|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- text-generation |
|
- text2text-generation |
|
- translation |
|
language: |
|
- en |
|
tags: |
|
- code |
|
pretty_name: BabelCode Transcoder |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
# Dataset Card for BabelCode Transcoder |
|
|
|
## Dataset Description |
|
|
|
- **Repository:** [GitHub Repository](https://github.com/google-research/babelcode) |
|
- **Paper:** [Measuring The Impact Of Programming Language Distribution](https://arxiv.org/abs/2302.01973) |
|
|
|
### How To Use This Dataset |
|
|
|
To quickly evaluate BC-Transcoder predictions, save the `qid` and `language` keys along with the postprocessed prediction code in a JSON lines file. Then follow the install instructions for [BabelCode](https://github.com/google-research/babelcode), and you can evaluate your predictions. |
|
|
|
### Dataset Summary |
|
|
|
The [Transcoder](https://github.com/facebookresearch/CodeGen) dataset in BabelCode format. Currently supports translation from C++ and Python. |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
### Languages |
|
BC-Transcoder supports: |
|
* C++ |
|
* C# |
|
* Dart |
|
* Go |
|
* Haskell |
|
* Java |
|
* Javascript |
|
* Julia |
|
* Kotlin |
|
* Lua |
|
* PHP |
|
* Python |
|
* R |
|
* Rust |
|
* Scala |
|
* TypeScript |
|
|
|
## Dataset Structure |
|
|
|
```python |
|
>>> from datasets import load_dataset |
|
>>> load_dataset("gabeorlanski/bc-transcoder") |
|
DatasetDict({ |
|
test: Dataset({ |
|
features: ['qid', 'title', 'language', 'text', 'signature_with_docstring', 'signature', 'arguments', 'entry_fn_name', 'entry_cls_name', 'test_code'], |
|
num_rows: 2576 |
|
}) |
|
}) |
|
``` |
|
|
|
### Data Fields |
|
|
|
- `qid`: The question ID used for running tests. |
|
- `title`: The title of the question. |
|
- `language`: The programming language of the example. |
|
- `text`: The description of the problem. |
|
- `signature`: The signature for the problem. |
|
- `signature_with_docstring`: The signature with the adequately formatted docstring for the given problem. |
|
- `arguments`: The arguments of the problem. |
|
- `entry_fn_name`: The function's name to use an entry point. |
|
- `entry_cls_name`: The class name to use an entry point. |
|
- `test_code`: The raw testing script used in the language. If you want to use this, replace `PLACEHOLDER_FN_NAME` (and `PLACEHOLDER_CLS_NAME` if needed) with the corresponding entry points. Next, replace `PLACEHOLDER_CODE_BODY` with the postprocessed prediction. |
|
- `source_py`: The source solution in Python. |
|
- `source_cpp`: The source in C++. |
|
## Dataset Creation |
|
See section 2 of the [BabelCode Paper](https://arxiv.org/abs/2302.01973) to learn more about how the datasets are translated. |
|
|
|
### Curation Rationale |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
#### Who are the source language producers? |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
#### Who are the annotators? |
|
|
|
### Personal and Sensitive Information |
|
None. |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
|
|
### Discussion of Biases |
|
|
|
### Other Known Limitations |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
Google Research |
|
|
|
### Licensing Information |
|
CC-BY-4.0 |
|
|
|
### Citation Information |
|
``` |
|
@article{orlanski2023measuring, |
|
title={Measuring The Impact Of Programming Language Distribution}, |
|
author={Orlanski, Gabriel and Xiao, Kefan and Garcia, Xavier and Hui, Jeffrey and Howland, Joshua and Malmaud, Jonathan and Austin, Jacob and Singh, Rishah and Catasta, Michele}, |
|
journal={arXiv preprint arXiv:2302.01973}, |
|
year={2023} |
|
} |
|
@article{roziere2020unsupervised, |
|
title={Unsupervised translation of programming languages}, |
|
author={Roziere, Baptiste and Lachaux, Marie-Anne and Chanussot, Lowik and Lample, Guillaume}, |
|
journal={Advances in Neural Information Processing Systems}, |
|
volume={33}, |
|
year={2020} |
|
} |
|
``` |