|
import anndata as ad |
|
import pyarrow as pa |
|
import pandas as pd |
|
import datasets |
|
|
|
|
|
CITATION = """ |
|
Blanca Pijuan-Sala & Jonathan Griffiths (2018). |
|
Timecourse single-cell RNAseq of whole mouse embryos harvested between days 6.5 and 8.5 of development. |
|
BioStudies, E-MTAB-6967. |
|
Retrieved from https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6967""" |
|
|
|
DESCRIPTION = """ |
|
We have captured 100,000 single cells for single-cell RNAseq from whole mouse embryos during gastrulation and organogenesis, |
|
spanning days 6.5 to 8.5 of development, including embryonic and extraembryonic tissues. |
|
Cells were sampled every six hours, providing a continuous molecular characterisation of these processes. |
|
Cell libraries were prepared using the 10X Genomics Chromium platform.""" |
|
|
|
URL = "https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6967" |
|
RAW_COUNTS = "X" |
|
DATA_URL = "./data/mmusculus_gastrulation.h5ad" |
|
FEATURES_TO_INCLUDE = ["cell_type"] |
|
|
|
class RNAExp(datasets.ArrowBasedBuilder): |
|
"""RNA Expression Baseclass.""" |
|
|
|
def _info(self): |
|
|
|
self.batch = 10000 |
|
|
|
|
|
features = {"raw_counts": datasets.features.Sequence(datasets.features.Value("uint32")),"rows": datasets.features.Sequence(datasets.features.Value("uint32")),"size":datasets.Value("uint32")} |
|
for feature in FEATURES_TO_INCLUDE: |
|
if not features.get(feature): |
|
features[feature] = datasets.Value("string") |
|
|
|
return datasets.DatasetInfo( |
|
description = DESCRIPTION, |
|
features = datasets.Features(features), |
|
homepage = URL, |
|
citation = CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
self.anndata_file = dl_manager.download_and_extract(DATA_URL) |
|
adata = ad.read_h5ad(self.anndata_file, backed = "r") |
|
demarcation = int(len(adata)*80/100) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name = datasets.Split.TRAIN, |
|
gen_kwargs = {"split": "train", "adata": adata[:demarcation], "batch_size":self.batch}, |
|
), |
|
datasets.SplitGenerator( |
|
name = datasets.Split.TEST, |
|
gen_kwargs = {"split": "test", "adata": adata[demarcation:], "batch_size":self.batch}, |
|
) |
|
] |
|
|
|
def _generate_tables(self, adata, batch_size, split): |
|
idx = 0 |
|
|
|
|
|
self.info.features["raw_counts"].id = f"{','.join(adata.var.index.tolist())}" |
|
|
|
|
|
for batch in range(0, adata.shape[0], batch_size): |
|
|
|
|
|
if RAW_COUNTS == "X": |
|
chunk = adata.X[batch:batch+batch_size].tolil().astype('uint32') |
|
elif RAW_COUNTS == "raw.X": |
|
chunk = adata.raw.X[batch:batch+batch_size].tolil().astype('uint32') |
|
else: |
|
raise("Not valid raw_counts") |
|
df = pd.DataFrame([chunk.data,chunk.rows]).T |
|
df.columns = ['raw_counts','rows'] |
|
df['size'] = chunk.shape[1] |
|
|
|
|
|
for feature in FEATURES_TO_INCLUDE: |
|
df[feature] = list(map(str, adata.obs[feature][batch:batch+batch_size].tolist())) |
|
|
|
pa_table = pa.Table.from_pandas(df) |
|
yield idx, pa_table |
|
idx += 1 |
|
|