Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Search is not available for this dataset
image
imagewidth (px)
80
708
label
class label
101 classes
1airplanes
53ketch
94watch
1airplanes
65motorbikes
28dollar_bill
65motorbikes
34euphonium
12butterfly
15car_side
19chandelier
48helicopter
76rhino
25crocodile_head
8bonsai
27dalmatian
58lobster
40flamingo_head
65motorbikes
56leopards
36faces
94watch
65motorbikes
19chandelier
49ibis
56leopards
94watch
65motorbikes
22crab
13camera
43gramophone
81scorpion
79schooner
10brontosaurus
49ibis
6beaver
66nautilus
74pyramid
56leopards
56leopards
93umbrella
4barrel
56leopards
26cup
32elephant
99wrench
48helicopter
64minaret
64minaret
86starfish
23crayfish
39flamingo
92trilobite
76rhino
14cannon
56leopards
29dolphin
65motorbikes
54lamp
26cup
70panda
51joshua_tree
65motorbikes
56leopards
9brain
34euphonium
85stapler
1airplanes
31electric_guitar
1airplanes
70panda
1airplanes
65motorbikes
75revolver
3ant
36faces
29dolphin
88stop_sign
48helicopter
65motorbikes
38ferry
71pigeon
15car_side
100yin_yang
100yin_yang
94watch
65motorbikes
11buddha
36faces
1airplanes
7binocular
32elephant
36faces
47hedgehog
60mandolin
1airplanes
0accordion
65motorbikes
87stegosaurus
65motorbikes

Dataset Card for Caltech 101

This dataset contains images of objects from 101 distinct categories, with each category comprising approximately 40 to 800 images. The majority of categories include around 50 images each. The images were collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc’Aurelio Ranzato. Each image has an approximate resolution of 300 x 200 pixels.

Dataset Sources

Use in FL

In order to prepare the dataset for the FL settings, we recommend using Flower Dataset (flwr-datasets) for the dataset download and partitioning and Flower (flwr) for conducting FL experiments.

To partition the dataset, do the following.

  1. Install the package.
pip install flwr-datasets[vision]
  1. Use the HF Dataset under the hood in Flower Datasets.
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import IidPartitioner

fds = FederatedDataset(
    dataset="flwrlabs/caltech101",
    partitioners={"train": IidPartitioner(num_partitions=10)}
)
partition = fds.load_partition(partition_id=0)

Dataset Structure

Data Instances

The first instance of the train split is presented below:

{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=397x150>,
 'label': 1
}

Data Split

DatasetDict({
    train: Dataset({
        features: ['image', 'label'],
        num_rows: 8677
    })
})

Implementation details

Note that in this implementation, the string labels are first transformed into lowercase and then sorted alphabetically before providing the integer mapping. This methodology can vary across implementations.

Citation

When working with the Caltech-101 dataset, please cite the original paper. If you're using this dataset with Flower Datasets and Flower, cite Flower.

BibTeX:

Dataset Bibtex:

@misc{li2022caltech,
  title        = {Caltech 101},
  author       = {Li, Fei-Fei and Andreeto, Marco and Ranzato, Marc'Aurelio and Perona, Pietro},
  year         = {2022},
  month        = {Apr},
  publisher    = {CaltechDATA},
  doi          = {10.22002/D1.20086},
  abstract     = {Pictures of objects belonging to 101 categories. About 40 to 800 images per category. Most categories have about 50 images. Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato. The size of each image is roughly 300 x 200 pixels. We have carefully clicked outlines of each object in these pictures, these are included under the 'Annotations.tar'. There is also a MATLAB script to view the annotations, 'show_annotations.m'.}
}

Flower:

@article{DBLP:journals/corr/abs-2007-14390,
  author       = {Daniel J. Beutel and
                  Taner Topal and
                  Akhil Mathur and
                  Xinchi Qiu and
                  Titouan Parcollet and
                  Nicholas D. Lane},
  title        = {Flower: {A} Friendly Federated Learning Research Framework},
  journal      = {CoRR},
  volume       = {abs/2007.14390},
  year         = {2020},
  url          = {https://arxiv.org/abs/2007.14390},
  eprinttype    = {arXiv},
  eprint       = {2007.14390},
  timestamp    = {Mon, 03 Aug 2020 14:32:13 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

Dataset Card Contact

If you have any questions about the dataset preprocessing and preparation, please contact Flower Labs.

Downloads last month
215