight_decay=weight_decay, |
|
clip_exp=clip_exp, |
|
decoupled=decoupled, |
|
eps=eps, |
|
caution=caution, |
|
maximize=maximize, |
|
capturable=capturable, |
|
differentiable=differentiable, |
|
grad_scale=grad_scale, |
|
found_inf=found_inf, |
|
) |
|
|