Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
platinum-bench / README.md
evendrow's picture
Set platinum_target of rejected questions to None (gsm8k)
b314140 verified
|
raw
history blame
22 kB
---
license: cc-by-sa-4.0
configs:
- config_name: bbh_logical_deduction_three_objects
data_files:
- split: test
path: bbh_logical_deduction_three_objects/test-*
- config_name: bbh_navigate
data_files:
- split: test
path: bbh_navigate/test-*
- config_name: bbh_object_counting
data_files:
- split: test
path: bbh_object_counting/test-*
- config_name: drop
data_files:
- split: test
path: drop/test-*
- config_name: gsm8k
data_files:
- split: test
path: gsm8k/test-*
- config_name: hotpotqa
data_files:
- split: test
path: hotpotqa/test-*
- config_name: mmlu_math
data_files:
- split: test
path: mmlu_math/test-*
- config_name: multiarith
data_files:
- split: test
path: multiarith/test-*
- config_name: singleop
data_files:
- split: test
path: singleop/test-*
- config_name: singleq
data_files:
- split: test
path: singleq/test-*
- config_name: squad
data_files:
- split: test
path: squad/test-*
- config_name: svamp
data_files:
- split: test
path: svamp/test-*
- config_name: tab_fact
data_files:
- split: test
path: tab_fact/test-*
- config_name: vqa
data_files:
- split: test
path: vqa/test-*
- config_name: winograd_wsc
data_files:
- split: test
path: winograd_wsc/test-*
dataset_info:
- config_name: bbh_logical_deduction_three_objects
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: input
dtype: string
- name: target
dtype: string
splits:
- name: test
num_bytes: 305159
num_examples: 200
download_size: 60084
dataset_size: 305159
- config_name: bbh_navigate
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: input
dtype: string
- name: target
dtype: string
splits:
- name: test
num_bytes: 166521
num_examples: 200
download_size: 29525
dataset_size: 166521
- config_name: bbh_object_counting
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: input
dtype: string
- name: target
dtype: string
splits:
- name: test
num_bytes: 128297
num_examples: 200
download_size: 31178
dataset_size: 128297
- config_name: drop
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: section_id
dtype: string
- name: query_id
dtype: string
- name: passage
dtype: string
- name: question
dtype: string
- name: answers_spans
struct:
- name: spans
sequence: string
- name: types
sequence: string
splits:
- name: test
num_bytes: 957462
num_examples: 250
download_size: 469964
dataset_size: 957462
- config_name: gsm8k
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
splits:
- name: test
num_bytes: 411558
num_examples: 300
download_size: 200727
dataset_size: 411558
- config_name: hotpotqa
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: id
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
- name: type
dtype: string
- name: level
dtype: string
- name: supporting_facts
struct:
- name: sent_id
sequence: int64
- name: title
sequence: string
- name: context
struct:
- name: sentences
sequence:
sequence: string
- name: title
sequence: string
splits:
- name: test
num_bytes: 2164891
num_examples: 250
download_size: 1288500
dataset_size: 2164891
- config_name: mmlu_math
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: question
dtype: string
- name: subject
dtype: string
- name: choices
sequence: string
- name: answer
dtype: int64
splits:
- name: test
num_bytes: 287212
num_examples: 270
download_size: 113723
dataset_size: 287212
- config_name: multiarith
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: input
dtype: string
- name: output_program
dtype: string
- name: output_answer
dtype: string
- name: split
dtype: string
- name: dataset
dtype: string
splits:
- name: test
num_bytes: 157371
num_examples: 174
download_size: 54214
dataset_size: 157371
- config_name: singleop
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: input
dtype: string
- name: output_program
dtype: string
- name: output_answer
dtype: string
- name: split
dtype: string
- name: dataset
dtype: string
splits:
- name: test
num_bytes: 118922
num_examples: 159
download_size: 45006
dataset_size: 118922
- config_name: singleq
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: input
dtype: string
- name: output_program
dtype: string
- name: output_answer
dtype: string
- name: split
dtype: string
- name: dataset
dtype: string
splits:
- name: test
num_bytes: 96097
num_examples: 109
download_size: 39915
dataset_size: 96097
- config_name: squad
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: id
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answers
struct:
- name: answer_start
sequence: int64
- name: text
sequence: string
splits:
- name: test
num_bytes: 865087
num_examples: 250
download_size: 466955
dataset_size: 865087
- config_name: svamp
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: ID
dtype: string
- name: Body
dtype: string
- name: Question
dtype: string
- name: Equation
dtype: string
- name: Answer
dtype: string
- name: Type
dtype: string
- name: question_concat
dtype: string
splits:
- name: test
num_bytes: 322658
num_examples: 300
download_size: 116772
dataset_size: 322658
- config_name: tab_fact
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: id
dtype: int64
- name: table_id
dtype: string
- name: table_text
dtype: string
- name: table_caption
dtype: string
- name: statement
dtype: string
- name: label
dtype: int64
splits:
- name: test
num_bytes: 1137151
num_examples: 200
download_size: 475063
dataset_size: 1137151
- config_name: vqa
features:
- name: cleaning_status
dtype: string
- name: image_path
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: 'null'
- name: platinum_parsing_stratagy
dtype: string
- name: question_type
dtype: string
- name: multiple_choice_answer
dtype: string
- name: answers
list:
- name: answer
dtype: string
- name: answer_confidence
dtype: string
- name: answer_id
dtype: int64
- name: image_id
dtype: int64
- name: answer_type
dtype: string
- name: question_id
dtype: int64
- name: question
dtype: string
splits:
- name: test
num_bytes: 122801
num_examples: 242
download_size: 26070
dataset_size: 122801
- config_name: winograd_wsc
features:
- name: cleaning_status
dtype: string
- name: platinum_prompt
dtype: string
- name: platinum_prompt_no_cot
dtype: string
- name: platinum_target
sequence: string
- name: original_target
sequence: string
- name: platinum_parsing_strategy
dtype: string
- name: text
dtype: string
- name: pronoun
dtype: string
- name: pronoun_loc
dtype: int64
- name: quote
dtype: string
- name: quote_loc
dtype: int64
- name: options
sequence: string
- name: label
dtype: int64
- name: source
dtype: string
splits:
- name: test
num_bytes: 198631
num_examples: 200
download_size: 54931
dataset_size: 198631
task_categories:
- question-answering
language:
- en
---
# Dataset Card for PlatinumBench
[**🏆 Leaderboard**](http://platinum-bench.csail.mit.edu/)  |  [**🖥️ Code**](https://github.com/MadryLab/platinum-benchmarks/)  |  [**📖 Paper**](https://arxiv.org/abs/2502.03461)
## Dataset Description
- **Homepage:** http://platinum-bench.csail.mit.edu/
- **Repository:** https://github.com/MadryLab/platinum-benchmarks/
- **Paper:** https://arxiv.org/abs/2502.03461
- **Leaderboard:** http://platinum-bench.csail.mit.edu/
- **Point of Contact:** [Joshua Vendrow](mailto:[email protected]), [Edward Vendrow](mailto:[email protected])
### Dataset Summary
_**Platinum Benchmarks**_ are benchmarks that are are carefully curated to minimize label errors and ambiguity, allowing us to measure reliability of models.
This dataset containts fifteen platinum benchmarks created by manually revising questions from existing datasets (see the github repo for details on accessing our revised subset of VQA). To revise each benchmark, we ran a vareity of frontier models on individual examples and manually re-annotated any example for which at least one model made an error. See the paper for further details on the revision process.
### Load the Dataset
To load the dataset using HuggingFace `datasets`, you first need to `pip install datasets`, then run the following code:
```python
from datasets import load_dataset
ds = load_dataset("madrylab/platinum-bench", name="gsm8k", split="test") # or another subset
ds = ds.filter(lambda x: x['cleaning_status'] != 'rejected') # filter out rejected questions
```
## Dataset structure
### Data Instances
We accessed each of the fourteen original natural language benchmarks that we revised from their respective huggingface repositories, and each benchmark had its own per-instance data fields/columns. We have standardized these benchmarks by providing pre-constructed prompts for each dataset (under 'platinum_prompt'). Each prompt template automatically formats the relevant dataset columns into a consistent structure. You can use these standardized prompts directly, but we include the original dataset columns for those interested in their own prompting, or to seamlessly subtitute our revised benchmarks for the original versions.
For VQA, we source images and annotataions from their [official website](https://visualqa.org/download.html), and reference images by their image path in the original downloaded directory format (see our GitHub repository for additional details).
An example from the PlatinumBench GSM8K subset looks as follows:
```
{'cleaning_status': 'consensus',
'platinum_prompt': 'Solve the following math word problem.\n\nA robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?\n\nThink step-by-step. Then, provide the final answer as a single integer in the format "Answer: XXX" with no extra formatting.',
'platinum_prompt_no_cot': 'Solve the following math word problem.\n\nA robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?\n\nThen, provide the final answer as a single integer in the format "Answer: XXX" with no extra formatting.',
'platinum_target': ['3'],
'platinum_parsing_strategy': 'math',
'original_target': ['3']
'question': 'A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?',
'answer': 'It takes 2/2=<<2/2=1>>1 bolt of white fiber\nSo the total amount of fabric is 2+1=<<2+1=3>>3 bolts of fabric\n#### 3'}
```
### Data Fields
- **cleaning_status** (`str`): One of:
1. *concensus*: all LLMs agreed with the label, so the example was not manually reviewed (`platinum_target` == `original_target` by default).
2. *verified*: the original target was maually verified to be correct (`platinum_target` == `original_target`).
3. *revised*: the label is updated from the original label (`platinum_target` != `original_target`).
4. *rejected*: the example is removed due to issues such as ambiguity.
- **platinum_prompt** (`str`): A chain-of-thought question prompt that can be directly asked to a language model. This is constructed from fields in the original dataset.
- **platinum_prompt_no_cot** (`str`): The same prompt, but without explicity chain-of-thought instructions. This is used for models like `o1` that don't need chain-of-thought prompting.
- **platinum_target** (`List[str]`): The list of all correct answers for the question. In most cases there is just one correct answer.
- **original_target** (`str`): The original target provided in the dataset. This is can be different from the platinum target if it is incorrect.
- **platinum_parsing_strategy** (`str`): The parser that should be used to parse the LLM answer. Refer to the provided code.
- **image_path** (`str`): Only included for VQA. The image path from which to source the relevant image, such as: `'val2014/COCO_val2014_000000304481.jpg`.
- We also incude all the original dataset columns after these ones.
> [!NOTE]
> This HuggingFace dataset includes rejected questions that are not used for evaluation. To use only questions that we include in our platinum benchmarks, make sure to filter these out:
>
>`ds = ds.filter(lambda x: x['cleaning_status'] != 'rejected')`
### Prompt Example
Here is an example of the standardized prompt we provide for a question from MultiArith:
```
Solve the following math word problem.
At the schools book fair Sam bought 13 adventure books and 17 mystery books. If 15 of the books were used, how many new books did he buy?
Think step-by-step. Then, provide the final answer as a single number in the format "Answer: XXX" with no extra formatting.
```
The specific prompt template and parsing strategy depends on the model, although many of them are common between datasets.
## Dataset Creation
### Curation Rationale
Many current LLM benchmarks are riddled with label noise such as mislabeled or ambiguous questions. Due to this label noise, progress in these benchmarks often stalls before models actually achieve reliable performance on them. As a result, the comminuty often considers these benchmarks to be "saturated" and discards them too early, discouraging machine learning practictioners from ever striving to achieve proper reliability. As a first step towards addressing this gap in benchmarking practices, we revise samples from fifteen "saturated" benchmark to minimize label noise.
### Source Data and Attribution
Each of the fifteen benchmarks that we revise was sourced from the following huggingface repositories:
| | Type | URL | Subset | Split | License
| ----- | ------ | ----- | ---- | ----| ----|
| SingleOp | Math | https://huggingface.co/datasets/allenai/lila | singleop | test | [CC&nbsp;BY&nbsp;4.0](https://github.com/allenai/Lila/blob/main/LICENSE.txt)
| SingleEq | Math | https://huggingface.co/datasets/allenai/lila | singleeq | test | [CC&nbsp;BY&nbsp;4.0](https://github.com/allenai/Lila/blob/main/LICENSE.txt)
| MultiArith | Math | https://huggingface.co/datasets/allenai/lila | multiarith | test | [CC&nbsp;BY&nbsp;4.0](https://github.com/allenai/Lila/blob/main/LICENSE.txt)
| SVAMP | Math | https://huggingface.co/datasets/ChilleD/svamp | default | test | [MIT](https://github.com/arkilpatel/SVAMP/blob/main/LICENSE)
| GSM8K | Math | https://huggingface.co/datasets/openai/gsm8k | main | test | [MIT](https://github.com/openai/grade-school-math/blob/master/LICENSE)
| MMLU&nbsp;High‑School&nbsp;Math | Math | https://huggingface.co/datasets/cais/mmlu | high_school_mathematics | test | [MIT](https://github.com/hendrycks/test/blob/master/LICENSE)
| Logic.&nbsp;Ded.&nbsp;3-Obj | Logic | https://huggingface.co/datasets/maveriq/bigbenchhard | logical_deduction_three_objects | train | [MIT](https://github.com/suzgunmirac/BIG-Bench-Hard/blob/main/LICENSE)
| Object Counting | Logic | https://huggingface.co/datasets/maveriq/bigbenchhard | object_counting | train | [MIT](https://github.com/suzgunmirac/BIG-Bench-Hard/blob/main/LICENSE)
| Navigate | Logic | https://huggingface.co/datasets/maveriq/bigbenchhard | navigate | train | [MIT](https://github.com/suzgunmirac/BIG-Bench-Hard/blob/main/LICENSE)
| TabFact | Table&nbsp;Understanding | https://huggingface.co/datasets/wenhu/tab_fact | tab_fact | test | [CC&nbsp;BY&nbsp;4.0](https://creativecommons.org/licenses/by/4.0/legalcode)
| HotPotQA | Reading&nbsp;Comp. | https://huggingface.co/datasets/hotpotqa/hotpot_qa | distractor | validation | [CC&nbsp;BY‑SA&nbsp;4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode)
| SQuAD2.0 | Reading&nbsp;Comp. | https://huggingface.co/datasets/rajpurkar/squad_v2 | squad_v2 | validation | [CC&nbsp;BY‑SA&nbsp;4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode)
| DROP | Reading&nbsp;Comp. | https://huggingface.co/datasets/ucinlp/drop | default | validation | [CC&nbsp;BY‑SA&nbsp;4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode)
| Wingograd WSC | Commonsense | https://huggingface.co/datasets/ErnestSDavis/winograd_wsc | wsc285 | test | [CC&nbsp;BY&nbsp;4.0](https://creativecommons.org/licenses/by/4.0/legalcode)
| VQA | Vision | https://visualqa.org/download.html | N/A | validation | [CC&nbsp;BY&nbsp;4.0](https://creativecommons.org/licenses/by/4.0/legalcode)
Please defer to the datasets cards of these benchmarks for further details on their collection and annotation process.
## Additional Information
### Licensing Information
See the table above for the licensing information of the original datasets upon which our work is based. The further annotations we provide are licensed under the [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/legalcode) license.
### Citation Information
Cite this dataset and the source datasets (see [sources.bib](https://github.com/MadryLab/platinum-benchmarks/blob/main/sources.bib)).
```
@misc{vendrow2025largelanguagemodelbenchmarks,
title={Do Large Language Model Benchmarks Test Reliability?},
author={Joshua Vendrow and Edward Vendrow and Sara Beery and Aleksander Madry},
year={2025},
eprint={2502.03461},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2502.03461},
}
```