filename
stringlengths 18
22
| image_data
unknown | anno_string
sequencelengths 1
32
|
---|---|---|
1720629091_634364.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["23 0.09418776004975932 0.5595031058841483 0.7866484741599264 0.5595031058841483 0.7866484741599264(...TRUNCATED) |
1720631218_0076387.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["48 0.3203970388133509 0.38638961743071687 0.8027139596682623 0.38638961743071687 0.802713959668262(...TRUNCATED) |
1720630536_4433818.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["23 0.20592878012748345 0.5547806696868959 0.3459488196369184 0.5547806696868959 0.3459488196369184(...TRUNCATED) |
1720628932_9465413.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["48 0.7416247650173948 0.13510898025034856 0.9638921098434892 0.13510898025034856 0.963892109843489(...TRUNCATED) |
1720626855_443507.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["48 0.22310174015164067 0.8383290297078849 0.40056791527089386 0.8383290297078849 0.400567915270893(...TRUNCATED) |
1720629671_196503.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["48 0.20161389936111906 0.7887753765058141 0.5474765563362877 0.7887753765058141 0.5474765563362877(...TRUNCATED) |
1720627929_9200647.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["48 0.056336793813028696 0.41674915120716266 0.9389167182217064 0.41674915120716266 0.9389167182217(...TRUNCATED) |
1720625738_4356627.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["23 0.10393390289434445 0.3474227825138238 0.6252506620550092 0.3474227825138238 0.6252506620550092(...TRUNCATED) |
1720629638_6551414.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["48 0.13555293884769376 0.7020600531831678 0.2602049533137642 0.7020600531831678 0.2602049533137642(...TRUNCATED) |
1720626221_2315247.jpg | "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED) | ["48 0.5480442607393465 0.7865330724474383 0.6467595692656398 0.7865330724474383 0.6467595692656398 (...TRUNCATED) |
DocSynth300K is a large-scale and diverse document layout analysis pre-training dataset, which can largely boost model performance.
Data Download
Use following command to download dataset(about 113G):
from huggingface_hub import snapshot_download
# Download DocSynth300K
snapshot_download(repo_id="juliozhao/DocSynth300K", local_dir="./docsynth300k-hf", repo_type="dataset")
# If the download was disrupted and the file is not complete, you can resume the download
snapshot_download(repo_id="juliozhao/DocSynth300K", local_dir="./docsynth300k-hf", repo_type="dataset", resume_download=True)
Data Formatting & Pre-training
If you want to perform DocSynth300K pretraining, using format_docsynth300k.py
to convert original .parquet
format into YOLO
format. The converted data will be stored at ./layout_data/docsynth300k
.
python format_docsynth300k.py
To perform DocSynth300K pre-training, use this command. We default use 8GPUs to perform pretraining. To reach optimal performance, you can adjust hyper-parameters such as imgsz
, lr
according to your downstream fine-tuning data distribution or setting.
Note: Due to memory leakage in YOLO original data loading code, the pretraining on large-scale dataset may be interrupted unexpectedly, use --pretrain last_checkpoint.pt --resume
to resume the pretraining process.
- Downloads last month
- 1,204