annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- de
- nl
- fr
- it
- es
- pt
- pl
license:
- cc-by-4.0
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- automatic-speech-recognition
paperswithcode_id: multilingual-librispeech
pretty_name: MultiLingual LibriSpeech
dataset_info:
- config_name: italian
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 81607596.048
num_examples: 1248
- name: test
num_bytes: 83216752.046
num_examples: 1262
- name: train
num_bytes: 3896742625
num_examples: 59623
- name: 9_hours
num_bytes: 141671904.428
num_examples: 2173
- name: 1_hours
num_bytes: 15560398
num_examples: 240
download_size: 4200633596
dataset_size: 4218799275.522
- config_name: polish
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 32746725
num_examples: 512
- name: test
num_bytes: 33735044
num_examples: 520
- name: train
num_bytes: 1638889846
num_examples: 25043
- name: 9_hours
num_bytes: 142005461
num_examples: 2173
- name: 1_hours
num_bytes: 15681216
num_examples: 238
download_size: 1855342312
dataset_size: 1863058292
- config_name: portuguese
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 57533473
num_examples: 826
- name: test
num_bytes: 59141979
num_examples: 871
- name: train
num_bytes: 2518553713.946
num_examples: 37533
- name: 9_hours
num_bytes: 141641902.42
num_examples: 2116
- name: 1_hours
num_bytes: 15697139
num_examples: 236
download_size: 2780836500
dataset_size: 2792568207.366
- config_name: spanish
features:
- name: audio
dtype: audio
- name: original_path
dtype: string
- name: begin_time
dtype: float64
- name: end_time
dtype: float64
- name: transcript
dtype: string
- name: audio_duration
dtype: float64
- name: speaker_id
dtype: string
- name: chapter_id
dtype: string
- name: file
dtype: string
- name: id
dtype: string
splits:
- name: dev
num_bytes: 157804903.144
num_examples: 2408
- name: test
num_bytes: 158526899.32
num_examples: 2385
- name: train
num_bytes: 14562584188
num_examples: 220701
- name: 9_hours
num_bytes: 142473624.48
num_examples: 2110
- name: 1_hours
num_bytes: 15702048
num_examples: 233
download_size: 14971394533
dataset_size: 15037091662.944
configs:
- config_name: italian
data_files:
- split: dev
path: italian/dev-*
- split: test
path: italian/test-*
- split: train
path: italian/train-*
- split: 9_hours
path: italian/9_hours-*
- split: 1_hours
path: italian/1_hours-*
- config_name: polish
data_files:
- split: dev
path: polish/dev-*
- split: test
path: polish/test-*
- split: train
path: polish/train-*
- split: 9_hours
path: polish/9_hours-*
- split: 1_hours
path: polish/1_hours-*
- config_name: portuguese
data_files:
- split: dev
path: portuguese/dev-*
- split: test
path: portuguese/test-*
- split: train
path: portuguese/train-*
- split: 9_hours
path: portuguese/9_hours-*
- split: 1_hours
path: portuguese/1_hours-*
- config_name: spanish
data_files:
- split: dev
path: spanish/dev-*
- split: test
path: spanish/test-*
- split: train
path: spanish/train-*
- split: 9_hours
path: spanish/9_hours-*
- split: 1_hours
path: spanish/1_hours-*
Dataset Card for MultiLingual LibriSpeech
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: MultiLingual LibriSpeech ASR corpus
- Repository: [Needs More Information]
- Paper: MLS: A Large-Scale Multilingual Dataset for Speech Research
- Leaderboard: 🤗 Autoevaluate Leaderboard
Dataset Summary
This is a streamable version of the Multilingual LibriSpeech (MLS) dataset. The data archives were restructured from the original ones from OpenSLR to make it easier to stream.
MLS dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.
Supported Tasks and Leaderboards
automatic-speech-recognition
,speaker-identification
: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/dataset/multilingual-librispeech and ranks models based on their WER.
Languages
The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish
How to use
The datasets
library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the load_dataset
function.
For example, to download the German config, simply specify the corresponding language config name (i.e., "german" for German):
from datasets import load_dataset
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train")
Using the datasets library, you can also stream the dataset on-the-fly by adding a streaming=True
argument to the load_dataset
function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
from datasets import load_dataset
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train", streaming=True)
print(next(iter(mls)))
Bonus: create a PyTorch dataloader directly with your own datasets (local/streamed).
Local:
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train")
batch_sampler = BatchSampler(RandomSampler(mls), batch_size=32, drop_last=False)
dataloader = DataLoader(mls, batch_sampler=batch_sampler)
Streaming:
from datasets import load_dataset
from torch.utils.data import DataLoader
mls = load_dataset("facebook/multilingual_librispeech", "german", split="train", streaming=True)
dataloader = DataLoader(mls, batch_size=32)
To find out more about loading and preparing audio datasets, head over to hf.co/blog/audio-datasets.
Example scripts
Train your own CTC or Seq2Seq Automatic Speech Recognition models on MultiLingual Librispeech with transformers
- here.
Dataset Structure
Data Instances
A typical data point comprises the path to the audio file, usually called file
and its transcription, called text
. Some additional information about the speaker and the passage which contains the transcription is provided.
{'file': '10900_6473_000030.flac',
'audio': {'path': '10900_6473_000030.flac',
'array': array([-1.52587891e-04, 6.10351562e-05, 0.00000000e+00, ...,
4.27246094e-04, 5.49316406e-04, 4.57763672e-04]),
'sampling_rate': 16000},
'text': 'więc czego chcecie odemnie spytałem wysłuchawszy tego zadziwiającego opowiadania broń nas stary człowieku broń zakrzyknęli równocześnie obaj posłowie\n',
'speaker_id': 10900,
'chapter_id': 6473,
'id': '10900_6473_000030'}
Data Fields
file: A filename .flac format.
audio: A dictionary containing the audio filename, the decoded audio array, and the sampling rate. Note that when accessing the audio column:
dataset[0]["audio"]
the audio file is automatically decoded and resampled todataset.features["audio"].sampling_rate
. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the"audio"
column, i.e.dataset[0]["audio"]
should always be preferred overdataset["audio"][0]
.text: the transcription of the audio file.
id: unique id of the data sample.
speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.
chapter_id: id of the audiobook chapter which includes the transcription.
Data Splits
Train | Train.9h | Train.1h | Dev | Test | |
---|---|---|---|---|---|
german | 469942 | 2194 | 241 | 3469 | 3394 |
dutch | 374287 | 2153 | 234 | 3095 | 3075 |
french | 258213 | 2167 | 241 | 2416 | 2426 |
spanish | 220701 | 2110 | 233 | 2408 | 2385 |
italian | 59623 | 2173 | 240 | 1248 | 1262 |
portuguese | 37533 | 2116 | 236 | 826 | 871 |
polish | 25043 | 2173 | 238 | 512 | 520 |
Dataset Creation
Curation Rationale
[Needs More Information]
Source Data
Initial Data Collection and Normalization
[Needs More Information]
Who are the source language producers?
[Needs More Information]
Annotations
Annotation process
[Needs More Information]
Who are the annotators?
[Needs More Information]
Personal and Sensitive Information
The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[Needs More Information]
Additional Information
Dataset Curators
[Needs More Information]
Licensing Information
Public Domain, Creative Commons Attribution 4.0 International Public License (CC-BY-4.0)
Citation Information
@article{Pratap2020MLSAL,
title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
journal={ArXiv},
year={2020},
volume={abs/2012.03411}
}
Contributions
Thanks to @patrickvonplaten and @polinaeterna for adding this dataset.