metadata
dataset_info:
features:
- name: id
dtype: string
- name: type
dtype: string
- name: source_type
dtype: string
- name: source
dtype: string
- name: question
dtype: string
- name: option1
dtype: string
- name: option2
dtype: string
- name: option3
dtype: string
- name: option4
dtype: string
- name: image_1
dtype: image
- name: image_2
dtype: image
- name: image_3
dtype: image
- name: image_4
dtype: image
- name: image_5
dtype: image
- name: answer
dtype: string
- name: analysis
dtype: string
- name: distribution
dtype: string
- name: difficulty_level
dtype: string
- name: subcategory
dtype: string
- name: category
dtype: string
- name: subfield
dtype: string
- name: img_type
dtype: string
- name: image_1_filename
dtype: string
- name: image_2_filename
dtype: string
- name: image_3_filename
dtype: string
- name: image_4_filename
dtype: string
- name: image_5_filename
dtype: string
splits:
- name: dev
num_bytes: 13180933
num_examples: 112
- name: val
num_bytes: 95817884
num_examples: 900
- name: test
num_bytes: 3146080167
num_examples: 11000
download_size: 1297435382
dataset_size: 3255078984
configs:
- config_name: default
data_files:
- split: dev
path: data/dev-*
- split: val
path: data/val-*
- split: test
path: data/test-*
Large-scale Multi-modality Models Evaluation Suite
Accelerating the development of large-scale multi-modality models (LMMs) with
lmms-eval
🏠 Homepage | 📚 Documentation | 🤗 Huggingface Datasets
This Dataset
This is a formatted version of CMMMU. It is used in our lmms-eval
pipeline to allow for one-click evaluations of large multi-modality models.
@article{zhang2024cmmmu,
title={CMMMU: A Chinese Massive Multi-discipline Multimodal Understanding Benchmark},
author={Ge, Zhang and Xinrun, Du and Bei, Chen and Yiming, Liang and Tongxu, Luo and Tianyu, Zheng and Kang, Zhu and Yuyang, Cheng and Chunpu, Xu and Shuyue, Guo and Haoran, Zhang and Xingwei, Qu and Junjie, Wang and Ruibin, Yuan and Yizhi, Li and Zekun, Wang and Yudong, Liu and Yu-Hsuan, Tsai and Fengji, Zhang and Chenghua, Lin and Wenhao, Huang and Wenhu, Chen and Jie, Fu},
journal={arXiv preprint arXiv:2401.20847},
year={2024},
}