FL_fundamental / PFLlib /dataset /generate_HAR.py
kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import numpy as np
import os
import random
from utils.HAR_utils import *
random.seed(1)
np.random.seed(1)
data_path = "HAR/"
dir_path = "HAR/"
def generate_dataset(dir_path):
if not os.path.exists(dir_path):
os.makedirs(dir_path)
config_path = dir_path + "config.json"
train_path = dir_path + "train/"
test_path = dir_path + "test/"
if not os.path.exists(train_path):
os.makedirs(train_path)
if not os.path.exists(test_path):
os.makedirs(test_path)
# download data
if not os.path.exists(data_path+'rawdata/UCI HAR Dataset.zip'):
os.system(f"wget https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI%20HAR%20Dataset.zip -P {data_path}rawdata/")
if not os.path.exists(data_path+'rawdata/UCI HAR Dataset/'):
os.system(f"unzip {data_path}rawdata/'UCI HAR Dataset.zip' -d {data_path}rawdata/")
X, y = load_data_HAR(data_path+'rawdata/')
statistic = []
num_clients = len(y)
num_classes = len(np.unique(np.concatenate(y, axis=0)))
for i in range(num_clients):
statistic.append([])
for yy in sorted(np.unique(y[i])):
idx = y[i] == yy
statistic[-1].append((int(yy), int(len(X[i][idx]))))
for i in range(num_clients):
print(f"Client {i}\t Size of data: {len(X[i])}\t Labels: ", np.unique(y[i]))
print(f"\t\t Samples of labels: ", [i for i in statistic[i]])
print("-" * 50)
train_data, test_data = split_data(X, y)
save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic)
def load_data_HAR(data_folder):
str_folder = data_folder + 'UCI HAR Dataset/'
INPUT_SIGNAL_TYPES = [
"body_acc_x_",
"body_acc_y_",
"body_acc_z_",
"body_gyro_x_",
"body_gyro_y_",
"body_gyro_z_",
"total_acc_x_",
"total_acc_y_",
"total_acc_z_"
]
str_train_files = [str_folder + 'train/' + 'Inertial Signals/' + item + 'train.txt' for item in
INPUT_SIGNAL_TYPES]
str_test_files = [str_folder + 'test/' + 'Inertial Signals/' +
item + 'test.txt' for item in INPUT_SIGNAL_TYPES]
str_train_y = str_folder + 'train/y_train.txt'
str_test_y = str_folder + 'test/y_test.txt'
str_train_id = str_folder + 'train/subject_train.txt'
str_test_id = str_folder + 'test/subject_test.txt'
X_train = format_data_x(str_train_files)
X_test = format_data_x(str_test_files)
Y_train = format_data_y(str_train_y)
Y_test = format_data_y(str_test_y)
id_train = read_ids(str_train_id)
id_test = read_ids(str_test_id)
X_train, X_test = X_train.reshape((-1, 9, 1, 128)), X_test.reshape((-1, 9, 1, 128))
X = np.concatenate((X_train, X_test), axis=0)
Y = np.concatenate((Y_train, Y_test), axis=0)
ID = np.concatenate((id_train, id_test), axis=0)
XX, YY = [], []
for i in np.unique(ID):
idx = ID == i
XX.append(X[idx])
YY.append(Y[idx])
return XX, YY
if __name__ == "__main__":
generate_dataset(dir_path)