id
stringlengths 14
15
| text
stringlengths 44
2.47k
| source
stringlengths 61
181
|
---|---|---|
04cd467b9802-2 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.ListStepContainer.html |
fd07883e0551-0 | langchain_experimental.plan_and_execute.planners.base.LLMPlanner¶
class langchain_experimental.plan_and_execute.planners.base.LLMPlanner[source]¶
Bases: BasePlanner
LLM planner.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param llm_chain: langchain.chains.llm.LLMChain [Required]¶
The LLM chain to use.
param output_parser: langchain_experimental.plan_and_execute.schema.PlanOutputParser [Required]¶
The output parser to use.
param stop: Optional[List] = None¶
The stop list to use.
async aplan(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Plan[source]¶
Given input, asynchronously decide what to do.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.planners.base.LLMPlanner.html |
fd07883e0551-1 | the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.planners.base.LLMPlanner.html |
fd07883e0551-2 | plan(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Plan[source]¶
Given input, decide what to do.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.planners.base.LLMPlanner.html |
1655fae8a10a-0 | langchain_experimental.plan_and_execute.schema.Step¶
class langchain_experimental.plan_and_execute.schema.Step[source]¶
Bases: BaseModel
Step.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param value: str [Required]¶
The value.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.Step.html |
1655fae8a10a-1 | Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.Step.html |
b68bef97a7f6-0 | langchain_experimental.plan_and_execute.schema.BaseStepContainer¶
class langchain_experimental.plan_and_execute.schema.BaseStepContainer[source]¶
Bases: BaseModel
Base step container.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
abstract add_step(step: Step, step_response: StepResponse) → None[source]¶
Add step and step response to the container.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.BaseStepContainer.html |
b68bef97a7f6-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
abstract get_final_response() → str[source]¶
Return the final response based on steps taken.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.BaseStepContainer.html |
b68bef97a7f6-2 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.BaseStepContainer.html |
1efe44a370fb-0 | langchain_experimental.plan_and_execute.executors.agent_executor.load_agent_executor¶
langchain_experimental.plan_and_execute.executors.agent_executor.load_agent_executor(llm: BaseLanguageModel, tools: List[BaseTool], verbose: bool = False, include_task_in_prompt: bool = False) → ChainExecutor[source]¶
Load an agent executor.
Parameters
llm – BaseLanguageModel
tools – List[BaseTool]
verbose – bool. Defaults to False.
include_task_in_prompt – bool. Defaults to False.
Returns
ChainExecutor | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.executors.agent_executor.load_agent_executor.html |
fc83c8026c03-0 | langchain_experimental.plan_and_execute.planners.base.BasePlanner¶
class langchain_experimental.plan_and_execute.planners.base.BasePlanner[source]¶
Bases: BaseModel
Base planner.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
abstract async aplan(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Plan[source]¶
Given input, asynchronously decide what to do.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.planners.base.BasePlanner.html |
fc83c8026c03-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.planners.base.BasePlanner.html |
fc83c8026c03-2 | abstract plan(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Plan[source]¶
Given input, decide what to do.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.planners.base.BasePlanner.html |
d191ea88a121-0 | langchain_experimental.plan_and_execute.planners.chat_planner.load_chat_planner¶
langchain_experimental.plan_and_execute.planners.chat_planner.load_chat_planner(llm: BaseLanguageModel, system_prompt: str = "Let's first understand the problem and devise a plan to solve the problem. Please output the plan starting with the header 'Plan:' and then followed by a numbered list of steps. Please make the plan the minimum number of steps required to accurately complete the task. If the task is a question, the final step should almost always be 'Given the above steps taken, please respond to the users original question'. At the end of your plan, say '<END_OF_PLAN>'") → LLMPlanner[source]¶
Load a chat planner.
Parameters
llm – Language model.
system_prompt – System prompt.
Returns
LLMPlanner | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.planners.chat_planner.load_chat_planner.html |
332257aa85a9-0 | langchain_experimental.plan_and_execute.schema.PlanOutputParser¶
class langchain_experimental.plan_and_execute.schema.PlanOutputParser[source]¶
Bases: BaseOutputParser
Plan output parser.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of abatch, which calls ainvoke N times.
Subclasses should override this method if they can batch more efficiently.
async ainvoke(input: str | langchain.schema.messages.BaseMessage, config: langchain.schema.runnable.config.RunnableConfig | None = None, **kwargs: Optional[Any]) → T¶
Default implementation of ainvoke, which calls invoke in a thread pool.
Subclasses should override this method if they can run asynchronously.
async aparse(text: str) → T¶
Parse a single string model output into some structure.
Parameters
text – String output of a language model.
Returns
Structured output.
async aparse_result(result: List[Generation], *, partial: bool = False) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke. | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.PlanOutputParser.html |
332257aa85a9-1 | Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of batch, which calls invoke N times.
Subclasses should override this method if they can batch more efficiently.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable. | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.PlanOutputParser.html |
332257aa85a9-2 | Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
classmethod from_orm(obj: Any) → Model¶
get_format_instructions() → str¶
Instructions on how the LLM output should be formatted.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
invoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None) → T¶
classmethod is_lc_serializable() → bool¶
Is this class serializable? | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.PlanOutputParser.html |
332257aa85a9-3 | classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
abstract parse(text: str) → Plan[source]¶
Parse into a plan.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
parse_result(result: List[Generation], *, partial: bool = False) → T¶
Parse a list of candidate model Generations into a specific format. | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.PlanOutputParser.html |
332257aa85a9-4 | Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of a language model.
prompt – Input PromptValue.
Returns
Structured output
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.PlanOutputParser.html |
332257aa85a9-5 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
property InputType: Any¶
property OutputType: type[T]¶
property input_schema: Type[pydantic.main.BaseModel]¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.schema.PlanOutputParser.html |
27af779b3cef-0 | langchain.schema.runnable.utils.GetLambdaSource¶
class langchain.schema.runnable.utils.GetLambdaSource[source]¶
Methods
__init__()
generic_visit(node)
Called if no explicit visitor function exists for a node.
visit(node)
Visit a node.
visit_Constant(node)
visit_Lambda(node)
__init__() → None[source]¶
generic_visit(node)¶
Called if no explicit visitor function exists for a node.
visit(node)¶
Visit a node.
visit_Constant(node)¶
visit_Lambda(node: Lambda) → Any[source]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.GetLambdaSource.html |
7832c29c9268-0 | langchain.schema.runnable.config.get_async_callback_manager_for_config¶
langchain.schema.runnable.config.get_async_callback_manager_for_config(config: RunnableConfig) → AsyncCallbackManager[source]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.get_async_callback_manager_for_config.html |
c79874e81e14-0 | langchain.schema.runnable.base.RunnableLambda¶
class langchain.schema.runnable.base.RunnableLambda(func: Union[Callable[[Input], Output], Callable[[Input], Awaitable[Output]]], afunc: Optional[Callable[[Input], Awaitable[Output]]] = None)[source]¶
A runnable that runs a callable.
Attributes
InputType
OutputType
input_schema
output_schema
Methods
__init__(func[, afunc])
abatch(inputs[, config, return_exceptions])
Default implementation of abatch, which calls ainvoke N times.
ainvoke(input[, config])
Default implementation of ainvoke, which calls invoke in a thread pool.
astream(input[, config])
Default implementation of astream, which calls ainvoke.
astream_log(input[, config, include_names, ...])
Stream all output from a runnable, as reported to the callback system.
atransform(input[, config])
Default implementation of atransform, which buffers input and calls astream.
batch(inputs[, config, return_exceptions])
Default implementation of batch, which calls invoke N times.
bind(**kwargs)
Bind arguments to a Runnable, returning a new Runnable.
invoke(input[, config])
map()
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
stream(input[, config])
Default implementation of stream, which calls invoke.
transform(input[, config])
Default implementation of transform, which buffers input and then calls stream.
with_config([config])
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks, *[, ...])
with_retry(*[, retry_if_exception_type, ...]) | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
c79874e81e14-1 | with_retry(*[, retry_if_exception_type, ...])
__init__(func: Union[Callable[[Input], Output], Callable[[Input], Awaitable[Output]]], afunc: Optional[Callable[[Input], Awaitable[Output]]] = None) → None[source]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of abatch, which calls ainvoke N times.
Subclasses should override this method if they can batch more efficiently.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶
Default implementation of ainvoke, which calls invoke in a thread pool.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
c79874e81e14-2 | Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of batch, which calls invoke N times.
Subclasses should override this method if they can batch more efficiently.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
c79874e81e14-3 | Subclasses should override this method if they can start producing output while
input is still being generated.
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Examples using RunnableLambda¶
sql_db.md
Run arbitrary functions | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableLambda.html |
009db62a8a07-0 | langchain.schema.runnable.utils.aadd¶
async langchain.schema.runnable.utils.aadd(addables: AsyncIterable[Addable]) → Optional[Addable][source]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.aadd.html |
e7bd59f1ae90-0 | langchain.schema.retriever.BaseRetriever¶
class langchain.schema.retriever.BaseRetriever[source]¶
Bases: Serializable, Runnable[str, List[Document]], ABC
Abstract base class for a Document retrieval system.
A retrieval system is defined as something that can take string queries and returnthe most ‘relevant’ Documents from some source.
Example
class TFIDFRetriever(BaseRetriever, BaseModel):
vectorizer: Any
docs: List[Document]
tfidf_array: Any
k: int = 4
class Config:
arbitrary_types_allowed = True
def get_relevant_documents(self, query: str) -> List[Document]:
from sklearn.metrics.pairwise import cosine_similarity
# Ip -- (n_docs,x), Op -- (n_docs,n_Feats)
query_vec = self.vectorizer.transform([query])
# Op -- (n_docs,1) -- Cosine Sim with each doc
results = cosine_similarity(self.tfidf_array, query_vec).reshape((-1,))
return [self.docs[i] for i in results.argsort()[-self.k :][::-1]]
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever, | https://api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
e7bd59f1ae90-1 | These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of abatch, which calls ainvoke N times.
Subclasses should override this method if they can batch more efficiently.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document][source]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document][source]¶
Default implementation of ainvoke, which calls invoke in a thread pool.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
e7bd59f1ae90-2 | Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of batch, which calls invoke N times.
Subclasses should override this method if they can batch more efficiently.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable. | https://api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
e7bd59f1ae90-3 | Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object. | https://api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
e7bd59f1ae90-4 | Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document][source]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document][source]¶
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict(). | https://api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
e7bd59f1ae90-5 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream. | https://api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
e7bd59f1ae90-6 | Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
property InputType: Type[langchain.schema.runnable.utils.Input]¶
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
property input_schema: Type[pydantic.main.BaseModel]¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
Examples using BaseRetriever¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
e7bd59f1ae90-7 | Examples using BaseRetriever¶
Retrieve as you generate with FLARE | https://api.python.langchain.com/en/latest/schema/langchain.schema.retriever.BaseRetriever.html |
88254b3ff4c7-0 | langchain.schema.runnable.passthrough.identity¶
langchain.schema.runnable.passthrough.identity(x: Input) → Input[source]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.passthrough.identity.html |
83642dafe9ce-0 | langchain.schema.runnable.config.call_func_with_variable_args¶
langchain.schema.runnable.config.call_func_with_variable_args(func: Union[Callable[[Input], Output], Callable[[Input, CallbackManagerForChainRun], Output], Callable[[Input, CallbackManagerForChainRun, RunnableConfig], Output]], input: Input, run_manager: CallbackManagerForChainRun, config: RunnableConfig, **kwargs: Any) → Output[source]¶
Call function that may optionally accept a run_manager and/or config. | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.call_func_with_variable_args.html |
3c5d897248cb-0 | langchain.schema.messages.BaseMessage¶
class langchain.schema.messages.BaseMessage[source]¶
Bases: Serializable
The base abstract Message class.
Messages are the inputs and outputs of ChatModels.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param additional_kwargs: dict [Optional]¶
Any additional information.
param content: str [Required]¶
The string contents of the message.
param type: str [Required]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.BaseMessage.html |
3c5d897248cb-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool[source]¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.BaseMessage.html |
3c5d897248cb-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
Examples using BaseMessage¶
SQL Chat Message History
CAMEL Role-Playing Autonomous Cooperative Agents
Multi-agent decentralized speaker selection
Multi-agent authoritarian speaker selection
Multi-Player Dungeons & Dragons
Simulated Environment: Gymnasium
Agent Debates with Tools | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.BaseMessage.html |
3aecc9eb506f-0 | langchain.schema.messages.get_buffer_string¶
langchain.schema.messages.get_buffer_string(messages: Sequence[BaseMessage], human_prefix: str = 'Human', ai_prefix: str = 'AI') → str[source]¶
Convert sequence of Messages to strings and concatenate them into one string.
Args:messages: Messages to be converted to strings.
human_prefix: The prefix to prepend to contents of HumanMessages.
ai_prefix: THe prefix to prepend to contents of AIMessages.
Returns:A single string concatenation of all input messages.
Example:from langchain.schema import AIMessage, HumanMessage
messages = [
HumanMessage(content="Hi, how are you?"),
AIMessage(content="Good, how are you?"),
]
get_buffer_string(messages)
# -> "Human: Hi, how are you?
AI: Good, how are you?” | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.get_buffer_string.html |
ff1f885def65-0 | langchain.schema.output_parser.StrOutputParser¶
class langchain.schema.output_parser.StrOutputParser[source]¶
Bases: BaseTransformOutputParser[str]
OutputParser that parses LLMResult into the top likely string.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of abatch, which calls ainvoke N times.
Subclasses should override this method if they can batch more efficiently.
async ainvoke(input: str | langchain.schema.messages.BaseMessage, config: langchain.schema.runnable.config.RunnableConfig | None = None, **kwargs: Optional[Any]) → T¶
Default implementation of ainvoke, which calls invoke in a thread pool.
Subclasses should override this method if they can run asynchronously.
async aparse(text: str) → T¶
Parse a single string model output into some structure.
Parameters
text – String output of a language model.
Returns
Structured output.
async aparse_result(result: List[Generation], *, partial: bool = False) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.StrOutputParser.html |
ff1f885def65-1 | Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Union[str, BaseMessage]], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[T]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of batch, which calls invoke N times.
Subclasses should override this method if they can batch more efficiently.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable. | https://api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.StrOutputParser.html |
ff1f885def65-2 | Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
classmethod from_orm(obj: Any) → Model¶
get_format_instructions() → str¶
Instructions on how the LLM output should be formatted.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
invoke(input: Union[str, BaseMessage], config: Optional[RunnableConfig] = None) → T¶
classmethod is_lc_serializable() → bool[source]¶
Return whether this class is serializable. | https://api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.StrOutputParser.html |
ff1f885def65-3 | Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
parse(text: str) → str[source]¶
Returns the input text with no changes.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
parse_result(result: List[Generation], *, partial: bool = False) → T¶
Parse a list of candidate model Generations into a specific format. | https://api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.StrOutputParser.html |
ff1f885def65-4 | Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of a language model.
prompt – Input PromptValue.
Returns
Structured output
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Union[str, BaseMessage]], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[T]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.StrOutputParser.html |
ff1f885def65-5 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
property InputType: Any¶
property OutputType: type[T]¶
property input_schema: Type[pydantic.main.BaseModel]¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
Examples using StrOutputParser¶
Facebook Messenger
Chat loaders
iMessage
OpaquePrompts
Fallbacks
MultiVector Retriever
First we add a step to load memory
sql_db.md
prompt_llm_parser.md
multiple_chains.md
Code writing
Using tools
Configure Runnable traces | https://api.python.langchain.com/en/latest/schema/langchain.schema.output_parser.StrOutputParser.html |
3f5b063e2878-0 | langchain.schema.messages.AIMessage¶
class langchain.schema.messages.AIMessage[source]¶
Bases: BaseMessage
A Message from an AI.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param additional_kwargs: dict [Optional]¶
Any additional information.
param content: str [Required]¶
The string contents of the message.
param example: bool = False¶
Whether this Message is being passed in to the model as part of an example
conversation.
param is_chunk: Literal[False] = False¶
param type: Literal['ai'] = 'ai'¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessage.html |
3f5b063e2878-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object. | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessage.html |
3f5b063e2878-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
Examples using AIMessage¶
Twitter (via Apify)
Zep
Zep Memory
SQL Chat Message History
Anthropic
🚅 LiteLLM
Konko
OpenAI
JinaChat
Set env var OPENAI_API_KEY or load from a .env file:
CAMEL Role-Playing Autonomous Cooperative Agents
Multi-agent decentralized speaker selection
Multi-agent authoritarian speaker selection | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessage.html |
3f5b063e2878-3 | Multi-agent decentralized speaker selection
Multi-agent authoritarian speaker selection
Multi-Player Dungeons & Dragons
Simulated Environment: Gymnasium
Agent Debates with Tools
Prompt pipelining | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessage.html |
1827adb07ed3-0 | langchain.schema.runnable.utils.SupportsAdd¶
class langchain.schema.runnable.utils.SupportsAdd(*args, **kwargs)[source]¶
Methods
__init__(*args, **kwargs)
__init__(*args, **kwargs)¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.utils.SupportsAdd.html |
549ac2a61904-0 | langchain.schema.messages.AIMessageChunk¶
class langchain.schema.messages.AIMessageChunk[source]¶
Bases: AIMessage, BaseMessageChunk
A Message chunk from an AI.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param additional_kwargs: dict [Optional]¶
Any additional information.
param content: str [Required]¶
The string contents of the message.
param example: bool = False¶
Whether this Message is being passed in to the model as part of an example
conversation.
param is_chunk: Literal[True] = True¶
param type: Literal['ai'] = 'ai'¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessageChunk.html |
549ac2a61904-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object. | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessageChunk.html |
549ac2a61904-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”} | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.AIMessageChunk.html |
7836df7d55fe-0 | langchain.schema.messages.SystemMessage¶
class langchain.schema.messages.SystemMessage[source]¶
Bases: BaseMessage
A Message for priming AI behavior, usually passed in as the first of a sequence
of input messages.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param additional_kwargs: dict [Optional]¶
Any additional information.
param content: str [Required]¶
The string contents of the message.
param is_chunk: Literal[False] = False¶
param type: Literal['system'] = 'system'¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.SystemMessage.html |
7836df7d55fe-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object. | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.SystemMessage.html |
7836df7d55fe-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
Examples using SystemMessage¶
Metaphor Search
SQL Chat Message History
Anthropic
🚅 LiteLLM
Konko
OpenAI
Google Cloud Platform Vertex AI PaLM
JinaChat
Anyscale
LLMonitor
Context
Label Studio
MLflow AI Gateway
Set env var OPENAI_API_KEY or load from a .env file:
Conversational Retrieval Agent | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.SystemMessage.html |
7836df7d55fe-3 | Conversational Retrieval Agent
Structure answers with OpenAI functions
Agents
CAMEL Role-Playing Autonomous Cooperative Agents
Multi-Agent Simulated Environment: Petting Zoo
Multi-agent decentralized speaker selection
Multi-agent authoritarian speaker selection
Two-Player Dungeons & Dragons
Multi-Player Dungeons & Dragons
Simulated Environment: Gymnasium
Agent Debates with Tools
Memory in LLMChain
Use ToolKits with OpenAI Functions
Prompt pipelining
Using OpenAI functions | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.SystemMessage.html |
ca22f1cd46b0-0 | langchain.schema.vectorstore.VectorStoreRetriever¶
class langchain.schema.vectorstore.VectorStoreRetriever[source]¶
Bases: BaseRetriever
Base Retriever class for VectorStore.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param search_kwargs: dict [Optional]¶
Keyword arguments to pass to the search function.
param search_type: str = 'similarity'¶
Type of search to perform. Defaults to “similarity”.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param vectorstore: langchain.schema.vectorstore.VectorStore [Required]¶
VectorStore to use for retrieval.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶
Add documents to vectorstore.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of abatch, which calls ainvoke N times.
Subclasses should override this method if they can batch more efficiently. | https://api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStoreRetriever.html |
ca22f1cd46b0-1 | Subclasses should override this method if they can batch more efficiently.
add_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶
Add documents to vectorstore.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → List[Document]¶
Default implementation of ainvoke, which calls invoke in a thread pool.
Subclasses should override this method if they can run asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output. | https://api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStoreRetriever.html |
ca22f1cd46b0-2 | Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of batch, which calls invoke N times.
Subclasses should override this method if they can batch more efficiently.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStoreRetriever.html |
ca22f1cd46b0-3 | Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”] | https://api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStoreRetriever.html |
ca22f1cd46b0-4 | namespace is [“langchain”, “llms”, “openai”]
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStoreRetriever.html |
ca22f1cd46b0-5 | classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStoreRetriever.html |
ca22f1cd46b0-6 | classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
property InputType: Type[langchain.schema.runnable.utils.Input]¶
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
allowed_search_types: ClassVar[Collection[str]] = ('similarity', 'similarity_score_threshold', 'mmr')¶
property input_schema: Type[pydantic.main.BaseModel]¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.vectorstore.VectorStoreRetriever.html |
7d70ebe55afd-0 | langchain.schema.runnable.base.RunnableGenerator¶
class langchain.schema.runnable.base.RunnableGenerator(transform: Union[Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]]], atransform: Optional[Callable[[AsyncIterator[Input]], AsyncIterator[Output]]] = None)[source]¶
A runnable that runs a generator function.
Attributes
InputType
OutputType
input_schema
output_schema
Methods
__init__(transform[, atransform])
abatch(inputs[, config, return_exceptions])
Default implementation of abatch, which calls ainvoke N times.
ainvoke(input[, config])
Default implementation of ainvoke, which calls invoke in a thread pool.
astream(input[, config])
Default implementation of astream, which calls ainvoke.
astream_log(input[, config, include_names, ...])
Stream all output from a runnable, as reported to the callback system.
atransform(input[, config])
Default implementation of atransform, which buffers input and calls astream.
batch(inputs[, config, return_exceptions])
Default implementation of batch, which calls invoke N times.
bind(**kwargs)
Bind arguments to a Runnable, returning a new Runnable.
invoke(input[, config])
map()
Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
stream(input[, config])
Default implementation of stream, which calls invoke.
transform(input[, config])
Default implementation of transform, which buffers input and then calls stream.
with_config([config])
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks, *[, ...])
with_retry(*[, retry_if_exception_type, ...]) | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableGenerator.html |
7d70ebe55afd-1 | with_retry(*[, retry_if_exception_type, ...])
__init__(transform: Union[Callable[[Iterator[Input]], Iterator[Output]], Callable[[AsyncIterator[Input]], AsyncIterator[Output]]], atransform: Optional[Callable[[AsyncIterator[Input]], AsyncIterator[Output]]] = None) → None[source]¶
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of abatch, which calls ainvoke N times.
Subclasses should override this method if they can batch more efficiently.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
Default implementation of ainvoke, which calls invoke in a thread pool.
Subclasses should override this method if they can run asynchronously.
astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output][source]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc. | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableGenerator.html |
7d70ebe55afd-2 | This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → AsyncIterator[Output][source]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of batch, which calls invoke N times.
Subclasses should override this method if they can batch more efficiently.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
invoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output[source]¶
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output][source]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Any) → Iterator[Output][source]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableGenerator.html |
7d70ebe55afd-3 | Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.base.RunnableGenerator.html |
2afb7719e0fb-0 | langchain.schema.messages.FunctionMessageChunk¶
class langchain.schema.messages.FunctionMessageChunk[source]¶
Bases: FunctionMessage, BaseMessageChunk
A Function Message chunk.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param additional_kwargs: dict [Optional]¶
Any additional information.
param content: str [Required]¶
The string contents of the message.
param is_chunk: Literal[True] = True¶
param name: str [Required]¶
The name of the function that was executed.
param type: Literal['function'] = 'function'¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.FunctionMessageChunk.html |
2afb7719e0fb-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object. | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.FunctionMessageChunk.html |
2afb7719e0fb-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”} | https://api.python.langchain.com/en/latest/schema/langchain.schema.messages.FunctionMessageChunk.html |
2be147cfe0cc-0 | langchain.schema.output.LLMResult¶
class langchain.schema.output.LLMResult[source]¶
Bases: BaseModel
Class that contains all results for a batched LLM call.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param generations: List[List[langchain.schema.output.Generation]] [Required]¶
List of generated outputs. This is a List[List[]] because
each input could have multiple candidate generations.
param llm_output: Optional[dict] = None¶
Arbitrary LLM provider-specific output.
param run: Optional[List[langchain.schema.output.RunInfo]] = None¶
List of metadata info for model call for each input.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/schema/langchain.schema.output.LLMResult.html |
2be147cfe0cc-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
flatten() → List[LLMResult][source]¶
Flatten generations into a single list.
Unpack List[List[Generation]] -> List[LLMResult] where each returned LLMResultcontains only a single Generation. If token usage information is available,
it is kept only for the LLMResult corresponding to the top-choice
Generation, to avoid over-counting of token usage downstream.
Returns
List of LLMResults where each returned LLMResult contains a singleGeneration.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). | https://api.python.langchain.com/en/latest/schema/langchain.schema.output.LLMResult.html |
2be147cfe0cc-2 | classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
Examples using LLMResult¶
Ollama
Async callbacks | https://api.python.langchain.com/en/latest/schema/langchain.schema.output.LLMResult.html |
0f0cccc7f324-0 | langchain.schema.chat.ChatSession¶
class langchain.schema.chat.ChatSession[source]¶
Chat Session represents a single
conversation, channel, or other group of messages.
messages: Sequence[langchain.schema.messages.BaseMessage]¶
The LangChain chat messages loaded from the source.
Examples using ChatSession¶
Slack
WhatsApp
iMessage
Telegram
Discord | https://api.python.langchain.com/en/latest/schema/langchain.schema.chat.ChatSession.html |
57e15f2a8f41-0 | langchain.schema.output.GenerationChunk¶
class langchain.schema.output.GenerationChunk[source]¶
Bases: Generation
A Generation chunk, which can be concatenated with other Generation chunks.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param generation_info: Optional[Dict[str, Any]] = None¶
Raw response from the provider. May include things like the
reason for finishing or token log probabilities.
param text: str [Required]¶
Generated text output.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/schema/langchain.schema.output.GenerationChunk.html |
57e15f2a8f41-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool¶
Return whether this class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object. | https://api.python.langchain.com/en/latest/schema/langchain.schema.output.GenerationChunk.html |
57e15f2a8f41-2 | The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”} | https://api.python.langchain.com/en/latest/schema/langchain.schema.output.GenerationChunk.html |
e3514a26d1cb-0 | langchain.schema.runnable.config.ensure_config¶
langchain.schema.runnable.config.ensure_config(config: Optional[RunnableConfig] = None) → RunnableConfig[source]¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.config.ensure_config.html |
7220055cdfdd-0 | langchain.schema.language_model.BaseLanguageModel¶
class langchain.schema.language_model.BaseLanguageModel[source]¶
Bases: Serializable, Runnable[Union[PromptValue, str, List[BaseMessage]], LanguageModelOutput], ABC
Abstract base class for interfacing with language models.
All language model wrappers inherit from BaseLanguageModel.
Exposes three main methods:
- generate_prompt: generate language model outputs for a sequence of prompt
values. A prompt value is a model input that can be converted to any language
model input format (string or messages).
predict: pass in a single string to a language model and return a stringprediction.
predict_messages: pass in a sequence of BaseMessages (corresponding to a singlemodel call) to a language model and return a BaseMessage prediction.
Each of these has an equivalent asynchronous method.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of abatch, which calls ainvoke N times.
Subclasses should override this method if they can batch more efficiently.
abstract async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Callbacks = None, **kwargs: Any) → LLMResult[source]¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value, | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
7220055cdfdd-1 | need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async ainvoke(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any) → Output¶
Default implementation of ainvoke, which calls invoke in a thread pool.
Subclasses should override this method if they can run asynchronously.
abstract async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str[source]¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string. | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
7220055cdfdd-2 | to the model provider API call.
Returns
Top model prediction as a string.
abstract async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage[source]¶
Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run. | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
7220055cdfdd-3 | step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation of batch, which calls invoke N times.
Subclasses should override this method if they can batch more efficiently.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
7220055cdfdd-4 | the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
abstract generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Callbacks = None, **kwargs: Any) → LLMResult[source]¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
7220055cdfdd-5 | to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_num_tokens(text: str) → int[source]¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int[source]¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int][source]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
abstract invoke(input: Input, config: Optional[RunnableConfig] = None) → Output¶
classmethod is_lc_serializable() → bool¶
Is this class serializable? | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
7220055cdfdd-6 | classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
abstract predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str[source]¶
Pass a single string input to the model and return a string prediction. | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
7220055cdfdd-7 | Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
abstract predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage[source]¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
7220055cdfdd-8 | to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
property InputType: TypeAlias¶
Get the input type for this runnable.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
property input_schema: Type[pydantic.main.BaseModel]¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids. | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
7220055cdfdd-9 | A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
Examples using BaseLanguageModel¶
Custom chain | https://api.python.langchain.com/en/latest/schema/langchain.schema.language_model.BaseLanguageModel.html |
49b49954f6a0-0 | langchain.schema.output.ChatResult¶
class langchain.schema.output.ChatResult[source]¶
Bases: BaseModel
Class that contains all results for a single chat model call.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param generations: List[langchain.schema.output.ChatGeneration] [Required]¶
List of the chat generations. This is a List because an input can have multiple
candidate generations.
param llm_output: Optional[dict] = None¶
For arbitrary LLM provider specific output.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | https://api.python.langchain.com/en/latest/schema/langchain.schema.output.ChatResult.html |
49b49954f6a0-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.output.ChatResult.html |
49b49954f6a0-2 | classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.output.ChatResult.html |
64a0b90ac65f-0 | langchain.schema.exceptions.LangChainException¶
class langchain.schema.exceptions.LangChainException[source]¶
General LangChain exception. | https://api.python.langchain.com/en/latest/schema/langchain.schema.exceptions.LangChainException.html |
cd320da03aae-0 | langchain.schema.agent.AgentAction¶
class langchain.schema.agent.AgentAction[source]¶
Bases: Serializable
A full description of an action for an ActionAgent to execute.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param log: str [Required]¶
Additional information to log about the action.
This log can be used in a few ways. First, it can be used to audit
what exactly the LLM predicted to lead to this (tool, tool_input).
Second, it can be used in future iterations to show the LLMs prior
thoughts. This is useful when (tool, tool_input) does not contain
full information about the LLM prediction (for example, any thought
before the tool/tool_input).
param tool: str [Required]¶
The name of the Tool to execute.
param tool_input: Union[str, dict] [Required]¶
The input to pass in to the Tool.
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model | https://api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentAction.html |
cd320da03aae-1 | Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
classmethod is_lc_serializable() → bool[source]¶
Return whether or not the class is serializable.
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ | https://api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentAction.html |
cd320da03aae-2 | Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
Examples using AgentAction¶
Custom Trajectory Evaluator
Agents
Plug-and-Plai
Wikibase Agent | https://api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentAction.html |
cd320da03aae-3 | Custom Trajectory Evaluator
Agents
Plug-and-Plai
Wikibase Agent
SalesGPT - Your Context-Aware AI Sales Assistant With Knowledge Base
Custom Agent with PlugIn Retrieval
Multiple callback handlers
Custom multi-action agent
Custom agent
Custom agent with tool retrieval | https://api.python.langchain.com/en/latest/schema/langchain.schema.agent.AgentAction.html |
537fc5ad4ccd-0 | langchain.schema.runnable.router.RouterRunnable¶
class langchain.schema.runnable.router.RouterRunnable[source]¶
Bases: Serializable, Runnable[RouterInput, Output]
A runnable that routes to a set of runnables based on Input[‘key’].
Returns the output of the selected runnable.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param runnables: Mapping[str, langchain.schema.runnable.base.Runnable[Any, langchain.schema.runnable.utils.Output]] [Required]¶
async abatch(inputs: List[RouterInput], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output][source]¶
Default implementation of abatch, which calls ainvoke N times.
Subclasses should override this method if they can batch more efficiently.
async ainvoke(input: RouterInput, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Output[source]¶
Default implementation of ainvoke, which calls invoke in a thread pool.
Subclasses should override this method if they can run asynchronously.
async astream(input: RouterInput, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output][source]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output. | https://api.python.langchain.com/en/latest/schema/langchain.schema.runnable.router.RouterRunnable.html |