text
stringlengths 0
820
|
---|
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, |
editors, Computer Vision – ECCV 2016 , Lecture Notes in |
Computer Science, pages 519–534, Cham, 2016. Springer |
International Publishing. |
[24] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. |
Deep Learning . MIT Press, Cambridge, MA, USA, 2016. |
http://www.deeplearningbook.org . |
[25] Ritwik Gupta, Colorado Reed, Anja Rohrbach, and Trevor |
Darrell. Accelerating Ukraine Intelligence Analysis |
with Computer Vision on Synthetic Aperture Radar Im- |
agery. http://bair.berkeley.edu/blog/2022/03/21/ukraine-sar- |
maers/, Mar. 2022. |
[26] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr |
Doll´ar, and Ross Girshick. Masked Autoencoders Are Scal- |
able Vision Learners, Dec. 2021. |
[27] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross |
Girshick. Momentum contrast for unsupervised visual rep- |
resentation learning. In Proceedings of the IEEE/CVF con- |
ference on computer vision and pattern recognition , pages |
9729–9738, 2020. |
[28] Yutong He, Dingjie Wang, Nicholas Lai, William Zhang, |
Chenlin Meng, Marshall Burke, David Lobell, and Stefano |
Ermon. Spatial-temporal super-resolution of satellite im- |
agery via conditional pixel synthesis. Advances in Neural |
Information Processing Systems , 34:27903–27915, 2021. |
[29] Patrick Helber, Benjamin Bischke, Andreas Dengel, and |
Damian Borth. Introducing Eurosat: A Novel Dataset and |
Deep Learning Benchmark for Land Use and Land Cover |
Classification. In IGARSS 2018 - 2018 IEEE International |
Geoscience and Remote Sensing Symposium , pages 204–207, |
July 2018. |
[30] Olivier Henaff. Data-efficient image recognition with con- |
trastive predictive coding. In International conference on |
machine learning , pages 4182–4192. PMLR, 2020. |
[31] X Hu, H Mu, X Zhang, Z Wang, T Tan, and J Meta-SR Sun. |
A magnification-arbitrary network for super-resolution. In |
Proceedings of the 2019 IEEE/CVF Conference on Computer |
Vision and Pattern Recognition (CVPR), Long Beach, CA, |
USA, pages 15–20, 2019. |
[32] Damian Iba ˜nez, Ruben Fernandez-Beltran, Filiberto Pla, and |
Naoto Yokoya. Masked auto-encoding spectral-spatial trans- |
former for hyperspectral image classification. IEEE Transac- |
tions on Geoscience and Remote Sensing , 2022. |
[33] Pengpeng Ji, Shengye Yan, and Qingshan Liu. Region-Based |
Spatial Sampling for Image Classification. In 2013 Seventh |
International Conference on Image and Graphics , pages 874– |
879, July 2013. |
[34] Jan J. Koenderink. The structure of images. Biological |
Cybernetics , 50(5):363–370, Aug. 1984. |
[35] Pawel Kowaleczko, Tomasz Tarasiewicz, Maciej Ziaja, Daniel |
Kostrzewa, Jakub Nalepa, Przemyslaw Rokita, and Michal |
Kawulok. Mus2: A benchmark for sentinel-2 multi-image |
super-resolution. arXiv preprint arXiv:2210.02745 , 2022. |
[36] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of |
Features: Spatial Pyramid Matching for Recognizing Natural |
Scene Categories. In 2006 IEEE Computer Society Confer- |
ence on Computer Vision and Pattern Recognition (CVPR’06) , |
volume 2, pages 2169–2178, June 2006. |
[37] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep |
learning. nature , 521(7553):436–444, 2015. |
[38] Christian Ledig, Lucas Theis, Ferenc Husz ´ar, Jose Caballero, |
Andrew Cunningham, Alejandro Acosta, Andrew Aitken, |
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo- |
realistic single image super-resolution using a generative ad- |
versarial network. In Proceedings of the IEEE conference on |
computer vision and pattern recognition , pages 4681–4690, |
2017. |
[39] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, |
Bharath Hariharan, and Serge Belongie. Feature Pyramid |
Networks for Object Detection. In Proceedings of the IEEE |
Conference on Computer Vision and Pattern Recognition , |
pages 2117–2125, 2017. |
[40] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian |
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg. |
SSD: Single Shot MultiBox Detector. In Bastian Leibe, Jiri |
Matas, Nicu Sebe, and Max Welling, editors, Computer Vi- |
sion – ECCV 2016 , Lecture Notes in Computer Science, pages |
21–37, Cham, 2016. Springer International Publishing. |
[41] Yufei Liu, Xiaorun Li, Ziqiang Hua, Chaoqun Xia, and Liaoy- |
ing Zhao. A band selection method with masked convolu- |
tional autoencoder for hyperspectral image. IEEE Geoscience |
and Remote Sensing Letters , 2022. |
[42] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht- |
enhofer, Trevor Darrell, and Saining Xie. A ConvNet for the |
2020s. In Proceedings of the IEEE/CVF Conference on Com- |
puter Vision and Pattern Recognition , pages 11976–11986, |
2022. |
[43] Gabriel Machado, Edemir Ferreira, Keiller Nogueira, Hugo |
Oliveira, Matheus Brito, Pedro Henrique Targino Gama, and |
Jefersson Alex dos Santos. AiRound and CV-BrCT: Novel |
Multiview Datasets for Scene Classification. IEEE Journal |
of Selected Topics in Applied Earth Observations and Remote |
Sensing , 14:488–503, 2021. |
[44] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, |
and Pierre Alliez. Can semantic labeling methods generalize |
to any city? the inria aerial image labeling benchmark. In |
IEEE International Geoscience and Remote Sensing Sympo- |
sium (IGARSS) . IEEE, 2017. |
[45] Malachy Moran, Kayla Woputz, Derrick Hee, Manuela |
Girotto, Paolo D’Odorico, Ritwik Gupta, Daniel Feldman, |