Datasets:
metadata
configs:
- config_name: mmlu
data_files:
- split: test
path: mmlu/test.csv
- split: labeled
path: mmlu/labeled.csv
- split: unlabeled
path: mmlu/unlabeled.csv
- config_name: mmlu_pro
data_files:
- split: test
path: mmlu_pro/test.csv
- split: labeled
path: mmlu_pro/labeled.csv
- split: unlabeled
path: mmlu_pro/unlabeled.csv
- config_name: arc
data_files:
- split: test
path: arc/test.csv
- split: labeled
path: arc/labeled.csv
- split: unlabeled
path: arc/unlabeled.csv
- config_name: FPB
data_files:
- split: test
path: FPB/test.csv
- split: labeled
path: FPB/labeled.csv
- split: unlabeled
path: FPB/unlabeled.csv
- config_name: USMLE
data_files:
- split: test
path: USMLE/test.csv
- split: labeled
path: USMLE/labeled.csv
- split: unlabeled
path: USMLE/unlabeled.csv
- config_name: PubMedQA
data_files:
- split: test
path: PubMedQA/test.csv
- split: labeled
path: PubMedQA/labeled.csv
- split: unlabeled
path: PubMedQA/unlabeled.csv
- config_name: ConvFinQA
data_files:
- split: test
path: ConvFinQA/test.csv
- split: labeled
path: ConvFinQA/labeled.csv
- split: unlabeled
path: ConvFinQA/unlabeled.csv
license: cc-by-4.0
task_categories:
- question-answering
- multiple-choice
- text-generation
language:
- en
tags:
- finance
- medical
Dataset Card for Dataset Name
The SemiEvol dataset is part of the broader work on semi-supervised fine-tuning for Large Language Models (LLMs). The dataset includes labeled and unlabeled data splits designed to enhance the reasoning capabilities of LLMs through a bi-level knowledge propagation and selection framework, as proposed in the paper SemiEvol: Semi-supervised Fine-tuning for LLM Adaptation.
Dataset Details
Dataset Sources [optional]
- Repository:
- Paper [optional]: https://huggingface.co/papers/2410.14745
Uses
Direct Use
Please refer to https://github.com/luo-junyu/SemiEvol for evaluation instruction.
Citation [optional]
BibTeX:
@misc{luo2024semievol,
title={SemiEvol: Semi-supervised Fine-tuning for LLM Adaptation},
author={Junyu Luo and Xiao Luo and Xiusi Chen and Zhiping Xiao and Wei Ju and Ming Zhang},
year={2024},
eprint={2410.14745},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.14745},
}
APA:
Luo, J., Luo, X., Chen, X., Xiao, Z., Ju, W., & Zhang, M. (2024). SemiEvol: Semi-supervised Fine-tuning for LLM Adaptation. ArXiv. https://arxiv.org/abs/2410.14745