|
--- |
|
license: cc-by-nc-4.0 |
|
task_categories: |
|
- question-answering |
|
- text-generation |
|
- summarization |
|
language: |
|
- en |
|
tags: |
|
- sports |
|
- nba |
|
- nfl |
|
- reasoning |
|
- long-context |
|
pretty_name: SportsMetrics |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
# SportsMetrics |
|
Benchmark data to evaluate numerical reasoning and information fusion of LLMs. |
|
|
|
**SportsMetrics: Blending Text and Numerical Data to Understand Information Fusion in LLMs** \ |
|
Yebowen Hu, Kaiqiang Song, Sangwoo Cho, Xiaoyang Wang, Hassan Foroosh, Dong Yu, Fei Liu \ |
|
[*In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL'24), Bangkok, Thailand.*](https://2024.aclweb.org/program/main_conference_papers/) \ |
|
[Arxiv Paper](https://arxiv.org/abs/2402.10979) |
|
|
|
|
|
## Usage |
|
```python |
|
from datasets import load_dataset |
|
|
|
def get_task(domain, task): |
|
bench_data = [] |
|
dataset = load_dataset("huuuyeah/SportsMetrics",split="test") |
|
for instance in dataset: |
|
if instance["domain"]==domain and instance["task"]==task: |
|
bench_data.append(instance) |
|
return bench_data |
|
|
|
def message_iter(domain, task): |
|
bench_data = get_task(domain, task) |
|
if len(bench_data) == 0: |
|
print("No data loaded.") |
|
return |
|
|
|
for instance in bench_data: |
|
messages = [ |
|
{"role": "system", "content": instance["system"]}, |
|
{"role": "user", "content": instance["user"]} |
|
] |
|
yield messages |
|
|
|
return |
|
``` |
|
|
|
## Benchmark Tasks |
|
|
|
The LLM is mandatorily required to generate responses in JSON format. |
|
|
|
### Reasoning Task |
|
- **reasoning-team_points_tracking**: (NBA) Tracking team points in one match. |
|
- **reasoning-key_stats_tracking**: (NBA, NFL) Tracking the key statistics for sports analytics. |
|
|
|
### Conflicts Task |
|
- **conflict-one_point_rule**: (NBA) All scoring actions in the competition are set to be worth only one point. |
|
- **conflict-swap_{num}_players**: (NBA) Swap {num} of spalyer between two teams. |
|
|
|
### Robustness Task |
|
- **robustness-duplicate_{prob}**: (NBA) Replicate the non-scoring move with a probability of {prob}. |
|
- **robustness-remove_{prob}**: (NBA) Remove the non-scoring move with a probability of {prob}. |
|
- **robustness-shuffled_pbp**: (NBA) Shuffle the order of all moves in play-by-play descriptions while maintain the original order of timestamps. |
|
- **robustness-{num}_fiction_names**: (NFL) Randomly select {num} of players from both teams and replace them with names from fiction movies. |
|
|
|
**Bibtex** |
|
``` |
|
@misc{hu2024sportsmetricsblendingtextnumerical, |
|
title={SportsMetrics: Blending Text and Numerical Data to Understand Information Fusion in LLMs}, |
|
author={Yebowen Hu and Kaiqiang Song and Sangwoo Cho and Xiaoyang Wang and Hassan Foroosh and Dong Yu and Fei Liu}, |
|
year={2024}, |
|
eprint={2402.10979}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2402.10979}, |
|
} |