|
--- |
|
license: cc-by-sa-4.0 |
|
dataset_info: |
|
- config_name: E2H-AMC |
|
features: |
|
- name: contest |
|
dtype: string |
|
- name: rating |
|
dtype: float64 |
|
- name: rating_std |
|
dtype: float64 |
|
- name: rating_quantile |
|
dtype: float64 |
|
- name: tag |
|
dtype: string |
|
- name: subtest |
|
dtype: string |
|
- name: year |
|
dtype: int64 |
|
- name: month |
|
dtype: string |
|
- name: index |
|
dtype: int64 |
|
- name: problem |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
- name: solution |
|
dtype: string |
|
- name: rating_tag |
|
dtype: string |
|
- name: test_tag |
|
dtype: string |
|
- name: item_difficulty |
|
dtype: float64 |
|
- name: unnorm_rating |
|
dtype: float64 |
|
- name: unnorm_rating_std |
|
dtype: float64 |
|
- name: unnorm_rating_lower |
|
dtype: float64 |
|
- name: unnorm_rating_upper |
|
dtype: float64 |
|
- name: ever_exist |
|
dtype: bool |
|
splits: |
|
- name: train |
|
num_bytes: 1306215 |
|
num_examples: 1000 |
|
- name: eval |
|
num_bytes: 3935954 |
|
num_examples: 2975 |
|
download_size: 2811269 |
|
dataset_size: 5242169 |
|
- config_name: E2H-ARC |
|
features: |
|
- name: rating |
|
dtype: float64 |
|
- name: rating_std |
|
dtype: float64 |
|
- name: rating_quantile |
|
dtype: float64 |
|
- name: id |
|
dtype: string |
|
- name: question |
|
dtype: string |
|
- name: choices |
|
struct: |
|
- name: label |
|
sequence: string |
|
- name: text |
|
sequence: string |
|
- name: answerKey |
|
dtype: string |
|
- name: model_avg_acc |
|
dtype: float64 |
|
- name: unnorm_rating |
|
dtype: float64 |
|
- name: unnorm_rating_std |
|
dtype: float64 |
|
splits: |
|
- name: eval |
|
num_bytes: 431767 |
|
num_examples: 1172 |
|
download_size: 253021 |
|
dataset_size: 431767 |
|
- config_name: E2H-Codeforces |
|
features: |
|
- name: contest_id |
|
dtype: int64 |
|
- name: problem_index |
|
dtype: string |
|
- name: rating |
|
dtype: float64 |
|
- name: rating_std |
|
dtype: float64 |
|
- name: rating_volatility |
|
dtype: float64 |
|
- name: rating_quantile |
|
dtype: float64 |
|
- name: tag |
|
dtype: string |
|
- name: detailed_tag |
|
dtype: string |
|
- name: problem_name |
|
dtype: string |
|
- name: problem_main |
|
dtype: string |
|
- name: problem_note |
|
dtype: string |
|
- name: input_spec |
|
dtype: string |
|
- name: output_spec |
|
dtype: string |
|
- name: sample_inputs |
|
sequence: string |
|
- name: sample_outputs |
|
sequence: string |
|
- name: inputs |
|
sequence: string |
|
- name: answers |
|
sequence: string |
|
- name: input_output |
|
struct: |
|
- name: inputs |
|
sequence: string |
|
- name: outputs |
|
sequence: string |
|
- name: solution_id_0 |
|
dtype: int64 |
|
- name: solution_0 |
|
dtype: string |
|
- name: outputs_0 |
|
sequence: string |
|
- name: solution_id_1 |
|
dtype: int64 |
|
- name: solution_1 |
|
dtype: string |
|
- name: outputs_1 |
|
sequence: string |
|
- name: solution_id_2 |
|
dtype: int64 |
|
- name: solution_2 |
|
dtype: string |
|
- name: outputs_2 |
|
sequence: string |
|
- name: unnorm_rating |
|
dtype: float64 |
|
- name: unnorm_rating_std |
|
dtype: float64 |
|
- name: unnorm_rating_volatility |
|
dtype: float64 |
|
- name: reference_rating |
|
dtype: float64 |
|
- name: original_tags |
|
sequence: string |
|
- name: ever_exist |
|
dtype: bool |
|
splits: |
|
- name: train |
|
num_bytes: 25286548 |
|
num_examples: 3663 |
|
- name: eval |
|
num_bytes: 52688262 |
|
num_examples: 4000 |
|
download_size: 33577472 |
|
dataset_size: 77974810 |
|
- config_name: E2H-GSM8K |
|
features: |
|
- name: rating |
|
dtype: float64 |
|
- name: rating_std |
|
dtype: float64 |
|
- name: rating_quantile |
|
dtype: float64 |
|
- name: question |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
- name: model_avg_acc |
|
dtype: float64 |
|
- name: unnorm_rating |
|
dtype: float64 |
|
- name: unnorm_rating_std |
|
dtype: float64 |
|
splits: |
|
- name: eval |
|
num_bytes: 777044 |
|
num_examples: 1319 |
|
download_size: 475944 |
|
dataset_size: 777044 |
|
- config_name: E2H-Lichess |
|
features: |
|
- name: puzzle_id |
|
dtype: string |
|
- name: rating |
|
dtype: float64 |
|
- name: rating_std |
|
dtype: float64 |
|
- name: rating_quantile |
|
dtype: float64 |
|
- name: tag |
|
dtype: string |
|
- name: fen |
|
dtype: string |
|
- name: pgn |
|
dtype: string |
|
- name: annotated_pgn |
|
dtype: string |
|
- name: uci_seq |
|
dtype: string |
|
- name: san_seq |
|
dtype: string |
|
- name: answer_san |
|
dtype: string |
|
- name: answer_uci |
|
dtype: string |
|
- name: init_num_moves |
|
dtype: int64 |
|
- name: player |
|
dtype: string |
|
- name: popularity_score |
|
dtype: int64 |
|
- name: puzzle_num_plays |
|
dtype: int64 |
|
- name: motif_tags |
|
sequence: string |
|
- name: phase_tags |
|
sequence: string |
|
- name: mate_tags |
|
sequence: string |
|
- name: special_move_tags |
|
sequence: string |
|
- name: game_origin_tags |
|
sequence: string |
|
- name: opening_tags |
|
sequence: string |
|
- name: game_hash |
|
dtype: string |
|
- name: game_url |
|
dtype: string |
|
- name: game_pgn |
|
dtype: string |
|
- name: game_annotated_pgn |
|
dtype: string |
|
- name: unnorm_rating |
|
dtype: int64 |
|
- name: unnorm_rating_std |
|
dtype: int64 |
|
- name: previous_fen |
|
dtype: string |
|
- name: last_move_uci |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 633749139 |
|
num_examples: 71763 |
|
- name: eval |
|
num_bytes: 44154200 |
|
num_examples: 5000 |
|
download_size: 297840777 |
|
dataset_size: 677903339 |
|
- config_name: E2H-Winogrande |
|
features: |
|
- name: rating |
|
dtype: float64 |
|
- name: rating_std |
|
dtype: float64 |
|
- name: rating_quantile |
|
dtype: float64 |
|
- name: sentence |
|
dtype: string |
|
- name: option1 |
|
dtype: string |
|
- name: option2 |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
- name: model_avg_acc |
|
dtype: float64 |
|
- name: unnorm_rating |
|
dtype: float64 |
|
- name: unnorm_rating_std |
|
dtype: float64 |
|
splits: |
|
- name: eval |
|
num_bytes: 224999 |
|
num_examples: 1267 |
|
download_size: 141808 |
|
dataset_size: 224999 |
|
configs: |
|
- config_name: E2H-AMC |
|
data_files: |
|
- split: train |
|
path: E2H-AMC/train-* |
|
- split: eval |
|
path: E2H-AMC/eval-* |
|
- config_name: E2H-ARC |
|
data_files: |
|
- split: eval |
|
path: E2H-ARC/eval-* |
|
- config_name: E2H-Codeforces |
|
data_files: |
|
- split: train |
|
path: E2H-Codeforces/train-* |
|
- split: eval |
|
path: E2H-Codeforces/eval-* |
|
- config_name: E2H-GSM8K |
|
data_files: |
|
- split: eval |
|
path: E2H-GSM8K/eval-* |
|
- config_name: E2H-Lichess |
|
data_files: |
|
- split: train |
|
path: E2H-Lichess/train-* |
|
- split: eval |
|
path: E2H-Lichess/eval-* |
|
- config_name: E2H-Winogrande |
|
data_files: |
|
- split: eval |
|
path: E2H-Winogrande/eval-* |
|
--- |
|
|
|
# Easy2Hard-Bench |
|
|
|
<div align="center"> |
|
<img src="./img/hf_data.png" alt="Logo" width="100%"> |
|
</div> |
|
|
|
## Dataset Description |
|
[Easy2Hard-Bench](https://arxiv.org/abs) is a benchmark consisting with 6 datasets in different domain (mathematics, programming, chess, and various reasoning tasks). The problems from each dataset are labeled with continuous-valued difficulty levels. |
|
|
|
| | Topic | Source | Statistics Used to Infer Difficulty | Source Type | Estimation Method | |
|
|----------------|-------------------------|-----------------|------------------------------------------------------------------------------|-------------|-------------------| |
|
| E2H-AMC | Math Competitions | AMC, AIME, HMMT | Item difficulties | Human | IRT | |
|
| E2H-Codeforces | Competitive Programming | Codeforces | Submission status, contestant ratings | Human | Glicko-2 | |
|
| E2H-Lichess | Chess Puzzles | Lichess | Player ratings, puzzle ratings | Human | Glicko-2 | |
|
| E2H-GSM8K | Math Word Problems | GSM8K | Sample-wise evaluation results of thousands of LLMs on Open LLM Leaderboard | LLMs | IRT | |
|
| E2H-ARC | Natural Science QA | ARC | Sample-wise evaluation results of thousands of LLMs on Open LLM Leaderboard | LLMs | IRT | |
|
| E2H-Winograde | Commonsense Reasoning | Winogrande | Sample-wise evaluation results of thousands of LLMs on Open LLM Leaderboard | LLMs | IRT | |
|
|
|
This can be used to profile the ability of language models over varying difficulties and explore the generalization of LLMs from easy to hard. |
|
|
|
## Languages |
|
|
|
The datasets are mainly in English. Some texts are LaTeX-rendered. The code solutions in E2H-Codeforces are in Python. The games in E2H-Lichess are given in serveral prevalent notations (PGN, UCI, FEN). |
|
|
|
## Dataset Structure |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-AMC") |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['contest', 'rating', 'rating_std', 'rating_quantile', 'tag', 'subtest', 'year', 'month', 'index', 'problem', 'answer', 'solution', 'rating_tag', 'test_tag', 'item_difficulty', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_lower', 'unnorm_rating_upper', 'ever_exist'], |
|
num_rows: 1000 |
|
}) |
|
eval: Dataset({ |
|
features: ['contest', 'rating', 'rating_std', 'rating_quantile', 'tag', 'subtest', 'year', 'month', 'index', 'problem', 'answer', 'solution', 'rating_tag', 'test_tag', 'item_difficulty', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_lower', 'unnorm_rating_upper', 'ever_exist'], |
|
num_rows: 2975 |
|
}) |
|
}) |
|
|
|
|
|
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-Codeforces") |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['contest_id', 'problem_index', 'rating', 'rating_std', 'rating_volatility', 'rating_quantile', 'tag', 'detailed_tag', 'problem_name', 'problem_main', 'problem_note', 'input_spec', 'output_spec', 'sample_inputs', 'sample_outputs', 'inputs', 'answers', 'input_output', 'solution_id_0', 'solution_0', 'outputs_0', 'solution_id_1', 'solution_1', 'outputs_1', 'solution_id_2', 'solution_2', 'outputs_2', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_volatility', 'reference_rating', 'original_tags', 'ever_exist'], |
|
num_rows: 3663 |
|
}) |
|
eval: Dataset({ |
|
features: ['contest_id', 'problem_index', 'rating', 'rating_std', 'rating_volatility', 'rating_quantile', 'tag', 'detailed_tag', 'problem_name', 'problem_main', 'problem_note', 'input_spec', 'output_spec', 'sample_inputs', 'sample_outputs', 'inputs', 'answers', 'input_output', 'solution_id_0', 'solution_0', 'outputs_0', 'solution_id_1', 'solution_1', 'outputs_1', 'solution_id_2', 'solution_2', 'outputs_2', 'unnorm_rating', 'unnorm_rating_std', 'unnorm_rating_volatility', 'reference_rating', 'original_tags', 'ever_exist'], |
|
num_rows: 4000 |
|
}) |
|
}) |
|
|
|
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-Lichess") |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['puzzle_id', 'rating', 'rating_std', 'rating_quantile', 'tag', 'fen', 'pgn', 'annotated_pgn', 'uci_seq', 'san_seq', 'answer_san', 'answer_uci', 'init_num_moves', 'player', 'popularity_score', 'puzzle_num_plays', 'motif_tags', 'phase_tags', 'mate_tags', 'special_move_tags', 'game_origin_tags', 'opening_tags', 'game_hash', 'game_url', 'game_pgn', 'game_annotated_pgn', 'unnorm_rating', 'unnorm_rating_std', 'previous_fen', 'last_move_uci'], |
|
num_rows: 71763 |
|
}) |
|
eval: Dataset({ |
|
features: ['puzzle_id', 'rating', 'rating_std', 'rating_quantile', 'tag', 'fen', 'pgn', 'annotated_pgn', 'uci_seq', 'san_seq', 'answer_san', 'answer_uci', 'init_num_moves', 'player', 'popularity_score', 'puzzle_num_plays', 'motif_tags', 'phase_tags', 'mate_tags', 'special_move_tags', 'game_origin_tags', 'opening_tags', 'game_hash', 'game_url', 'game_pgn', 'game_annotated_pgn', 'unnorm_rating', 'unnorm_rating_std', 'previous_fen', 'last_move_uci'], |
|
num_rows: 5000 |
|
}) |
|
}) |
|
|
|
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-GSM8K") |
|
DatasetDict({ |
|
eval: Dataset({ |
|
features: ['rating', 'rating_std', 'rating_quantile', 'question', 'answer', 'model_avg_acc', 'unnorm_rating', 'unnorm_rating_std'], |
|
num_rows: 1319 |
|
}) |
|
}) |
|
|
|
load_dataset("furonghuang-lab/Easy2Hard-Bench", "E2H-ARC") |
|
DatasetDict({ |
|
eval: Dataset({ |
|
features: ['rating', 'rating_std', 'rating_quantile', 'id', 'question', 'choices', 'answerKey', 'model_avg_acc', 'unnorm_rating', 'unnorm_rating_std'], |
|
num_rows: 1172 |
|
}) |
|
}) |
|
``` |
|
|
|
### Data Fields |
|
#### E2H-AMC |
|
|Field|Type|Description| |
|
|---|---|---| |
|
|contest|string|name of the contest| |
|
|rating|float|estimated difficulty| |
|
|rating_std|float|standard deviation of estimated difficulty| |
|
|rating_quantile|float|quantile of estimated difficulty| |
|
|tag|string|type of the contest| |
|
|subtest|string|name of the subtest| |
|
|year|int|year of the contest| |
|
|month|string|month of the contest| |
|
|index|string|problem index in the subtest| |
|
|problem|string|textual description of problem| |
|
|answer|string|answer of problem| |
|
|solution|string|textual solution of the problem| |
|
|rating_tag|string|tag about problem rating| |
|
|test_tag|string|tag about test type| |
|
|item difficulty|float|item difficulty of the problem| |
|
|unnorm_rating|float|unnormalized estimated difficulty| |
|
|unnorm_rating_std|float|standard deviation of unnormalized estimated difficulty| |
|
|unnorm_rating_lower|float|lower threshold of difficulty suggested by AoPS| |
|
|unnorm_rating_upper|float|upper threshold of difficulty suggested by AoPS| |
|
|ever_exist|bool|whether the problem exists in the MATH dataset| |
|
|
|
#### E2H-Codeforces |
|
|Field|Type|Description| |
|
|---|---|---| |
|
|contest_id|int|Codeforce contest id| |
|
|problem_index|string|problem index in the contest| |
|
|rating|float|estimated difficulty| |
|
|rating_std|float|standard deviation of estimated difficulty| |
|
|rating_volatility|float|volatility of estimated difficulty| |
|
|rating_quantile|float|quantile of estimated difficulty| |
|
|tag|string|type of the problem| |
|
|detailed_tag|string|detailed type of the problem| |
|
|problem_name|string|name of the problem| |
|
|problem_main|string|main text of the problem| |
|
|problem_note|string|note of the problem| |
|
|input_spec|string|input specifications of the problem| |
|
|output_spec|string|output specifications of the problem| |
|
|sample_inputs|string|example inputs of the problem| |
|
|sample_outputs|string|example outputs of the problem| |
|
|inputs|string|inputs in the test cases| |
|
|answers|string|standard outputs in the test cases| |
|
|input_output|string|standard inputs and outputs in the test cases| |
|
|outputs|string|standard outputs in the test cases| |
|
|solution_id_0|int|Codeforces submission id of selected solution 0| |
|
|solution_0|string|source code of selected solution 0| |
|
|outputs_0|string|outputs of selected solution 0| |
|
|solution_id_1|int|Codeforces submission id of seleted solution 1| |
|
|solution_1|string|source code of selected solution 1| |
|
|outputs_1|string|outputs of selected solution 1| |
|
|solution_id_2|int|Codeforces submission id of selected solution 2| |
|
|solution_2|string|source code of selected solution 2| |
|
|outputs_2|string|outputs of selected solution 2| |
|
|unnorm_rating|float|unnormalized estimated difficulty| |
|
|unnorm_rating_std|float|standard deviation of unnormalized estimated difficulty| |
|
|unnorm_rating_volatility|float|volatility of unnormalized estimated difficulty| |
|
|reference_rating|float|coarse reference difficulty rating on Codeforces| |
|
|original_tags|string|original tags on Codeforces| |
|
|ever_exist|bool|whether the problem exists in the APPS dataset| |
|
|
|
If the number of solutions is less than 3, the data fields related to Solution 1 and 2 can be empty. |
|
|
|
#### E2H-Lichess |
|
|Field|Type|Description| |
|
|---|---|---| |
|
|puzzle_id|string|id of the puzzle on Lichess| |
|
|rating|float|estimated difficulty| |
|
|rating_std|float|standard deviation of estimated difficulty| |
|
|rating_quantile|float|quantile of estimated difficulty| |
|
|tag|string|type of the puzzle| |
|
|fen|string|Forsyth–Edwards notation (FEN) of the puzzle| |
|
|pgn|string|portable game notation (PGN) of the puzzle| |
|
|annotated_pgn|string|annotated portable game notation (PGN) of the puzzle| |
|
|uci_seq|string|universal chess interface (UCI) notation of the puzzle| |
|
|san_seq|string|standard algebraic notation (SAN) of the puzzle| |
|
|answer_san|string|standard algebraic notation (SAN) of the answer| |
|
|answer_uci|string|universal chess interface (UCI) notation of answer| |
|
|init_num_moves|int|number of moves from initial chess board to form the puzzle| |
|
|player|string|side to solve the puzzle, either `black` or `white`| |
|
|populartity_score|int|popularity score of the puzzle on Lichess| |
|
|puzzle_num_plays|int|number of times the puzzle is played on Lichess| |
|
|motif_tags|string|tags about the puzzle motifs| |
|
|phase_tags|string|tags about the phase of the puzzle| |
|
|mate_tags|string|tags about the type of checkmate| |
|
|special_move_tags|string|tags about special moves involved in the puzzle| |
|
|game_origin_tags|string|tags about the origin of the puzzle| |
|
|opening_tags|string|tags about the type of opening| |
|
|game_hash|string|hash code of the corresponding game on Lichess| |
|
|game_url|string|URL link of the corresponding game on Lichess| |
|
|game_pgn|string|portable game notation (PGN) of the entire game| |
|
|game_annotated_pgn|string|annotated portable game notation (PGN) of the entire game| |
|
|unnorm_rating|float|unnormalized estimated difficulty| |
|
|unnorm_rating_std|float|standard deviation of unnormalized estimated difficulty| |
|
|previous_fen|string|Forsyth–Edwards notation (FEN) of the puzzle before last move by the opponent| |
|
|last_move_uci|string|universal chess interface (UCI) notation of last move by the opponent| |
|
|
|
#### E2H-GSM8K, E2H-ARC, E2H-Winogrande |
|
Besides the data fields from the original datasets, all of these three datasets have the following difficulty-realted data fields: |
|
|
|
|Field|Type|Description| |
|
|---|---|---| |
|
|rating|float|estimated difficulty| |
|
|rating_std|float|standard deviation of estimated difficulty| |
|
|rating_quantile|float|quantile of estimated difficulty| |
|
|model_avg_acc|float|average accuracy of selected models on the Open LLM Leaderboard| |
|
|unnorm_rating|float|unnormalized estimated difficulty| |
|
|unnorm_rating_std|float|standard deviation of unnormalized estimated difficulty| |
|
|
|
### Data Splits |
|
|
|
For the newly crafted datasets, E2H-AMC, E2H-Codeforces and E2H-Lichess, all of them contain a train and evaluation splits. |
|
|
|
For the datasets, E2H-GSM8K, E2H-ARC and E2H-Winogrande, all of them only have evaluation splits with size of that in the original dataset. |
|
|
|
| | Train Size | Eval Size | |
|
|----------------|-----------:|----------:| |
|
| E2H-AMC | 1,000 | 2,975 | |
|
| E2H-Codeforces | 3,663 | 4,000 | |
|
| E2H-Lichess | 71,763 | 5,000 | |
|
| E2H-GSM8K | N.A. | 1,319 | |
|
| E2H-ARC | N.A. | 1,172 | |
|
| E2H-Winogrande | N.A. | 1,267 | |
|
|
|
### Data Difficulty Distribution |
|
|
|
<div align="center"> |
|
<img src="./img/hf_distribution.png" alt="Logo" width="100%"> |
|
</div> |
|
|
|
## Dataset Creation |
|
|
|
- E2H-AMC: We collect the problems from AMC 8/10/12, AIME I/II and HMMT Feb/Nov, and estimate the difficulties by IRT based on AoPS rating of competitions and item difficulties from the official reports. |
|
- E2H-Codeforces: We collect the problems from contests on Codeforces, and estimate the difficulties by Glicko-2 based on contestants' ratings and submission status from Codeforces. |
|
- E2H-Lichess: We collect the one-step puzzle from Lichess, and estimate the difficulties by Glicko-2 based on puzzle ratings and player ratings from Lichess. |
|
- E2H-GSM8K, E2H-ARC, E2H-Winogrande: We inherit the original datasets, and estimate the dififculties by IRT based on sample-wise evluation results of LLMs on Open LLM leaderboard. |
|
|
|
|
|
## Citation Information |
|
|
|
``` |
|
TBD |
|
``` |