id
stringlengths
14
15
text
stringlengths
44
2.47k
source
stringlengths
61
181
9b6f65715ed0-5
exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. classmethod from_orm(obj: Any) → Model¶ generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → LLMResult¶ Top Level call generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.minimax.MiniMaxChat.html
9b6f65715ed0-6
first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → BaseMessageChunk¶ classmethod is_lc_serializable() → bool¶ Is this class serializable?
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.minimax.MiniMaxChat.html
9b6f65715ed0-7
classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.minimax.MiniMaxChat.html
9b6f65715ed0-8
Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[BaseMessageChunk]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.minimax.MiniMaxChat.html
9b6f65715ed0-9
Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶ with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Any¶ Get the input type for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.minimax.MiniMaxChat.html
9b6f65715ed0-10
List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.minimax.MiniMaxChat.html
da1fcdda4829-0
langchain.chat_models.openai.ChatOpenAI¶ class langchain.chat_models.openai.ChatOpenAI[source]¶ Bases: BaseChatModel OpenAI Chat large language models API. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.chat_models import ChatOpenAI openai = ChatOpenAI(model_name="gpt-3.5-turbo") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ Whether to cache the response. param callback_manager: Optional[BaseCallbackManager] = None¶ Callback manager to add to the run trace. param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param max_retries: int = 6¶ Maximum number of retries to make when generating. param max_tokens: Optional[int] = None¶ Maximum number of tokens to generate. param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'gpt-3.5-turbo' (alias 'model')¶ Model name to use. param n: int = 1¶ Number of chat completions to generate for each prompt. param openai_api_base: Optional[str] = None¶ param openai_api_key: Optional[str] = None¶ Base URL path for API requests,
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-1
Base URL path for API requests, leave blank if not using a proxy or service emulator. param openai_organization: Optional[str] = None¶ param openai_proxy: Optional[str] = None¶ param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶ Timeout for requests to OpenAI completion API. Default is 600 seconds. param streaming: bool = False¶ Whether to stream the results or not. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use. param tiktoken_model_name: Optional[str] = None¶ The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here. param verbose: bool [Optional]¶ Whether to print out response text. __call__(messages: List[BaseMessage], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → BaseMessage¶ Call self as a function.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-2
Call self as a function. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation of abatch, which calls ainvoke N times. Subclasses should override this method if they can batch more efficiently. async agenerate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → LLMResult¶ Top Level call async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-3
callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → BaseMessageChunk¶ Default implementation of ainvoke, which calls invoke in a thread pool. Subclasses should override this method if they can run asynchronously. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-4
first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[BaseMessageChunk]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-5
input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. call_as_llm(message: str, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ completion_with_retry(run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any) → Any[source]¶ Use tenacity to retry the completion call. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-6
deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. classmethod from_orm(obj: Any) → Model¶ generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → LLMResult¶ Top Level call generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-7
to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int[source]¶ Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb get_token_ids(text: str) → List[int][source]¶ Get the tokens present in the text with tiktoken package. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → BaseMessageChunk¶ classmethod is_lc_serializable() → bool[source]¶ Return whether this model can be serialized by Langchain.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-8
Return whether this model can be serialized by Langchain. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-9
Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[BaseMessageChunk]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-10
Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶ with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Any¶ Get the input type for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-11
List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ Examples using ChatOpenAI¶ Facebook Messenger Slack WhatsApp iMessage Telegram Discord RePhraseQueryRetriever Wikipedia Arxiv ChatGPT Plugins Human as a tool Yahoo Finance News ArXiv Metaphor Search Shell (bash) Xata chat memory Dynamodb Chat Message History OpenAI LLMonitor Context Label Studio PromptLayer CnosDB Log10 Flyte Arthur CSV Document Comparison Python PowerBI Dataset SQL Database Airbyte Question Answering Github Spark SQL AINetwork Pandas Dataframe Neo4j Vector Index OpenAI Functions Metadata Tagger Loading documents from a YouTube url Figma Fallbacks Debugging LangSmith Walkthrough Reversible data anonymization with Microsoft Presidio Data anonymization with Microsoft Presidio Comparing Chain Outputs Agent Trajectory Custom Trajectory Evaluator Set env var OPENAI_API_KEY or load from a .env file: Set env var OPENAI_API_KEY or load from a .env file Question Answering Perform context-aware text splitting Conversational Retrieval Agent Multiple Retrieval Sources Cite sources Retrieve as you generate with FLARE Analysis of Twitter the-algorithm source code with LangChain, GPT4 and Activeloop’s Deep Lake Use LangChain, GPT and Activeloop’s Deep Lake to work with code base Structure answers with OpenAI functions
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
da1fcdda4829-12
Structure answers with OpenAI functions QA using Activeloop’s DeepLake Neptune Open Cypher QA Chain NebulaGraphQAChain Memgraph QA chain KuzuQAChain HugeGraph QA Chain GraphSparqlQAChain Diffbot Graph Transformer ArangoDB QA chain Neo4j DB QA chain FalkorDBQAChain Agents AutoGPT !pip install bs4 Wikibase Agent SalesGPT - Your Context-Aware AI Sales Assistant With Knowledge Base CAMEL Role-Playing Autonomous Cooperative Agents Multi-Agent Simulated Environment: Petting Zoo Multi-agent decentralized speaker selection Multi-agent authoritarian speaker selection Generative Agents in LangChain Two-Player Dungeons & Dragons Multi-Player Dungeons & Dragons Simulated Environment: Gymnasium Agent Debates with Tools How to use a SmartLLMChain Vector SQL Retriever with MyScale Elasticsearch SQL MultiVector Retriever MultiQueryRetriever WebResearchRetriever Memory in LLMChain Custom callback handlers Async callbacks Defining Custom Tools Tools as OpenAI Functions OpenAI Multi Functions Agent Handle parsing errors Running Agent as an Iterator Add Memory to OpenAI Functions Agent Custom functions with OpenAI Functions Agent Use ToolKits with OpenAI Functions Retry parser Pydantic (JSON) parser Prompt pipelining Connecting to a Feature Store Custom chain Using OpenAI functions interface.md First we add a step to load memory sql_db.md prompt_llm_parser.md Adding memory multiple_chains.md Code writing Using tools Configure Runnable traces
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.openai.ChatOpenAI.html
8284294a02fd-0
langchain.chat_models.google_palm.ChatGooglePalmError¶ class langchain.chat_models.google_palm.ChatGooglePalmError[source]¶ Error with the Google PaLM API.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.google_palm.ChatGooglePalmError.html
4a054991c90a-0
langchain.chat_models.mlflow_ai_gateway.ChatParams¶ class langchain.chat_models.mlflow_ai_gateway.ChatParams[source]¶ Bases: BaseModel Parameters for the MLflow AI Gateway LLM. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param candidate_count: int = 1¶ The number of candidates to return. param max_tokens: Optional[int] = None¶ param stop: Optional[List[str]] = None¶ param temperature: float = 0.0¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.mlflow_ai_gateway.ChatParams.html
4a054991c90a-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.mlflow_ai_gateway.ChatParams.html
4a054991c90a-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.mlflow_ai_gateway.ChatParams.html
c9ddddd24f8b-0
langchain.chat_models.anyscale.ChatAnyscale¶ class langchain.chat_models.anyscale.ChatAnyscale[source]¶ Bases: ChatOpenAI Anyscale Chat large language models. To use, you should have the openai python package installed, and the environment variable ANYSCALE_API_KEY set with your API key. Alternatively, you can use the anyscale_api_key keyword argument. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.chat_models import ChatAnyscale chat = ChatAnyscale(model_name="meta-llama/Llama-2-7b-chat-hf") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param anyscale_api_base: str = 'https://api.endpoints.anyscale.com/v1'¶ Base URL path for API requests, leave blank if not using a proxy or service emulator. param anyscale_api_key: Optional[str] = None¶ AnyScale Endpoints API keys. param anyscale_proxy: Optional[str] = None¶ To support explicit proxy for Anyscale. param available_models: Optional[Set[str]] = None¶ Available models from Anyscale API. param cache: Optional[bool] = None¶ Whether to cache the response. param callback_manager: Optional[BaseCallbackManager] = None¶ Callback manager to add to the run trace. param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param max_retries: int = 6¶ Maximum number of retries to make when generating. param max_tokens: Optional[int] = None¶ Maximum number of tokens to generate. param metadata: Optional[Dict[str, Any]] = None¶
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-1
param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param model_kwargs: Dict[str, Any] [Optional]¶ Holds any model parameters valid for create call not explicitly specified. param model_name: str = 'meta-llama/Llama-2-7b-chat-hf' (alias 'model')¶ Model name to use. param n: int = 1¶ Number of chat completions to generate for each prompt. param openai_api_base: Optional[str] = None¶ param openai_api_key: Optional[str] = None¶ Base URL path for API requests, leave blank if not using a proxy or service emulator. param openai_organization: Optional[str] = None¶ param openai_proxy: Optional[str] = None¶ param request_timeout: Optional[Union[float, Tuple[float, float]]] = None¶ Timeout for requests to OpenAI completion API. Default is 600 seconds. param streaming: bool = False¶ Whether to stream the results or not. param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param temperature: float = 0.7¶ What sampling temperature to use. param tiktoken_model_name: Optional[str] = None¶ The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-2
when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here. param verbose: bool [Optional]¶ Whether to print out response text. __call__(messages: List[BaseMessage], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → BaseMessage¶ Call self as a function. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation of abatch, which calls ainvoke N times. Subclasses should override this method if they can batch more efficiently. async agenerate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → LLMResult¶ Top Level call async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value,
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-3
need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → BaseMessageChunk¶ Default implementation of ainvoke, which calls invoke in a thread pool. Subclasses should override this method if they can run asynchronously. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-4
to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[BaseMessageChunk]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-5
jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. call_as_llm(message: str, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ completion_with_retry(run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any) → Any¶ Use tenacity to retry the completion call. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-6
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. classmethod from_orm(obj: Any) → Model¶ generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → LLMResult¶ Top Level call generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls,
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-7
API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. static get_available_models(anyscale_api_key: Optional[str] = None, anyscale_api_base: str = 'https://api.endpoints.anyscale.com/v1') → Set[str][source]¶ Get available models from Anyscale API. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: list[langchain.schema.messages.BaseMessage]) → int[source]¶
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-8
Calculate num tokens with tiktoken package. Official documentation: https://github.com/openai/openai-cookbook/blob/ main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb get_token_ids(text: str) → List[int]¶ Get the tokens present in the text with tiktoken package. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → BaseMessageChunk¶ classmethod is_lc_serializable() → bool¶ Return whether this model can be serialized by Langchain. json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-9
by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-10
to the model provider API call. Returns Top model prediction as a message. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[BaseMessageChunk]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
c9ddddd24f8b-11
Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶ with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Any¶ Get the input type for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ Examples using ChatAnyscale¶ Anyscale
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.anyscale.ChatAnyscale.html
b68d3b5dbbed-0
langchain.chat_models.human.HumanInputChatModel¶ class langchain.chat_models.human.HumanInputChatModel[source]¶ Bases: BaseChatModel ChatModel which returns user input as the response. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param cache: Optional[bool] = None¶ Whether to cache the response. param callback_manager: Optional[BaseCallbackManager] = None¶ Callback manager to add to the run trace. param callbacks: Callbacks = None¶ Callbacks to add to the run trace. param input_func: Callable [Optional]¶ param input_kwargs: Mapping[str, Any] = {}¶ param message_func: Callable [Optional]¶ param message_kwargs: Mapping[str, Any] = {}¶ param metadata: Optional[Dict[str, Any]] = None¶ Metadata to add to the run trace. param separator: str = '\n'¶ param tags: Optional[List[str]] = None¶ Tags to add to the run trace. param verbose: bool [Optional]¶ Whether to print out response text. __call__(messages: List[BaseMessage], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → BaseMessage¶ Call self as a function. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation of abatch, which calls ainvoke N times. Subclasses should override this method if they can batch more efficiently.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
b68d3b5dbbed-1
Subclasses should override this method if they can batch more efficiently. async agenerate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → LLMResult¶ Top Level call async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Asynchronously pass a sequence of prompts and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
b68d3b5dbbed-2
async ainvoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → BaseMessageChunk¶ Default implementation of ainvoke, which calls invoke in a thread pool. Subclasses should override this method if they can run asynchronously. async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Asynchronously pass a string to the model and return a string prediction. Use this method when calling pure text generation models and only the topcandidate generation is needed. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Asynchronously pass messages to the model and return a message prediction. Use this method when calling chat models and only the topcandidate generation is needed. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. async astream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → AsyncIterator[BaseMessageChunk]¶
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
b68d3b5dbbed-3
Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → AsyncIterator[RunLogPatch]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
b68d3b5dbbed-4
Bind arguments to a Runnable, returning a new Runnable. call_as_llm(message: str, stop: Optional[List[str]] = None, **kwargs: Any) → str¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Return a dictionary of the LLM. classmethod from_orm(obj: Any) → Model¶ generate(messages: List[List[BaseMessage]], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → LLMResult¶ Top Level call
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
b68d3b5dbbed-5
Top Level call generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶ Pass a sequence of prompts to the model and return model generations. This method should make use of batched calls for models that expose a batched API. Use this method when you want to: take advantage of batched calls, need more output from the model than just the top generated value, are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models). Parameters prompts – List of PromptValues. A PromptValue is an object that can be converted to match the format of any language model (string for pure text generation models and BaseMessages for chat models). stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. callbacks – Callbacks to pass through. Used for executing additional functionality, such as logging or streaming, throughout generation. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_num_tokens(text: str) → int¶ Get the number of tokens present in the text. Useful for checking if an input will fit in a model’s context window. Parameters text – The string input to tokenize. Returns
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
b68d3b5dbbed-6
Parameters text – The string input to tokenize. Returns The integer number of tokens in the text. get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶ Get the number of tokens in the messages. Useful for checking if an input will fit in a model’s context window. Parameters messages – The message inputs to tokenize. Returns The sum of the number of tokens across the messages. get_token_ids(text: str) → List[int]¶ Return the ordered ids of the tokens in a text. Parameters text – The string input to tokenize. Returns A list of ids corresponding to the tokens in the text, in order they occurin the text. invoke(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → BaseMessageChunk¶ classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
b68d3b5dbbed-7
The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶ Pass a single string input to the model and return a string prediction. Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages. Parameters text – String input to pass to the model. stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a string. predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶ Pass a message sequence to the model and return a message prediction. Use this method when passing in chat messages. If you want to pass in raw text,use predict. Parameters messages – A sequence of chat messages corresponding to a single model input. stop – Stop words to use when generating. Model output is cut off at the
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
b68d3b5dbbed-8
stop – Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings. **kwargs – Arbitrary additional keyword arguments. These are usually passed to the model provider API call. Returns Top model prediction as a message. classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Union[PromptValue, str, List[BaseMessage]], config: Optional[RunnableConfig] = None, *, stop: Optional[List[str]] = None, **kwargs: Any) → Iterator[BaseMessageChunk]¶ Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable.
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
b68d3b5dbbed-9
Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: ~typing.Sequence[~langchain.schema.runnable.base.Runnable[~langchain.schema.runnable.utils.Input, ~langchain.schema.runnable.utils.Output]], *, exceptions_to_handle: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacks[Input, Output]¶ with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ property InputType: TypeAlias¶ Get the input type for this runnable. property OutputType: Any¶ Get the input type for this runnable. property input_schema: Type[pydantic.main.BaseModel]¶ property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_schema: Type[pydantic.main.BaseModel]¶ Examples using HumanInputChatModel¶ Human input chat model
https://api.python.langchain.com/en/latest/chat_models/langchain.chat_models.human.HumanInputChatModel.html
2819661d7b3c-0
langchain.vectorstores.redis.filters.RedisText¶ class langchain.vectorstores.redis.filters.RedisText(field: str)[source]¶ A RedisText is a RedisFilterField representing a text field in a Redis index. Attributes OPERATORS OPERATOR_MAP escaper Methods __init__(field) equals(other) __init__(field: str)¶ equals(other: RedisFilterField) → bool¶ Examples using RedisText¶ Redis
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.filters.RedisText.html
57051c2c6793-0
langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearchSettings¶ class langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearchSettings(endpoint: str, instance_id: str, username: str, password: str, datasource_name: str, embedding_index_name: str, field_name_mapping: Dict[str, str])[source]¶ Alibaba Cloud Opensearch client configuration. Attribute: endpoint (str)The endpoint of opensearch instance, You can find itfrom the console of Alibaba Cloud OpenSearch. instance_id (str)The identify of opensearch instance, You can findit from the console of Alibaba Cloud OpenSearch. datasource_name (str): The name of the data source specified when creating it. username (str) : The username specified when purchasing the instance. password (str) : The password specified when purchasing the instance. embedding_index_name (str) : The name of the vector attribute specified when configuring the instance attributes. field_name_mapping (Dict)Using field name mapping between opensearchvector store and opensearch instance configuration table field names: {‘id’: ‘The id field name map of index document.’, ‘document’: ‘The text field name map of index document.’, ‘embedding’: ‘In the embedding field of the opensearch instance, the values must be in float16 multivalue type and separated by commas.’, ‘metadata_field_x’: ‘Metadata field mapping includes the mapped field name and operator in the mapping value, separated by a comma between the mapped field name and the operator.’, } Attributes field_name_mapping endpoint instance_id username password datasource_name embedding_index_name Methods __init__(endpoint, instance_id, username, ...)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearchSettings.html
57051c2c6793-1
Methods __init__(endpoint, instance_id, username, ...) __init__(endpoint: str, instance_id: str, username: str, password: str, datasource_name: str, embedding_index_name: str, field_name_mapping: Dict[str, str]) → None[source]¶ Examples using AlibabaCloudOpenSearchSettings¶ Alibaba Cloud OpenSearch
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearchSettings.html
3a980d96fe69-0
langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch¶ class langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch(opensearch_url: str, index_name: str, embedding_function: Embeddings, **kwargs: Any)[source]¶ Amazon OpenSearch Vector Engine vector store. Example from langchain.vectorstores import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) Initialize with necessary components. Attributes embeddings Access the query embedding object if available. Methods __init__(opensearch_url, index_name, ...) Initialize with necessary components. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_embeddings(text_embeddings[, metadatas, ...]) Add the given texts and embeddings to the vectorstore. add_texts(texts[, metadatas, ids, bulk_size]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-1
Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) Return VectorStoreRetriever initialized from this VectorStore. asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete([ids]) Delete by vector ID or other criteria. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_embeddings(embeddings, texts, embedding) Construct OpenSearchVectorSearch wrapper from pre-vectorized embeddings. from_texts(texts, embedding[, metadatas, ...]) Construct OpenSearchVectorSearch wrapper from raw texts. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) Return docs and it's scores most similar to query. __init__(opensearch_url: str, index_name: str, embedding_function: Embeddings, **kwargs: Any)[source]¶ Initialize with necessary components.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-2
Initialize with necessary components. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_embeddings(text_embeddings: Iterable[Tuple[str, List[float]]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, bulk_size: int = 500, **kwargs: Any) → List[str][source]¶ Add the given texts and embeddings to the vectorstore. Parameters text_embeddings – Iterable pairs of string and embedding to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. bulk_size – Bulk API request count; Default: 500 Returns List of ids from adding the texts into the vectorstore. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-3
to “text”. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, bulk_size: int = 500, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. bulk_size – Bulk API request count; Default: 500 Returns List of ids from adding the texts into the vectorstore. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-4
Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ Return VectorStoreRetriever initialized from this VectorStore. Parameters search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”. search_kwargs (Optional[Dict]) – Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata Returns Retriever class for VectorStore. Return type VectorStoreRetriever Examples: # Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-5
) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} ) async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-6
Return VectorStore initialized from documents and embeddings. classmethod from_embeddings(embeddings: List[List[float]], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, ids: Optional[List[str]] = None, **kwargs: Any) → OpenSearchVectorSearch[source]¶ Construct OpenSearchVectorSearch wrapper from pre-vectorized embeddings. Example from langchain.vectorstores import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embedder = OpenAIEmbeddings() embeddings = embedder.embed_documents(["foo", "bar"]) opensearch_vector_search = OpenSearchVectorSearch.from_embeddings( embeddings, texts, embedder, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. Optional Keyword Args for Approximate Search:engine: “nmslib”, “faiss”, “lucene”; default: “nmslib” space_type: “l2”, “l1”, “cosinesimil”, “linf”, “innerproduct”; default: “l2” ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-7
Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting:is_appx_search: False classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, ids: Optional[List[str]] = None, **kwargs: Any) → OpenSearchVectorSearch[source]¶ Construct OpenSearchVectorSearch wrapper from raw texts. Example from langchain.vectorstores import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. Optional Keyword Args for Approximate Search:engine: “nmslib”, “faiss”, “lucene”; default: “nmslib” space_type: “l2”, “l1”, “cosinesimil”, “linf”, “innerproduct”; default: “l2” ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-8
lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting:is_appx_search: False max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → list[langchain.schema.document.Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-9
k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. By default, supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. metadata_field: Document field that metadata is stored in. Defaults to “metadata”. Can be set to a special value “*” to include the entire document. Optional Args for Approximate Search:search_type: “approximate_search”; default: “approximate_search” boolean_filter: A Boolean filter is a post filter consists of a Boolean query that contains a k-NN query and a filter. subquery_clause: Query clause on the knn vector field; default: “must” lucene_filter: the Lucene algorithm decides whether to perform an exact k-NN search with pre-filtering or an approximate search with modified
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-10
k-NN search with pre-filtering or an approximate search with modified post-filtering. (deprecated, use efficient_filter) efficient_filter: the Lucene Engine or Faiss Engine decides whether to perform an exact k-NN search with pre-filtering or an approximate search with modified post-filtering. Optional Args for Script Scoring Search:search_type: “script_scoring”; default: “approximate_search” space_type: “l2”, “l1”, “linf”, “cosinesimil”, “innerproduct”, “hammingbit”; default: “l2” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} Optional Args for Painless Scripting Search:search_type: “painless_scripting”; default: “approximate_search” space_type: “l2Squared”, “l1Norm”, “cosineSimilarity”; default: “l2Squared” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
3a980d96fe69-11
query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs and it’s scores most similar to query. By default, supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents along with its scores most similar to the query. Optional Args:same as similarity_search Examples using OpenSearchVectorSearch¶ OpenSearch
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
7bd9c0fae5f6-0
langchain.vectorstores.neo4j_vector.SearchType¶ class langchain.vectorstores.neo4j_vector.SearchType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Enumerator of the Distance strategies. VECTOR = 'vector'¶ HYBRID = 'hybrid'¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.neo4j_vector.SearchType.html
7f0547e3c5bc-0
langchain.vectorstores.redis.schema.read_schema¶ langchain.vectorstores.redis.schema.read_schema(index_schema: Optional[Union[Dict[str, str], str, PathLike]]) → Dict[str, Any][source]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.schema.read_schema.html
4fb7688e5c72-0
langchain.vectorstores.azuresearch.AzureSearch¶ class langchain.vectorstores.azuresearch.AzureSearch(azure_search_endpoint: str, azure_search_key: str, index_name: str, embedding_function: Callable, search_type: str = 'hybrid', semantic_configuration_name: Optional[str] = None, semantic_query_language: str = 'en-us', fields: Optional[List[SearchField]] = None, vector_search: Optional[VectorSearch] = None, semantic_settings: Optional[SemanticSettings] = None, scoring_profiles: Optional[List[ScoringProfile]] = None, default_scoring_profile: Optional[str] = None, **kwargs: Any)[source]¶ Azure Cognitive Search vector store. Attributes embeddings Access the query embedding object if available. Methods __init__(azure_search_endpoint, ...[, ...]) aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Add texts data to an existing index. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) Return VectorStoreRetriever initialized from this VectorStore. asearch(query, search_type, **kwargs)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
4fb7688e5c72-1
asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete([ids]) Delete by vector ID or other criteria. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. hybrid_search(query[, k]) Returns the most similar indexed documents to the query text. hybrid_search_with_score(query[, k, filters]) Return docs most similar to query with an hybrid query. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. semantic_hybrid_search(query[, k]) Returns the most similar indexed documents to the query text. semantic_hybrid_search_with_score(query[, ...]) Return docs most similar to query with an hybrid query. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(*args, **kwargs) Run similarity search with distance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
4fb7688e5c72-2
similarity_search_with_score(*args, **kwargs) Run similarity search with distance. vector_search(query[, k]) Returns the most similar indexed documents to the query text. vector_search_with_score(query[, k, filters]) Return docs most similar to query. __init__(azure_search_endpoint: str, azure_search_key: str, index_name: str, embedding_function: Callable, search_type: str = 'hybrid', semantic_configuration_name: Optional[str] = None, semantic_query_language: str = 'en-us', fields: Optional[List[SearchField]] = None, vector_search: Optional[VectorSearch] = None, semantic_settings: Optional[SemanticSettings] = None, scoring_profiles: Optional[List[ScoringProfile]] = None, default_scoring_profile: Optional[str] = None, **kwargs: Any)[source]¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str]
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
4fb7688e5c72-3
Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Add texts data to an existing index. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ Return VectorStoreRetriever initialized from this VectorStore. Parameters search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”. search_kwargs (Optional[Dict]) – Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
4fb7688e5c72-4
score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata Returns Retriever class for VectorStore. Return type VectorStoreRetriever Examples: # Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} ) async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
4fb7688e5c72-5
Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, azure_search_endpoint: str = '', azure_search_key: str = '', index_name: str = 'langchain-index', **kwargs: Any) → AzureSearch[source]¶ Return VectorStore initialized from texts and embeddings. hybrid_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document]
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
4fb7688e5c72-6
Return type List[Document] hybrid_search_with_score(query: str, k: int = 4, filters: Optional[str] = None) → List[Tuple[Document, float]][source]¶ Return docs most similar to query with an hybrid query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
4fb7688e5c72-7
fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. semantic_hybrid_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] semantic_hybrid_search_with_score(query: str, k: int = 4, filters: Optional[str] = None) → List[Tuple[Document, float]][source]¶ Return docs most similar to query with an hybrid query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
4fb7688e5c72-8
Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(*args: Any, **kwargs: Any) → List[Tuple[Document, float]]¶ Run similarity search with distance. vector_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Returns the most similar indexed documents to the query text. Parameters query (str) – The query text for which to find similar documents. k (int) – The number of documents to return. Default is 4. Returns A list of documents that are most similar to the query text. Return type List[Document] vector_search_with_score(query: str, k: int = 4, filters: Optional[str] = None) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
4fb7688e5c72-9
Returns List of Documents most similar to the query and score for each Examples using AzureSearch¶ Azure Cognitive Search
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearch.html
ae4e0ac44948-0
langchain.vectorstores.neo4j_vector.check_if_not_null¶ langchain.vectorstores.neo4j_vector.check_if_not_null(props: List[str], values: List[Any]) → None[source]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.neo4j_vector.check_if_not_null.html
bd1aba7ca8bc-0
langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch¶ class langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch(embedding: Embeddings, config: AlibabaCloudOpenSearchSettings, **kwargs: Any)[source]¶ Alibaba Cloud OpenSearch vector store. Attributes embeddings Access the query embedding object if available. Methods __init__(embedding, config, **kwargs) aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) Return VectorStoreRetriever initialized from this VectorStore. asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. create_results(json_result)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
bd1aba7ca8bc-1
Return docs most similar to query. create_results(json_result) create_results_with_score(json_result) delete([ids]) Delete by vector ID or other criteria. from_documents(documents, embedding[, ids, ...]) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, config]) Return VectorStore initialized from texts and embeddings. inner_embedding_query(embedding[, ...]) max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, search_filter]) Return docs most similar to query. similarity_search_by_vector(embedding[, k, ...]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(*args, **kwargs) Run similarity search with distance. __init__(embedding: Embeddings, config: AlibabaCloudOpenSearchSettings, **kwargs: Any) → None[source]¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
bd1aba7ca8bc-2
Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
bd1aba7ca8bc-3
Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ Return VectorStoreRetriever initialized from this VectorStore. Parameters search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”. search_kwargs (Optional[Dict]) – Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata Returns Retriever class for VectorStore. Return type VectorStoreRetriever Examples: # Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
bd1aba7ca8bc-4
) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} ) async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. create_results(json_result: Dict[str, Any]) → List[Document][source]¶ create_results_with_score(json_result: Dict[str, Any]) → List[Tuple[Document, float]][source]¶ delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool]
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
bd1aba7ca8bc-5
False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, ids: Optional[List[str]] = None, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any) → AlibabaCloudOpenSearch[source]¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, config: Optional[AlibabaCloudOpenSearchSettings] = None, **kwargs: Any) → AlibabaCloudOpenSearch[source]¶ Return VectorStore initialized from texts and embeddings. inner_embedding_query(embedding: List[float], search_filter: Optional[Dict[str, Any]] = None, k: int = 4) → Dict[str, Any][source]¶ max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
bd1aba7ca8bc-6
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, search_filter: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
bd1aba7ca8bc-7
Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, search_filter: Optional[dict] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(*args: Any, **kwargs: Any) → List[Tuple[Document, float]]¶ Run similarity search with distance. Examples using AlibabaCloudOpenSearch¶ Alibaba Cloud OpenSearch
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch.html
44c4aac9afd4-0
langchain.vectorstores.elastic_vector_search.ElasticKnnSearch¶ class langchain.vectorstores.elastic_vector_search.ElasticKnnSearch(index_name: str, embedding: Embeddings, es_connection: Optional['Elasticsearch'] = None, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_password: Optional[str] = None, vector_query_field: Optional[str] = 'vector', query_field: Optional[str] = 'text')[source]¶ [Deprecated] [DEPRECATED] Elasticsearch with k-nearest neighbor search (k-NN) vector store. Recommended to use ElasticsearchStore instead, which supports metadata filtering, customising the query retriever and much more! You can read more on ElasticsearchStore: https://python.langchain.com/docs/integrations/vectorstores/elasticsearch It creates an Elasticsearch index of text data that can be searched using k-NN search. The text data is transformed into vector embeddings using a provided embedding model, and these embeddings are stored in the Elasticsearch index. index_name¶ The name of the Elasticsearch index. Type str embedding¶ The embedding model to use for transforming text data into vector embeddings. Type Embeddings es_connection¶ An existing Elasticsearch connection. Type Elasticsearch, optional es_cloud_id¶ The Cloud ID of your Elasticsearch Service deployment. Type str, optional es_user¶ The username for your Elasticsearch Service deployment. Type str, optional es_password¶ The password for your Elasticsearch Service deployment. Type str, optional vector_query_field¶ The name of the field in the Elasticsearch index that contains the vector embeddings. Type str, optional query_field¶ The name of the field in the Elasticsearch index that contains the original text data. Type str, optional
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-1
that contains the original text data. Type str, optional Usage:>>> from embeddings import Embeddings >>> embedding = Embeddings.load('glove') >>> es_search = ElasticKnnSearch('my_index', embedding) >>> es_search.add_texts(['Hello world!', 'Another text']) >>> results = es_search.knn_search('Hello') [(Document(page_content='Hello world!', metadata={}), 0.9)][*Deprecated*] [DEPRECATED] `Elasticsearch` with k-nearest neighbor search (k-NN) vector store. Recommended to use ElasticsearchStore instead, which supports metadata filtering, customising the query retriever and much more! You can read more on ElasticsearchStore: https://python.langchain.com/docs/integrations/vectorstores/elasticsearch It creates an Elasticsearch index of text data that can be searched using k-NN search. The text data is transformed into vector embeddings using a provided embedding model, and these embeddings are stored in the Elasticsearch index. index_name¶ The name of the Elasticsearch index. Type str embedding¶ The embedding model to use for transforming text data into vector embeddings. Type Embeddings es_connection¶ An existing Elasticsearch connection. Type Elasticsearch, optional es_cloud_id¶ The Cloud ID of your Elasticsearch Service deployment. Type str, optional es_user¶ The username for your Elasticsearch Service deployment. Type str, optional es_password¶ The password for your Elasticsearch Service deployment. Type str, optional vector_query_field¶ The name of the field in the Elasticsearch index that contains the vector embeddings. Type str, optional query_field¶ The name of the field in the Elasticsearch index that contains the original text data. Type str, optional Usage:>>> from embeddings import Embeddings
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-2
Type str, optional Usage:>>> from embeddings import Embeddings >>> embedding = Embeddings.load('glove') >>> es_search = ElasticKnnSearch('my_index', embedding) >>> es_search.add_texts(['Hello world!', 'Another text']) >>> results = es_search.knn_search('Hello') [(Document(page_content='Hello world!', metadata={}), 0.9)] Notes Deprecated since version 0.0.265: Use ElasticsearchStore class. instead. Attributes embeddings Access the query embedding object if available. Methods __init__(index_name, embedding[, ...]) aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, model_id, ...]) Add a list of texts to the Elasticsearch index. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) Return VectorStoreRetriever initialized from this VectorStore. asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-3
asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. create_knn_index(mapping) Create a new k-NN index in Elasticsearch. delete([ids]) Delete by vector ID or other criteria. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas]) Create a new ElasticKnnSearch instance and add a list of texts to the knn_hybrid_search([query, k, query_vector, ...]) Perform a hybrid k-NN and text search on the Elasticsearch index. knn_search([query, k, query_vector, ...]) Perform a k-NN search on the Elasticsearch index. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, filter]) Pass through to knn_search similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) Pass through to knn_search including score
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-4
similarity_search_with_score(query[, k]) Pass through to knn_search including score __init__(index_name: str, embedding: Embeddings, es_connection: Optional['Elasticsearch'] = None, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_password: Optional[str] = None, vector_query_field: Optional[str] = 'vector', query_field: Optional[str] = 'text')[source]¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[Dict[Any, Any]]] = None, model_id: Optional[str] = None, refresh_indices: bool = False, **kwargs: Any) → List[str][source]¶ Add a list of texts to the Elasticsearch index. Parameters texts (Iterable[str]) – The texts to add to the index. metadatas (List[Dict[Any, Any]], optional) – A list of metadata dictionaries to associate with the texts.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-5
to associate with the texts. model_id (str, optional) – The ID of the model to use for transforming the texts into vectors. refresh_indices (bool, optional) – Whether to refresh the Elasticsearch indices after adding the texts. **kwargs – Arbitrary keyword arguments. Returns A list of IDs for the added texts. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ Return VectorStoreRetriever initialized from this VectorStore. Parameters search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”. search_kwargs (Optional[Dict]) – Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-6
k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata Returns Retriever class for VectorStore. Return type VectorStoreRetriever Examples: # Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} ) # Only retrieve documents that have a relevance score # Above a certain threshold docsearch.as_retriever( search_type="similarity_score_threshold", search_kwargs={'score_threshold': 0.8} ) # Only get the single most similar document from the dataset docsearch.as_retriever(search_kwargs={'k': 1}) # Use a filter to only retrieve documents from a specific paper docsearch.as_retriever( search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}} ) async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-7
Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. create_knn_index(mapping: Dict) → None[source]¶ Create a new k-NN index in Elasticsearch. Parameters mapping (Dict) – The mapping to use for the new index. Returns None delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, **kwargs: Any) → ElasticKnnSearch[source]¶ Create a new ElasticKnnSearch instance and add a list of texts to theElasticsearch index. Parameters texts (List[str]) – The texts to add to the index. embedding (Embeddings) – The embedding model to use for transforming the texts into vectors. metadatas (List[Dict[Any, Any]], optional) – A list of metadata dictionaries to associate with the texts. **kwargs – Arbitrary keyword arguments. Returns
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-8
to associate with the texts. **kwargs – Arbitrary keyword arguments. Returns A new ElasticKnnSearch instance. knn_hybrid_search(query: Optional[str] = None, k: Optional[int] = 10, query_vector: Optional[List[float]] = None, model_id: Optional[str] = None, size: Optional[int] = 10, source: Optional[bool] = True, knn_boost: Optional[float] = 0.9, query_boost: Optional[float] = 0.1, fields: Optional[Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...]]] = None, page_content: Optional[str] = 'text') → List[Tuple[Document, float]][source]¶ Perform a hybrid k-NN and text search on the Elasticsearch index. Parameters query (str, optional) – The query text to search for. k (int, optional) – The number of nearest neighbors to return. query_vector (List[float], optional) – The query vector to search for. model_id (str, optional) – The ID of the model to use for transforming the query text into a vector. size (int, optional) – The number of search results to return. source (bool, optional) – Whether to return the source of the search results. knn_boost (float, optional) – The boost value to apply to the k-NN search results. query_boost (float, optional) – The boost value to apply to the text search results. fields (List[Mapping[str, Any]], optional) – The fields to return in the search results. page_content (str, optional) – The name of the field that contains the page content. Returns A list of tuples, where each tuple contains a Document object and a score.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-9
Returns A list of tuples, where each tuple contains a Document object and a score. knn_search(query: Optional[str] = None, k: Optional[int] = 10, query_vector: Optional[List[float]] = None, model_id: Optional[str] = None, size: Optional[int] = 10, source: Optional[bool] = True, fields: Optional[Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...]]] = None, page_content: Optional[str] = 'text') → List[Tuple[Document, float]][source]¶ Perform a k-NN search on the Elasticsearch index. Parameters query (str, optional) – The query text to search for. k (int, optional) – The number of nearest neighbors to return. query_vector (List[float], optional) – The query vector to search for. model_id (str, optional) – The ID of the model to use for transforming the query text into a vector. size (int, optional) – The number of search results to return. source (bool, optional) – Whether to return the source of the search results. fields (List[Mapping[str, Any]], optional) – The fields to return in the search results. page_content (str, optional) – The name of the field that contains the page content. Returns A list of tuples, where each tuple contains a Document object and a score. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-10
among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Pass through to knn_search similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
44c4aac9afd4-11
Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 10, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Pass through to knn_search including score
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.elastic_vector_search.ElasticKnnSearch.html
ee0e31c7667f-0
langchain.vectorstores.timescalevector.TimescaleVector¶ class langchain.vectorstores.timescalevector.TimescaleVector(service_url: str, embedding: Embeddings, collection_name: str = 'langchain_store', num_dimensions: int = 1536, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, time_partition_interval: Optional[timedelta] = None)[source]¶ VectorStore implementation using the timescale vector client to store vectors in Postgres. To use, you should have the timescale_vector python package installed. Parameters service_url – Service url on timescale cloud. embedding – Any embedding function implementing langchain.embeddings.base.Embeddings interface. collection_name – The name of the collection to use. (default: langchain_store) This will become the table name used for the collection. distance_strategy – The distance strategy to use. (default: COSINE) pre_delete_collection – If True, will delete the collection if it exists. (default: False). Useful for testing. Example from langchain.vectorstores import TimescaleVector from langchain.embeddings.openai import OpenAIEmbeddings SERVICE_URL = "postgres://tsdbadmin:<password>@<id>.tsdb.cloud.timescale.com:<port>/tsdb?sslmode=require" COLLECTION_NAME = "state_of_the_union_test" embeddings = OpenAIEmbeddings() vectorestore = TimescaleVector.from_documents( embedding=embeddings, documents=docs, collection_name=COLLECTION_NAME, service_url=SERVICE_URL, ) Attributes DEFAULT_INDEX_TYPE embeddings Access the query embedding object if available. Methods
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.timescalevector.TimescaleVector.html
ee0e31c7667f-1
Attributes DEFAULT_INDEX_TYPE embeddings Access the query embedding object if available. Methods __init__(service_url, embedding[, ...]) aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_embeddings(texts, embeddings[, ...]) Add embeddings to the vectorstore. aadd_texts(texts[, metadatas, ids]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_embeddings(texts, embeddings[, ...]) Add embeddings to the vectorstore. add_texts(texts[, metadatas, ids]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_embeddings(text_embeddings, embedding) Construct TimescaleVector wrapper from raw documents and pre- generated embeddings. afrom_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) Return VectorStoreRetriever initialized from this VectorStore. asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k, filter, ...]) Run similarity search with TimescaleVector with distance. asimilarity_search_by_vector(embedding[, k, ...])
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.timescalevector.TimescaleVector.html
ee0e31c7667f-2
asimilarity_search_by_vector(embedding[, k, ...]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. asimilarity_search_with_score(query[, k, ...]) Return docs most similar to query. asimilarity_search_with_score_by_vector(...) create_index([index_type]) date_to_range_filter(**kwargs) delete([ids]) Delete by vector ID or other criteria. delete_by_metadata(filter, **kwargs) Delete by vector ID or other criteria. drop_index() drop_tables() from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_embeddings(text_embeddings, embedding) Construct TimescaleVector wrapper from raw documents and pre- generated embeddings. from_existing_index(embedding[, ...]) Get intsance of an existing TimescaleVector store.This method will return the instance of the store without inserting any new embeddings from_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. get_service_url(kwargs) max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. service_url_from_db_params(host, port, ...) Return connection string from database parameters. similarity_search(query[, k, filter, predicates]) Run similarity search with TimescaleVector with distance. similarity_search_by_vector(embedding[, k, ...]) Return docs most similar to embedding vector.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.timescalevector.TimescaleVector.html
ee0e31c7667f-3
Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, ...]) Return docs most similar to query. similarity_search_with_score_by_vector(embedding) __init__(service_url: str, embedding: Embeddings, collection_name: str = 'langchain_store', num_dimensions: int = 1536, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, time_partition_interval: Optional[timedelta] = None) → None[source]¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_embeddings(texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Add embeddings to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. embeddings – List of list of embedding vectors. metadatas – List of metadatas associated with the texts. kwargs – vectorstore specific parameters async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.timescalevector.TimescaleVector.html
ee0e31c7667f-4
Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_embeddings(texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Add embeddings to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. embeddings – List of list of embedding vectors. metadatas – List of metadatas associated with the texts. kwargs – vectorstore specific parameters add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.timescalevector.TimescaleVector.html
ee0e31c7667f-5
Return VectorStore initialized from documents and embeddings. async classmethod afrom_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain_store', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) → TimescaleVector[source]¶ Construct TimescaleVector wrapper from raw documents and pre- generated embeddings. Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. Example from langchain.vectorstores import TimescaleVector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) tvs = TimescaleVector.from_embeddings(text_embedding_pairs, embeddings) async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain_store', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) → TimescaleVector[source]¶ Return VectorStore initialized from texts and embeddings. Postgres connection string is required “Either pass it as a parameter or set the TIMESCALE_SERVICE_URL environment variable. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.timescalevector.TimescaleVector.html
ee0e31c7667f-6
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ Return VectorStoreRetriever initialized from this VectorStore. Parameters search_type (Optional[str]) – Defines the type of search that the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”. search_kwargs (Optional[Dict]) – Keyword arguments to pass to the search function. Can include things like: k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold for similarity_score_threshold fetch_k: Amount of documents to pass to MMR algorithm (Default: 20) lambda_mult: Diversity of results returned by MMR; 1 for minimum diversity and 0 for maximum. (Default: 0.5) filter: Filter by document metadata Returns Retriever class for VectorStore. Return type VectorStoreRetriever Examples: # Retrieve more documents with higher diversity # Useful if your dataset has many similar documents docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 6, 'lambda_mult': 0.25} ) # Fetch more documents for the MMR algorithm to consider # But only return the top 5 docsearch.as_retriever( search_type="mmr", search_kwargs={'k': 5, 'fetch_k': 50} )
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.timescalevector.TimescaleVector.html