Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Size:
100K - 1M
ArXiv:
License:
File size: 8,618 Bytes
3765aa6 5cec56e a201c73 5cec56e 491483d 5cec56e 491483d 5cec56e ade7341 5cec56e 491483d 5cec56e e7eda3f 5cec56e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
---
annotations_creators:
- expert-generated
language:
- bm
- bbj
- ee
- fon
- ha
- ig
- rw
- lg
- luo
- mos
- ny
- pcm
- sn
- sw
- tn
- tw
- wo
- xh
- yo
- zu
language_creators:
- expert-generated
license:
- afl-3.0
multilinguality:
- multilingual
pretty_name: masakhaner2.0
size_categories:
- 1K<n<10K
source_datasets:
- original
tags:
- ner
- masakhaner
- masakhane
task_categories:
- token-classification
task_ids:
- named-entity-recognition
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [homepage](https://github.com/masakhane-io/masakhane-ner)
- **Repository:** [github](https://github.com/masakhane-io/masakhane-ner)
- **Paper:** [paper](https://arxiv.org/abs/2103.11811)
- **Point of Contact:** [Masakhane](https://www.masakhane.io/) or [email protected]
### Dataset Summary
MasakhaNER 2.0 is the largest publicly available high-quality dataset for named entity recognition (NER) in 20 African languages created by the Masakhane community.
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. Example:
[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .
MasakhaNER 2.0 is a named entity dataset consisting of PER, ORG, LOC, and DATE entities annotated by Masakhane for 20 African languages
The train/validation/test sets are available for all the 20 languages.
For more details see https://arxiv.org/abs/2210.12391
### Supported Tasks and Leaderboards
[More Information Needed]
- `named-entity-recognition`: The performance in this task is measured with [F1](https://huggingface.co/metrics/f1) (higher is better). A named entity is correct only if it is an exact match of the corresponding entity in the data.
### Languages
There are 20 languages available :
- Bambara (bam)
- Ghomala (bbj)
- Ewe (ewe)
- Fon (fon)
- Hausa (hau)
- Igbo (ibo)
- Kinyarwanda (kin)
- Luganda (lug)
- Dholuo (luo)
- Mossi (mos)
- Chichewa (nya)
- Nigerian Pidgin
- chShona (sna)
- Kiswahili (swą)
- Setswana (tsn)
- Twi (twi)
- Wolof (wol)
- isiXhosa (xho)
- Yorùbá (yor)
- isiZulu (zul)
## Dataset Structure
### Data Instances
The examples look like this for Yorùbá:
```
from datasets import load_dataset
data = load_dataset('masakhane/masakhaner2', 'yor')
# Please, specify the language code
# A data point consists of sentences seperated by empty line and tab-seperated tokens and tags.
{'id': '0',
'ner_tags': [B-DATE, I-DATE, 0, 0, 0, 0, 0, B-PER, I-PER, I-PER, O, O, O, O],
'tokens': ['Wákàtí', 'méje', 'ti', 'ré', 'kọjá', 'lọ', 'tí', 'Luis', 'Carlos', 'Díaz', 'ti', 'di', 'awati', '.']
}
```
### Data Fields
- `id`: id of the sample
- `tokens`: the tokens of the example text
- `ner_tags`: the NER tags of each token
The NER tags correspond to this list:
```
"O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-DATE", "I-DATE",
```
In the NER tags, a B denotes the first item of a phrase and an I any non-initial word. There are four types of phrases: person names (PER), organizations (ORG), locations (LOC) and dates & time (DATE).
It is assumed that named entities are non-recursive and non-overlapping. In case a named entity is embedded in another named entity usually, only the top level entity is marked.
### Data Splits
For all languages, there are three splits.
The original splits were named `train`, `dev` and `test` and they correspond to the `train`, `validation` and `test` splits.
The splits have the following sizes :
| Language | train | validation | test |
|-----------------|------:|-----------:|------:|
| Bambara | 4463 | 638 | 1274 |
| Ghomala | 3384 | 483 | 966 |
| Ewe | 3505 | 501 | 1001 |
| Fon. | 4343 | 621 | 1240 |
| Hausa | 5716 | 816 | 1633 |
| Igbo | 7634 | 1090 | 2181 |
| Kinyarwanda | 7825 | 1118 | 2235 |
| Luganda | 4942 | 706 | 1412 |
| Luo | 5161 | 737 | 1474 |
| Mossi | 4532 | 648 | 1613 |
| Nigerian-Pidgin | 5646 | 806 | 1294 |
| Chichewa | 6250 | 893 | 1785 |
| chiShona | 6207 | 887 | 1773 |
| Kiswahili | 6593 | 942 | 1883 |
| Setswana | 3289 | 499 | 996 |
| Akan/Twi | 4240 | 605 | 1211 |
| Wolof | 4593 | 656 | 1312 |
| isiXhosa | 5718 | 817 | 1633 |
| Yoruba | 6877 | 983 | 1964 |
| isiZulu | 5848 | 836 | 1670 |
## Dataset Creation
### Curation Rationale
The dataset was introduced to introduce new resources to 20 languages that were under-served for natural language processing.
[More Information Needed]
### Source Data
The source of the data is from the news domain, details can be found here https://arxiv.org/abs/2210.12391
#### Initial Data Collection and Normalization
The articles were word-tokenized, information on the exact pre-processing pipeline is unavailable.
#### Who are the source language producers?
The source language was produced by journalists and writers employed by the news agency and newspaper mentioned above.
### Annotations
#### Annotation process
Details can be found here https://arxiv.org/abs/2103.11811
#### Who are the annotators?
Annotators were recruited from [Masakhane](https://www.masakhane.io/)
### Personal and Sensitive Information
The data is sourced from newspaper source and only contains mentions of public figures or individuals
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Users should keep in mind that the dataset only contains news text, which might limit the applicability of the developed systems to other domains.
## Additional Information
### Dataset Curators
### Licensing Information
The licensing status of the data is CC 4.0 Non-Commercial
### Citation Information
Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
```
@article{Adelani2022MasakhaNER2A,
title={MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition},
author={David Ifeoluwa Adelani and Graham Neubig and Sebastian Ruder and Shruti Rijhwani and Michael Beukman and Chester Palen-Michel and Constantine Lignos and Jesujoba Oluwadara Alabi and Shamsuddeen Hassan Muhammad and Peter Nabende and Cheikh M. Bamba Dione and Andiswa Bukula and Rooweither Mabuya and Bonaventure F. P. Dossou and Blessing K. Sibanda and Happy Buzaaba and Jonathan Mukiibi and Godson Kalipe and Derguene Mbaye and Amelia Taylor and Fatoumata Kabore and Chris C. Emezue and Anuoluwapo Aremu and Perez Ogayo and Catherine W. Gitau and Edwin Munkoh-Buabeng and Victoire Memdjokam Koagne and Allahsera Auguste Tapo and Tebogo Macucwa and Vukosi Marivate and Elvis Mboning and Tajuddeen R. Gwadabe and Tosin P. Adewumi and Orevaoghene Ahia and Joyce Nakatumba-Nabende and Neo L. Mokono and Ignatius M Ezeani and Chiamaka Ijeoma Chukwuneke and Mofetoluwa Adeyemi and Gilles Hacheme and Idris Abdulmumin and Odunayo Ogundepo and Oreen Yousuf and Tatiana Moteu Ngoli and Dietrich Klakow},
journal={ArXiv},
year={2022},
volume={abs/2210.12391}
}
```
### Contributions
Thanks to [@dadelani](https://github.com/dadelani) for adding this dataset. |