code
stringlengths 1
46.1k
⌀ | label
class label 1.18k
classes | domain_label
class label 21
classes | index
stringlengths 4
5
|
---|---|---|---|
import java.math.MathContext
import scala.annotation.tailrec
import scala.compat.Platform.currentTime
import scala.math.BigDecimal
object Calculate_Pi extends App {
val precision = new MathContext(32768 )
val (bigZero, bigOne, bigTwo, bigFour) =
(BigDecimal(0, precision), BigDecimal(1, precision), BigDecimal(2, precision), BigDecimal(4, precision))
def bigSqrt(bd: BigDecimal) = {
@tailrec
def iter(x0: BigDecimal, x1: BigDecimal): BigDecimal =
if (x0 == x1) x1 else iter(x1, (bd / x1 + x1) / bigTwo)
iter(bigZero, BigDecimal(Math.sqrt(bd.toDouble), precision))
}
@tailrec
private def loop(a: BigDecimal, g: BigDecimal, sum: BigDecimal, pow: BigDecimal): BigDecimal = {
if (a == g) (bigFour * (a * a)) / (bigOne - sum)
else {
val (_a, _g, _pow) = ((a + g) / bigTwo, bigSqrt(a * g), pow * bigTwo)
loop(_a, _g, sum + ((_a * _a - (_g * _g)) * _pow), _pow)
}
}
println(precision)
val pi = loop(bigOne, bigOne / bigSqrt(bigTwo), bigZero, bigTwo)
println(s"This are ${pi.toString.length - 1} digits of :")
val lines = pi.toString().sliding(103, 103).mkString("\n")
println(lines)
println(s"Successfully completed without errors. [total ${currentTime - executionStart} ms]")
} | 6Arithmetic-geometric mean/Calculate Pi
| 16scala
| kvhk |
class complex {
num real=0;
num imag=0;
complex(num r,num i){
this.real=r;
this.imag=i;
}
complex add(complex b){
return new complex(this.real + b.real, this.imag + b.imag);
}
complex mult(complex b){ | 9Arithmetic/Complex
| 18dart
| au1h |
using boost::spirit::rule;
using boost::spirit::parser_tag;
using boost::spirit::ch_p;
using boost::spirit::real_p;
using boost::spirit::tree_node;
using boost::spirit::node_val_data;
struct parser: public boost::spirit::grammar<parser>
{
enum rule_ids { addsub_id, multdiv_id, value_id, real_id };
struct set_value
{
set_value(parser const& p): self(p) {}
void operator()(tree_node<node_val_data<std::string::iterator,
double> >& node,
std::string::iterator begin,
std::string::iterator end) const
{
node.value.value(self.tmp);
}
parser const& self;
};
mutable double tmp;
template<typename Scanner> struct definition
{
rule<Scanner, parser_tag<addsub_id> > addsub;
rule<Scanner, parser_tag<multdiv_id> > multdiv;
rule<Scanner, parser_tag<value_id> > value;
rule<Scanner, parser_tag<real_id> > real;
definition(parser const& self)
{
using namespace boost::spirit;
addsub = multdiv
>> *((root_node_d[ch_p('+')] | root_node_d[ch_p('-')]) >> multdiv);
multdiv = value
>> *((root_node_d[ch_p('*')] | root_node_d[ch_p('/')]) >> value);
value = real | inner_node_d[('(' >> addsub >> ')')];
real = leaf_node_d[access_node_d[real_p[assign_a(self.tmp)]][set_value(self)]];
}
rule<Scanner, parser_tag<addsub_id> > const& start() const
{
return addsub;
}
};
};
template<typename TreeIter>
double evaluate(TreeIter const& i)
{
double op1, op2;
switch (i->value.id().to_long())
{
case parser::real_id:
return i->value.value();
case parser::value_id:
case parser::addsub_id:
case parser::multdiv_id:
op1 = evaluate(i->children.begin());
op2 = evaluate(i->children.begin()+1);
switch(*i->value.begin())
{
case '+':
return op1 + op2;
case '-':
return op1 - op2;
case '*':
return op1 * op2;
case '/':
return op1 / op2;
default:
assert(!);
}
default:
assert(!);
}
return 0;
}
int main()
{
parser eval;
std::string line;
while (std::cout <<
&& std::getline(std::cin, line)
&& !line.empty())
{
typedef boost::spirit::node_val_data_factory<double> factory_t;
boost::spirit::tree_parse_info<std::string::iterator, factory_t> info =
boost::spirit::ast_parse<factory_t>(line.begin(), line.end(),
eval, boost::spirit::space_p);
if (info.full)
{
std::cout << << evaluate(info.trees.begin()) << std::endl;
}
else
{
std::cout << << std::endl;
}
}
}; | 11Arithmetic evaluation
| 5c
| evav |
(def precedence '{* 0, / 0
+ 1, - 1})
(defn order-ops
"((A x B) y C) or (A x (B y C)) depending on precedence of x and y"
[[A x B y C & more]]
(let [ret (if (<= (precedence x)
(precedence y))
(list (list A x B) y C)
(list A x (list B y C)))]
(if more
(recur (concat ret more))
ret)))
(defn add-parens
"Tree walk to add parens. All lists are length 3 afterwards."
[s]
(clojure.walk/postwalk
#(if (seq? %)
(let [c (count %)]
(cond (even? c) (throw (Exception. "Must be an odd number of forms"))
(= c 1) (first %)
(= c 3) %
(>= c 5) (order-ops %)))
%)
s))
(defn make-ast
"Parse a string into a list of numbers, ops, and lists"
[s]
(-> (format "'(%s)" s)
(.replaceAll , "([*+-/])" " $1 ")
load-string
add-parens))
(def ops {'* *
'+ +
'- -
'/ /})
(def eval-ast
(partial clojure.walk/postwalk
#(if (seq? %)
(let [[a o b] %]
((ops o) a b))
%)))
(defn evaluate [s]
"Parse and evaluate an infix arithmetic expression"
(eval-ast (make-ast s)))
user> (evaluate "1 + 2*(3 - 2*(3 - 2)*((2 - 4)*5 - 22/(7 + 2*(3 - 1)) - 1)) + 1")
60 | 11Arithmetic evaluation
| 6clojure
| 0rsj |
package main
import (
"fmt"
"math"
)
const = 1e-14
func agm(a, g float64) float64 {
for math.Abs(a-g) > math.Abs(a)* {
a, g = (a+g)*.5, math.Sqrt(a*g)
}
return a
}
func main() {
fmt.Println(agm(1, 1/math.Sqrt2))
} | 10Arithmetic-geometric mean
| 0go
| 76r2 |
double agm (double a, double g) {
double an = a, gn = g
while ((an-gn).abs() >= 10.0**-14) { (an, gn) = [(an+gn)*0.5, (an*gn)**0.5] }
an
} | 10Arithmetic-geometric mean
| 7groovy
| udv9 |
agm :: (Floating a) => a -> a -> ((a, a) -> Bool) -> a
agm a g eq = snd $ until eq step (a, g)
where
step (a, g) = ((a + g) / 2, sqrt (a * g))
relDiff :: (Fractional a) => (a, a) -> a
relDiff (x, y) =
let n = abs (x - y)
d = (abs x + abs y) / 2
in n / d
main :: IO ()
main = do
let equal = (< 0.000000001) . relDiff
print $ agm 1 (1 / sqrt 2) equal | 10Arithmetic-geometric mean
| 8haskell
| 8j0z |
public class ArithmeticGeometricMean {
public static double agm(double a, double g) {
double a1 = a;
double g1 = g;
while (Math.abs(a1 - g1) >= 1.0e-14) {
double arith = (a1 + g1) / 2.0;
double geom = Math.sqrt(a1 * g1);
a1 = arith;
g1 = geom;
}
return a1;
}
public static void main(String[] args) {
System.out.println(agm(1.0, 1.0 / Math.sqrt(2.0)));
}
} | 10Arithmetic-geometric mean
| 9java
| eua5 |
function agm(a0, g0) {
var an = (a0 + g0) / 2,
gn = Math.sqrt(a0 * g0);
while (Math.abs(an - gn) > tolerance) {
an = (an + gn) / 2, gn = Math.sqrt(an * gn)
}
return an;
}
agm(1, 1 / Math.sqrt(2)); | 10Arithmetic-geometric mean
| 10javascript
| 07sz |
int main(){
double a,b,cycles,incr,i;
int steps,x=500,y=500;
printf();
scanf(,&a,&b);
printf();
scanf(,&cycles);
printf();
scanf(,&steps);
incr = 1.0/steps;
initwindow(1000,1000,);
for(i=0;i<=cycles*pi;i+=incr){
putpixel(x + (a + b*i)*cos(i),x + (a + b*i)*sin(i),15);
}
getch();
closegraph();
} | 12Archimedean spiral
| 5c
| xuwu |
package main
import (
"fmt"
"math"
"math/big"
)
func main() {
var recip big.Rat
max := int64(1 << 19)
for candidate := int64(2); candidate < max; candidate++ {
sum := big.NewRat(1, candidate)
max2 := int64(math.Sqrt(float64(candidate)))
for factor := int64(2); factor <= max2; factor++ {
if candidate%factor == 0 {
sum.Add(sum, recip.SetFrac64(1, factor))
if f2 := candidate / factor; f2 != factor {
sum.Add(sum, recip.SetFrac64(1, f2))
}
}
}
if sum.Denom().Int64() == 1 {
perfectstring := ""
if sum.Num().Int64() == 1 {
perfectstring = "perfect!"
}
fmt.Printf("Sum of recipr. factors of%d =%d exactly%s\n",
candidate, sum.Num().Int64(), perfectstring)
}
}
} | 8Arithmetic/Rational
| 0go
| j97d |
class Rational extends Number implements Comparable {
final BigInteger num, denom
static final Rational ONE = new Rational(1)
static final Rational ZERO = new Rational(0)
Rational(BigDecimal decimal) {
this(
decimal.scale() < 0 ? decimal.unscaledValue() * 10 ** -decimal.scale(): decimal.unscaledValue(),
decimal.scale() < 0 ? 1 : 10 ** decimal.scale()
)
}
Rational(BigInteger n, BigInteger d = 1) {
if (!d || n == null) { n/d }
(num, denom) = reduce(n, d)
}
private List reduce(BigInteger n, BigInteger d) {
BigInteger sign = ((n < 0) ^ (d < 0)) ? -1: 1
(n, d) = [n.abs(), d.abs()]
BigInteger commonFactor = gcd(n, d)
[n.intdiv(commonFactor) * sign, d.intdiv(commonFactor)]
}
Rational toLeastTerms() { reduce(num, denom) as Rational }
private BigInteger gcd(BigInteger n, BigInteger m) {
n == 0 ? m: { while(m%n != 0) { (n, m) = [m%n, n] }; n }()
}
Rational plus(Rational r) { [num*r.denom + r.num*denom, denom*r.denom] }
Rational plus(BigInteger n) { [num + n*denom, denom] }
Rational plus(Number n) { this + ([n] as Rational) }
Rational next() { [num + denom, denom] }
Rational minus(Rational r) { [num*r.denom - r.num*denom, denom*r.denom] }
Rational minus(BigInteger n) { [num - n*denom, denom] }
Rational minus(Number n) { this - ([n] as Rational) }
Rational previous() { [num - denom, denom] }
Rational multiply(Rational r) { [num*r.num, denom*r.denom] }
Rational multiply(BigInteger n) { [num*n, denom] }
Rational multiply(Number n) { this * ([n] as Rational) }
Rational div(Rational r) { new Rational(num*r.denom, denom*r.num) }
Rational div(BigInteger n) { new Rational(num, denom*n) }
Rational div(Number n) { this / ([n] as Rational) }
BigInteger intdiv(BigInteger n) { num.intdiv(denom*n) }
Rational negative() { [-num, denom] }
Rational abs() { [num.abs(), denom] }
Rational reciprocal() { new Rational(denom, num) }
Rational power(BigInteger n) {
def (nu, de) = (n < 0 ? [denom, num]: [num, denom])*.power(n.abs())
new Rational (nu, de)
}
boolean asBoolean() { num != 0 }
BigDecimal toBigDecimal() { (num as BigDecimal)/(denom as BigDecimal) }
BigInteger toBigInteger() { num.intdiv(denom) }
Double toDouble() { toBigDecimal().toDouble() }
double doubleValue() { toDouble() as double }
Float toFloat() { toBigDecimal().toFloat() }
float floatValue() { toFloat() as float }
Integer toInteger() { toBigInteger().toInteger() }
int intValue() { toInteger() as int }
Long toLong() { toBigInteger().toLong() }
long longValue() { toLong() as long }
Object asType(Class type) {
switch (type) {
case this.class: return this
case [Boolean, Boolean.TYPE]: return asBoolean()
case BigDecimal: return toBigDecimal()
case BigInteger: return toBigInteger()
case [Double, Double.TYPE]: return toDouble()
case [Float, Float.TYPE]: return toFloat()
case [Integer, Integer.TYPE]: return toInteger()
case [Long, Long.TYPE]: return toLong()
case String: return toString()
default: throw new ClassCastException("Cannot convert from type Rational to type " + type)
}
}
boolean equals(o) { compareTo(o) == 0 }
int compareTo(o) {
o instanceof Rational
? compareTo(o as Rational)
: o instanceof Number
? compareTo(o as Number)
: (Double.NaN as int)
}
int compareTo(Rational r) { num*r.denom <=> denom*r.num }
int compareTo(Number n) { num <=> denom*(n as BigInteger) }
int hashCode() { [num, denom].hashCode() }
String toString() {
"${num} | 8Arithmetic/Rational
| 7groovy
| 5zuv |
null | 10Arithmetic-geometric mean
| 11kotlin
| k9h3 |
import Data.Ratio ((%))
main = do
let n = 4
mapM_ print $
take
n
[ candidate
| candidate <- [2 .. 2 ^ 19]
, getSum candidate == 1 ]
where
getSum candidate =
1 % candidate +
sum
[ 1 % factor + 1 % (candidate `div` factor)
| factor <- [2 .. floor (sqrt (fromIntegral candidate))]
, candidate `mod` factor == 0 ] | 8Arithmetic/Rational
| 8haskell
| ob8p |
(use '(incanter core stats charts io))
(defn Arquimidean-function
[a b theta]
(+ a (* theta b)))
(defn transform-pl-xy [r theta]
(let [x (* r (sin theta))
y (* r (cos theta))]
[x y]))
(defn arq-spiral [t] (transform-pl-xy (Arquimidean-function 0 7 t) t))
(view (parametric-plot arq-spiral 0 (* 10 Math/PI))) | 12Archimedean spiral
| 6clojure
| o78j |
int myArray2[10] = { 1, 2, 0 };
float myFloats[] ={1.2, 2.5, 3.333, 4.92, 11.2, 22.0 }; | 13Arrays
| 5c
| ye6f |
package main
import (
"image"
"image/color"
"image/draw"
"image/png"
"log"
"math"
"os"
)
func main() {
const (
width, height = 600, 600
centre = width / 2.0
degreesIncr = 0.1 * math.Pi / 180
turns = 2
stop = 360 * turns * 10 * degreesIncr
fileName = "spiral.png"
)
img := image.NewNRGBA(image.Rect(0, 0, width, height)) | 12Archimedean spiral
| 0go
| l0cw |
function agm(a, b, tolerance)
if not tolerance or tolerance < 1e-15 then
tolerance = 1e-15
end
repeat
a, b = (a + b) / 2, math.sqrt(a * b)
until math.abs(a-b) < tolerance
return a
end
print(string.format("%.15f", agm(1, 1 / math.sqrt(2)))) | 10Arithmetic-geometric mean
| 1lua
| bcka |
#!/usr/bin/env stack
import Codec.Picture( PixelRGBA8( .. ), writePng )
import Graphics.Rasterific
import Graphics.Rasterific.Texture
import Graphics.Rasterific.Transformations
archimedeanPoint a b t = V2 x y
where r = a + b * t
x = r * cos t
y = r * sin t
main :: IO ()
main = do
let white = PixelRGBA8 255 255 255 255
drawColor = PixelRGBA8 0xFF 0x53 0x73 255
size = 800
points = map (archimedeanPoint 0 10) [0, 0.01 .. 60]
hSize = fromIntegral size / 2
img = renderDrawing size size white $
withTransformation (translate $ V2 hSize hSize) $
withTexture (uniformTexture drawColor) $
stroke 4 JoinRound (CapRound, CapRound) $
polyline points
writePng "SpiralHaskell.png" img | 12Archimedean spiral
| 8haskell
| 1cps |
public class BigRationalFindPerfectNumbers {
public static void main(String[] args) {
int MAX_NUM = 1 << 19;
System.out.println("Searching for perfect numbers in the range [1, " + (MAX_NUM - 1) + "]");
BigRational TWO = BigRational.valueOf(2);
for (int i = 1; i < MAX_NUM; i++) {
BigRational reciprocalSum = BigRational.ONE;
if (i > 1)
reciprocalSum = reciprocalSum.add(BigRational.valueOf(i).reciprocal());
int maxDivisor = (int) Math.sqrt(i);
if (maxDivisor >= i)
maxDivisor--;
for (int divisor = 2; divisor <= maxDivisor; divisor++) {
if (i % divisor == 0) {
reciprocalSum = reciprocalSum.add(BigRational.valueOf(divisor).reciprocal());
int dividend = i / divisor;
if (divisor != dividend)
reciprocalSum = reciprocalSum.add(BigRational.valueOf(dividend).reciprocal());
}
}
if (reciprocalSum.equals(TWO))
System.out.println(String.valueOf(i) + " is a perfect number");
}
}
} | 8Arithmetic/Rational
| 9java
| wgej |
import java.awt.*;
import static java.lang.Math.*;
import javax.swing.*;
public class ArchimedeanSpiral extends JPanel {
public ArchimedeanSpiral() {
setPreferredSize(new Dimension(640, 640));
setBackground(Color.white);
}
void drawGrid(Graphics2D g) {
g.setColor(new Color(0xEEEEEE));
g.setStroke(new BasicStroke(2));
double angle = toRadians(45);
int w = getWidth();
int center = w / 2;
int margin = 10;
int numRings = 8;
int spacing = (w - 2 * margin) / (numRings * 2);
for (int i = 0; i < numRings; i++) {
int pos = margin + i * spacing;
int size = w - (2 * margin + i * 2 * spacing);
g.drawOval(pos, pos, size, size);
double ia = i * angle;
int x2 = center + (int) (cos(ia) * (w - 2 * margin) / 2);
int y2 = center - (int) (sin(ia) * (w - 2 * margin) / 2);
g.drawLine(center, center, x2, y2);
}
}
void drawSpiral(Graphics2D g) {
g.setStroke(new BasicStroke(2));
g.setColor(Color.orange);
double degrees = toRadians(0.1);
double center = getWidth() / 2;
double end = 360 * 2 * 10 * degrees;
double a = 0;
double b = 20;
double c = 1;
for (double theta = 0; theta < end; theta += degrees) {
double r = a + b * pow(theta, 1 / c);
double x = r * cos(theta);
double y = r * sin(theta);
plot(g, (int) (center + x), (int) (center - y));
}
}
void plot(Graphics2D g, int x, int y) {
g.drawOval(x, y, 1, 1);
}
@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
drawGrid(g);
drawSpiral(g);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Archimedean Spiral");
f.setResizable(false);
f.add(new ArchimedeanSpiral(), BorderLayout.CENTER);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
} | 12Archimedean spiral
| 9java
| 7zrj |
package main
import (
"fmt"
"math/cmplx"
)
func main() {
a := 1 + 1i
b := 3.14159 + 1.25i
fmt.Println("a: ", a)
fmt.Println("b: ", b)
fmt.Println("a + b: ", a+b)
fmt.Println("a * b: ", a*b)
fmt.Println("-a: ", -a)
fmt.Println("1 / a: ", 1/a)
fmt.Println("a: ", cmplx.Conj(a))
} | 9Arithmetic/Complex
| 0go
| ufvt |
null | 8Arithmetic/Rational
| 10javascript
| 8k0l |
enum Op {
ADD('+', 2),
SUBTRACT('-', 2),
MULTIPLY('*', 1),
DIVIDE('/', 1);
static {
ADD.operation = { a, b -> a + b }
SUBTRACT.operation = { a, b -> a - b }
MULTIPLY.operation = { a, b -> a * b }
DIVIDE.operation = { a, b -> a / b }
}
final String symbol
final int precedence
Closure operation
private Op(String symbol, int precedence) {
this.symbol = symbol
this.precedence = precedence
}
String toString() { symbol }
static Op fromSymbol(String symbol) {
Op.values().find { it.symbol == symbol }
}
}
interface Expression {
Number evaluate();
}
class Constant implements Expression {
Number value
Constant (Number value) { this.value = value }
Constant (String str) {
try { this.value = str as BigInteger }
catch (e) { this.value = str as BigDecimal }
}
Number evaluate() { value }
String toString() { "${value}" }
}
class Term implements Expression {
Op op
Expression left, right
Number evaluate() { op.operation(left.evaluate(), right.evaluate()) }
String toString() { "(${op} ${left} ${right})" }
}
void fail(String msg, Closure cond = {true}) {
if (cond()) throw new IllegalArgumentException("Cannot parse expression: ${msg}")
}
Expression parse(String expr) {
def tokens = tokenize(expr)
def elements = groupByParens(tokens, 0)
parse(elements)
}
List tokenize(String expr) {
def tokens = []
def constStr = ""
def captureConstant = { i ->
if (constStr) {
try { tokens << new Constant(constStr) }
catch (NumberFormatException e) { fail "Invalid constant '${constStr}' near position ${i}" }
constStr = ''
}
}
for(def i = 0; i<expr.size(); i++) {
def c = expr[i]
def constSign = c in ['+','-'] && constStr.empty && (tokens.empty || tokens[-1] != ')')
def isConstChar = { it in ['.'] + ('0'..'9') || constSign }
if (c in ([')'] + Op.values()*.symbol) && !constSign) { captureConstant(i) }
switch (c) {
case ~/\s/: break
case isConstChar: constStr += c; break
case Op.values()*.symbol: tokens << Op.fromSymbol(c); break
case ['(',')']: tokens << c; break
default: fail "Invalid character '${c}' at position ${i+1}"
}
}
captureConstant(expr.size())
tokens
}
List groupByParens(List tokens, int depth) {
def deepness = depth
def tokenGroups = []
for (def i = 0; i < tokens.size(); i++) {
def token = tokens[i]
switch (token) {
case '(':
fail("'(' too close to end of expression") { i+2 > tokens.size() }
def subGroup = groupByParens(tokens[i+1..-1], depth+1)
tokenGroups << subGroup[0..-2]
i += subGroup[-1] + 1
break
case ')':
fail("Unbalanced parens, found extra ')'") { deepness == 0 }
tokenGroups << i
return tokenGroups
default:
tokenGroups << token
}
}
fail("Unbalanced parens, unclosed groupings at end of expression") { deepness != 0 }
def n = tokenGroups.size()
fail("The operand/operator sequence is wrong") { n%2 == 0 }
(0..<n).each {
def i = it
fail("The operand/operator sequence is wrong") { (i%2 == 0) == (tokenGroups[i] instanceof Op) }
}
tokenGroups
}
Expression parse(List elements) {
while (elements.size() > 1) {
def n = elements.size()
fail ("The operand/operator sequence is wrong") { n%2 == 0 }
def groupLoc = (0..<n).find { i -> elements[i] instanceof List }
if (groupLoc != null) {
elements[groupLoc] = parse(elements[groupLoc])
continue
}
def opLoc = (0..<n).find { i -> elements[i] instanceof Op && elements[i].precedence == 1 } \
?: (0..<n).find { i -> elements[i] instanceof Op && elements[i].precedence == 2 }
if (opLoc != null) {
fail ("Operator out of sequence") { opLoc%2 == 0 }
def term = new Term(left:elements[opLoc-1], op:elements[opLoc], right:elements[opLoc+1])
elements[(opLoc-1)..(opLoc+1)] = [term]
continue
}
}
return elements[0] instanceof List ? parse(elements[0]): elements[0]
} | 11Arithmetic evaluation
| 0go
| 9smt |
<!-- ArchiSpiral.html -->
<html>
<head><title>Archimedean spiral</title></head>
<body onload="pAS(35,'navy');">
<h3>Archimedean spiral</h3> <p id=bo></p>
<canvas id="canvId" width="640" height="640" style="border: 2px outset;"></canvas>
<script> | 12Archimedean spiral
| 10javascript
| p9b7 |
class Complex {
final Number real, imag
static final Complex i = [0,1] as Complex
Complex(Number r, Number i = 0) { (real, imag) = [r, i] }
Complex(Map that) { (real, imag) = [that.real ?: 0, that.imag ?: 0] }
Complex plus (Complex c) { [real + c.real, imag + c.imag] as Complex }
Complex plus (Number n) { [real + n, imag] as Complex }
Complex minus (Complex c) { [real - c.real, imag - c.imag] as Complex }
Complex minus (Number n) { [real - n, imag] as Complex }
Complex multiply (Complex c) { [real*c.real - imag*c.imag , imag*c.real + real*c.imag] as Complex }
Complex multiply (Number n) { [real*n , imag*n] as Complex }
Complex div (Complex c) { this * c.recip() }
Complex div (Number n) { this * (1/n) }
Complex negative () { [-real, -imag] as Complex }
Complex bitwiseNegate () { [real, -imag] as Complex } | 9Arithmetic/Complex
| 7groovy
| 98m4 |
enum Op {
ADD('+', 2),
SUBTRACT('-', 2),
MULTIPLY('*', 1),
DIVIDE('/', 1);
static {
ADD.operation = { a, b -> a + b }
SUBTRACT.operation = { a, b -> a - b }
MULTIPLY.operation = { a, b -> a * b }
DIVIDE.operation = { a, b -> a / b }
}
final String symbol
final int precedence
Closure operation
private Op(String symbol, int precedence) {
this.symbol = symbol
this.precedence = precedence
}
String toString() { symbol }
static Op fromSymbol(String symbol) {
Op.values().find { it.symbol == symbol }
}
}
interface Expression {
Number evaluate();
}
class Constant implements Expression {
Number value
Constant (Number value) { this.value = value }
Constant (String str) {
try { this.value = str as BigInteger }
catch (e) { this.value = str as BigDecimal }
}
Number evaluate() { value }
String toString() { "${value}" }
}
class Term implements Expression {
Op op
Expression left, right
Number evaluate() { op.operation(left.evaluate(), right.evaluate()) }
String toString() { "(${op} ${left} ${right})" }
}
void fail(String msg, Closure cond = {true}) {
if (cond()) throw new IllegalArgumentException("Cannot parse expression: ${msg}")
}
Expression parse(String expr) {
def tokens = tokenize(expr)
def elements = groupByParens(tokens, 0)
parse(elements)
}
List tokenize(String expr) {
def tokens = []
def constStr = ""
def captureConstant = { i ->
if (constStr) {
try { tokens << new Constant(constStr) }
catch (NumberFormatException e) { fail "Invalid constant '${constStr}' near position ${i}" }
constStr = ''
}
}
for(def i = 0; i<expr.size(); i++) {
def c = expr[i]
def constSign = c in ['+','-'] && constStr.empty && (tokens.empty || tokens[-1] != ')')
def isConstChar = { it in ['.'] + ('0'..'9') || constSign }
if (c in ([')'] + Op.values()*.symbol) && !constSign) { captureConstant(i) }
switch (c) {
case ~/\s/: break
case isConstChar: constStr += c; break
case Op.values()*.symbol: tokens << Op.fromSymbol(c); break
case ['(',')']: tokens << c; break
default: fail "Invalid character '${c}' at position ${i+1}"
}
}
captureConstant(expr.size())
tokens
}
List groupByParens(List tokens, int depth) {
def deepness = depth
def tokenGroups = []
for (def i = 0; i < tokens.size(); i++) {
def token = tokens[i]
switch (token) {
case '(':
fail("'(' too close to end of expression") { i+2 > tokens.size() }
def subGroup = groupByParens(tokens[i+1..-1], depth+1)
tokenGroups << subGroup[0..-2]
i += subGroup[-1] + 1
break
case ')':
fail("Unbalanced parens, found extra ')'") { deepness == 0 }
tokenGroups << i
return tokenGroups
default:
tokenGroups << token
}
}
fail("Unbalanced parens, unclosed groupings at end of expression") { deepness != 0 }
def n = tokenGroups.size()
fail("The operand/operator sequence is wrong") { n%2 == 0 }
(0..<n).each {
def i = it
fail("The operand/operator sequence is wrong") { (i%2 == 0) == (tokenGroups[i] instanceof Op) }
}
tokenGroups
}
Expression parse(List elements) {
while (elements.size() > 1) {
def n = elements.size()
fail ("The operand/operator sequence is wrong") { n%2 == 0 }
def groupLoc = (0..<n).find { i -> elements[i] instanceof List }
if (groupLoc != null) {
elements[groupLoc] = parse(elements[groupLoc])
continue
}
def opLoc = (0..<n).find { i -> elements[i] instanceof Op && elements[i].precedence == 1 } \
?: (0..<n).find { i -> elements[i] instanceof Op && elements[i].precedence == 2 }
if (opLoc != null) {
fail ("Operator out of sequence") { opLoc%2 == 0 }
def term = new Term(left:elements[opLoc-1], op:elements[opLoc], right:elements[opLoc+1])
elements[(opLoc-1)..(opLoc+1)] = [term]
continue
}
}
return elements[0] instanceof List ? parse(elements[0]): elements[0]
} | 11Arithmetic evaluation
| 7groovy
| zat5 |
null | 12Archimedean spiral
| 11kotlin
| uivc |
import Data.Complex
main = do
let a = 1.0:+ 2.0
let b = 4
putStrLn $ "Add: " ++ show (a + b)
putStrLn $ "Subtract: " ++ show (a - b)
putStrLn $ "Multiply: " ++ show (a * b)
putStrLn $ "Divide: " ++ show (a / b)
putStrLn $ "Negate: " ++ show (-a)
putStrLn $ "Inverse: " ++ show (recip a)
putStrLn $ "Conjugate:" ++ show (conjugate a) | 9Arithmetic/Complex
| 8haskell
| w4ed |
import Text.Parsec
import Text.Parsec.Expr
import Text.Parsec.Combinator
import Data.Functor
import Data.Function (on)
data Exp
= Num Int
| Add Exp
Exp
| Sub Exp
Exp
| Mul Exp
Exp
| Div Exp
Exp
expr
:: Stream s m Char
=> ParsecT s u m Exp
expr = buildExpressionParser table factor
where
table =
[ [op "*" Mul AssocLeft, op "/" Div AssocLeft]
, [op "+" Add AssocLeft, op "-" Sub AssocLeft]
]
op s f = Infix (f <$ string s)
factor = (between `on` char) '(' ')' expr <|> (Num . read <$> many1 digit)
eval
:: Integral a
=> Exp -> a
eval (Num x) = fromIntegral x
eval (Add a b) = eval a + eval b
eval (Sub a b) = eval a - eval b
eval (Mul a b) = eval a * eval b
eval (Div a b) = eval a `div` eval b
solution
:: Integral a
=> String -> a
solution = either (const (error "Did not parse")) eval . parse expr ""
main :: IO ()
main = print $ solution "(1+3)*7" | 11Arithmetic evaluation
| 8haskell
| b9k2 |
a=1
b=2
cycles=40
step=0.001
x=0
y=0
function love.load()
x = love.graphics.getWidth()/2
y = love.graphics.getHeight()/2
end
function love.draw()
love.graphics.print("a="..a,16,16)
love.graphics.print("b="..b,16,32)
for i=0,cycles*math.pi,step do
love.graphics.points(x+(a + b*i)*math.cos(i),y+(a + b*i)*math.sin(i))
end
end | 12Archimedean spiral
| 1lua
| 5nu6 |
null | 8Arithmetic/Rational
| 11kotlin
| b2kb |
user=> (def my-list (list 1 2 3 4 5))
user=> my-list
(1 2 3 4 5)
user=> (first my-list)
1
user=> (nth my-list 3)
4
user=> (conj my-list 100)
(100 1 2 3 4 5)
user=> my-list
(1 2 3 4 5)
user=> (def my-new-list (conj my-list 100))
user=> my-new-list
(100 1 2 3 4 5)
user=> (cons 200 my-new-list)
(200 100 1 2 3 4 5)
user=> (def my-vec [1 2 3 4 5 6])
user=> (conj my-vec 300)
[1 2 3 4 5 6 300] | 13Arrays
| 6clojure
| 20l1 |
import java.util.Stack;
public class ArithmeticEvaluation {
public interface Expression {
BigRational eval();
}
public enum Parentheses {LEFT}
public enum BinaryOperator {
ADD('+', 1),
SUB('-', 1),
MUL('*', 2),
DIV('/', 2);
public final char symbol;
public final int precedence;
BinaryOperator(char symbol, int precedence) {
this.symbol = symbol;
this.precedence = precedence;
}
public BigRational eval(BigRational leftValue, BigRational rightValue) {
switch (this) {
case ADD:
return leftValue.add(rightValue);
case SUB:
return leftValue.subtract(rightValue);
case MUL:
return leftValue.multiply(rightValue);
case DIV:
return leftValue.divide(rightValue);
}
throw new IllegalStateException();
}
public static BinaryOperator forSymbol(char symbol) {
for (BinaryOperator operator : values()) {
if (operator.symbol == symbol) {
return operator;
}
}
throw new IllegalArgumentException(String.valueOf(symbol));
}
}
public static class Number implements Expression {
private final BigRational number;
public Number(BigRational number) {
this.number = number;
}
@Override
public BigRational eval() {
return number;
}
@Override
public String toString() {
return number.toString();
}
}
public static class BinaryExpression implements Expression {
public final Expression leftOperand;
public final BinaryOperator operator;
public final Expression rightOperand;
public BinaryExpression(Expression leftOperand, BinaryOperator operator, Expression rightOperand) {
this.leftOperand = leftOperand;
this.operator = operator;
this.rightOperand = rightOperand;
}
@Override
public BigRational eval() {
BigRational leftValue = leftOperand.eval();
BigRational rightValue = rightOperand.eval();
return operator.eval(leftValue, rightValue);
}
@Override
public String toString() {
return "(" + leftOperand + " " + operator.symbol + " " + rightOperand + ")";
}
}
private static void createNewOperand(BinaryOperator operator, Stack<Expression> operands) {
Expression rightOperand = operands.pop();
Expression leftOperand = operands.pop();
operands.push(new BinaryExpression(leftOperand, operator, rightOperand));
}
public static Expression parse(String input) {
int curIndex = 0;
boolean afterOperand = false;
Stack<Expression> operands = new Stack<>();
Stack<Object> operators = new Stack<>();
while (curIndex < input.length()) {
int startIndex = curIndex;
char c = input.charAt(curIndex++);
if (Character.isWhitespace(c))
continue;
if (afterOperand) {
if (c == ')') {
Object operator;
while (!operators.isEmpty() && ((operator = operators.pop()) != Parentheses.LEFT))
createNewOperand((BinaryOperator) operator, operands);
continue;
}
afterOperand = false;
BinaryOperator operator = BinaryOperator.forSymbol(c);
while (!operators.isEmpty() && (operators.peek() != Parentheses.LEFT) && (((BinaryOperator) operators.peek()).precedence >= operator.precedence))
createNewOperand((BinaryOperator) operators.pop(), operands);
operators.push(operator);
continue;
}
if (c == '(') {
operators.push(Parentheses.LEFT);
continue;
}
afterOperand = true;
while (curIndex < input.length()) {
c = input.charAt(curIndex);
if (((c < '0') || (c > '9')) && (c != '.'))
break;
curIndex++;
}
operands.push(new Number(BigRational.valueOf(input.substring(startIndex, curIndex))));
}
while (!operators.isEmpty()) {
Object operator = operators.pop();
if (operator == Parentheses.LEFT)
throw new IllegalArgumentException();
createNewOperand((BinaryOperator) operator, operands);
}
Expression expression = operands.pop();
if (!operands.isEmpty())
throw new IllegalArgumentException();
return expression;
}
public static void main(String[] args) {
String[] testExpressions = {
"2+3",
"2+3/4",
"2*3-4",
"2*(3+4)+5/6",
"2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10",
"2*-3--4+-.25"};
for (String testExpression : testExpressions) {
Expression expression = parse(testExpression);
System.out.printf("Input: \"%s\", AST: \"%s\", value=%s%n", testExpression, expression, expression.eval());
}
}
} | 11Arithmetic evaluation
| 9java
| gt4m |
use Imager;
use constant PI => 3.14159265;
my ($w, $h) = (400, 400);
my $img = Imager->new(xsize => $w, ysize => $h);
for ($theta = 0; $theta < 52*PI; $theta += 0.025) {
$x = $w/2 + $theta * cos($theta/PI);
$y = $h/2 + $theta * sin($theta/PI);
$img->setpixel(x => $x, y => $y, color => '
}
$img->write(file => 'Archimedean-spiral.png'); | 12Archimedean spiral
| 2perl
| 8r0w |
public class Complex {
public final double real;
public final double imag;
public Complex() {
this(0, 0);
}
public Complex(double r, double i) {
real = r;
imag = i;
}
public Complex add(Complex b) {
return new Complex(this.real + b.real, this.imag + b.imag);
}
public Complex mult(Complex b) { | 9Arithmetic/Complex
| 9java
| kchm |
function gcd(a,b) return a == 0 and b or gcd(b % a, a) end
do
local function coerce(a, b)
if type(a) == "number" then return rational(a, 1), b end
if type(b) == "number" then return a, rational(b, 1) end
return a, b
end
rational = setmetatable({
__add = function(a, b)
local a, b = coerce(a, b)
return rational(a.num * b.den + a.den * b.num, a.den * b.den)
end,
__sub = function(a, b)
local a, b = coerce(a, b)
return rational(a.num * b.den - a.den * b.num, a.den * b.den)
end,
__mul = function(a, b)
local a, b = coerce(a, b)
return rational(a.num * b.num, a.den * b.den)
end,
__div = function(a, b)
local a, b = coerce(a, b)
return rational(a.num * b.den, a.den * b.num)
end,
__pow = function(a, b)
if type(a) == "number" then return a ^ (b.num / b.den) end
return rational(a.num ^ b, a.den ^ b) | 8Arithmetic/Rational
| 1lua
| pvbw |
function evalArithmeticExp(s) {
s = s.replace(/\s/g,'').replace(/^\+/,'');
var rePara = /\([^\(\)]*\)/;
var exp = s.match(rePara);
while (exp = s.match(rePara)) {
s = s.replace(exp[0], evalExp(exp[0]));
}
return evalExp(s);
function evalExp(s) {
s = s.replace(/[\(\)]/g,'');
var reMD = /\d+\.?\d*\s*[\*\/]\s*[+-]?\d+\.?\d*/;
var reM = /\*/;
var reAS = /-?\d+\.?\d*\s*[\+-]\s*[+-]?\d+\.?\d*/;
var reA = /\d\+/;
var exp;
while (exp = s.match(reMD)) {
s = exp[0].match(reM)? s.replace(exp[0], multiply(exp[0])) : s.replace(exp[0], divide(exp[0]));
}
while (exp = s.match(reAS)) {
s = exp[0].match(reA)? s.replace(exp[0], add(exp[0])) : s.replace(exp[0], subtract(exp[0]));
}
return '' + s;
function multiply(s, b) {
b = s.split('*');
return b[0] * b[1];
}
function divide(s, b) {
b = s.split('/');
return b[0] / b[1];
}
function add(s, b) {
s = s.replace(/^\+/,'').replace(/\++/,'+');
b = s.split('+');
return Number(b[0]) + Number(b[1]);
}
function subtract(s, b) {
s = s.replace(/\+-|-\+/g,'-');
if (s.match(/--/)) {
return add(s.replace(/--/,'+'));
}
b = s.split('-');
return b.length == 3? -1 * b[1] - b[2] : b[0] - b[1];
}
}
} | 11Arithmetic evaluation
| 10javascript
| kmhq |
function Complex(r, i) {
this.r = r;
this.i = i;
}
Complex.add = function() {
var num = arguments[0];
for(var i = 1, ilim = arguments.length; i < ilim; i += 1){
num.r += arguments[i].r;
num.i += arguments[i].i;
}
return num;
}
Complex.multiply = function() {
var num = arguments[0];
for(var i = 1, ilim = arguments.length; i < ilim; i += 1){
num.r = (num.r * arguments[i].r) - (num.i * arguments[i].i);
num.i = (num.i * arguments[i].r) - (num.r * arguments[i].i);
}
return num;
}
Complex.negate = function (z) {
return new Complex(-1*z.r, -1*z.i);
}
Complex.invert = function(z) {
var denom = Math.pow(z.r,2) + Math.pow(z.i,2);
return new Complex(z.r/denom, -1*z.i/denom);
}
Complex.conjugate = function(z) {
return new Complex(z.r, -1*z.i);
} | 9Arithmetic/Complex
| 10javascript
| e5ao |
from turtle import *
from math import *
color()
down()
for i in range(200):
t = i / 20 * pi
x = (1 + 5 * t) * cos(t)
y = (1 + 5 * t) * sin(t)
goto(x, y)
up()
done() | 12Archimedean spiral
| 3python
| o781 |
with(list(s=seq(0, 10 * pi, length.out=500)),
plot((1 + s) * exp(1i * s), type="l")) | 12Archimedean spiral
| 13r
| q5xs |
null | 11Arithmetic evaluation
| 11kotlin
| 2oli |
class Complex(private val real: Double, private val imag: Double) {
operator fun plus(other: Complex) = Complex(real + other.real, imag + other.imag)
operator fun times(other: Complex) = Complex(
real * other.real - imag * other.imag,
real * other.imag + imag * other.real
)
fun inv(): Complex {
val denom = real * real + imag * imag
return Complex(real / denom, -imag / denom)
}
operator fun unaryMinus() = Complex(-real, -imag)
operator fun minus(other: Complex) = this + (-other)
operator fun div(other: Complex) = this * other.inv()
fun conj() = Complex(real, -imag)
override fun toString() =
if (imag >= 0.0) "$real + ${imag}i"
else "$real - ${-imag}i"
}
fun main(args: Array<String>) {
val x = Complex(1.0, 3.0)
val y = Complex(5.0, 2.0)
println("x = $x")
println("y = $y")
println("x + y = ${x + y}")
println("x - y = ${x - y}")
println("x * y = ${x * y}")
println("x / y = ${x / y}")
println("-x = ${-x}")
println("1 / x = ${x.inv()}")
println("x* = ${x.conj()}")
} | 9Arithmetic/Complex
| 11kotlin
| g34d |
my ($a0, $g0, $a1, $g1);
sub agm($$) {
$a0 = shift;
$g0 = shift;
do {
$a1 = ($a0 + $g0)/2;
$g1 = sqrt($a0 * $g0);
$a0 = ($a1 + $g1)/2;
$g0 = sqrt($a1 * $g1);
} while ($a0 != $a1);
return $a0;
}
print agm(1, 1/sqrt(2))."\n"; | 10Arithmetic-geometric mean
| 2perl
| 3wzs |
INCR = 0.1
attr_reader :x, :theta
def setup
sketch_title 'Archimedian Spiral'
@theta = 0
@x = 0
background(255)
translate(width / 2.0, height / 2.0)
begin_shape
(0..50*PI).step(INCR) do |theta|
@x = theta * cos(theta / PI)
curve_vertex(x, theta * sin(theta / PI))
end
end_shape
end
def settings
size(300, 300)
end | 12Archimedean spiral
| 14ruby
| nhit |
require"lpeg"
P, R, C, S, V = lpeg.P, lpeg.R, lpeg.C, lpeg.S, lpeg.V | 11Arithmetic evaluation
| 1lua
| vi2x |
#[macro_use(px)]
extern crate bmp;
use bmp::{Image, Pixel};
use std::f64;
fn main() {
let width = 600u32;
let half_width = (width / 2) as i32;
let mut img = Image::new(width, width);
let draw_color = px!(255, 128, 128); | 12Archimedean spiral
| 15rust
| dkny |
define('PRECISION', 13);
function agm($a0, $g0, $tolerance = 1e-10)
{
$limit = number_format($tolerance, PRECISION, '.', '');
$an = $a0;
$gn = $g0;
do {
list($an, $gn) = array(
bcdiv(bcadd($an, $gn), 2),
bcsqrt(bcmul($an, $gn)),
);
} while (bccomp(bcsub($an, $gn), $limit) > 0);
return $an;
}
bcscale(PRECISION);
echo agm(1, 1 / bcsqrt(2)); | 10Arithmetic-geometric mean
| 12php
| plba |
int main()
{
printf(, pow(0,0));
double complex c = cpow(0,0);
printf(, creal(c), cimag(c));
return 0;
} | 14Zero to the zero power
| 5c
| v02o |
object ArchimedeanSpiral extends App {
SwingUtilities.invokeLater(() =>
new JFrame("Archimedean Spiral") {
class ArchimedeanSpiral extends JPanel {
setPreferredSize(new Dimension(640, 640))
setBackground(Color.white)
private def drawGrid(g: Graphics2D): Unit = {
val (angle, margin, numRings) = (toRadians(45), 10, 8)
val w = getWidth
val (center, spacing) = (w / 2, (w - 2 * margin) / (numRings * 2))
g.setColor(new Color(0xEEEEEE))
for (i <- 0 until numRings) {
val pos = margin + i * spacing
val size = w - (2 * margin + i * 2 * spacing)
g.drawOval(pos, pos, size, size)
val ia = i * angle
val x2 = center + (cos(ia) * (w - 2 * margin) / 2).toInt
val y2 = center - (sin(ia) * (w - 2 * margin) / 2).toInt
g.drawLine(center, center, x2, y2)
}
}
private def drawSpiral(g: Graphics2D): Unit = {
val (degrees: Double, center) = (toRadians(0.1), getWidth / 2)
val (a, b, c, end) = (0, 20, 1, 360 * 2 * 10 * degrees)
def plot(g: Graphics2D, x: Int, y: Int): Unit = g.drawOval(x, y, 1, 1)
def iter(theta: Double): Double = {
if (theta < end) {
val r = a + b * pow(theta, 1 / c)
val x = r * cos(theta)
val y = r * sin(theta)
plot(g, (center + x).toInt, (center - y).toInt)
iter(theta + degrees)
} else theta
}
g.setStroke(new BasicStroke(2))
g.setColor(Color.orange)
iter(0)
}
override def paintComponent(gg: Graphics): Unit = {
super.paintComponent(gg)
val g = gg.asInstanceOf[Graphics2D]
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
drawGrid(g)
drawSpiral(g)
}
}
add(new ArchimedeanSpiral, BorderLayout.CENTER)
pack()
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
setLocationRelativeTo(null)
setResizable(false)
setVisible(true)
}
)
} | 12Archimedean spiral
| 16scala
| z1tr |
null | 9Arithmetic/Complex
| 1lua
| r6ga |
main(){ | 13Arrays
| 18dart
| dhnj |
user=> (use 'clojure.math.numeric-tower)
user=> (expt 0 0)
1
user=> (Math/pow 0 0)
1.0 | 14Zero to the zero power
| 6clojure
| rdg2 |
<Rows> <Columns>
<Blank pixel character> <Image Pixel character>
<Image of specified rows and columns made up of the two pixel types specified in the second line.> | 15Zhang-Suen thinning algorithm
| 5c
| u0v4 |
typedef unsigned long long u64;
u64 fib[] = {
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465,
14930352, 24157817, 39088169, 63245986, 102334155, 165580141,
267914296, 433494437, 701408733, 1134903170, 1836311903,
2971215073ULL, 4807526976ULL, 7778742049ULL, 12586269025ULL,
20365011074ULL, 32951280099ULL, 53316291173ULL, 86267571272ULL,
139583862445ULL, 225851433717ULL, 365435296162ULL, 591286729879ULL,
956722026041ULL, 1548008755920ULL, 2504730781961ULL, 4052739537881ULL,
6557470319842ULL, 10610209857723ULL, 17167680177565ULL,
27777890035288ULL
};
u64 fibbinary(u64 n)
{
if (n >= fib[64]) return FIB_INVALID;
u64 ret = 0;
int i;
for (i = 64; i--; )
if (n >= fib[i]) {
ret |= 1ULL << i;
n -= fib[i];
}
return ret;
}
void bprint(u64 n, int width)
{
if (width > 64) width = 64;
u64 b;
for (b = 1ULL << (width - 1); b; b >>= 1)
putchar(b == 1 && !n
? '0'
: b > n ? ' '
: b & n ? '1' : '0');
putchar('\n');
}
int main(void)
{
int i;
for (i = 0; i <= 20; i++)
printf(, i), bprint(fibbinary(i), 8);
return 0;
} | 16Zeckendorf number representation
| 5c
| go45 |
from math import sqrt
def agm(a0, g0, tolerance=1e-10):
an, gn = (a0 + g0) / 2.0, sqrt(a0 * g0)
while abs(an - gn) > tolerance:
an, gn = (an + gn) / 2.0, sqrt(an * gn)
return an
print agm(1, 1 / sqrt(2)) | 10Arithmetic-geometric mean
| 3python
| 6x3w |
arithmeticMean <- function(a, b) { (a + b)/2 }
geometricMean <- function(a, b) { sqrt(a * b) }
arithmeticGeometricMean <- function(a, b) {
rel_error <- abs(a - b) / pmax(a, b)
if (all(rel_error < .Machine$double.eps, na.rm=TRUE)) {
agm <- a
return(data.frame(agm, rel_error));
}
Recall(arithmeticMean(a, b), geometricMean(a, b))
}
agm <- arithmeticGeometricMean(1, 1/sqrt(2))
print(format(agm, digits=16)) | 10Arithmetic-geometric mean
| 13r
| f1dc |
int inv(int a) {
return a ^ -1;
}
struct Zeckendorf {
int dVal, dLen;
};
void a(struct Zeckendorf *self, int n) {
void b(struct Zeckendorf *, int);
int i = n;
while (true) {
if (self->dLen < i) self->dLen = i;
int j = (self->dVal >> (i * 2)) & 3;
switch (j) {
case 0:
case 1:
return;
case 2:
if (((self->dVal >> ((i + 1) * 2)) & 1) != 1) return;
self->dVal += 1 << (i * 2 + 1);
return;
case 3:
self->dVal = self->dVal & inv(3 << (i * 2));
b(self, (i + 1) * 2);
break;
default:
break;
}
i++;
}
}
void b(struct Zeckendorf *self, int pos) {
void increment(struct Zeckendorf *);
if (pos == 0) {
increment(self);
return;
}
if (((self->dVal >> pos) & 1) == 0) {
self->dVal += 1 << pos;
a(self, pos / 2);
if (pos > 1) a(self, pos / 2 - 1);
} else {
self->dVal = self->dVal & inv(1 << pos);
b(self, pos + 1);
b(self, pos - (pos > 1 ? 2 : 1));
}
}
void c(struct Zeckendorf *self, int pos) {
if (((self->dVal >> pos) & 1) == 1) {
self->dVal = self->dVal & inv(1 << pos);
return;
}
c(self, pos + 1);
if (pos > 0) {
b(self, pos - 1);
} else {
increment(self);
}
}
struct Zeckendorf makeZeckendorf(char *x) {
struct Zeckendorf z = { 0, 0 };
int i = strlen(x) - 1;
int q = 1;
z.dLen = i / 2;
while (i >= 0) {
z.dVal += (x[i] - '0') * q;
q *= 2;
i--;
}
return z;
}
void increment(struct Zeckendorf *self) {
self->dVal++;
a(self, 0);
}
void addAssign(struct Zeckendorf *self, struct Zeckendorf rhs) {
int gn;
for (gn = 0; gn < (rhs.dLen + 1) * 2; gn++) {
if (((rhs.dVal >> gn) & 1) == 1) {
b(self, gn);
}
}
}
void subAssign(struct Zeckendorf *self, struct Zeckendorf rhs) {
int gn;
for (gn = 0; gn < (rhs.dLen + 1) * 2; gn++) {
if (((rhs.dVal >> gn) & 1) == 1) {
c(self, gn);
}
}
while ((((self->dVal >> self->dLen * 2) & 3) == 0) || (self->dLen == 0)) {
self->dLen--;
}
}
void mulAssign(struct Zeckendorf *self, struct Zeckendorf rhs) {
struct Zeckendorf na = rhs;
struct Zeckendorf nb = rhs;
struct Zeckendorf nr = makeZeckendorf();
struct Zeckendorf nt;
int i;
for (i = 0; i < (self->dLen + 1) * 2; i++) {
if (((self->dVal >> i) & 1) > 0) addAssign(&nr, nb);
nt = nb;
addAssign(&nb, na);
na = nt;
}
*self = nr;
}
void printZeckendorf(struct Zeckendorf z) {
static const char *const dig[3] = { , , };
static const char *const dig1[3] = { , , };
if (z.dVal == 0) {
printf();
return;
} else {
int idx = (z.dVal >> (z.dLen * 2)) & 3;
int i;
printf(dig1[idx]);
for (i = z.dLen - 1; i >= 0; i--) {
idx = (z.dVal >> (i * 2)) & 3;
printf(dig[idx]);
}
}
}
int main() {
struct Zeckendorf g;
printf();
g = makeZeckendorf();
addAssign(&g, makeZeckendorf());
printZeckendorf(g);
printf();
addAssign(&g, makeZeckendorf());
printZeckendorf(g);
printf();
addAssign(&g, makeZeckendorf());
printZeckendorf(g);
printf();
addAssign(&g, makeZeckendorf());
printZeckendorf(g);
printf();
addAssign(&g, makeZeckendorf());
printZeckendorf(g);
printf();
printf();
g = makeZeckendorf();
subAssign(&g, makeZeckendorf());
printZeckendorf(g);
printf();
g = makeZeckendorf();
subAssign(&g, makeZeckendorf());
printZeckendorf(g);
printf();
printf();
g = makeZeckendorf();
mulAssign(&g, makeZeckendorf());
printZeckendorf(g);
printf();
g = makeZeckendorf();
addAssign(&g, makeZeckendorf());
printZeckendorf(g);
printf();
return 0;
} | 17Zeckendorf arithmetic
| 5c
| 2wlo |
(def fibs (lazy-cat [1 1] (map + fibs (rest fibs))))
(defn z [n]
(if (zero? n)
"0"
(let [ps (->> fibs (take-while #(<= % n)) rest reverse)
fz (fn [[s n] p]
(if (>= n p)
[(conj s 1) (- n p)]
[(conj s 0) n]))]
(->> ps (reduce fz [[] n]) first (apply str)))))
(doseq [n (range 0 21)] (println n (z n))) | 16Zeckendorf number representation
| 6clojure
| kths |
use bigrat;
foreach my $candidate (2 .. 2**19) {
my $sum = 1 / $candidate;
foreach my $factor (2 .. sqrt($candidate)+1) {
if ($candidate % $factor == 0) {
$sum += 1 / $factor + 1 / ($candidate / $factor);
}
}
if ($sum->denominator() == 1) {
print "Sum of recipr. factors of $candidate = $sum exactly ", ($sum == 1 ? "perfect!" : ""), "\n";
}
} | 8Arithmetic/Rational
| 2perl
| 6s36 |
package main
import (
"bytes"
"fmt"
"strings"
)
var in = `
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000`
func main() {
b := wbFromString(in, '1')
b.zhangSuen()
fmt.Println(b)
}
const (
white = 0
black = 1
)
type wbArray [][]byte | 15Zhang-Suen thinning algorithm
| 0go
| 0usk |
require 'flt'
include Flt
BinNum.Context.precision = 512
def agm(a,g)
new_a = BinNum a
new_g = BinNum g
while new_a - new_g > new_a.class.Context.epsilon do
old_g = new_g
new_g = (new_a * new_g).sqrt
new_a = (old_g + new_a) * 0.5
end
new_g
end
puts agm(1, 1 / BinNum(2).sqrt) | 10Arithmetic-geometric mean
| 14ruby
| msyj |
sub ev
{my $exp = shift;
$exp =~ tr {0-9.+-/*()} {}cd;
return ev_ast(astize($exp));}
{my $balanced_paren_regex;
$balanced_paren_regex = qr
{\( ( [^()]+ | (??{$balanced_paren_regex}) )+ \)}x;
sub astize
{my $exp = shift;
$exp =~ /[^0-9.]/ or return $exp;
$exp = substr($exp, 1, -1)
while $exp =~ /\A($balanced_paren_regex)\z/;
my @paren_contents;
$exp =~ s {($balanced_paren_regex)}
{push(@paren_contents, $1);
"[p$
$exp =~ m{(.+) ([+-]) (.+)}x or
$exp =~ m{(.+) ([*/]) (.+)}x or
die "Eh?: [$exp]\n";
my ($op, $lo, $ro) = ($2, $1, $3);
s {\[p(\d+)\]} {($paren_contents[$1])}eg
foreach $lo, $ro;
return [$op, astize($lo), astize($ro)];}}
{my %ops =
('+' => sub {$_[0] + $_[1]},
'-' => sub {$_[0] - $_[1]},
'*' => sub {$_[0] * $_[1]},
'/' => sub {$_[0] / $_[1]});
sub ev_ast
{my $ast = shift;
ref $ast or return $ast;
my ($op, @operands) = @$ast;
$_ = ev_ast($_) foreach @operands;
return $ops{$op}->(@operands);}} | 11Arithmetic evaluation
| 2perl
| sgq3 |
def zhangSuen(text) {
def image = text.split('\n').collect { line -> line.collect { it == '#' ? 1: 0} }
def p2, p3, p4, p5, p6, p7, p8, p9
def step1 = { (p2 * p4 * p6 == 0) && (p4 * p6 * p8 == 0) }
def step2 = { (p2 * p4 * p8 == 0) && (p2 * p6 * p8 == 0) }
def reduce = { step ->
def toWhite = []
image.eachWithIndex{ line, y ->
line.eachWithIndex{ pixel, x ->
if (!pixel) return
(p2, p3, p4, p5, p6, p7, p8, p9) = [image[y-1][x], image[y-1][x+1], image[y][x+1], image[y+1][x+1], image[y+1][x], image[y+1][x-1], image[y][x-1], image[y-1][x-1]]
def a = [[p2,p3],[p3,p4],[p4,p5],[p5,p6],[p6,p7],[p7,p8],[p8,p9],[p9,p2]].collect { a1, a2 -> (a1 == 0 && a2 ==1) ? 1: 0 }.sum()
def b = [p2, p3, p4, p5, p6, p7, p8, p9].sum()
if (a != 1 || b < 2 || b > 6) return
if (step.call()) toWhite << [y,x]
}
}
toWhite.each { y, x -> image[y][x] = 0 }
!toWhite.isEmpty()
}
while (reduce(step1) | reduce(step2));
image.collect { line -> line.collect { it ? '#': '.' }.join('') }.join('\n')
} | 15Zhang-Suen thinning algorithm
| 7groovy
| e9al |
null | 10Arithmetic-geometric mean
| 15rust
| 90mm |
int main()
{
mpz_t a;
mpz_init_set_ui(a, 5);
mpz_pow_ui(a, a, 1 << 18);
int len = mpz_sizeinbase(a, 10);
printf(, len);
char *s = mpz_get_str(0, 10, a);
printf(, len = strlen(s));
printf(, s, s + len - 20);
return 0;
} | 18Arbitrary-precision integers (included)
| 5c
| n5i6 |
import Data.Array
import qualified Data.List as List
data BW = Black | White
deriving (Eq, Show)
type Index = (Int, Int)
type BWArray = Array Index BW
toBW :: Char -> BW
toBW '0' = White
toBW '1' = Black
toBW ' ' = White
toBW '#' = Black
toBW _ = error "toBW: illegal char"
toBWArray :: [String] -> BWArray
toBWArray strings = arr
where
height = length strings
width = minimum $ map length strings
arr = listArray ((0, 0), (width - 1, height - 1))
. map toBW . concat . List.transpose $ map (take width) strings
toChar :: BW -> Char
toChar White = ' '
toChar Black = '#'
chunksOf :: Int -> [a] -> [[a]]
chunksOf _ [] = []
chunksOf n xs = take n xs: (chunksOf n $ drop n xs)
showBWArray :: BWArray -> String
showBWArray arr =
List.intercalate "\n" . List.transpose
. chunksOf (height + 1) . map toChar $ elems arr
where
(_, (_, height)) = bounds arr
add :: Num a => (a, a) -> (a, a) -> (a, a)
add (a, b) (x, y) = (a + x, b + y)
within :: Ord a => ((a, a), (a, a)) -> (a, a) -> Bool
within ((a, b), (c, d)) (x, y) =
a <= x && x <= c &&
b <= y && y <= d
p2, p3, p4, p5, p6, p7, p8, p9 :: Index
p2 = ( 0, -1)
p3 = ( 1, -1)
p4 = ( 1, 0)
p5 = ( 1, 1)
p6 = ( 0, 1)
p7 = (-1, 1)
p8 = (-1, 0)
p9 = (-1, -1)
ixamap :: Ix i => ((i, a) -> b) -> Array i a -> Array i b
ixamap f a = listArray (bounds a) $ map f $ assocs a
thin :: BWArray -> BWArray
thin arr =
if pass2 == arr then pass2 else thin pass2
where
(low, high) = bounds arr
lowB = low `add` (1, 1)
highB = high `add` (-1, -1)
isInner = within (lowB, highB)
offs p = map (add p) [p2, p3, p4, p5, p6, p7, p8, p9]
trans c (a, b) = if a == White && b == Black then c + 1 else c
zipshift xs = zip xs (drop 1 xs ++ xs)
transitions a = (== (1 :: Int)) . foldl trans 0 . zipshift . map (a !) . offs
within2to6 n = 2 <= n && n <= 6
blacks a p = within2to6 . length . filter ((== Black) . (a !)) $ offs p
oneWhite xs a p = any ((== White) . (a !) . add p) xs
oneRight = oneWhite [p2, p4, p6]
oneDown = oneWhite [p4, p6, p8]
oneUp = oneWhite [p2, p4, p8]
oneLeft = oneWhite [p2, p6, p8]
precond a p = (a ! p == Black) && isInner p && blacks a p && transitions a p
stage1 a p = precond a p && oneRight a p && oneDown a p
stage2 a p = precond a p && oneUp a p && oneLeft a p
stager f (p, d) = if f p then White else d
pass1 = ixamap (stager $ stage1 arr) arr
pass2 = ixamap (stager $ stage2 pass1) pass1
sampleExA :: [String]
sampleExA =
["00000000000000000000000000000000"
,"01111111110000000111111110000000"
,"01110001111000001111001111000000"
,"01110000111000001110000111000000"
,"01110001111000001110000000000000"
,"01111111110000001110000000000000"
,"01110111100000001110000111000000"
,"01110011110011101111001111011100"
,"01110001111011100111111110011100"
,"00000000000000000000000000000000"]
sampleExB :: [String]
sampleExB =
[" "
," ################# ############# "
," ################## ################ "
," ################### ################## "
," ######## ####### ################### "
," ###### ####### ####### ###### "
," ###### ####### ####### "
," ################# ####### "
," ################ ####### "
," ################# ####### "
," ###### ####### ####### "
," ###### ####### ####### "
," ###### ####### ####### ###### "
," ######## ####### ################### "
," ######## ####### ###### ################## ###### "
," ######## ####### ###### ################ ###### "
," ######## ####### ###### ############# ###### "
," "]
main :: IO ()
main = mapM_ (putStrLn . showBWArray . thin . toBWArray) [sampleExA, sampleExB] | 15Zhang-Suen thinning algorithm
| 8haskell
| cw94 |
def agm(a: Double, g: Double, eps: Double): Double = {
if (math.abs(a - g) < eps) (a + g) / 2
else agm((a + g) / 2, math.sqrt(a * g), eps)
}
agm(1, math.sqrt(2)/2, 1e-15) | 10Arithmetic-geometric mean
| 16scala
| 2ilb |
package main
import (
"fmt"
"strings"
)
var (
dig = [3]string{"00", "01", "10"}
dig1 = [3]string{"", "1", "10"}
)
type Zeckendorf struct{ dVal, dLen int }
func NewZeck(x string) *Zeckendorf {
z := new(Zeckendorf)
if x == "" {
x = "0"
}
q := 1
i := len(x) - 1
z.dLen = i / 2
for ; i >= 0; i-- {
z.dVal += int(x[i]-'0') * q
q *= 2
}
return z
}
func (z *Zeckendorf) a(i int) {
for ; ; i++ {
if z.dLen < i {
z.dLen = i
}
j := (z.dVal >> uint(i*2)) & 3
switch j {
case 0, 1:
return
case 2:
if ((z.dVal >> (uint(i+1) * 2)) & 1) != 1 {
return
}
z.dVal += 1 << uint(i*2+1)
return
case 3:
z.dVal &= ^(3 << uint(i*2))
z.b((i + 1) * 2)
}
}
}
func (z *Zeckendorf) b(pos int) {
if pos == 0 {
z.Inc()
return
}
if ((z.dVal >> uint(pos)) & 1) == 0 {
z.dVal += 1 << uint(pos)
z.a(pos / 2)
if pos > 1 {
z.a(pos/2 - 1)
}
} else {
z.dVal &= ^(1 << uint(pos))
z.b(pos + 1)
temp := 1
if pos > 1 {
temp = 2
}
z.b(pos - temp)
}
}
func (z *Zeckendorf) c(pos int) {
if ((z.dVal >> uint(pos)) & 1) == 1 {
z.dVal &= ^(1 << uint(pos))
return
}
z.c(pos + 1)
if pos > 0 {
z.b(pos - 1)
} else {
z.Inc()
}
}
func (z *Zeckendorf) Inc() {
z.dVal++
z.a(0)
}
func (z1 *Zeckendorf) PlusAssign(z2 *Zeckendorf) {
for gn := 0; gn < (z2.dLen+1)*2; gn++ {
if ((z2.dVal >> uint(gn)) & 1) == 1 {
z1.b(gn)
}
}
}
func (z1 *Zeckendorf) MinusAssign(z2 *Zeckendorf) {
for gn := 0; gn < (z2.dLen+1)*2; gn++ {
if ((z2.dVal >> uint(gn)) & 1) == 1 {
z1.c(gn)
}
}
for z1.dLen > 0 && ((z1.dVal>>uint(z1.dLen*2))&3) == 0 {
z1.dLen--
}
}
func (z1 *Zeckendorf) TimesAssign(z2 *Zeckendorf) {
na := z2.Copy()
nb := z2.Copy()
nr := new(Zeckendorf)
for i := 0; i <= (z1.dLen+1)*2; i++ {
if ((z1.dVal >> uint(i)) & 1) > 0 {
nr.PlusAssign(nb)
}
nt := nb.Copy()
nb.PlusAssign(na)
na = nt.Copy()
}
z1.dVal = nr.dVal
z1.dLen = nr.dLen
}
func (z *Zeckendorf) Copy() *Zeckendorf {
return &Zeckendorf{z.dVal, z.dLen}
}
func (z1 *Zeckendorf) Compare(z2 *Zeckendorf) int {
switch {
case z1.dVal < z2.dVal:
return -1
case z1.dVal > z2.dVal:
return 1
default:
return 0
}
}
func (z *Zeckendorf) String() string {
if z.dVal == 0 {
return "0"
}
var sb strings.Builder
sb.WriteString(dig1[(z.dVal>>uint(z.dLen*2))&3])
for i := z.dLen - 1; i >= 0; i-- {
sb.WriteString(dig[(z.dVal>>uint(i*2))&3])
}
return sb.String()
}
func main() {
fmt.Println("Addition:")
g := NewZeck("10")
g.PlusAssign(NewZeck("10"))
fmt.Println(g)
g.PlusAssign(NewZeck("10"))
fmt.Println(g)
g.PlusAssign(NewZeck("1001"))
fmt.Println(g)
g.PlusAssign(NewZeck("1000"))
fmt.Println(g)
g.PlusAssign(NewZeck("10101"))
fmt.Println(g)
fmt.Println("\nSubtraction:")
g = NewZeck("1000")
g.MinusAssign(NewZeck("101"))
fmt.Println(g)
g = NewZeck("10101010")
g.MinusAssign(NewZeck("1010101"))
fmt.Println(g)
fmt.Println("\nMultiplication:")
g = NewZeck("1001")
g.TimesAssign(NewZeck("101"))
fmt.Println(g)
g = NewZeck("101010")
g.PlusAssign(NewZeck("101"))
fmt.Println(g)
} | 17Zeckendorf arithmetic
| 0go
| qcxz |
package main
import "fmt"
func getDivisors(n int) []int {
divs := []int{1, n}
for i := 2; i*i <= n; i++ {
if n%i == 0 {
j := n / i
divs = append(divs, i)
if i != j {
divs = append(divs, j)
}
}
}
return divs
}
func sum(divs []int) int {
sum := 0
for _, div := range divs {
sum += div
}
return sum
}
func isPartSum(divs []int, sum int) bool {
if sum == 0 {
return true
}
le := len(divs)
if le == 0 {
return false
}
last := divs[le-1]
divs = divs[0 : le-1]
if last > sum {
return isPartSum(divs, sum)
}
return isPartSum(divs, sum) || isPartSum(divs, sum-last)
}
func isZumkeller(n int) bool {
divs := getDivisors(n)
sum := sum(divs) | 19Zumkeller numbers
| 0go
| f4d0 |
import Data.List (find, mapAccumL)
import Control.Arrow (first, second)
fibs :: Num a => a -> a -> [a]
fibs a b = res
where
res = a: b: zipWith (+) res (tail res)
data Fib = Fib { sign :: Int, digits :: [Int]}
mkFib s ds =
case dropWhile (==0) ds of
[] -> 0
ds -> Fib s (reverse ds)
instance Show Fib where
show (Fib s ds) = sig s ++ foldMap show (reverse ds)
where sig = \case { -1 -> "-"; s -> "" }
instance Eq Fib where
Fib sa a == Fib sb b = sa == sb && a == b
instance Ord Fib where
a `compare` b =
sign a `compare` sign b <>
case find (/= 0) $ alignWith (-) (digits a) (digits b) of
Nothing -> EQ
Just 1 -> if sign a > 0 then GT else LT
Just (-1) -> if sign a > 0 then LT else GT
instance Num Fib where
negate (Fib s ds) = Fib (negate s) ds
abs (Fib s ds) = Fib 1 ds
signum (Fib s _) = fromIntegral s
fromInteger n =
case compare n 0 of
LT -> negate $ fromInteger (- n)
EQ -> Fib 0 [0]
GT -> Fib 1 . reverse . fst $ divModFib n 1
0 + a = a
a + 0 = a
a + b =
case (sign a, sign b) of
( 1, 1) -> res
(-1, 1) -> b - (-a)
( 1,-1) -> a - (-b)
(-1,-1) -> - ((- a) + (- b))
where
res = mkFib 1 . process $ 0:0:c
c = alignWith (+) (digits a) (digits b)
process =
runRight 3 r2 . runLeftR 3 r2 . runRightR 4 r1
0 - a = -a
a - 0 = a
a - b =
case (sign a, sign b) of
( 1, 1) -> res
(-1, 1) -> - ((-a) + b)
( 1,-1) -> a + (-b)
(-1,-1) -> - ((-a) - (-b))
where
res = case find (/= 0) c of
Just 1 -> mkFib 1 . process $ c
Just (-1) -> - (b - a)
Nothing -> 0
c = alignWith (-) (digits a) (digits b)
process =
runRight 3 r2 . runLeftR 3 r2 . runRightR 4 r1 . runRight 3 r3
0 * a = 0
a * 0 = 0
1 * a = a
a * 1 = a
a * b =
case (sign a, sign b) of
(1, 1) -> res
(-1, 1) -> - ((-a) * b)
( 1,-1) -> - (a * (-b))
(-1,-1) -> ((-a) * (-b))
where
table = fibs a (a + a)
res = sum $ onlyOnes $ zip (digits b) table
onlyOnes = map snd . filter ((==1) . fst)
instance Enum Fib where
toEnum = fromInteger . fromIntegral
fromEnum = fromIntegral . toInteger
instance Real Fib where
toRational = fromInteger . toInteger
instance Integral Fib where
toInteger (Fib s ds) = signum (fromIntegral s) * res
where
res = sum (zipWith (*) (fibs 1 2) (fromIntegral <$> ds))
quotRem 0 _ = (0, 0)
quotRem a 0 = error "divide by zero"
quotRem a b = case (sign a, sign b) of
(1, 1) -> first (mkFib 1) $ divModFib a b
(-1, 1) -> second negate . first negate $ quotRem (-a) b
( 1,-1) -> first negate $ quotRem a (-b)
(-1,-1) -> second negate $ quotRem (-a) (-b)
divModFib :: (Ord a, Num c, Num a) => a -> a -> ([c], a)
divModFib a b = (q, r)
where
(r, q) = mapAccumL f a $ reverse $ takeWhile (<= a) table
table = fibs b (b+b)
f n x = if n < x then (n, 0) else (n - x, 1)
runRight n f = go
where
go [] = []
go lst = let (w, r) = splitAt n lst
(h: t) = f w
in h: go (t ++ r)
runRightR n f = go []
where
go res [] = res
go res lst = let (w, r) = splitAt n lst
(h: t) = f w
in go (h: res) (t ++ r)
runLeftR n f = runRightR n (reverse . f . reverse)
r1 = \case [0,3,0] -> [1,1,1]
[0,2,0] -> [1,0,1]
[0,1,2] -> [1,0,1]
[0,2,1] -> [1,1,0]
[x,0,2] -> [x,1,0]
[x,0,3] -> [x,1,1]
[0,1,2,0] -> [1,0,1,0]
[0,2,0,x] -> [1,0,0,x+1]
[0,3,0,x] -> [1,1,0,x+1]
[0,2,1,x] -> [1,1,0,x ]
[0,1,2,x] -> [1,0,1,x ]
l -> l
r2 = \case [0,1,1] -> [1,0,0]
l -> l
r3 = \case [1,-1] -> [0,1]
[2,-1] -> [1,1]
[1, 0, 0] -> [0,1,1]
[1,-1, 0] -> [0,0,1]
[1,-1, 1] -> [0,0,2]
[1, 0,-1] -> [0,1,0]
[2, 0, 0] -> [1,1,1]
[2,-1, 0] -> [1,0,1]
[2,-1, 1] -> [1,0,2]
[2, 0,-1] -> [1,1,0]
l -> l
alignWith :: (Int -> Int -> a) -> [Int] -> [Int] -> [a]
alignWith f a b = go [] a b
where
go res as [] = ((`f` 0) <$> reverse as) ++ res
go res [] bs = ((0 `f`) <$> reverse bs) ++ res
go res (a:as) (b:bs) = go (f a b: res) as bs | 17Zeckendorf arithmetic
| 8haskell
| mpyf |
import Data.List (group, sort)
import Data.List.Split (chunksOf)
import Data.Numbers.Primes (primeFactors)
isZumkeller :: Int -> Bool
isZumkeller n =
let ds = divisors n
m = sum ds
in ( even m
&& let half = div m 2
in elem half ds
|| ( all (half >=) ds
&& summable half ds
)
)
summable :: Int -> [Int] -> Bool
summable _ [] = False
summable x xs@(h: t) =
elem x xs
|| summable (x - h) t
|| summable x t
divisors :: Int -> [Int]
divisors x =
sort
( foldr
( flip ((<*>) . fmap (*))
. scanl (*) 1
)
[1]
(group (primeFactors x))
)
main :: IO ()
main =
mapM_
( \(s, n, xs) ->
putStrLn $
s
<> ( '\n':
tabulated
10
(take n (filter isZumkeller xs))
)
)
[ ("First 220 Zumkeller numbers:", 220, [1 ..]),
("First 40 odd Zumkeller numbers:", 40, [1, 3 ..])
]
tabulated ::
Show a =>
Int ->
[a] ->
String
tabulated nCols = go
where
go xs =
let ts = show <$> xs
w = succ (maximum (length <$> ts))
in unlines
( concat
<$> chunksOf
nCols
(justifyRight w ' ' <$> ts)
)
justifyRight :: Int -> Char -> String -> String
justifyRight n c = (drop . length) <*> (replicate n c <>) | 19Zumkeller numbers
| 8haskell
| 4q5s |
(defn exp [n k] (reduce * (repeat k n)))
(def big (->> 2 (exp 3) (exp 4) (exp 5)))
(def sbig (str big))
(assert (= "62060698786608744707" (.substring sbig 0 20)))
(assert (= "92256259918212890625" (.substring sbig (- (count sbig) 20))))
(println (count sbig) "digits")
(println (str (.substring sbig 0 20) ".."
(.substring sbig (- (count sbig) 20)))
(str "(" (count sbig) " digits)")) | 18Arbitrary-precision integers (included)
| 6clojure
| 3jzr |
import java.awt.Point;
import java.util.*;
public class ZhangSuen {
final static String[] image = {
" ",
" ################# ############# ",
" ################## ################ ",
" ################### ################## ",
" ######## ####### ################### ",
" ###### ####### ####### ###### ",
" ###### ####### ####### ",
" ################# ####### ",
" ################ ####### ",
" ################# ####### ",
" ###### ####### ####### ",
" ###### ####### ####### ",
" ###### ####### ####### ###### ",
" ######## ####### ################### ",
" ######## ####### ###### ################## ###### ",
" ######## ####### ###### ################ ###### ",
" ######## ####### ###### ############# ###### ",
" "};
final static int[][] nbrs = {{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1},
{-1, 1}, {-1, 0}, {-1, -1}, {0, -1}};
final static int[][][] nbrGroups = {{{0, 2, 4}, {2, 4, 6}}, {{0, 2, 6},
{0, 4, 6}}};
static List<Point> toWhite = new ArrayList<>();
static char[][] grid;
public static void main(String[] args) {
grid = new char[image.length][];
for (int r = 0; r < image.length; r++)
grid[r] = image[r].toCharArray();
thinImage();
}
static void thinImage() {
boolean firstStep = false;
boolean hasChanged;
do {
hasChanged = false;
firstStep = !firstStep;
for (int r = 1; r < grid.length - 1; r++) {
for (int c = 1; c < grid[0].length - 1; c++) {
if (grid[r][c] != '#')
continue;
int nn = numNeighbors(r, c);
if (nn < 2 || nn > 6)
continue;
if (numTransitions(r, c) != 1)
continue;
if (!atLeastOneIsWhite(r, c, firstStep ? 0 : 1))
continue;
toWhite.add(new Point(c, r));
hasChanged = true;
}
}
for (Point p : toWhite)
grid[p.y][p.x] = ' ';
toWhite.clear();
} while (firstStep || hasChanged);
printResult();
}
static int numNeighbors(int r, int c) {
int count = 0;
for (int i = 0; i < nbrs.length - 1; i++)
if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == '#')
count++;
return count;
}
static int numTransitions(int r, int c) {
int count = 0;
for (int i = 0; i < nbrs.length - 1; i++)
if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == ' ') {
if (grid[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == '#')
count++;
}
return count;
}
static boolean atLeastOneIsWhite(int r, int c, int step) {
int count = 0;
int[][] group = nbrGroups[step];
for (int i = 0; i < 2; i++)
for (int j = 0; j < group[i].length; j++) {
int[] nbr = nbrs[group[i][j]];
if (grid[r + nbr[1]][c + nbr[0]] == ' ') {
count++;
break;
}
}
return count > 1;
}
static void printResult() {
for (char[] row : grid)
System.out.println(row);
}
} | 15Zhang-Suen thinning algorithm
| 9java
| zktq |
from fractions import Fraction
for candidate in range(2, 2**19):
sum = Fraction(1, candidate)
for factor in range(2, int(candidate**0.5)+1):
if candidate% factor == 0:
sum += Fraction(1, factor) + Fraction(1, candidate
if sum.denominator == 1:
print(%
(candidate, int(sum), if sum == 1 else )) | 8Arithmetic/Rational
| 3python
| y06q |
import operator
class AstNode(object):
def __init__( self, opr, left, right ):
self.opr = opr
self.l = left
self.r = right
def eval(self):
return self.opr(self.l.eval(), self.r.eval())
class LeafNode(object):
def __init__( self, valStrg ):
self.v = int(valStrg)
def eval(self):
return self.v
class Yaccer(object):
def __init__(self):
self.operstak = []
self.nodestak =[]
self.__dict__.update(self.state1)
def v1( self, valStrg ):
self.nodestak.append( LeafNode(valStrg))
self.__dict__.update(self.state2)
def o2( self, operchar ):
def openParen(a,b):
return 0
opDict= { '+': ( operator.add, 2, 2 ),
'-': (operator.sub, 2, 2 ),
'*': (operator.mul, 3, 3 ),
'/': (operator.div, 3, 3 ),
'^': ( pow, 4, 5 ),
'(': ( openParen, 0, 8 )
}
operPrecidence = opDict[operchar][2]
self.redeuce(operPrecidence)
self.operstak.append(opDict[operchar])
self.__dict__.update(self.state1)
def syntaxErr(self, char ):
print 'parse error - near operator '%char
def pc2( self,operchar ):
self.redeuce( 1 )
if len(self.operstak)>0:
self.operstak.pop()
else:
print 'Error - no open parenthesis matches close parens.'
self.__dict__.update(self.state2)
def end(self):
self.redeuce(0)
return self.nodestak.pop()
def redeuce(self, precidence):
while len(self.operstak)>0:
tailOper = self.operstak[-1]
if tailOper[1] < precidence: break
tailOper = self.operstak.pop()
vrgt = self.nodestak.pop()
vlft= self.nodestak.pop()
self.nodestak.append( AstNode(tailOper[0], vlft, vrgt))
state1 = { 'v': v1, 'o':syntaxErr, 'po':o2, 'pc':syntaxErr }
state2 = { 'v': syntaxErr, 'o':o2, 'po':syntaxErr, 'pc':pc2 }
def Lex( exprssn, p ):
bgn = None
cp = -1
for c in exprssn:
cp += 1
if c in '+-/*^()':
if bgn is not None:
p.v(p, exprssn[bgn:cp])
bgn = None
if c=='(': p.po(p, c)
elif c==')':p.pc(p, c)
else: p.o(p, c)
elif c in ' \t':
if bgn is not None:
p.v(p, exprssn[bgn:cp])
bgn = None
elif c in '0123456789':
if bgn is None:
bgn = cp
else:
print 'Invalid character in expression'
if bgn is not None:
p.v(p, exprssn[bgn:cp])
bgn = None
if bgn is not None:
p.v(p, exprssn[bgn:cp+1])
bgn = None
return p.end()
expr = raw_input()
astTree = Lex( expr, Yaccer())
print expr, '=',astTree.eval() | 11Arithmetic evaluation
| 3python
| 0rsq |
import java.util.List;
public class Zeckendorf implements Comparable<Zeckendorf> {
private static List<String> dig = List.of("00", "01", "10");
private static List<String> dig1 = List.of("", "1", "10");
private String x;
private int dVal = 0;
private int dLen = 0;
public Zeckendorf() {
this("0");
}
public Zeckendorf(String x) {
this.x = x;
int q = 1;
int i = x.length() - 1;
dLen = i / 2;
while (i >= 0) {
dVal += (x.charAt(i) - '0') * q;
q *= 2;
i--;
}
}
private void a(int n) {
int i = n;
while (true) {
if (dLen < i) dLen = i;
int j = (dVal >> (i * 2)) & 3;
switch (j) {
case 0:
case 1:
return;
case 2:
if (((dVal >> ((i + 1) * 2)) & 1) != 1) return;
dVal += 1 << (i * 2 + 1);
return;
case 3:
int temp = 3 << (i * 2);
temp ^= -1;
dVal = dVal & temp;
b((i + 1) * 2);
break;
}
i++;
}
}
private void b(int pos) {
if (pos == 0) {
Zeckendorf thiz = this;
thiz.inc();
return;
}
if (((dVal >> pos) & 1) == 0) {
dVal += 1 << pos;
a(pos / 2);
if (pos > 1) a(pos / 2 - 1);
} else {
int temp = 1 << pos;
temp ^= -1;
dVal = dVal & temp;
b(pos + 1);
b(pos - (pos > 1 ? 2 : 1));
}
}
private void c(int pos) {
if (((dVal >> pos) & 1) == 1) {
int temp = 1 << pos;
temp ^= -1;
dVal = dVal & temp;
return;
}
c(pos + 1);
if (pos > 0) {
b(pos - 1);
} else {
Zeckendorf thiz = this;
thiz.inc();
}
}
public Zeckendorf inc() {
dVal++;
a(0);
return this;
}
public void plusAssign(Zeckendorf other) {
for (int gn = 0; gn < (other.dLen + 1) * 2; gn++) {
if (((other.dVal >> gn) & 1) == 1) {
b(gn);
}
}
}
public void minusAssign(Zeckendorf other) {
for (int gn = 0; gn < (other.dLen + 1) * 2; gn++) {
if (((other.dVal >> gn) & 1) == 1) {
c(gn);
}
}
while ((((dVal >> dLen * 2) & 3) == 0) || (dLen == 0)) {
dLen--;
}
}
public void timesAssign(Zeckendorf other) {
Zeckendorf na = other.copy();
Zeckendorf nb = other.copy();
Zeckendorf nt;
Zeckendorf nr = new Zeckendorf();
for (int i = 0; i < (dLen + 1) * 2; i++) {
if (((dVal >> i) & 1) > 0) {
nr.plusAssign(nb);
}
nt = nb.copy();
nb.plusAssign(na);
na = nt.copy();
}
dVal = nr.dVal;
dLen = nr.dLen;
}
private Zeckendorf copy() {
Zeckendorf z = new Zeckendorf();
z.dVal = dVal;
z.dLen = dLen;
return z;
}
@Override
public int compareTo(Zeckendorf other) {
return ((Integer) dVal).compareTo(other.dVal);
}
@Override
public String toString() {
if (dVal == 0) {
return "0";
}
int idx = (dVal >> (dLen * 2)) & 3;
StringBuilder stringBuilder = new StringBuilder(dig1.get(idx));
for (int i = dLen - 1; i >= 0; i--) {
idx = (dVal >> (i * 2)) & 3;
stringBuilder.append(dig.get(idx));
}
return stringBuilder.toString();
}
public static void main(String[] args) {
System.out.println("Addition:");
Zeckendorf g = new Zeckendorf("10");
g.plusAssign(new Zeckendorf("10"));
System.out.println(g);
g.plusAssign(new Zeckendorf("10"));
System.out.println(g);
g.plusAssign(new Zeckendorf("1001"));
System.out.println(g);
g.plusAssign(new Zeckendorf("1000"));
System.out.println(g);
g.plusAssign(new Zeckendorf("10101"));
System.out.println(g);
System.out.println("\nSubtraction:");
g = new Zeckendorf("1000");
g.minusAssign(new Zeckendorf("101"));
System.out.println(g);
g = new Zeckendorf("10101010");
g.minusAssign(new Zeckendorf("1010101"));
System.out.println(g);
System.out.println("\nMultiplication:");
g = new Zeckendorf("1001");
g.timesAssign(new Zeckendorf("101"));
System.out.println(g);
g = new Zeckendorf("101010");
g.plusAssign(new Zeckendorf("101"));
System.out.println(g);
}
} | 17Zeckendorf arithmetic
| 9java
| frdv |
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class ZumkellerNumbers {
public static void main(String[] args) {
int n = 1;
System.out.printf("First 220 Zumkeller numbers:%n");
for ( int count = 1 ; count <= 220 ; n += 1 ) {
if ( isZumkeller(n) ) {
System.out.printf("%3d ", n);
if ( count % 20 == 0 ) {
System.out.printf("%n");
}
count++;
}
}
n = 1;
System.out.printf("%nFirst 40 odd Zumkeller numbers:%n");
for ( int count = 1 ; count <= 40 ; n += 2 ) {
if ( isZumkeller(n) ) {
System.out.printf("%6d", n);
if ( count % 10 == 0 ) {
System.out.printf("%n");
}
count++;
}
}
n = 1;
System.out.printf("%nFirst 40 odd Zumkeller numbers that do not end in a 5:%n");
for ( int count = 1 ; count <= 40 ; n += 2 ) {
if ( n % 5 != 0 && isZumkeller(n) ) {
System.out.printf("%8d", n);
if ( count % 10 == 0 ) {
System.out.printf("%n");
}
count++;
}
}
}
private static boolean isZumkeller(int n) { | 19Zumkeller numbers
| 9java
| cp9h |
function Point(x, y) {
this.x = x;
this.y = y;
}
var ZhangSuen = (function () {
function ZhangSuen() {
}
ZhangSuen.image =
[" ",
" ################# ############# ",
" ################## ################ ",
" ################### ################## ",
" ######## ####### ################### ",
" ###### ####### ####### ###### ",
" ###### ####### ####### ",
" ################# ####### ",
" ################ ####### ",
" ################# ####### ",
" ###### ####### ####### ",
" ###### ####### ####### ",
" ###### ####### ####### ###### ",
" ######## ####### ################### ",
" ######## ####### ###### ################## ###### ",
" ######## ####### ###### ################ ###### ",
" ######## ####### ###### ############# ###### ",
" "];
ZhangSuen.nbrs = [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1]];
ZhangSuen.nbrGroups = [[[0, 2, 4], [2, 4, 6]], [[0, 2, 6], [0, 4, 6]]];
ZhangSuen.toWhite = new Array();
;
ZhangSuen.main = function (args) {
ZhangSuen.grid = new Array(ZhangSuen.image.length);
for (var r = 0; r < ZhangSuen.image.length; r++)
ZhangSuen.grid[r] = (ZhangSuen.image[r]).split('');
ZhangSuen.thinImage();
};
ZhangSuen.thinImage = function () {
var firstStep = false;
var hasChanged;
do {
hasChanged = false;
firstStep = !firstStep;
for (var r = 1; r < ZhangSuen.grid.length - 1; r++) {
for (var c = 1; c < ZhangSuen.grid[0].length - 1; c++) {
if (ZhangSuen.grid[r][c] !== '#')
continue;
var nn = ZhangSuen.numNeighbors(r, c);
if (nn < 2 || nn > 6)
continue;
if (ZhangSuen.numTransitions(r, c) !== 1)
continue;
if (!ZhangSuen.atLeastOneIsWhite(r, c, firstStep ? 0 : 1))
continue;
ZhangSuen.toWhite.push(new Point(c, r));
hasChanged = true;
}
}
for (let i = 0; i < ZhangSuen.toWhite.length; i++) {
var p = ZhangSuen.toWhite[i];
ZhangSuen.grid[p.y][p.x] = ' ';
}
ZhangSuen.toWhite = new Array();
} while ((firstStep || hasChanged));
ZhangSuen.printResult();
};
ZhangSuen.numNeighbors = function (r, c) {
var count = 0;
for (var i = 0; i < ZhangSuen.nbrs.length - 1; i++)
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === '#')
count++;
return count;
};
ZhangSuen.numTransitions = function (r, c) {
var count = 0;
for (var i = 0; i < ZhangSuen.nbrs.length - 1; i++)
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === ' ') {
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i + 1][1]][c + ZhangSuen.nbrs[i + 1][0]] === '#')
count++;
}
return count;
};
ZhangSuen.atLeastOneIsWhite = function (r, c, step) {
var count = 0;
var group = ZhangSuen.nbrGroups[step];
for (var i = 0; i < 2; i++)
for (var j = 0; j < group[i].length; j++) {
var nbr = ZhangSuen.nbrs[group[i][j]];
if (ZhangSuen.grid[r + nbr[1]][c + nbr[0]] === ' ') {
count++;
break;
}
}
return count > 1;
};
ZhangSuen.printResult = function () {
for (var i = 0; i < ZhangSuen.grid.length; i++) {
var row = ZhangSuen.grid[i];
console.log(row.join(''));
}
};
return ZhangSuen;
}());
ZhangSuen.main(null); | 15Zhang-Suen thinning algorithm
| 10javascript
| 9eml |
null | 17Zeckendorf arithmetic
| 11kotlin
| 8v0q |
use Math::Complex;
my $a = 1 + 1*i;
my $b = 3.14159 + 1.25*i;
print "$_\n" foreach
$a + $b,
$a * $b,
-$a,
1 / $a,
~$a; | 9Arithmetic/Complex
| 2perl
| npiw |
WITH
rec (rn, a, g, diff) AS (
SELECT 1, 1, 1/SQRT(2), 1 - 1/SQRT(2)
FROM dual
UNION ALL
SELECT rn + 1, (a + g)/2, SQRT(a * g), (a + g)/2 - SQRT(a * g)
FROM rec
WHERE diff > 1e-38
)
SELECT *
FROM rec
WHERE diff <= 1e-38
; | 10Arithmetic-geometric mean
| 19sql
| 5fu3 |
package main
import (
"fmt"
"math"
"math/big"
"math/cmplx"
)
func main() {
fmt.Println("float64: ", math.Pow(0, 0))
var b big.Int
fmt.Println("big integer:", b.Exp(&b, &b, nil))
fmt.Println("complex: ", cmplx.Pow(0, 0))
} | 14Zero to the zero power
| 0go
| suqa |
println 0**0 | 14Zero to the zero power
| 7groovy
| a91p |
typedef struct lnode_t {
struct lnode_t *prev;
struct lnode_t *next;
int v;
} Lnode;
Lnode *make_list_node(int v) {
Lnode *node = malloc(sizeof(Lnode));
if (node == NULL) {
return NULL;
}
node->v = v;
node->prev = NULL;
node->next = NULL;
return node;
}
void free_lnode(Lnode *node) {
if (node == NULL) {
return;
}
node->v = 0;
node->prev = NULL;
free_lnode(node->next);
node->next = NULL;
}
typedef struct list_t {
Lnode *front;
Lnode *back;
size_t len;
} List;
List *make_list() {
List *list = malloc(sizeof(List));
if (list == NULL) {
return NULL;
}
list->front = NULL;
list->back = NULL;
list->len = 0;
return list;
}
void free_list(List *list) {
if (list == NULL) {
return;
}
list->len = 0;
list->back = NULL;
free_lnode(list->front);
list->front = NULL;
}
void list_insert(List *list, int v) {
Lnode *node;
if (list == NULL) {
return;
}
node = make_list_node(v);
if (list->front == NULL) {
list->front = node;
list->back = node;
list->len = 1;
} else {
node->prev = list->back;
list->back->next = node;
list->back = node;
list->len++;
}
}
void list_print(List *list) {
Lnode *it;
if (list == NULL) {
return;
}
for (it = list->front; it != NULL; it = it->next) {
printf(, it->v);
}
}
int list_get(List *list, int idx) {
Lnode *it = NULL;
if (list != NULL && list->front != NULL) {
int i;
if (idx < 0) {
it = list->back;
i = -1;
while (it != NULL && i > idx) {
it = it->prev;
i--;
}
} else {
it = list->front;
i = 0;
while (it != NULL && i < idx) {
it = it->next;
i++;
}
}
}
if (it == NULL) {
return INT_MIN;
}
return it->v;
}
typedef struct mnode_t {
int k;
bool v;
struct mnode_t *next;
} Mnode;
Mnode *make_map_node(int k, bool v) {
Mnode *node = malloc(sizeof(Mnode));
if (node == NULL) {
return node;
}
node->k = k;
node->v = v;
node->next = NULL;
return node;
}
void free_mnode(Mnode *node) {
if (node == NULL) {
return;
}
node->k = 0;
node->v = false;
free_mnode(node->next);
node->next = NULL;
}
typedef struct map_t {
Mnode *front;
} Map;
Map *make_map() {
Map *map = malloc(sizeof(Map));
if (map == NULL) {
return NULL;
}
map->front = NULL;
return map;
}
void free_map(Map *map) {
if (map == NULL) {
return;
}
free_mnode(map->front);
map->front = NULL;
}
void map_insert(Map *map, int k, bool v) {
if (map == NULL) {
return;
}
if (map->front == NULL) {
map->front = make_map_node(k, v);
} else {
Mnode *it = map->front;
while (it->next != NULL) {
it = it->next;
}
it->next = make_map_node(k, v);
}
}
bool map_get(Map *map, int k) {
if (map != NULL) {
Mnode *it = map->front;
while (it != NULL && it->k != k) {
it = it->next;
}
if (it != NULL) {
return it->v;
}
}
return false;
}
int gcd(int u, int v) {
if (u < 0) u = -u;
if (v < 0) v = -v;
if (v) {
while ((u %= v) && (v %= u));
}
return u + v;
}
List *yellow(size_t n) {
List *a;
Map *b;
int i;
a = make_list();
list_insert(a, 1);
list_insert(a, 2);
list_insert(a, 3);
b = make_map();
map_insert(b, 1, true);
map_insert(b, 2, true);
map_insert(b, 3, true);
i = 4;
while (n > a->len) {
if (!map_get(b, i) && gcd(i, list_get(a, -1)) == 1 && gcd(i, list_get(a, -2)) > 1) {
list_insert(a, i);
map_insert(b, i, true);
i = 4;
}
i++;
}
free_map(b);
return a;
}
int main() {
List *a = yellow(30);
list_print(a);
free_list(a);
putc('\n', stdout);
return 0;
} | 20Yellowstone sequence
| 5c
| at11 |
import java.util.ArrayList
import kotlin.math.sqrt
object ZumkellerNumbers {
@JvmStatic
fun main(args: Array<String>) {
var n = 1
println("First 220 Zumkeller numbers:")
run {
var count = 1
while (count <= 220) {
if (isZumkeller(n)) {
print("%3d ".format(n))
if (count % 20 == 0) {
println()
}
count++
}
n += 1
}
}
n = 1
println("\nFirst 40 odd Zumkeller numbers:")
run {
var count = 1
while (count <= 40) {
if (isZumkeller(n)) {
print("%6d".format(n))
if (count % 10 == 0) {
println()
}
count++
}
n += 2
}
}
n = 1
println("\nFirst 40 odd Zumkeller numbers that do not end in a 5:")
var count = 1
while (count <= 40) {
if (n % 5 != 0 && isZumkeller(n)) {
print("%8d".format(n))
if (count % 10 == 0) {
println()
}
count++
}
n += 2
}
}
private fun isZumkeller(n: Int): Boolean { | 19Zumkeller numbers
| 11kotlin
| 37z5 |
import 'dart:math' show pow;
int fallingPowers(int base) =>
base == 1? 1: pow(base, fallingPowers(base - 1));
void main() {
final exponent = fallingPowers(4),
s = BigInt.from(5).pow(exponent).toString();
print('First twenty: ${s.substring(0, 20)}');
print('Last twenty: ${s.substring(s.length - 20)}');
print('Number of digits: ${s.length}'); | 18Arbitrary-precision integers (included)
| 18dart
| q9xo |
null | 15Zhang-Suen thinning algorithm
| 11kotlin
| igo4 |
int main()
{
char is_open[100] = { 0 };
int pass, door;
for (pass = 0; pass < 100; ++pass)
for (door = pass; door < 100; door += pass+1)
is_open[door] = !is_open[door];
for (door = 0; door < 100; ++door)
printf(, door+1, (is_open[door]? : ));
return 0;
} | 21100 doors
| 5c
| ilo2 |
import Darwin
enum AGRError: Error {
case undefined
}
func agm(_ a: Double, _ g: Double, _ iota: Double = 1e-8) throws -> Double {
var a = a
var g = g
var a1: Double = 0
var g1: Double = 0
guard a * g >= 0 else {
throw AGRError.undefined
}
while abs(a - g) > iota {
a1 = (a + g) / 2
g1 = sqrt(a * g)
a = a1
g = g1
}
return a
}
do {
try print(agm(1, 1 / sqrt(2)))
} catch {
print("agr is undefined when a * g < 0")
} | 10Arithmetic-geometric mean
| 17swift
| yq6e |
import Data.Complex
main = do
print $ 0 ^ 0
print $ 0.0 ^ 0
print $ 0 ^^ 0
print $ 0 ** 0
print $ (0:+ 0) ^ 0
print $ (0:+ 0) ** (0:+ 0) | 14Zero to the zero power
| 8haskell
| 9wmo |
$op_priority = { => 0, => 0, => 1, => 1}
class TreeNode
OP_FUNCTION = {
=> lambda {|x, y| x + y},
=> lambda {|x, y| x - y},
=> lambda {|x, y| x * y},
=> lambda {|x, y| x / y}}
attr_accessor :info, :left, :right
def initialize(info)
@info = info
end
def leaf?
@left.nil? and @right.nil?
end
def to_s(order)
if leaf?
@info
else
left_s, right_s = @left.to_s(order), @right.to_s(order)
strs = case order
when :prefix then [@info, left_s, right_s]
when :infix then [left_s, @info, right_s]
when :postfix then [left_s, right_s, @info]
else []
end
+ strs.join() +
end
end
def eval
if!leaf? and operator?(@info)
OP_FUNCTION[@info].call(@left.eval, @right.eval)
else
@info.to_f
end
end
end
def tokenize(exp)
exp
.gsub('(', ' ( ')
.gsub(')', ' ) ')
.gsub('+', ' + ')
.gsub('-', ' - ')
.gsub('*', ' * ')
.gsub('/', ' / ')
.split(' ')
end
def operator?(token)
$op_priority.has_key?(token)
end
def pop_connect_push(op_stack, node_stack)
temp = op_stack.pop
temp.right = node_stack.pop
temp.left = node_stack.pop
node_stack.push(temp)
end
def infix_exp_to_tree(exp)
tokens = tokenize(exp)
op_stack, node_stack = [], []
tokens.each do |token|
if operator?(token)
until (op_stack.empty? or
op_stack.last.info == or
$op_priority[op_stack.last.info] < $op_priority[token])
pop_connect_push(op_stack, node_stack)
end
op_stack.push(TreeNode.new(token))
elsif token ==
op_stack.push(TreeNode.new(token))
elsif token ==
while op_stack.last.info!=
pop_connect_push(op_stack, node_stack)
end
op_stack.pop
else
node_stack.push(TreeNode.new(token))
end
end
until op_stack.empty?
pop_connect_push(op_stack, node_stack)
end
node_stack.last
end | 11Arithmetic evaluation
| 14ruby
| oj8v |
use strict;
use warnings;
for ( split /\n/, <<END )
1 + 1
10 + 10
10100 + 1010
10100 - 1010
10100 * 1010
100010 * 100101
10100 / 1010
101000 / 1000
100001000001 / 100010
100001000001 / 100101
END
{
my ($left, $op, $right) = split;
my ($x, $y) = map Zeckendorf->new($_), $left, $right;
my $answer =
$op eq '+' ? $x + $y :
$op eq '-' ? $x - $y :
$op eq '*' ? $x * $y :
$op eq '/' ? $x / $y :
die "bad op <$op>";
printf "%12s%s%-9s =>%12s in Zeckendorf\n", $x, $op, $y, $answer;
printf "%12d%s%-9d =>%12d in decimal\n\n",
$x->asdecimal, $op, $y->asdecimal, $answer->asdecimal;
}
package Zeckendorf;
use overload qw("" zstring + zadd - zsub ++ zinc -- zdec * zmul / zdiv ge zge);
sub new
{
my ($class, $value) = @_;
bless \$value, ref $class || $class;
}
sub zinc
{
my ($self, $other, $swap) = @_;
local $_ = $$self;
s/0$/1/ or s/(?:^|0)1$/10/;
1 while s/(?:^|0)11/100/;
$_[0] = $self->new( s/^0+\B//r );
}
sub zdec
{
my ($self, $other, $swap) = @_;
local $_ = $$self;
1 while s/100(?=0*$)/011/;
s/1$/0/ or s/10$/01/;
$_[0] = $self->new( s/^0+\B//r );
}
sub zstring { ${ shift() } }
sub zadd
{
my ($self, $other, $swap) = @_;
my ($x, $y) = map $self->new($$_), $self, $other;
++$x, $y-- while $$y ne 0;
return $x;
}
sub zsub
{
my ($self, $other, $swap) = @_;
my ($x, $y) = map $self->new($$_), $self, $other;
--$x, $y-- while $$y ne 0;
return $x;
}
sub zmul
{
my ($self, $other, $swap) = @_;
my ($x, $y) = map $self->new($$_), $self, $other;
my $product = Zeckendorf->new(0);
$product = $product + $x, --$y while "$y" ne 0;
return $product;
}
sub zdiv
{
my ($self, $other, $swap) = @_;
my ($x, $y) = map $self->new($$_), $self, $other;
my $quotient = Zeckendorf->new(0);
++$quotient, $x = $x - $y while $x ge $y;
return $quotient;
}
sub zge
{
my ($self, $other, $swap) = @_;
my $l = length( $$self | $$other );
0 x ($l - length $$self) . $$self ge 0 x ($l - length $$other) . $$other;
}
sub asdecimal
{
my ($self) = @_;
my $n = 0;
my $aa = my $bb = 1;
for ( reverse split //, $$self )
{
$n += $bb * $_;
($aa, $bb) = ($bb, $aa + $bb);
}
return $n;
}
sub fromdecimal
{
my ($self, $value) = @_;
my $z = $self->new(0);
++$z for 1 .. $value;
return $z;
} | 17Zeckendorf arithmetic
| 2perl
| 405d |
function zhangSuenThin(img)
local dirs={
{ 0,-1},
{ 1,-1},
{ 1, 0},
{ 1, 1},
{ 0, 1},
{-1, 1},
{-1, 0},
{-1,-1},
{ 0,-1},
}
local black=1
local white=0
function A(x, y)
local c=0
local current=img[y+dirs[1][2]][x+dirs[1][1]]
for i=2,#dirs do
local to_compare=img[y+dirs[i][2]][x+dirs[i][1]]
if current==white and to_compare==black then
c=c+1
end
current=to_compare
end
return c
end
function B(x, y)
local c=0
for i=2,#dirs do
local value=img[y+dirs[i][2]][x+dirs[i][1]]
if value==black then
c=c+1
end
end
return c
end
function common_step(x, y)
if img[y][x]~=black or x<=1 or x>=#img[y] or y<=1 or y>=#img then
return false
end
local b_value=B(x, y)
if b_value<2 or b_value>6 then
return false
end
local a_value=A(x, y)
if a_value~=1 then
return false
end
return true
end
function step_one(x, y)
if not common_step(x, y) then
return false
end
local p2=img[y+dirs[1][2]][x+dirs[1][1]]
local p4=img[y+dirs[3][2]][x+dirs[3][1]]
local p6=img[y+dirs[5][2]][x+dirs[5][1]]
local p8=img[y+dirs[7][2]][x+dirs[7][1]]
if p4==white or p6==white or p2==white and p8==white then
return true
end
return false
end
function step_two(x, y)
if not common_step(x, y) then
return false
end
local p2=img[y+dirs[1][2]][x+dirs[1][1]]
local p4=img[y+dirs[3][2]][x+dirs[3][1]]
local p6=img[y+dirs[5][2]][x+dirs[5][1]]
local p8=img[y+dirs[7][2]][x+dirs[7][1]]
if p2==white or p8==white or p4==white and p6==white then
return true
end
return false
end
function convert(to_do)
for k,v in pairs(to_do) do
img[v[2]][v[1]]=white
end
end
function do_step_on_all(step)
local to_convert={}
for y=1,#img do
for x=1,#img[y] do
if step(x, y) then
table.insert(to_convert, {x,y})
end
end
end
convert(to_convert)
return #to_convert>0
end
local continue=true
while continue do
continue=false
if do_step_on_all(step_one) then
continue=true
end
if do_step_on_all(step_two) then
continue=true
end
end
for y=1,#img do
for x=1,#img[y] do
io.write(img[y][x]==black and '#' or ' ')
end
io.write('\n')
end
end
local image = {
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0},
{0,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0},
{0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0},
{0,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0},
{0,1,1,1,0,0,1,1,1,1,0,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,0,1,1,1,0,0},
{0,1,1,1,0,0,0,1,1,1,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,1,1,1,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
}
zhangSuenThin(image) | 15Zhang-Suen thinning algorithm
| 1lua
| nri8 |
null | 11Arithmetic evaluation
| 15rust
| ihod |
for candidate in 2 .. 2**19
sum = Rational(1, candidate)
for factor in 2 .. Integer.sqrt(candidate)
if candidate % factor == 0
sum += Rational(1, factor) + Rational(1, candidate / factor)
end
end
if sum.denominator == 1
puts %
[candidate, sum.to_i, sum == 1? : ]
end
end | 8Arithmetic/Rational
| 14ruby
| 9omz |
System.out.println(Math.pow(0, 0)); | 14Zero to the zero power
| 9java
| tkf9 |
package org.rosetta.arithmetic_evaluator.scala
object ArithmeticParser extends scala.util.parsing.combinator.RegexParsers {
def readExpression(input: String) : Option[()=>Int] = {
parseAll(expr, input) match {
case Success(result, _) =>
Some(result)
case other =>
println(other)
None
}
}
private def expr : Parser[()=>Int] = {
(term<~"+")~expr ^^ { case l~r => () => l() + r() } |
(term<~"-")~expr ^^ { case l~r => () => l() - r() } |
term
}
private def term : Parser[()=>Int] = {
(factor<~"*")~term ^^ { case l~r => () => l() * r() } |
(factor<~"/")~term ^^ { case l~r => () => l() / r() } |
factor
}
private def factor : Parser[()=>Int] = {
"("~>expr<~")" |
"\\d+".r ^^ { x => () => x.toInt } |
failure("Expected a value")
}
}
object Main {
def main(args: Array[String]) {
println("""Please input the expressions. Type "q" to quit.""")
var input: String = ""
do {
input = readLine("> ")
if (input != "q") {
ArithmeticParser.readExpression(input).foreach(f => println(f()))
}
} while (input != "q")
}
} | 11Arithmetic evaluation
| 16scala
| fpd4 |
import copy
class Zeckendorf:
def __init__(self, x='0'):
q = 1
i = len(x) - 1
self.dLen = int(i / 2)
self.dVal = 0
while i >= 0:
self.dVal = self.dVal + (ord(x[i]) - ord('0')) * q
q = q * 2
i = i -1
def a(self, n):
i = n
while True:
if self.dLen < i:
self.dLen = i
j = (self.dVal >> (i * 2)) & 3
if j == 0 or j == 1:
return
if j == 2:
if (self.dVal >> ((i + 1) * 2) & 1) != 1:
return
self.dVal = self.dVal + (1 << (i * 2 + 1))
return
if j == 3:
temp = 3 << (i * 2)
temp = temp ^ -1
self.dVal = self.dVal & temp
self.b((i + 1) * 2)
i = i + 1
def b(self, pos):
if pos == 0:
self.inc()
return
if (self.dVal >> pos) & 1 == 0:
self.dVal = self.dVal + (1 << pos)
self.a(int(pos / 2))
if pos > 1:
self.a(int(pos / 2) - 1)
else:
temp = 1 << pos
temp = temp ^ -1
self.dVal = self.dVal & temp
self.b(pos + 1)
self.b(pos - (2 if pos > 1 else 1))
def c(self, pos):
if (self.dVal >> pos) & 1 == 1:
temp = 1 << pos
temp = temp ^ -1
self.dVal = self.dVal & temp
return
self.c(pos + 1)
if pos > 0:
self.b(pos - 1)
else:
self.inc()
def inc(self):
self.dVal = self.dVal + 1
self.a(0)
def __add__(self, rhs):
copy = self
rhs_dVal = rhs.dVal
limit = (rhs.dLen + 1) * 2
for gn in range(0, limit):
if ((rhs_dVal >> gn) & 1) == 1:
copy.b(gn)
return copy
def __sub__(self, rhs):
copy = self
rhs_dVal = rhs.dVal
limit = (rhs.dLen + 1) * 2
for gn in range(0, limit):
if (rhs_dVal >> gn) & 1 == 1:
copy.c(gn)
while (((copy.dVal >> ((copy.dLen * 2) & 31)) & 3) == 0) or (copy.dLen == 0):
copy.dLen = copy.dLen - 1
return copy
def __mul__(self, rhs):
na = copy.deepcopy(rhs)
nb = copy.deepcopy(rhs)
nr = Zeckendorf()
dVal = self.dVal
for i in range(0, (self.dLen + 1) * 2):
if ((dVal >> i) & 1) > 0:
nr = nr + nb
nt = copy.deepcopy(nb)
nb = nb + na
na = copy.deepcopy(nt)
return nr
def __str__(self):
dig = [, , ]
dig1 = [, , ]
if self.dVal == 0:
return '0'
idx = (self.dVal >> ((self.dLen * 2) & 31)) & 3
sb = dig1[idx]
i = self.dLen - 1
while i >= 0:
idx = (self.dVal >> (i * 2)) & 3
sb = sb + dig[idx]
i = i - 1
return sb
print
g = Zeckendorf()
g = g + Zeckendorf()
print g
g = g + Zeckendorf()
print g
g = g + Zeckendorf()
print g
g = g + Zeckendorf()
print g
g = g + Zeckendorf()
print g
print
print
g = Zeckendorf()
g = g - Zeckendorf()
print g
g = Zeckendorf()
g = g - Zeckendorf()
print g
print
print
g = Zeckendorf()
g = g * Zeckendorf()
print g
g = Zeckendorf()
g = g + Zeckendorf()
print g | 17Zeckendorf arithmetic
| 3python
| g84h |
use strict;
use warnings;
use feature 'say';
use ntheory <is_prime divisor_sum divisors vecsum forcomb lastfor>;
sub in_columns {
my($columns, $values) = @_;
my @v = split ' ', $values;
my $width = int(80/$columns);
printf "%${width}d"x$columns."\n", @v[$_*$columns .. -1+(1+$_)*$columns] for 0..-1+@v/$columns;
print "\n";
}
sub is_Zumkeller {
my($n) = @_;
return 0 if is_prime($n);
my @divisors = divisors($n);
return 0 unless @divisors > 2 && 0 == @divisors % 2;
my $sigma = divisor_sum($n);
return 0 unless 0 == $sigma%2 && ($sigma/2) >= $n;
if (1 == $n%2) {
return 1
} else {
my $Z = 0;
forcomb { $Z++, lastfor if vecsum(@divisors[@_]) == $sigma/2 } @divisors;
return $Z;
}
}
use constant Inf => 1e10;
say 'First 220 Zumkeller numbers:';
my $n = 0; my $z;
$z .= do { $n < 220 ? (is_Zumkeller($_) and ++$n and "$_ ") : last } for 1 .. Inf;
in_columns(20, $z);
say 'First 40 odd Zumkeller numbers:';
$n = 0; $z = '';
$z .= do { $n < 40 ? (!!($_%2) and is_Zumkeller($_) and ++$n and "$_ ") : last } for 1 .. Inf;
in_columns(10, $z);
say 'First 40 odd Zumkeller numbers not divisible by 5:';
$n = 0; $z = '';
$z .= do { $n < 40 ? (!!($_%2 and $_%5) and is_Zumkeller($_) and ++$n and "$_ ") : last } for 1 .. Inf;
in_columns(10, $z); | 19Zumkeller numbers
| 2perl
| pfb0 |